
Exploring STM32U3 security

Secure keystore
Key wrapping using coupling and chaining
bridge (CCB) fundamentals

Hello and welcome to this presentation on "Exploring STM32U3

Security: Secure Keystore and Key Wrapping Using Coupling and
Chaining Bridge (CCB) Fundamentals."

Today, we will delve into the advanced security features of the
STM32U3 microcontroller, focusing on its secure keystore
capabilities and the innovative key wrapping techniques facilitated
by the Coupling and Chaining Bridge (CCB).

What is key wrapping?

The encapsulation of keys and templates

with a unique device dependent key

Benefits of key wrapping?

• Confidentiality

• Integrity

• Efficiency

1. Device hardware unique

key (DHUK) installed on

device by ST during IC

manufacturing

2. User keys to be

provisioned are encrypted

by DHUK

3. Keys can be stored safely

4. To be used keys can only

be decrypted by the

device dependent DHUK

How does key wrapping

work?

Secure keystore
Key wrapping

Why a keystore?

Protect keys at rest and during execution

Key wrapping is a cryptographic technique used to securely

encapsulate encryption keys. It is a method of encrypting keys with
another key, often referred to as a "key-encryption key" (KEK). On
STM32 called DHUK, unique per device. to ensure their
confidentiality and integrity during storage or transmission. Key

wrapping is particularly useful in scenarios where multiple keys
need to be managed securely, such as in key management
systems or when distributing keys across different systems.

Key Features of Key Wrapping:

1.Confidentiality: The primary goal is to protect the wrapped key
from unauthorized access. Only entities with the correct DHUK can
unwrap and access the original key.

2.Integrity: Ensures that the wrapped key has not been altered or

tampered with during storage or transmission.

3. Efficiency: Key wrapping algorithms are designed to be
efficient, allowing for quick wrapping and unwrapping processes.

How Key Wrapping Works:

1.Key in-ST provisioning: A Device Hardware Unique Key (DHUK)
is provision by ST on each device. This key is used to wrap other
keys.

2.Wrapping Process: The original key is encrypted using the

DHUK. This process may involve additional steps to ensure
integrity, such as adding authentication tags.

3.Storage/Transmission: The wrapped key is stored or transmitted
securely. It is now protected by the DHUK.

4.Unwrapping Process: When access to the original key is
needed, the wrapped key is decrypted using the DHUK, restoring
the original key.

Wrapping algorithm

How does key wrapping work?

Hardware Unique Key
Provisioning

Provision securely a device
hardware unique key (DHUK)

on each product IC

Wrapping algorithm

Key wrapping
During OEM provisioning

Encapsulate an OEM key with
DHUK and template.

Delete clear keys if wrapped

Generate a key

OEM

Generate a key

Encapsulate key

Wrapping algorithm

Storing key
In NVM keystore

Store the key into a non-
volatile memory, creating a

keystore

Keystore
User

Non-volatile memory

Within IC

Wrapping algorithm

Using wrapped keys
For encryption

Send wrapped key to Secure
AES, and use AES to

encrypt/decrypt payload

Transfer key

Within IC

Unwrap key

0110100100

101
Clear text

011010010

0101
encrypted

Encrypt

Let’s see how key wrapping is used:

1) First, ST will generate within a secure environment a secret.
This secret is different for all die/product/device. It will then be
installed on the device and locked so that application CPU
cannot get access to this secret. The secret is called in the

device a Hardware Unique Key (HUK)
2) Second, OEM generates a secret (an ECC or AES key) within

its secure environment. The secret is injected in the device and
wrapped/encapsulated with the HUK. The original key in clear

shall be destroyed.
3) Third, this wrapped secret can be stored into any application

memory. As it is wrapped the secret cannot be recovered in
clear.

4) Finally, to process an encryption/decryption of an asset, the
user will provide the wrapped key to the Secure AES (SAES)
and CCB and the blob to encrypt/decrypt. The SAES will

unwrap the key, always protecting it in confidentiality, and use it

to encrypt/decrypt the asset. Once done the key in clear will be
flushed to avoid leakage. Only SAES internal logic hac access to
the key in clear.

Maintain the security and integrity of cryptographic
systems and devices with keys

• Clear-text Key is a cryptographic key that is stored or transmitted in an unencrypted form. This means that the key is in its original, readable
format and is not protected by any form of encryption. Clear-text keys are vulnerable to interception and unauthorized access, making them a

security risk if not properly managed.

• Encrypted/Wrapped Key is a cryptographic key that has been encrypted using another key, often referred to as a key-encryption key (KEK).
This process protects the key from unauthorized access by ensuring that it cannot be used unless it is first decrypted. Wrapped keys are
commonly used in secure key management systems to safely store and transmit keys.

• Device Hardware Unique Key (DHUK) is a cryptographic key that is unique to a specific hardware device. It is typically embedded in the
device during manufacturing and is used to ensure that cryptographic operations are tied to that particular piece of hardware. The DHUK is

often used in secure boot processes and to protect sensitive data on the device.

• Unwrapped/Decrypted Key is a key that has been decrypted from its encrypted or wrapped form. This means that the key is now in a usable

state and can be employed for cryptographic operations. However, once unwrapped, the key must be handled with care to prevent
unauthorized access.

• Boot Hardware Key (BHK) is a cryptographic key used during the boot process of a device to ensure the integrity and authenticity of the
bootloader and operating system. The BHK is typically stored in a secure area of the device's hardware and is used to verify that the software
being loaded has not been tampered with.

• Root Hardware Unique Key (RHUK) is a cryptographic key that is unique to a specific device and is used as the root of trust within the
device's security framework. It is often embedded in the hardware during manufacturing and serves as the basis for generating other keys and

securing cryptographic operations. The RHUK is crucial for ensuring the integrity and authenticity of the device's software and data.

SAES
peripheral

A
E

S
p

e
ri

p
h

e
ra

l

Embedded

RAM
Any flash

Unwrapped/

decrypted
DHUK

BHK

XOR

Hardware secret keys, never

visible in the clear by runtime
applications or debugger

RTC/ TAMP

Tamper protected

Hardware

Key Bus

Hardware

Key Bus

System flash
Nonvolatile secret 256-bit

Key

storage

u
s
e

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

STM32 key wrapping mechanism for SAES

To better protect keys, the side-channel protected SAES peripheral

can use special hardware secret keys (DHUK, BHK) to ensure that
critical application keys are never visible in clear text to the runtime
application or the debugger :
• DHUK: Nonvolatile, secret to application

- Derived using a key derivation function that uses key usage
(mode, security) as input

• Boot hardware key (BHK): Volatile, tamper protected (in TAMP)

- Written then locked by boot application

SAES can be used to protect 128-bit and 256-bit keys used in
SAES or AES peripherals.

This module will detail the following use cases:
- Encrypting keys with hardware secret keys (key wrapping)

- Decrypting keys with hardware secret keys (key unwrapping)

- Decrypting keys for AES peripheral (shared key unwrapping)

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

STM32 key wrapping mechanism for SAES

• Better protection of keys is increasingly
required by the latest security standards

(PSA, SESIP)

• STM32 provides a way to store cryptographic
keys such that not even the application can

compromise the confidentiality of this data.

• Usable for symmetric keys (AES
128/256)

System benefits

Key storage, encryption, and unique key derivation capabilities

The main benefits of this system is :

Better protection of keys is increasingly required by the latest
security standards (PSA, SESIP)
STM32 provides a way to store cryptographic keys such that not
even the application can compromise the confidentiality of this

data.
Usable for symmetric keys (AES 128/256)

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

SAES
peripheral

User flash

DATA IN

register

KEY

register

AES

KDF*

DATA OUT

register

AHB bus (CPU access)

DHUKWrapped key

DHUK

BHK

RHUK

Clear-text key

Key wrapping for AES: provisioning step

Encrypting a key using wrap mode

or shared mode(*)

1. Select a hardware secret key
(DHUK, BHK, XORK**)

• Key derivative function depends on
the KMOD & SAES protection
(secure or nonsecure)

2. Write the clear text key

3. Read the encrypted, wrapped key

• If DHUK or XORK is selected only
this silicon can decrypt the key

4. Save the key in any flash

(*) This example uses device hardware unique key (DHUK)
(**) Exclusive OR key (XORK)= DHUK XOR BHK

This slide details how to encrypt a key using the wrap key mode.

The resulting encrypted key can be stored in any flash memory.

The first step involves selecting a hardware secret key and then
selecting the wrapped key mode with KMOD. The second step is

to write the clear text key into the SAES DATA IN register, run the
AES encryption, and then read the resulting encrypted key from
the DATA OUT register.

If the AES peripheral needs to use this key instead of the SAES,
the shared mode must be selected in KMOD instead of the wrap
mode.

Decrypting a key using wrap mode(*)

1. Select the correct hardware secret key (DHUK,
BHK, XORK)

• KDF depends on the KMOD & SAES
protection (secure or nonsecure)

2. Write the wrapped, encrypted key

3. The decrypted, unwrapped key is written by

SAES in the key registers (write-only)

• DOUT returns zero

• If the key registers are written by
software, the whole key is automatically
erased!

4. The application uses the key as needed

Key unwrapping for secure advanced encryption
standard

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

SAES
peripheral

User flash

DATA IN

register

KEY

register

AES

KDF*

DATA OUT

register

AHB bus (CPU access)

DHUKWrapped key

DHUK

BHK

RHUK

(*) This example uses DHUK
(**) XORK= DHUK XOR BHK

Before usage, any key encrypted with the wrap key mode must be

decrypted using the same mode, with the correct key. The result is
automatically stored in the write-only key registers.

The first step involves selecting the correct hardware secret key

and then selecting the wrapped key mode with KMOD.
The second step is to write the wrapped text key into the SAES
DATA IN register, run the AES decryption, and then wait for the
SAES to store the original key in the write-only key registers. The

application can now use the unwrapped key as needed.

Note that this unwrapped key is automatically erased when the
software writes the key registers.

Definition: Cryptographic systems that uses pairs of related keys: one public key and one private key.

Key lengths: Supports up to 4160 bits for RSA/DH and 640 bits for elliptic curves.

Standards Security Features Supported Operations

• NIST FIPS186-4

• RSA PKCS#1

• ANSI X9.62

• IETF RFC5639

(Brainpool)

• Chinese SM2 and SEC2

curves

• Side channel protection for

secret operations.

• RSA/DSA private modular

exponentiation.

• ECC scalar multiplication

and signature generation.

• RSA/DSA public modular

exponentiation with CRT.

• ECDSA signature verification.

• ECC point on curve checks and

arithmetic operations.

Overview of PKA: Key features and standards

This slide provides a concise overview of Public Key Asymmetric

Cryptography, a fundamental concept, It highlights the key
features, standards, and operations that make asymmetric
cryptography a tool for ensuring secure communication and data
protection.

•Definition: Explains the use of public and private keys for
encryption and decryption.
•Key Lengths: Highlights supported sizes for RSA/DH and elliptic
curves.

•Standards: Lists protocols like NIST FIPS186-4 and RSA
PKCS#1.
•Security Features: Covers protections like side channel security.
•Supported Operations: Details operations such as RSA/DSA

exponentiation and ECDSA verification.
Exact list of operations the PKA can perform are below.
Acceleration of asymmetric cryptography:
- Modular exponentiation, RSA Chinese Remainder Theorem

(CRT) exponentiation

- ECC scalar multiplication, point on curve check

- ECDSA signature generation and verification

Arithmetic and modular operations:
- Arithmetic addition, subtraction, multiplication, comparison

- Modular addition, subtraction, reduction & inversion
- Montgomery multiplication

Thanks to those operations PKA supports a lot of standard Public

Key algorithms: Modular Exponentiation, CRT exponentiation, RSA
cryptography, Elliptic Curve Cryptography (ECC), Digital Signature
Algorithm (DSA), Elliptic Curve DSA (ECDSA)

Secure PKA target use cases

Key pair
generation

Secure key
import

Key
agreement

Secure
attestation

Hash

+
RNG

Hash

OK?

public private

A A

A

A

A

B

B

A

A

A

Message or

shared key

STM32 enhanced secure key storage (secrets confidential to the application CPU)

ECC only (ECC method)
(RSA method)

The security of asymmetric cryptography relies heavily on the

protection of the private key. For example, as the private key is
used to decrypt messages that were encrypted with the user's
public key, if someone gains access to a private key, it is then
possible to decrypt and read confidential messages.

Also, as the private key is used to create digital signatures that
verify the user's identity, if someone other than the user has
access to the private key, the user's digital signature can be

forged, making it appear as though the user has approved or sent
messages that were not written by the user.

Lastly, when the private key ensures that the messages sent by

the user are not tampered with, if someone other than the users
has the private key, the messages can be altered and still make
them appear as if they are from the user.

The private key usage in the PKA can therefore be critical for device
security. Hence it is important to make it as secures as possible. As
described on previous slide, wrapped private keys can be stored
anywhere, because they can only be used on this device. Also, the

software that manipulates wrapped private keys can never access
its value in the clear, making the overall application more robust
against attacks.

SAES
peripheral

A
E

S
p

e
ri

p
h

e
ra

l

Embedded

RAM
Any flash

Unwrapped/

decrypted
DHUK

BHK

XOR

Hardware secret keys, never

visible in the clear by runtime
applications or debugger

RTC/ TAMP

Tamper protected

Hardware

Key Bus

Hardware

Key Bus

System flash
Nonvolatile secret 256-bit

Key

storage

u
s
e

P
K

A
p

e
ri

p
h

e
ra

l

CCB

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

STM32 key wrapping mechanism for public key
accelerator

To better protect keys, the side-channel protected SAES peripheral

can use special hardware secret keys (DHUK, BHK) to ensure that
critical application keys are never visible in clear text to the runtime
application or the debugger.

Thanks to the Coupling and Chaining Bridge (CCB), this STM32
has a sophisticated security mechanism designed to ensure that
private keys used in the PKA peripheral are protected using the
same method as keys used in the SAES peripheral.

This module will detail the following use cases:
- Encrypting keys for PKA peripheral using the CCB
- Decrypting keys for PKA peripheral using the CCB

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

The coupling and chaining bridge
(CCB) is a sophisticated security

mechanism that protects private keys
from CPU access, wraps them with
unique device keys, and stores them
securely.

STM32 key wrapping mechanism for public key
accelerator

Key storage, encryption, and unique key derivation capabilities

System description

The coupling and chaining bridge (CCB) is a sophisticated security

mechanism that protects private keys from CPU access, wraps
them with unique device keys, and stores them securely.

Key wrapping for public key accelerator:
provisioning usage

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

DATA IN

register

KEY

register

AES

KDF*

DATA OUT

register

BHK

RHUK

PKA
peripheral

SAES peripheral

DHUK
CCB

CCB
peripheral

P
ri

v
a

te
 B

u
s

CCB usage

CCOP<>0

User flash

DHUKWrapped key

Clear-text key

(RAM write only)

Encrypting a key with CCOP

in CCB not null (*)

1. Select a hardware secret
key
(DHUK, DHUK XOR BHK)

• KDF depends on the
CCOP in CCB
peripheral

2. Write the clear text key in

PKA RAM

3. Read the clear text key in
PKA RAM. Doing so
transfers the key to SAES
DATA IN.

• This read returns zero

4. Launch an AES encryption

5. Read the encrypted,

wrapped key
and save it in any flash

To encrypt a key using the CCOP in the CCB peripheral ,the

process begins by selecting a hardware secret key, such as DHUK
or DHUK XOR BHK. The Key Derivation Function (KDF) is
dependent on the CCOP in the CCB peripheral.
Next, the clear text key is written into the PKA RAM. Once written,

the clear text key is read from the PKA RAM, which transfers the
key to the SAES DATA IN.
It is important to note that this read operation returns zero.
After this, an AES encryption is launched.

Finally, the encrypted (wrapped) key is read and saved into any
flash memory for secure storage.

Key unwrapping for public key accelerator

DATA IN

register

KEY

register

AES

KDF*

DATA OUT

register

DHUKWrapped key

BHK

RHUK

PKA
peripheral

SAES peripheral

DHUK
CCB

CCB
peripheral

P
ri

v
a

te
 B

u
s

CCB usage

Not readable

Clear-text key

Encrypted/wrapped key

Unwrapped/decrypted key

Device hardware unique

key (DHUK)

Boot hardware key (BHK)

Root Hardware Unique

Key (RHUK)

Side-channel protected

Wrapped/encrypted

*Key Derivation Function

Decrypting a key with CCOP in

CCB not null (*)

1. Select the correct hardware
secret key (DHUK, DHUK XOR
BHK)

• KDF depends on the
CCOP in CCB peripheral

2. Write the wrapped, encrypted

shared key

3. The decrypted, unwrapped
shared key is written to write-
only PKA by CCB

• DOUT returns zero

4. Use the key in PKA
CCOP<>0

Before unwrapping a key for the PKA, you must select the CCOP

code in the CCB that corresponds to the operation you want to
perform in the PKA. The STM32 reference manual provides
detailed instructions on the sequence of actions to take. But to
summarize, to decrypt a key using the CCOP in the CCB

peripheral (not null configuration), the process starts by selecting
the correct hardware secret key, such as DHUK or DHUK XOR
BHK. The Key Derivation Function (KDF) depends on the CCOP in
the CCB peripheral. The next step involves writing the wrapped,

encrypted shared key. The decrypted (unwrapped) shared key is
then written to the write-only PKA by the CCB. During this process,
the DOUT operation returns zero. Finally, the decrypted key is
ready to be used directly in the PKA.

List of public key accelerator wrapped key operations

High level asymmetric crypto use cases

L
o
w

 l
e
v
e
l
P

K
A

 o
p
e
ra

ti
o
n
s

Before each blob usage, there is a blob creation!

Extract from AN6205

The high-level asymmetric cryptography use cases described

earlier corresponds to the low-level PKA operations detailed in this
slide.
Wrapping a private key for ECDSA signatures corresponds to
creating a ECDSA signature key blob. Its usage is summarized

here.
Wrapping an ECC private key corresponds to creating an ECC key
blob. Its usage is summarized here.
Wrapping an RSA private key corresponds to creating an RSA key

blob. Its usage is summarized here.

AES-GCM usage for public key accelerator key
wrapping

Extract from AN6205

AES-GCM is a widely used cryptographic method that provides

both confidentiality and data integrity. It combines the AES
encryption algorithm with the Galois/Counter Mode of operation to
achieve authenticated encryption. The PKA key wrapping with the
CCB uses the AES-GCM algorithm, with a key size of 256-bit.

Under the supervision of the CCB, the PKA operation parameters
are only authenticated while the key material is authenticated and
encrypted using AES-GCM. At the end of the wrapping (or

encryption) process, the application must store the reference tag
together with the operation parameters and the wrapped key
material. Indeed, once the PKA wrapped key is decrypted in PKA
memory, PKA can use it with the verified operation parameters

only if the reference and the computed AES-GCM tags match.

STM32U3
(512K,1M, 2M)

STM32H5 (4M) STM32C5 (1M)STM32WB6STM32N6STM32U5

DHUK

BHK

SAES

PKA

PKA Key
Wrapping (CCB)

TZ
TZ , HDPL ,

EPOCH
HDPLTZTZTZ

Key use
(on top of SAES control

register)

Primary STM32 product key wrapping property

STM32
product

Keystore IP

Here is a comprehensive overview of the STM32 product lineup

and how key wrapping is managed across different devices using
various Keystore IPs.

This slide presents a panoply of the new STM32 products and
highlights the flexibility in managing key wrapping operations.

Each product leverages a different Keystore IP, such as DHUK,
BHK, SAES, or PKA, depending on the device's capabilities and
security requirements.

This differentiation ensures that each STM32 product is optimized
for its intended application, offering tailored security features while

maintaining robust key management practices.

• STM32Trust web page

• AN6205 : introduction to the use of PKA key wrapping

with coupling and chaining bridge on STM32 MCUs

• https://wiki.st.com/stm32mcu/wiki/Category:S
ecurity_functions

Documentation and useful links

In this presentation, we delved into the advanced security features

of the STM32U3 microcontroller, focusing on its secure keystore
capabilities and the innovative key wrapping
techniques enabled by the Coupling and Chaining Bridge (CCB).
We explored how STM32 products provide flexible and robust

key management solutions, leveraging different Keystore IPs
(such as DHUK, BHK, SAES, and PKA) to meet the specific needs
of various applications.

A key highlight of this presentation was the provisioning,
wrapping, and unwrapping features offered by the STM32U3.
The provisioning process ensures that keys are securely initialized

and stored in the device. The key wrapping mechanism,
facilitated by the CCB, allows sensitive keys to be securely
encrypted and transferred, while the unwrapping
process ensures that keys are securely decrypted and made

available for cryptographic operations. These processes are

designed to be highly robust, leveraging hardware-based security
features to protect against physical and software-based attacks,
ensuring the confidentiality and integrity of cryptographic keys
throughout their lifecycle.

For further details and implementation guidance, refer to

the documentation and useful links provided below:

to the application note AN6205 Introduction to the use of PKA key
wrapping with coupling and chaining bridge on STM32 MCUs.

This application note introduces the use of PKA key wrapping with
the CCB peripheral and answers the following questions:
• Why do we need PKA key wrapping?
• What are the cryptographic functions involved in wrapping PKA

keys?
• What set of functions does STM32CubeMX propose to run these

updated cryptographic functions?

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com

