
Preliminary Information

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Nios II Flash Programmer
User Guide

http://www.altera.com


Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii  Altera Corporation
Preliminary

UG-NIOSIIFLSHPROG-1.1



Altera Corporation 
Contents
Chapter 1.  Using the Nios II Flash Programmer & Instantiating Flash Memory
Introduction ............................................................................................................................................ 1–1
Nios II Flash Programmer Overview .................................................................................................. 1–2

How the Nios II Flash Programmer Works .................................................................................. 1–2
Flash Programmer Design .............................................................................................................. 1–3
Target Boards .................................................................................................................................... 1–4
Types of Flash Content .................................................................................................................... 1–5
Flash Files .......................................................................................................................................... 1–5
Booting Options ................................................................................................................................ 1–5

Booting From CFI Flash ............................................................................................................. 1–6
Booting From EPCS Serial Configuration Devices ................................................................. 1–6
Boot-Copier Program ................................................................................................................. 1–6

Programming Content into Flash ........................................................................................................ 1–7
Using Nios II IDE ............................................................................................................................. 1–7
Flash Programming Script .............................................................................................................. 1–9
Using Command-Line Utilities .................................................................................................... 1–10

elf2flash Utility .......................................................................................................................... 1–10
sof2flash Utility ......................................................................................................................... 1–11
bin2flash Utility ......................................................................................................................... 1–11
nios2-flash-programmer Utility .............................................................................................. 1–12

Instantiating Flash in SOPC Builder Systems .................................................................................. 1–13

Chapter 2.  Porting the Nios II Flash Programmer to Custom Boards
Porting the Nios II Flash Programmer to New Hardware .............................................................. 2–1

Before You Begin .............................................................................................................................. 2–1
Creating a Target Board .................................................................................................................. 2–1
Selecting Your New Target Board ............................................................................................... 2–11
 iii
 



Contents
iv  Altera Corporation
 



Altera Corporation 
About this Document
This document provides comprehensive information about the Altera® 
Nios® II flash programmer. 

Table 1–1 shows this document’s revision history.

f Refer to the Nios II embedded processor readme file for late-breaking 
information that is not available in this document.

How to Find 
Information

■ The Adobe Acrobat Find feature allows you to search the contents of 
a PDF file. Click the binoculars toolbar icon to open the Find dialog 
box

■ Bookmarks serve as an additional table of contents
■ Thumbnail icons, which provide miniature previews of each page, 

provide a link to the pages
■ Numerous links, shown in green text, allow you to jump to related 

information

Table 1–1. Tutorial Revision History

Date Description

December 2004 Updates for the Nios II version 1.1 release. 

May 2004 First release of the flash programmer user guide for the 
Nios II development boards.
 v
Preliminary



How to Contact Altera Nios II Flash Programmer User Guide
How to Contact 
Altera

For the most up-to-date information about Altera products, go to the 
Altera world-wide web site at www.altera.com. For technical support on 
this product, go to www.altera.com/mysupport. For additional 
information about Altera products, consult the sources shown below.

Typographic 
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/ 

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com 

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer 
service

(800) 767-3753 (408) 544-7000 
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com 

Note to table:
(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, check box options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. 
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”
vi  Altera Corporation
Preliminary

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport


About this Document Typographic Conventions
Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, 
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files (e.g., the AHDL 
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in 
Courier. 

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ ● • Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

c
The caution indicates required information that needs special consideration and 
understanding and should be read prior to starting or continuing with the 
procedure or process.

w The warning indicates information that should be read prior to starting or 
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic. 

Visual Cue Meaning
Altera Corporation  vii
Preliminary



Typographic Conventions Nios II Flash Programmer User Guide
viii  Altera Corporation
Preliminary



Altera Corporation Cor
December 2004
1. Using the Nios II Flash
Programmer & Instantiating

Flash Memory
Introduction Many designs that utilize the Nios® II processor also incorporate flash 
memory on the board as a means to store an FPGA configuration and/or 
Nios II program data. The Nios II development kit includes a convenient 
method of programming this flash. Any common flash interface (CFI)-
compliant flash device connected to the FPGA can be programmed using 
the Nios II integrated development environment (IDE) flash 
programmer. 

CFI is a flash interface specification that provides a common interface to 
flash devices from different vendors. As long as a flash adheres to the 
specification, it can be queried for it’s specific parameters with a special 
command, and then accessed appropriately. Through this process, the 
Nios II IDE flash programmer can program any single CFI-compliant 
flash device, or multiple devices at any offset, and with any type of 
content.

In addition to CFI flash, the Nios II IDE flash programmer can program 
any Altera® EPCS Serial Configuration Device connected to the FPGA.

This chapter contains three main sections:

■ Nios II flash programmer overview: This section describes the flash 
programmer’s design, components, and general options.

■ Using the Nios II flash programmer to program flash: This section guides 
you through the process of using Nios II IDE to program flash 
devices.

■ Instantiating flash in SOPC Builder systems: This section discusses 
using SOPC Builder to instantiate flash into a new hardware system 
so that it may be programmed using the Nios II IDE flash 
programmer.

If your needs are only to program the flash on an Altera Nios 
development board using the Nios II flash programmer, refer to 
“Programming Content into Flash” on page 1–7. The information in this 
chapter is provided as background to the flash programmer's operation 
as well as a primer for Chapter 2, Porting the Nios II Flash Programmer 
to Custom Boards.
e Version a.b.c variable 1–1
Preliminary



Nios II Flash Programmer Overview
Nios II Flash 
Programmer 
Overview

This section provides an overview of the Nios II flash programmer, 
including:

■ How the Nios II flash programmer works
■ Flash programmer design
■ Target boards
■ Types of flash content
■ Booting options

How the Nios II Flash Programmer Works

The flash programmer employs a two-step process to write data into 
flash. The first step consists of configuring the FPGA with a specific flash 
programmer design (see “Flash Programmer Design”). Once this design 
has been configured in the FPGA, the flash programmer utility (running 
on the host) collects the appropriate flash content files and sends them to 
the flash programmer design running on the FPGA. The flash 
programmer design then programs the content into flash. See Figures 1–1 
and 1–2.

Figure 1–1. Step 1: Configuring FPGA with Flash Programmer Design

Figure 1–1 shows step 1, the flash programmer utility downloads the 
flash programmer design to the FPGA.

Flash Programmer
Design Target Board

Download Cable
(Byteblaster, USB

Blaster, etc...) CFI Flash
Device

Flash 
Programmer

Design

Altera FPGA
1–2 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Using the Nios II Flash Programmer & Instantiating Flash Memory
Figure 1–2.  Step 2: Transmitting Flash Content To be Programmed into Flash Device 

Figure 1–2 shows step 2, the flash programmer utility sends flash content 
to the flash programmer design running on the FPGA. The flash 
programmer design then programs the content into the flash device(s). 
When flash programming is complete, you may freely reconfigure the 
FPGA with any design.

Flash Programmer Design

A key piece of the Nios II IDE flash programmer is the flash programmer 
design, which is a small FPGA design containing an SOPC Builder system 
having the minimal hardware and firmware necessary to:

■ Communicate with the host computer over JTAG interface
■ Program data provided by the host into flash 

Different boards often use different flash devices, different pin-outs, and 
different Altera FPGA families. For this reason, each flash programmer 
design is board-specific and therefore cannot be used to program flash on 
a different board. 

If using a custom board, the board designer must create that board’s flash 
programmer design and provide it to anyone who will be programming 
flash on the board. For more information, refer to Chapter 2, Porting the 
Nios II Flash Programmer to Custom Boards.

Flash programmer designs for all of the Altera Nios development kit 
boards are included with the Nios II development kit and can be found in 
the board’s component directory within the Nios II development kit 
install directory. For example, the flash programmer design for the 
Stratix® EP1S10 Nios development board is located in the following 
directory: 

Flash Content Target Board

CFI Flash
Device

Download Cable
(Byteblaster, USB

Blaster, etc...)

Altera FPGA

Flash 
Programmer

Design

Flash
Content
Altera Corporation Core Version a.b.c variable 1–3
December 2004 Nios II Flash Programmer User Guide



Nios II Flash Programmer Overview
<nios2kitinstall>/components/altera_nios_dev_board_stratix_1s10/
system

Each flash programmer design contains the following components:

■ Nios II CPU
■ JTAG UART
■ Active serial memory interface, which is only required if the FPGA 

uses an EPCS serial configuration device
■ Tri-state bridge
■ CFI-compatible flash interface
■ System ID peripheral
■ On-chip memory for firmware and buffers

1 For the flash programmer to be used, the actual system being 
developed does not need to include a Nios II CPU. As long as 
the flash is connected to the FPGA properly, it can be 
programmed with the Nios II IDE flash programmer, whether or 
not a Nios II CPU is used in the design.

Target Boards

A "target board" is a group of files SOPC Builder uses to determine certain 
characteristics about the board you are using. Some of these 
characteristics have to do with how flash is connected to the FPGA, 
making target boards useful to the flash programmer. The following 
information is contained in a target board:

■ Reference designators for each flash chip that is connected to the 
board’s FPGA

■ Flash device base addresses in the flash programmer design
■ The location of the board’s flash programmer design file, or SRAM 

object file (.sof), on the host computer

Reference designators are a way to keep track of individual flash devices 
between the design(s) being developed and the flash programmer design. 
Board flash devices may be given different design names and design base 
addresses, but their reference designators will always be the same. For 
example, “U5” is the reference designator of the flash device on Altera 
Nios development boards.

To choose a target board for your SOPC Builder System, open SOPC 
Builder from Quartus® II (Tools > SOPC Builder), then select the board 
you are using from the Target drop down list at the top of the SOPC 
Builder window. 
1–4 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Using the Nios II Flash Programmer & Instantiating Flash Memory
1 When using a custom board, your board will not appear in the 
Target drop down list until a target board for the custom board 
is created. You must create a target board and provide it to 
anyone who will create SOPC Builder systems for that board. 
For more information, refer to Chapter 2, Porting the Nios II 
Flash Programmer to Custom Boards.

Types of Flash Content

There are three types of content you may want to program into flash:

■ Software content: Software content will normally exist in the form of 
an .elf file generated by Nios II IDE. Programming software into 
flash allows the Nios II processor to boot from flash upon reset. 
Because running software from flash can be quite slow, the flash 
programmer also allows you to place a boot copier in front of your 
software in flash. The boot copier, when run on the target device, 
copies your software from flash to a RAM in the system; then 
branches to the RAM location, where it can run much faster.

■ FPGA configuration data: FPGA configuration data usually will be in 
the form of a .sof file. The Nios II flash programmer allows you to 
program the FPGA configuration into flash. If using a configuration 
controller, as Altera Nios development boards do, the FPGA can be 
configured from flash at power-on reset. 

■ Arbitrary content: Arbitrary content can be any type of binary data 
that you may wish to program into flash, such as graphics, audio, etc.

Flash Files

Flash files are data files that have been formatted so they can be read by 
the Nios II IDE flash programmer. Flash files can be identified by their 
.flash file extension, although they are actually implemented as industry 
standard SREC files. The <x>2flash utilities (refer to “Using Command-
Line Utilities” on page 1–10) can be used to create flash files from other 
types of data files. However, when using Nios II IDE to program flash, the 
utilities are run invisibly in the background.

Booting Options

This section discusses the following Nios II flash programmer booting 
options:

■ Booting from CFI flash
■ Booting from EPCS serial configuration devices
■ Boot copier program
Altera Corporation Core Version a.b.c variable 1–5
December 2004 Nios II Flash Programmer User Guide



Nios II Flash Programmer Overview
Booting From CFI Flash

The Altera Nios development boards utilize an Altera EPM7128AE CPLD 
as a configuration controller. At power-on reset, the configuration 
controller automatically looks for FPGA configuration data in flash, and 
if the data exists, automatically configures the FPGA from flash. 

Once the FPGA is configured, the configuration may contain a Nios II 
processor whose reset address is within the flash address space. In this 
case, the Nios II processor will boot from flash as well.

The Nios II flash programmer is capable of programming both FPGA 
configuration data and software content into flash at any address so the 
entire system, both hardware and software, can boot from a CFI flash 
device.

f For more information about the configuration controller on Altera Nios 
development boards, refer to the Nios Development Board Reference 
Manuals, www.altera.com.

Booting From EPCS Serial Configuration Devices

If using an Altera EPCS serial configuration device, the system is also 
capable of booting both hardware and software from the device. The 
Nios II IDE flash programmer can program both FPGA configuration 
data and software content into an EPCS serial configuration device. The 
flash programmer first checks the size of the FPGA configuration data, 
then appends the software content to the end of it in the EPCS device.

Booting from an EPCS serial configuration device requires that the 
system being developed include an EPCS serial flash controller 
component in SOPC Builder. This component contains a small amount of 
on-chip ROM that is used for booting. If the reset address of the Nios II 
processor is set to the base address of the EPCS serial flash controller, the 
small amount of on-chip ROM attached to the controller is initialized 
during FPGA configuration with a boot copier. At CPU reset, the 
processor runs the boot-copier from the on-chip ROM, and relocates the 
software from the EPCS serial configuration device to the address at 
which the .elf file is linked—presumably occupied by a volatile memory 
such as a RAM, SDRAM, on-chip RAM, etc. The boot copier then 
branches to the relocated software and begins executing it.

Boot-Copier Program

When programming software content (.elf files) into flash, you can 
automatically insert a small boot-copier program immediately before 
your software contents in flash to allow the system to boot from flash. The 
1–6 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Using the Nios II Flash Programmer & Instantiating Flash Memory
boot copier will relocate your software to the address where it has been 
linked in the .elf file, then branch to it. Normally, the address to where the 
software is relocated will be occupied by a volatile memory such as a 
RAM, SDRAM, on-chip RAM, etc.

1 Nios II IDE can be used to configure where the different sections 
of your software are linked in the .elf file. For more information, 
refer to Editing Project Properties in the Nios II IDE Software 
Tutorial.

The decision of whether or not to insert a boot copier is made by the 
elf2flash utility, based on the switches --base, --end, --reset, and 
the location to which your software content is linked in the .elf file. The 
elf2flash utility will insert a boot copier in front of your software 
content when—and only when—the reset address is within flash and the 
.elf file is linked to a location outside of the flash. 

For example, if your flash memory is mapped to (0x0 – 0x7FFFFF) in 
SOPC Builder, and you have linked your software so that it is to be 
located at 0x800000 where an external RAM is mapped in SOPC Builder, 
elf2flash will insert a boot copier at address 0x0, followed by your 
software contents. Upon reset, the boot copier relocates the software 
contents from flash to the external RAM located at 0x800000 before 
executing it.

Programming 
Content into 
Flash

This section discusses two methods for programming the three types of 
content into flash, using:

■ Nios II IDE
■ Command line utilities

Using Nios II IDE

The preferred method for programming flash is from within Nios II IDE. 
Nios II IDE uses the same command line utilities as discussed in “Using 
Command-Line Utilities” on page 1–10; however with Nios II IDE, the 
process is much more automated, and options are presented in an easy-
to-use graphical interface.

The following steps outline the procedure for programming flash using 
Nios II IDE.

1. Start Nios II IDE, either from the System Generation tab in SOPC 
Builder or from the Start menu.

2. Build a software project. 
Altera Corporation Core Version a.b.c variable 1–7
December 2004 Nios II Flash Programmer User Guide



Programming Content into Flash
f For more information on building a software project, refer to the Nios II 
IDE Software Tutorial.

3. Choose Tools > Flash Programmer.

Figure 1–3. Flash Programmer

4. Click New (bottom left hand side).

5. Turn on Program flash memory with software project to program 
the project’s .elf file into flash .

a. Verify that the correct software project is listed. 

b. Turn on Build project and dependents (if required) before 
launching.

6. Turn on Program FPGA configuration data into hardware-image 
region of flash memory to program an FPGA configuration file into 
flash.
1–8 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Using the Nios II Flash Programmer & Instantiating Flash Memory
a. Select the FPGA configuration .sof file for your hardware.

b. Select the hardware image offset location for programming the 
configuration data. 

7. Turn on Program flash memory with a file to program some other 
binary file into flash.

a. Click Browse... to select the file you wish to program into flash.

b. Select the flash memory device you want to program. 

c. Enter the offset location within the flash memory device for 
programming the file. 

8. Click Apply. The Apply button will be grayed out if none of the 
settings are changed. This is normal.

9. Click Program Flash.

1 If the Nios II IDE is unable to detect your JTAG cable setting, the 
Program Flash button is grayed out. Click the Target 
Connection tab to setup your JTAG cable. 

Nios II IDE will configure the FPGA with the flash programmer design 
appropriate for the target board, and then program the contents you have 
specified into the appropriate flash devices on the board.

Flash Programming Script

As well as automatically programming flash, the Nios II IDE also creates 
a script to program flash from the command line. When you click the 
Apply button in Step 7 of “Using Nios II IDE” on page 1–7, a 
program_<project_name>.sh script file is created in the software 
project's configuration directory. For instance, if your project is named 
hello_world_0 and you built the project using the default Debug 
configuration, the flash programming script will be 
hello_world_0\Debug\program_hello_world_0.sh. 

You can run this script from the command line by starting a Nios II 
software development kit (SDK) shell, changing to the directory 
containing the script, and then typing 
./program_hello_world_0.sh. Including ./ is often required so the 
shell interprets the script as executable.
Altera Corporation Core Version a.b.c variable 1–9
December 2004 Nios II Flash Programmer User Guide



Programming Content into Flash
Using Command-Line Utilities

In some cases, you may wish to use the command line instead of the 
Nios II IDE to program flash. To facilitate this option, the four executables 
used by the Nios II IDE flash programmer are available from the Nios II 
SDK shell as command line utilities. The four utilities are located in the 
<nios2-kit-install>/bin directory, and this section lists the utilities and their 
functions.

1 The utilities must be run from the Nios II SDK shell.

elf2flash Utility

The elf2flash utility takes a software file in elf format, and translates it 
to a flash file that can be programmed into flash. This utility can also 
optionally insert a boot copier into the flash file to copy the software from 
flash to RAM before running it. 

1 As part of the software build process, this command may have 
already run. Check the Release directory of your software 
project to see if a flash file for your software has already been 
created.

The typical options used with elf2flash are listed below. Type 
elf2flash --help from the Nios II SDK shell prompt for a full list of 
command line options. 

elf2flash options:

■ --input=<file> 
Name of input .elf file to process

■ --output=<file> 
Name of output flash file

■ --base=<addr> 
Base address of the flash in your system (not the flash programmer 
design)

■ --end=<addr> 
End address of flash in your system (not the flash programmer 
design)

■ --reset=<addr> 
CPU reset address (set in SOPC Builder)

■ --boot=<file> 
Name of boot copier SREC file 
1–10 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Using the Nios II Flash Programmer & Instantiating Flash Memory
■ --epcs
Set this option if the .elf content will be programmed in an EPCS 
serial configuration device. 

■ --flash=<designator>
Reference designator of the flash device that is to be programmed 
with the .elf content.

sof2flash Utility

The sof2flash utility takes an FPGA configuration file in .sof format 
and translates it to a flash file that can be programmed into flash. 

The typical options used with sof2flash are listed below. Type 
sof2flash --help from the Nios II SDK shell prompt for a full list of 
command line options.

sof2flash options:

■ --input=<file>
Name of input .sof file to process

■ --output=<file>
Name of output flash file

■ --offset=<addr>
Offset within the flash at which .sof content is to be programmed

■ --epcs
Set this option if the .sof content is to be programmed in an EPCS 
serial configuration device.

■ --flash=<designator>
Reference designator of the flash device that is to be programmed 
with the .sof content.

bin2flash Utility

The bin2flash utility converts any binary data file to a flash file that 
can be used by the flash programmer. 

The typical options used with bin2flash are listed below. Type 
bin2flash --help from the Nios II SDK shell prompt for a full list of 
command line options.

bin2flash options:
Altera Corporation Core Version a.b.c variable 1–11
December 2004 Nios II Flash Programmer User Guide



Programming Content into Flash
■ --input=<file>
Name of input file to process

■ --output=<file>
Name of output flash file

■ --base=<addr>
Base address of the flash in your system

■ --location=<addr>
Offset within the flash at which content is to be programmed

■ --epcs
Set this option if the content is going to be programmed in an EPCS 
serial configuration device.

■ --flash=<designator>
Reference designator of the flash device that is going to be 
programmed.

nios2-flash-programmer Utility

The nios2-flash-programmer utility takes a flash file, created by one 
of the conversion utilities, and programs it into the specified flash. The 
nios2-flash-programmer utility is capable of programming any CFI-
compatible flash or EPCS serial configuration device in the system. 

The typical options used with nios2-flash-programmer are listed 
below. Type nios2-flash-programmer --help from the Nios II SDK 
shell prompt for a full list of command line options. 

nios2-flash-programmer options:

■ --base=<addr>
Base address of the CFI-compatible flash or EPCS serial flash 
controller component in the board’s flash programmer design

■ --epcs 
Set this option if you are trying to program an EPCS serial 
configuration device

■ --input=<file> 
Name of the flash file you wish to program into flash

■ --sof=<file> 
Name of the flash programmer design’s .sof file
1–12 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Using the Nios II Flash Programmer & Instantiating Flash Memory
Instantiating 
Flash in SOPC 
Builder Systems

To program flash, you must first ensure that your hardware system is 
generated properly, i.e., so that the flash programmer has all the 
information it needs. 

The first step occurs during the creation of the system in SOPC Builder. 
An appropriate target board must be selected at the top of the System 
Contents tab in SOPC Builder, see Figure 1–4. The target board contains 
the following information:

■ Number of flash devices connected to the FPGA
■ Flash devices’ individual board reference designators 
■ The base addresses for each flash device
■ Location of the board’s unique FPGA flash programmer design 

Figure 1–4. Choosing a Target Board

If you add CFI flash memory or an EPCS serial flash controller to your 
SOPC Builder system, you will be presented with component wizards for 
each. In the component wizards, Figures 1–5 and 1–6, you must select a 
board reference designator for the flash component. This provides a 
relationship between the system component and the actual flash device 
on the board. If the target board you have selected has only one flash 
Altera Corporation Core Version a.b.c variable 1–13
December 2004 Nios II Flash Programmer User Guide



Instantiating Flash in SOPC Builder Systems
device, the flash device’s reference designator will be chosen by default 
in the CFI-compatible Flash Memory component wizard, and you will 
not be able to change it.

1 Your final design does not need a flash component for the Nios 
II flash programmer to be able to program the flash. However, 
the flash programmer design for the board must contain a flash 
component for each flash device you wish to program using the 
flash programmer. Using the flash programmer design, the flash 
programmer can program an attached flash device, even if the 
SOPC Builder system for the final design does not contain a 
flash component.

Figure 1–5. CFI-Compatible Flash Memory Wizard

Figure 1–6. EPCS Serial Flash Controller Wizard
1–14 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Altera Corporation Cor
December 2004
2. Porting the Nios II Flash
Programmer to

Custom Boards
Porting the 
Nios II Flash 
Programmer to 
New Hardware

Before the flash programmer can work with a new custom board, you 
must first port the flash programmer to the new hardware. This chapter 
guides you through the porting procedure. To avoid making mistakes, it 
is critical to exactly follow the instructions.

This section includes the following:

■ Before you begin
■ Creating a target board
■ Selecting your new target board

Before You Begin

It is recommended that you first create a preliminary version of the final 
design intended for the board before porting the flash programmer to the 
board. This will help ease the porting work as you will have already made 
the appropriate interface pin assignments for your flash devices. Thus, in 
most cases, you won’t have to re-type the pin assignments for the flash 
programmer design. Also, the interface to your flash device(s) will have 
been worked out, reducing the chance of having to re-port the flash 
programmer again later.

Creating a Target Board

In this document, the term “target board” refers to the set of files used by 
SOPC Builder to determine board characteristics on which the system is 
being implemented. SOPC Builder uses target boards much like 
peripheral components, except that target boards describe the system's 
connections to the board, whereas peripheral components describe a 
peripheral's connections to the system. The Nios II Development Kit 
comes with a pre-built target board for each of the Nios development 
boards, which you can see in the Target drop-down list from the System 
Contents tab (SOPC Builder). 

Target boards are important to flash programming because they provide 
the needed information about the board’s flash so that the flash 
programmer can program the flash. Therefore, the first step in porting the 
flash programmer to your custom board is to create a target board for it 
in SOPC Builder. The target board will contain the following elements:

■ Reference designators for each flash chip on the board that is 
connected to the FPGA.
e Version a.b.c variable 2–1
Preliminary



Porting the Nios II Flash Programmer to New Hardware
■ Base addresses of those flash devices in the flash programmer 
design.

■ A flash programmer design tailored specifically for your board.
■ The location of that board’s flash programmer design (.sof file) on 

the host computer.

A target board consists of the following files:

■ class.ptf – Describes the flash that is connected to the FPGA. Also 
points to the location of the board's flash programmer design.

■ <board_name>.ptf – SOPC Builder system file for the flash 
programmer design.

■ <board_name>.qpf – Quartus® II project file for the flash programmer 
design.

■ <board_name>.sof – FPGA configuration file for the flash 
programmer design. As the first step in programming flash, the flash 
programmer configures the FPGA with this file.

The mk_target_board utility is used to create a generic target board 
template. Then using SOPC Builder, the target board template will be 
used as a starting point to build up a fully functional target board that 
represents your custom board. To create a generic target board template 
using mk_target_board, perform the following steps:

1. Open the Nios® II SDK shell from the Start menu. Choose 
Programs >Altera > Nios II Development Kit 1.0 > Nios SDK 
shell.

2. Using the cd command, change to the directory in which your 
actual Quartus® II design project resides.

3. Run the mk_target_board utility to create a generic target board 
template. The required parameters for mk_target_board are as 
follows:

mk_target_board Parameters: 

■ --name=<name>
The name you would like to call your target board.

■ --family=<family>
The name of the FPGA family you are using on your board. Valid 
entries are “stratix” and “cyclone.”

■ --clock=<freq>
Clock frequency in MHz that is driving the system clock pin. 
2–2 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Porting the Nios II Flash Programmer to Custom Boards
1 It is recommended that you run the flash programmer 
design at 50 MHz or faster. If it is run at a slower speed, 
flash programmer performance may suffer. If the only 
available clock is slower than 50 MHz, you may add a PLL 
later in the design to the top-level flash programmer design 
to create a faster clock.

■ --index=<index>
The index in the JTAG chain at which your FPGA resides (1 if it is the 
only device in the chain)

■ --epcs=<refdes>
Enter this option only if you are using an EPCS serial configuration 
device on your board and wish to program it with the flash 
programmer. Specify the EPCS device’s reference designator as the 
refdes parameter. 

■ --buffer_size=<size>
The buffer size, in bytes, you would like the flash programmer 
design to use to communicate with the host. The buffer size is largely 
dependent on the amount of available RAM in the FPGA device 
being used. Table 2–1 lists the appropriate values.

Table 2–1. Buffer Sizes for Stratix & Cyclone Devices

Stratix Device Buffer Size (Bytes) Cyclone Devices Buffer Size (Bytes)

1S10 16384 1C3 512
1S20 32768 1C4 2048
1S25 32768 1C6 4096
1S30 65536 1C12 16384
1S40 65536 1C20 16384
1S60 65536
1S80 65536
Altera Corporation Core Version a.b.c variable 2–3
December 2004 Nios II Flash Programmer User Guide



Porting the Nios II Flash Programmer to New Hardware
Figure 2–1. MK_TARGET_BOARD Output 

This will create a subdirectory within your actual project directory with 
the name you specified in the mk_target_board command line. The 
subdirectory will contain your new generic target board template. See 
Figure 2–1.

4. Start Quartus II software and open the new project in the 
subdirectory that was just created by mk_target_board.

5. From Quartus II software, choose Assignments > Device and select 
the device you are using on your board. See Figure 2–2.
2–4 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Porting the Nios II Flash Programmer to Custom Boards
Figure 2–2. Device Assignment Dialog Box

6. Click OK.

7. Choose Tools -> SOPC Builder to start the SOPC Builder tool.

8. Ensure that the SOPC Builder’s System Contents tab is selected.

1 Because we are creating a target board and not a real system, it 
is desirable to leave the Target field as Unspecified Board.

9. Ensure the System Clock Frequency is set to the frequency at which 
you intend to run the flash programmer design.
Altera Corporation Core Version a.b.c variable 2–5
December 2004 Nios II Flash Programmer User Guide



Porting the Nios II Flash Programmer to New Hardware
10. Add the Avalon Tri-State bridge component to the system, choose 
Bridges > Avalon Tri-State Bridge from the components list on the 
left. Accept the default parameters. See Figure 2–3.

Figure 2–3. Avalon Tri-State Bridge Wizard

11. For each flash device on your board that is connected to the FPGA, 
add a flash memory (CFI) component. Choose Memory > Flash 
Memory (Common Flash Interface). See Figure 2–4.

12. In the Flash Memory Component wizard, be sure to enter the 
appropriate parameters for each flash device, or select your flash 
device from the list of presets at the top of the Flash Memory 
Component wizard, if it exists there.

13. In the Flash Memory Component wizard, be sure to specify a 
reference designator for each flash device. If the device corresponds 
to a CFI flash component in your actual design, ensure that the 
reference designator chosen matches the reference designator you 
gave the CFI flash component in your actual design. A device's 
reference designator is often silk-screened next to the actual device 
mounted on the board, e.g., “U5” is the reference designator of the 
flash device on the Altera Nios development boards. See Figure 2–4. 
2–6 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Porting the Nios II Flash Programmer to Custom Boards
Figure 2–4. Flash Memory Wizard

14. Select the More “Board_System” Settings tab in SOPC Builder. See 
Figure 2–5.

15. The Board Component Name and JTAG Device Index value 
should be the same as was entered in the mk_target_board 
utility.

16. For each hardware configuration image location you would like to 
exist in your flash, type a name in the Hardware Image Name 
column. Common hardware image names are “user,” “safe,” etc.

f Refer to AN 346: Using the Nios Development Board Configuration Controller 
Reference Designs for more information on “user” and “safe” images.
Altera Corporation Core Version a.b.c variable 2–7
December 2004 Nios II Flash Programmer User Guide



Porting the Nios II Flash Programmer to New Hardware
Figure 2–5. More Board System Settings 

17. For each Hardware Image Name you enter, select the flash module 
(Module column) in which you would like the hardware image 
name located. Options here will be any CFI flash or EPCS serial 
configuration device components you instantiate in the target board 
system.

18. For each Hardware Image Name, select the offset within the flash 
module in which you would like the hardware image to exist. For 
example, the “user” and “safe” hardware image locations on the 
Nios Development Boards are 0x700000 and 0x600000, 
respectively.

1 If you are setting a Hardware Image Name to be located in an 
EPCS serial configuration device, no offset is allowed.
2–8 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Porting the Nios II Flash Programmer to Custom Boards
19. Click the System Generation tab in SOPC Builder.

20. Turn off the Simulation check box, as you are creating a target 
board, not a complete system. Simulation is not applicable.

21. Click Generate.

22. When generation is complete, click Exit.

23. If asked to update the symbol you just changed in SOPC Builder, 
click Yes. If not asked to update the symbol, do so anyway by right- 
clicking the system symbol and selecting Update Symbol or Block.

24. The flash interface signals should now appear on the system 
symbol.

25. Add the appropriate number of output and bidir pins for the new 
flash interface to the design by double-clicking on an empty space in 
the schematic and entering output or bidir, then click OK.

26. Connect the pins to their corresponding flash interface signals on 
the system symbol.

27. Name the pins by double-clicking them.

1 It is highly recommended you name the pins exactly the same as 
they are named in your actual design. This will help ease the 
upcoming step of making pin assignments.

28. THIS IS A VERY IMPORTANT STEP: 

w If there are other non-flash devices on the same external tri-state 
bus, you must add output pins for their output enable (OE), read 
enable, or other such pins. The pins must be connected to either 
GND or VCC, depending on the polarity of the external device pin 
to disable the output from the other devices. Otherwise, there 
will likely be tri-state bus contention, and damage to the devices 
or the FPGA’s can occur. See Figure 2–6.

1 As with the flash interface pins, it is recommended that you 
name the other device OE pins the same as in your actual design 
to ease the next step of making pin assignments.
Altera Corporation Core Version a.b.c variable 2–9
December 2004 Nios II Flash Programmer User Guide



Porting the Nios II Flash Programmer to New Hardware
Figure 2–6.  BDF with Flash Pins & Other Device Pins

29. Make pin assignments to the new pins.

a. If you have named the flash and other devices’ OE pins the 
same as in your actual design, follow these steps to make your 
pin assignments:

• Open the .qsf file for your actual project in Quartus II
• Open the .qsf file for your new target board project in 

Quartus II.
• Copy the Pin & Location Assignments section from your 

actual project’s .qsf file to your target board project’s .qsf 
file.

• Save your target board project’s .qsf file.
• Close both .qsf files.

b. If you have not named the flash and other devices’ IO pins the 
same as in your actual design, you will have to make your pin 
assignments by following the Quartus II Help instructions for 
making pin assignments.

30. Choose Save (File menu).

31. Choose Processing > Start Compilation.
2–10 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004



Porting the Nios II Flash Programmer to Custom Boards
Selecting Your New Target Board

Now that you have created a target board, you can select it as the target 
for your original design, which will then enable flash programming.

When the target board is created by the mk_target_board utility, it is 
automatically added to the SOPC Builder component search path so that 
other projects may use it from SOPC Builder. However, if you move the 
target board, it may no longer be in that search path. To inspect and edit 
the SOPC Builder component search path, open SOPC Builder (Tools > 
SOPC Builder) and choose SOPC Builder Setup (File menu). The 
Component/Kit Library Search Path field contains the additional 
locations SOPC Builder will search for components and target boards 
when the software launches.

Perform the following steps to instantiate the new target board in your 
design.

1. Open your actual original project in Quartus II.

2. Open SOPC Builder by choosing Tools > SOPC Builder.

3. Ensure the System Contents tab is selected.

4. From the Target drop-down list, select your new target board. 

1 If your target board is not shown in the Target drop-down 
list, something in the previous steps was not successful. 
Ensure that the target board project directory is in either 
your actual project directory, or some other directory within 
the SOPC Builder component search path. See Figure 2–7.
Altera Corporation Core Version a.b.c variable 2–11
December 2004 Nios II Flash Programmer User Guide



Porting the Nios II Flash Programmer to New Hardware
Figure 2–7. Target Drop Down List in SOPC Builder

5. Select the System Generation tab.

6. Click Generate.

7. When generation finishes, click Exit.

8. If asked to update the symbol you just changed in SOPC Builder, 
click Yes.

9. Choose File > Save.

10. Choose Processing > Start Compilation.

You are now ready to program flash. Assuming everything was done 
correctly, you should now be able to program flash by following the 
instructions in Chapter 1, Using the Nios II Flash Programmer & 
Instantiating Flash Memory.
2–12 Core Version a.b.c variable Altera Corporation
Nios II Flash Programmer User Guide December 2004


	Nios II Flash Programmer User Guide
	Contents
	About this Document
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	1. Using the Nios II Flash Programmer & Instantiating Flash Memory
	Introduction
	Nios II Flash Programmer Overview
	How the Nios II Flash Programmer Works
	Flash Programmer Design
	Target Boards
	Types of Flash Content
	Flash Files
	Booting Options
	Booting From CFI Flash
	Booting From EPCS Serial Configuration Devices
	Boot-Copier Program


	Programming Content into Flash
	Using Nios II IDE
	Flash Programming Script
	Using Command-Line Utilities
	elf2flash Utility
	sof2flash Utility
	bin2flash Utility
	nios2-flash-programmer Utility


	Instantiating Flash in SOPC Builder Systems

	2. Porting the Nios II Flash Programmer to Custom Boards
	Porting the Nios II Flash Programmer to New Hardware
	Before You Begin
	Creating a Target Board
	Selecting Your New Target Board




