
Find My Network Accessory
Specification
Developer Preview
Release R1

 Developer

Contents
Contents 2

1. Introduction 7

1.1. Requirements, recommendations, and permissions 7 ...

1.2. Terminology 8 ..

2. Core Concepts 9

2.1. Overview 9 ...

2.2. Find My app 9 ..

2.3. Transport 9 ...

2.4. Operation 9 ..

2.5. Roles 9 ...

2.5.1. Owner device 9 ..

2.5.2.Accessory 10 ...

2.5.3.Find My network 10 ...

2.5.4.Apple server 11 ..

2.6. Features 11 ...

2.6.1. Unwanted tracking detection 11 ..

2.6.2.Lost mode 11 ..

2.6.3.Play sound 11 ...

2.7. States 11 ...

2.7.1. Unpaired 11 ..

2.7.2. Connected 12 ..

2.7.3.Nearby 13 ..

2.7.4.Separated 13 ...

3. Requirements 14

3.1. Overview 14 ...

3.2. General 14 ..

3.3. Hardware 14 ...

3.3.1. Bluetooth 14 ..

3.3.2.Product-specific requirements 14 ...

3.3.3.Serial number lookup 15 ..

3.3.4.Disable 15 ..

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

2

3.3.5.Clock accuracy 15 ...

3.4. Cryptography 15 ..

3.4.1. Operations 15 ..

3.4.2.Implementation 16 ...

3.4.2.1.Endianness and wire format 16 ..

3.4.2.2.Random scalar generation 16 ...

3.4.2.3.Scalar validation 17 ...

3.4.2.4.Elliptic curve point validation 17 ..

3.4.2.5.ECDSA signature verification 17 ...

3.4.2.6.ECIES encryption 18 ..

3.4.2.7.AES-GCM decryption 18 ...

3.4.2.8.Random generation 18 ..

3.5. Software authentication 18 ..

3.6. Apple server public keys 19 ...

3.7. Factory reset 19 ...

3.8. Power cycle 20 ...

3.9. Firmware updates 20 ...

4. Bluetooth Requirements 21

4.1. Overview 21 ...

4.2. Bluetooth advertising 21 ..

4.3. Bluetooth connection 21 ..

4.4. Bluetooth host 21 ...

4.4.1.Services 21 ...

4.4.2.MTU size 22 ..

4.4.3.Link encryption key 22 ..

4.4.4.Handling concurrent operations 22 ...

4.4.5.Bluetooth pairing 22 ..

4.4.6.Error codes 22 ...

4.4.7.Time-out 22 ...

4.5. Find My network service 22 ...

4.5.1. Service 22 ..

4.5.2.Byte transmission order 23 ..

4.5.3.Characteristics 23 ...

4.5.3.1.Pairing control point 23 ..

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

3

4.5.3.2.Pairing control point procedures 24 ..
4.5.3.2.1.Initiate pairing 24 ...

4.5.3.2.2.Send pairing data 24 ...

4.5.3.2.3.Finalize pairing 25 ...

4.5.3.2.4.Send pairing status 25 ..

4.5.3.2.5.Pairing complete 25 ..

4.5.3.3.Configuration control point 26 ..

4.5.3.4.Configuration control point procedures 27
4.5.3.4.1.Play sound—owner control point 27 ..

4.5.3.4.2.Persistent connection status 27 ..

4.5.3.4.3.Set nearby timeout 27 ...

4.5.3.4.4.Unpair 28 ..

4.5.3.4.5.Configure separated state 28 ...

4.5.3.4.6.Latch separated key 28 ...

4.5.3.4.7.Set max connections 28 ..

4.5.3.4.8.Set UTC 28 ..

4.5.3.4.9.Keyroll indication 29 ..

4.5.3.4.10.Command response 29 ...

4.5.3.4.11.Get multi status response 29 ...

4.5.3.4.12.Firmware version 30 ..

4.5.3.4.13.Battery status 31 ..

4.5.3.5.Non-owner control point 31 ..

4.5.3.6.Non-owner control point procedures 31 ...
4.5.3.6.1.Play sound—non-owner control point 31 ..

4.5.3.7.Debug control point 32 ..

4.5.3.8.Debug control point procedures 32 ..
4.5.3.8.1.Set key rotation time-out 32 ..

4.5.3.8.2.Retrieve logs 32 ..

5. Advertisements 33

5.1. BTLE advertising 33 ...

5.1.1. Payload for nearby state 33 ...

5.1.2. Payload for separated state 34 ..

6. Pairing and Key Management 35

6.1. Overview 35 ...

6.2. Pairing 36 ...

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

4

6.2.1. Pairing mode 36 ..

6.2.2.Generate pairing data 36 ...

6.2.3.Send pairing data 36 ...

6.2.4.Finalize pairing 37 ..

6.2.5.Validate and confirm pairing 37 ...

6.2.6.Send pairing status 38 ..

6.3. Key management 39 ..

6.3.1. Key definitions 39 ..

6.3.2.Key sequences and rotation policy 39 ..

6.3.3.Bluetooth advertisement key selection policy 39 ..

6.3.3.1.After pairing 39 ..

6.3.3.2.Nearby to nearby state transition 39 ..

6.3.3.3.Nearby to separated state transition 39 ...

6.3.3.4.Separated to separated state transition 40

6.3.3.5.After power cycle 40 ...

6.3.4.Key schedule definitions 40 ..

6.3.4.1.Collaborative key generation 40 ..

6.3.4.2.Derivation of primary and secondary keys 41

6.3.4.3.Derivation of link encryption key LTKi 41 ..

6.3.4.4.Derivation of command key CKi 41 ...

6.3.4.5.Derivation of the NearbyAuthTokeni 42 ..

6.3.4.6.Derivation of ServerSharedSecret 42 ...

6.3.4.7.Derivation of the pairing session key K1 42

6.3.4.8.Derivation of the serial number protection key 42

6.4. Unpair 42 ...

7. Unwanted Tracking Detection 43

7.1. Overview 43 ...

7.2. Hardware 43 ..

7.2.1. Motion detector 43 ..

7.2.2. Sound maker 43 ..

7.3. Implementation 43 ...

8. NFC Requirements 45

8.1. Overview 45 ...

8.2. Hardware 45 ..

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

5

8.3. Implementation 45 ...

9. Timers and Constants 47

9.1. Overview 47 ...

10. Firmware Update 48

10.1.Overview 48 ...

11. Revision History 49

Revision history 49..

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

6

1. Introduction

NOTICE OF PROPRIETARY PROPERTY: THIS DOCUMENT AND THE INFORMATION CONTAINED
HEREIN IS THE PROPRIETARY PROPERTY OF APPLE INC.

ACCESS TO AND USE OF THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS
GOVERNED BY THE TERMS OF THE LIMITED LICENSE TO THE “FIND MY NETWORK ACCESSORY
SPECIFICATION – DEVELOPER PREVIEW” (THE “AGREEMENT”). THIS DOCUMENT IS INTENDED TO
BE USED FOR THE RECEIVING PARTY’S INFORMATIONAL PURPOSES ONLY, AND NOT FOR
DISTRIBUTION OR SALE. ANY OTHER USE OF THIS DOCUMENT IS STRICTLY PROHIBITED. IF YOU
HAVE NOT AGREED TO BE BOUND BY THE TERMS OF THE AGREEMENT, YOU MAY NOT ACCESS OR
USE THIS DOCUMENT.

This document is a Developer Preview, to be used for informational purposes only. Developers
intending to develop or manufacture a Find My network-enabled accessory must be enrolled in the MFi
Program. Although its content has been reviewed for accuracy, it is not final and is subject to change.
Apple is supplying this content to help accessory developers plan for the adoption of the feature(s)
described herein.

1.1. Requirements, recommendations, and permissions

This specification contains statements that are incorporated by reference into legal agreements
between Apple and its Licensees. The use of the words must, must not, required, shall, shall not,
should, should not, recommended, not recommended, may, optional, and deprecated in a statement
have the following meanings:

• Must, shall, or required means the statement is an absolute requirement.

• Must not, shall not, or prohibited means the statement is an absolute prohibition.

• Should or recommended means the full implications must be understood before choosing a
different course.

• Should not or not recommended means the full implications must be understood before choosing
this course.

• May or optional means the statement is truly optional, and its presence or absence cannot be
assumed.

• Deprecated means the statement is provided for historical purposes only and is equivalent to “must
not.”

The absence of requirements, recommendations, or permissions for a specific accessory design in this
specification must not be interpreted as implied approval of that design. Licensee is strongly
encouraged to ask Apple for feedback on accessory designs that are not explicitly mentioned in this
specification.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

7

1.2. Terminology

Throughout this document, these terms have specific meanings:
• The term Apple device is used to refer to an iPhone, iPad, iPod, Apple Watch, or Mac (running iOS,
iPadOS, watchOS, or macOS).

• The term accessory is used to refer to any product intended to interface with a device through the
means described in this specification.

• The term Apple ID is an authentication method that Apple uses for iPhone, iPad, Mac, and other
Apple devices and services. When an Apple ID is used to log in to an Apple device, the device will
automatically use the settings associated with the Apple ID.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

8

2. Core Concepts

2.1. Overview

The Find My Network Accessory Specification defines how an accessory communicates with Apple
devices to help owners locate their accessories privately and securely by using the Find My network.

2.2. Find My app

The Find My app is where you locate your Apple devices, share your location with friends and family,
and locate all Find My network-enabled accessories. The app displays the location of findable items
and includes additional features to protect your devices, such as playing sound, using Lost Mode, and
so on. See the Find My webpage for more details.

2.3. Transport

The Find My network accessory protocol uses Bluetooth Low Energy (BTLE) as the primary transport to
interact with Apple devices.

2.4. Operation

The accessory and the owner Apple device generate a cryptographic key pair after Find My network
pairing. The owner Apple device has access to both the private and the public key, and the accessory
has the public key.

An accessory subsequently broadcasts a rotating key (derived from the public key) as a low energy
Bluetooth beacon. This beacon can be picked up by nearby Apple devices (see Find My network). The
Apple devices publish the key received in the Bluetooth beacon, along with its own location encrypted
using that same key, to Apple servers. Because the private key is stored only on the owner device, the
location information is accessible only to the device owner. The data stored in Apple servers is end-to-
end encrypted, and Apple does not have access to any location information.

2.5. Roles

2.5.1. Owner device

When an accessory is paired with an Apple device through the Find My app, the accessory is
associated with the Apple ID on that device. This device and all other Apple devices signed in with the
same Apple ID are treated as owner devices.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

9

https://www.apple.com/icloud/find-my/

The Find My app on an owner device can be used to locate accessories. An owner device is required for
actions such as unpairing the device, firmware update, locate, and so on.

2.5.2.Accessory

An accessory is the device that implements the Find My network accessory protocol and can be
located using the Apple Find My network and servers. The accessory is paired with the Apple ID in use
on the owner device.

2.5.3.Find My network

The Find My network provides a mechanism to locate accessories by using the vast network of Apple
devices that have Find My enabled. When an accessory is detected by a nearby Apple device, the
device publishes its own encrypted location as the approximate location of the detected accessory.
Reports from more than one Apple device can provide a more precise location. Any Apple device that
participates in the Find My network is called a Finder device. Participation in the Find My network is a
user choice that can be reviewed or changed anytime in Settings.

A non-owner device is an Apple device in a Find My network that may connect to the accessory but is
not an owner device. (For example, a device might connect in response to a UT alert; see Unwanted
tracking detection.)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

10

2.5.4.Apple server

Apple server receives encrypted location data from Finder devices and temporarily stores it. Only the
owner devices can decrypt and read raw locations from the encrypted data. Apple cannot read this
information.

2.6. Features

2.6.1. Unwanted tracking detection

Unwanted tracking detection (UT) notifies the user of the presence of an unrecognized accessory that
may be traveling with them over time and allows them to take various actions, including playing a sound
on the accessory if it’s in BTLE range.

2.6.2.Lost mode

An owner can use the Find My app to place their accessory in Lost Mode. They can set a phone number
and select a message from a predefined list.

When someone finds someone else’s lost accessory, they can discover the details set by the owner by
using NFC or BTLE to help the owner recover the lost item. Details on the BTLE protocol and its security
requirements will be provided in an updated developer preview.

2.6.3.Play sound

The Play sound feature allows users to play sound from their Apple device to locate the accessory. This
action may be initiated from an owner or non-owner device.

Users can play a sound from the Find My app on an owner device. The Apple device creates a BTLE
connection or uses an existing connection to the accessory and uses the Play sound—owner control
point to initiate the action.

Users can play a sound from a non-owner Apple device when a UT alert appears on that device. The
Apple device creates a BTLE connection and uses the Play sound—non-owner control point to initiate
the action.

2.7. States

Accessory operations can be described using a state machine with the states listed in this section and
transition between them based on interactions with an owner device.

2.7.1. Unpaired

The accessory must be in an unpaired state on first startup or before the accessory setup is completed.
In this state, the accessory must advertise Find My network service as a primary service in a

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

11

connectable Bluetooth advertisement (See BTLE advertising). The owner user initiates pairing from an
owner device. See Pairing for the pairing procedure.

2.7.2. Connected

The accessory must enter connected state after the Find My network pairing successfully completes
with the owner device. The owner device may disconnect from the accessory after pairing completes.
Once paired, the accessory must not pair with another Apple device for Find My network functions. It
must stay paired until it successfully completes the unpairing procedure with the owner device.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

12

The accessory must reenter the connected state from nearby or separated state or whenever an owner
device connects to the accessory. The accessory shall support simultaneous connections to two Apple
devices on the same iCloud account.

Motion detection and UT protocols are disabled in connected state. When the accessory enters this
state, advertising payload is set to the nearby key.

2.7.3.Nearby

The accessory must enter the nearby state immediately after it disconnects from an owner device. The
accessory shall remain in nearby state for TNEARBY. See Timers and constants.

Motion detection and unwanted tracking detection protocols are disabled in nearby state. When the
accessory enters this state, advertising payload is set to the nearby key. See Payload for nearby state
for details.

2.7.4.Separated

The accessory must enter the separated state under these conditions:

1. The accessory is paired and starts up from a reset, power cycle, or other reinitialization
procedure.

2. The accessory is in nearby state and the TNEARBY time-out has expired.

Motion detection and unwanted tracking detection protocols are enabled in separated state. When the
accessory enters this state, advertising payload is set to the separated key. See Payload for separated
state for details.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

13

3. Requirements

3.1. Overview

Accessories that support the Find My network accessory protocol must conform to the requirements
listed in this chapter, along with any feature-specific requirements contained in other chapters.

3.2. General

An accessory that supports the Find My network accessory protocol must meet these requirements:
• It must incorporate software authentication. See Software authentication for details.
• It must enable the user to set up the accessory using the Apple Find My app, both out of the box
and after every factory reset, without requiring additional setup procedures.

• It must be certified and listed as a qualified end product by the Bluetooth SIG.
• It must not operate simultaneously on the Find My network and other finder network, or otherwise
implement functionality which may interfere with the security and privacy requirements
referenced in this document.

3.3. Hardware

3.3.1. Bluetooth

The accessory must use a Bluetooth controller that meets the following requirements:
• LE 2M uncoded PHY
• Random resolvable addresses
• Data packet length extension
• LE advertising extensions

For details, refer to the Bluetooth Core Specification Version 5.2 Feature Overview.

3.3.2.Product-specific requirements

During separated UT state, motion-triggered UT sound alerts from the accessory is designed to bring
awareness to the person with whom it’s detected. These alerts are created using a sound maker (for
example, a speaker) and a motion detector (such as an accelerometer).

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

14

https://www.bluetooth.com/wp-content/uploads/2020/01/Bluetooth_5.2_Feature_Overview.pdf

Products whose primary purpose is to help find items, or are a size that would make it difficult to be
discovered by the person in possession of it, must include a sound maker and a motion detector to
support motion-triggered UT sound alerts. See Unwanted tracking detection for detailed requirements.

Additional considerations and requirements for size, and for products whose purpose is not to help find
items, will be provided in an updated developer preview.

3.3.3.Serial number lookup

The serial number of the accessory must be printed on it. The number must be unique for each product
ID and must be readable either through NFC Tap (see additional requirements under NFC) or BTLE. For
privacy reasons, a serial number must be readable over BTLE only when a device is unpaired or upon
user action on the accessory (for example, when pressing and holding a button).

Details on the BTLE protocol and its security requirements will be provided in an updated developer
preview.

3.3.4.Disable

An accessory must have a mechanism to disable Find My network (for example, a power off button, or
battery removal) based on user intent.

Additional requirements will be provided in an updated developer preview.

3.3.5.Clock accuracy

The accessory must support 15-minute key rotation using hardware timers. Apple devices expect the
accessory to have a 200 PPM oscillator, causing a potential drift rate of 17.28 seconds per day. See
Timers and constants for more details. On every connection, the owner device sends the Configure
separated state command. The accessory shall synchronize its clock using the NextPrimaryKeyRoll
parameter of the Configure_Separated_Mode command.

3.4. Cryptography

3.4.1. Operations

Pairing the accessory with an owner device as well as deriving keys requires the following:
• A cryptographically secure DRBG (see NIST Special Publication 800-90A) with a reliable source
of entropy (see NIST Special Publication 800-90B).

• Modular reduction and addition of big integers.
• An implementation of the SHA-256 cryptographic hash function.
• An implementation of the ANSI x9.63 KDF (see SEC1, 3.6.1 ANSI X9.63 Key Derivation Function).
• Computations on the NIST P-224 elliptic curve (see FIPS 186-4, D.1.2.2. Curve P-224):

- Generation of a random scalar in [1, q).

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

15

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

- Scalar multiplication and point addition.

- Verification that a point is on the P-224 elliptic curve.
• ECDSA/ECDH over the NIST P-256 elliptic curve (see FIPS 186-4, D.1.2.3. Curve P-256 and
Pairing for more details).

• AES-128-GCM decryption (see NIST Special Publication 800-38D).

3.4.2. Implementation

Cryptographic operations and algorithms must compute on secret values in constant time to defend
against timing attacks. Similarly, a secret value (or parts of one) must not be used as a memory offset
or as the condition for a branch instruction.

Scalar generation should either use rejection sampling or generate at least 64 more bits than needed
so that the bias due to the modular reduction is negligible (see FIPS 186-4, B.4.1 Key Pair Generation
Using Extra Random Bits and B.4.2 Key Pair Generation by Testing Candidates). The scalar must not be
generated by simply reducing the minimally required number of random bytes modulo q (the order of
the base point) because this leads to a biased distribution.

Implementation of the scalar multiplication and point addition on elliptic curves must be safe against
timing attacks. An exception may be made when computing on public values; for example, to speed up
ECDSA signature verification. A variable-time, double-base scalar multiplication for ECDSA signature
verification must not be used to compute primary or secondary keys.

Upon receiving a scalar, it must be checked to be in range [1, q), where q is the order of the base
point of the elliptic curve, before continuing with the protocol flow. See Scalar validation.

Upon receiving an elliptic curve point, it must be checked to be on the curve. See Elliptic curve point
validation.

3.4.2.1. Endianness and wire format

All elliptic curve points, coordinates, and scalars must be transmitted in big-endian byte order; that is,
the most significant bytes are sent first.

Whenever a scalar or a coordinate is the input for an algorithm like SHA-256() or ANSI-X9.63-KDF(),
or the output of a function, its byte order is assumed to be big-endian. A point is expected to be
formatted in uncompressed ANSI X9.63 format. See SEC1, 2.3.3 EllipticCurvePoint-to-OctetString
Conversion.

3.4.2.2. Random scalar generation

Whenever this specification requires generation of a P-224 scalar, follow this process:

1. Generate r = 28 random bytes using a cryptographically secure DRBG. See Operations.

2. If r >= q - 1, where q is the order of the base point of the P-224 elliptic curve, go to step 1.

3. Compute s = r + 1 and return s as the new scalar.

Another option to securely generate a P-224 scalar is as follows:

1. Generate r = 36 random bytes using a cryptographically secure DRBG. See Operations.

2. Compute k = r (mod q-1), where q is the order of the base point of the P-224 elliptic curve.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

16

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf

3. Compute s = k + 1 and return s as the new scalar.

Whenever this specification requires generation of a P-256 scalar, follow this process:

1. Generate r = 32 random bytes using a cryptographically secure DRBG. See Operations.

2. If r >= q - 1, where q is the order of the base point of the P-256 elliptic curve, go to step 1.

3. Compute s = r + 1 and return s as the new scalar.

Another option to securely generate a P-256 scalar is as follows:

1. Generate r = 40 random bytes using a cryptographically secure DRBG. See Operations.

2. Compute k = r (mod q-1), where q is the order of the base point of the P-256 elliptic curve.

3. Compute s = k + 1 and return s as the new scalar.

3.4.2.3. Scalar validation

Whenever this specification requires validation of a P-224 scalar, follow this process:

1. If the given scalar s = 0, reject it as invalid.

2. If s >= q, where q is the order of the base point of the P-224 elliptic curve, reject s as invalid.

3. Make s a valid scalar.

3.4.2.4. Elliptic curve point validation

Whenever this specification requires validation of a P-224 elliptic curve point, follow this process:

1. Check that the length of a point is 57 bytes.

2. Decode x and y as big-endian integers in the range [0, 2224).
3. Check that x < p and y < p, where p = 2224 - 296 + 1.
4. Check that y2 = x3 + ax + b, where a = p - 3 and b =
0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4.

3.4.2.5. ECDSA signature verification

Whenever this specification requires verification of a P-256 ECDSA signature over a message m:
1. Decode the given signature in X9.62 format to obtain two 32-byte big-endian integers r and s

(see SEC1, C.5 Syntax for Signature and Key Establishment Schemes).

2. Check that 0 < r < p and 0 < s < p, where p = 2256 - 2224 + 2192 + 296 - 1.

3. Compute e = SHA-256(m), where m is the signed message.

4. Let z be the |q| leftmost bits of e, where |q| is the bit length of the group order q.
5. Compute u1 = zs-1 (mod q) and u2 = rs-1 (mod q).
6. Compute the point (x, y) = u1 ⋅ G + u2 ⋅ QA, where G is the base point of the P-256

elliptic curve and QA is Apple’s signature verification key.
7. If (x, y) is the point at infinity, reject the signature.
8. If r = x (mod q), then accept the signature, and if not, reject it.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

17

https://www.secg.org/SEC1-Ver-1.0.pdf

See Apple server public keys for signature verification key (QA) details.

3.4.2.6. ECIES encryption

Whenever this specification requires encryption of a message M to a P-256 public key P=QE (Apple
server encryption key), follow this process:

1. Generate an ephemeral P-256 scalar k as described in Random scalar generation.

2. Compute the public point Q = k ⋅ G, where G is the base point of the P-256 elliptic curve.

3. Compute the shared secret Z = k ⋅ P.

4. Derive 32 bytes of keying material as V = ANSI-X9.63-KDF(x(Z), Q || P).

5. Set K = V[0..15], that is, the first 16 bytes of the keying material V.
6. Set IV = V[16..31], that is, the last 16 bytes of the keying material V.
7. Encrypt message M as (C,T) = AES-128-GCM(K, IV, M) without any additional authenticated

data. K is the 128-bit AES key, IV is the initialization vector, C is the ciphertext, and T is the 16-
byte authentication tag.

8. Output Q || C || T; that is, the ephemeral public key Q concatenated with the ciphertext
and the authentication tag.

See Apple server public keys for the Apple server’s encryption key (QE) details.

3.4.2.7. AES-GCM decryption

Whenever this specification requires AES-128-GCM decryption of a message M, given a 128-bit AES
key K, follow this process:

1. Decode message C in the following way: The first 12 bytes are the initialization vector IV, and the
last 16 bytes are the authentication tag T. The bytes in between are the ciphertext C.

2. Decrypt ciphertext C as (M,T’) = AES-128-GCM(K, IV, C) without any additional authenticated
data.

3. Compare authentication tags T and T’. Do not abort as soon as a mismatch is found, but report
an error only after all bytes have been compared.

4. If T ≠ T’, abort and discard the ciphertext.

3.4.2.8. Random generation

Whenever this specification requires generation random values, a cryptographically secure DRBG must
be used.

3.5. Software authentication

Refer to Software Authentication Server Specification on how to obtain software tokens. MFi Program
members will have access to this specification when it becomes available.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

18

• A software authentication token, along with its corresponding UUID, must be provisioned on the
accessory through factory provisioning (at the time of accessory manufacturing and firmware
flashing).

• The software authentication token and its UUID must be decoded using Base64 from the file
provided by Apple’s server and stored as raw data bytes on the accessory.

• The UUID associated with the software authentication token must be registered with Apple server
as defined in the Software Authentication Server Specification after provisioning on the
accessory.

• The software authentication token must be stored in secure storage on the accessory.
• The provisioned software authentication token must persist through factory reset.
• The provisioned software authentication token is for one-time use only. The software
authentication token and corresponding UUID will be required during pairing as part of the Find
My network pairing process. A new software authentication token will be provided to the
accessory during pairing and must be stored by the accessory for future use. See Pairing and key
management for more details.

3.6. Apple server public keys

Whenever this specification requires Apple server signature verification, the accessory must use the
Apple server signature verification key (Q_A).
Whenever this specification requires encryption to Apple server, the accessory must use the Apple
server encryption key (Q_E).

• Apple server public keys must be provisioned in the accessory through factory provisioning (at the
time of accessory manufacturing and firmware flashing) with integrity protection.

• Apple server public keys must be stored in secure storage on the accessory and protected against
tampering.

MFi Program members will have access to Apple server public keys.

3.7. Factory reset

A factory reset must delete all Find My network data except the following:

• Product ID

• Vendor ID

• Firmware version

• Serial number

• Software authentication token

• Software authentication UUID

• Apple server public keys

- Signature verification key (Q_A)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

19

- Encryption key (Q_E)
The accessory must reenter Find my network pairing mode when the user initiates it. See Pairing for
details.

3.8. Power cycle

A user may power cycle an accessory for various reasons (for example, battery replacement or user
restart). When an accessory is power cycled, it shall start in separated state with the current secondary
key as the separated key. See After power cycle for advertisement details.

3.9. Firmware updates

Accessories must support firmware updates. See Firmware update for more details.
• All firmware images must be authenticated and verified by the accessory using a mechanism that
guarantees the integrity of the image from the manufacturer.

• Updated firmware must complete MFi certification requirements before release.
• Accessories must not allow a firmware image to be downgraded after a successful firmware
update.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

20

4. Bluetooth Requirements

4.1. Overview

Bluetooth Low Energy (BTLE) is used as the wireless transport for all communication between Apple
products and accessories.

4.2. Bluetooth advertising

The accessory should advertise the Find My network payload at the TFMN_ADV_INTERVAL interval in a con-
nectable advertising ADV_IND PDU to match the BTLE scan duty cycles of the Apple device. The ac-
cessory may advertise other Advertising Data Type (AD Type) in other advertising events. The acces-
sory shall continue advertising the Find My network payload until all owner devices are connected. See
Set max connections for details.

4.3. Bluetooth connection

The accessory must support at least two simultaneous connections in a peripheral role.

The connection interval of the BTLE link between the Apple device and accessory depends on the type
of user interaction. An Apple device typically selects a connection interval in multiples of 15 ms. The
accessory shall support a connection interval that is a multiple of 15 ms. The Apple device may use
990 ms as the BTLE connection interval to the accessory.

4.4. Bluetooth host

4.4.1. Services

The Find My network service must be instantiated as a primary service. The accessory must also
support the following services:

• Tx Power service
• Battery service
• Bond management service
• Device information service

The accessory shall expose the Firmware Revision String and the PnP ID characteristics of the Device
Information service. See Firmware version for more details. The Apple device requires the vendor ID,
product ID, and firmware version for Find My network pairing.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

21

4.4.2. MTU size

The accessory shall select a MTU size that is equal to or greater than the MTU request from the Apple
device.

4.4.3. Link encryption key

The accessory is paired to the Apple device using the Find My network pairing protocol rather than the
traditional Bluetooth pairing. To encrypt the BTLE link on every connection, the accessory must use the
LTK generated by the Find My network protocol. See LTK generation for details on LTK generation and
use.

4.4.4. Handling concurrent operations

An app on the Apple device may interact with the accessory over GATT or, if supported, connection-
oriented L2CAP channels. Apple devices may connect and perform Find My network GATT operations
independently from other interactions with the accessory.

The accessory shall support Find My network GATT interactions while simultaneously supporting GATT
and connection-oriented L2CAP channels from other Apple devices.

4.4.5.Bluetooth pairing

Standard BTLE pairing is not required for accessories. Pairing is achieved at the Find My network
protocol layer. See Pairing for more details.

4.4.6.Error codes

A list of error codes and their descriptions will be provided in an updated developer preview.

4.4.7.Time-out

Unless otherwise specified, the accessory must respond to all control point commands within 30
seconds.

4.5. Find My network service

4.5.1. Service

The Find My network service UUID is 32EEA8D0-F5A1-41B6-BFDB-97CD5FC926DB.

This UUID will be updated in an updated developer preview.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

22

4.5.2.Byte transmission order

All characteristics used with this service shall be transmitted with the least significant octet first (that
is, little endian).

4.5.3.Characteristics

The UUID for Find My network service characteristics is 4F86XXXX-943B-49EF-
BED4-2F730304427A, where XXXX is unique for each characteristic.

A client characteristic configuration descriptor shall be included for all the characteristics, as required.

4.5.3.1.Pairing control point

The pairing control point enables you to pair an accessory with an owner device. The opCodes for the
control point is defined in Table 4-2.

Table 4-1 Characteristics

Characteristic name UUID Requirement Mandatory properties Security permissions

Pairing
Control Point 0x0001 Mandatory Write,

Indicate
Authorization
Not Required

Configuration
Control Point 0x0002 Mandatory Write,

Indicate
Authorization
Required

Non Owner
Control Point 0x0003 Mandatory Write,

Indicate
Authorization
Not Required

Debug
Control Point 0x0004 Mandatory Write,

Indicate
Authorization
Required

Table 4-2 Pairing control point opcodes

OpCode OpCode
value Operands GATT

subprocedure Direction

Initiate_pairing 0x100 SessionNonce
E1 Write To accessory

Send_pairing_data 0x101 OpCode
E2 Indications From accessory

Finalize_pairing 0x102

C2
E3
SeedS
S2

Write To accessory

OpCode

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

23

4.5.3.2. Pairing control point procedures

The accessory, as server, shall indicate the pairing control point for responding to the commands from
the Apple device.

4.5.3.2.1.Initiate pairing

The Initiate_pairing opcode is used to start the pairing session of an accessory from an Apple
device.

4.5.3.2.2.Send pairing data

The Send_pairing_data opcode must be used by the accessory to respond to a pairing session
request. The accessory must respond in 60 seconds.

See Send pairing data for E2 generation details.

Send_pairing_status 0x103

C3
Status
OpCode
E4

Indications From accessory

Pairing_complete 0x104 None Write To accessory

OpCode
value Operands GATT

subprocedure DirectionOpCode

Table 4-3 Initiate pairing

Operand Data type Size
(octets) Description

SessionNonce bytes 32 Nonce generated by owner device

E1 bytes 89 Encrypted blob generated by owner device

Table 4-4 Send pairing data

Operand Data type Size
(octets) Description

OpCode bytes 4 Context, value “Pair”

E2 bytes 1342 Encrypted blob generated by accessory

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

24

4.5.3.2.3.Finalize pairing

The Finalize_pairing opcode is used by an Apple device to confirm pairing. See Validate and
confirm pairing for more details.

4.5.3.2.4.Send pairing status

The Send_pairing_status opcode must be used by the accessory to confirm pairing.

See Send pairing status for E4 generation details.

4.5.3.2.5.Pairing complete

The Pairing_complete opcode is used to complete pairing the accessory from the Apple device.
This opcode has no parameters.

Table 4-5 Finalize pairing

Operand Data type Size
(octets) Description

C2 bytes 89 Shared commitment generated by Apple device

E3 bytes 1052 Encrypted software token that’s vended by
Apple server for each accessory

SeedS bytes 32 Unique server seed for each accessory that’s
paired

S2 bytes 100 Apple server signature to confirm pairing

Table 4-6 Send pairing status

Operand Data type Size
(octets) Description

C3 bytes 60 Final commitment generated by accessory. See Col-
laborative key generation for C3 details.

Status bytes 4 Success/failure status

opCode bytes 4 Context, value “Ack”

E4 bytes 1266 Encrypted blob generated by accessory

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

25

4.5.3.3. Configuration control point

The configuration control point enables you to configure Find My network functionality on the
accessory and enable Find My network interactions. The opCodes for the control point are defined in
Table 4-7.

Table 4-7 Configuration control point opcodes

OpCode OpCode
Value Operands GATT

subprocedure Direction

Sound_Start 0x200 None Write To accessory

Sound_Stop 0x201 None Write To accessory

Persistent_
Connection_Status 0x202 Persistent

ConnectionStatus Write To accessory

Set_Nearby_Timeout 0x203 NearbyTimeOut Write To accessory

Unpair 0x204 None Write To accessory

Configure_Separated_S-
tate 0x205

NextKeyRoll
NextSeparatedKeyOffset
SeparatedKeyInterval

Write To accessory

Latch_Separated_Key 0x206 None Write To accessory

Set_Max_Connections 0x207 MaxConnections Write To accessory

Set_UTC 0x208 CurrentTime Write To accessory

Get_Multi_Status 0x209 None Write To accessory

Get_Firmware_Version 0x210 None Write To accessory

Get_Battery_Status 0x211 None Write To accessory

Keyroll_Indication 0x212 KeyIndex Indications From accessory

Command_Response 0x213 CommandOpCode
ResponseStatus Indications From accessory

Get_Multi_Status_Re-
sponse 0x214 MultiStatus Indications From accessory

Get_Firmware_Ver-
sion_Response 0x215 FirmwareVersion Indications From accessory

Get_Battery_Status_Re-
sponse 0x216 BatteryStatus Indications From accessory

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

26

4.5.3.4.Configuration control point procedures

The paired Apple device initiates a configuration procedure using one of the messages defined in Table
4-7. The accessory must respond to the configuration procedure using the Command_Response
message with an appropriate status code (see Table 4-14).

The accessory, as server, shall indicate the Configuration Control Point for responding to the
commands from the Apple device.

4.5.3.4.1.Play sound—owner control point

Play sound requirements are applicable only for accessories that include a sound maker. See Product-
specific requirements.

The Sound_Start opcode is used to play sound on the sound maker of the accessory.

The Sound_Stop opcode is used to stop an ongoing sound request.
If the sound event is completed or was not initiated by the Apple device, the accessory responds with
No_Sound_Session ResponseStatus code.

4.5.3.4.2.Persistent connection status

The Persistent_Connection_Status opcode is used by the owner device to indicate whether
the accessory is persistently connected using an always-connected BTLE link.

4.5.3.4.3.Set nearby timeout

The Set_Nearby_Timeout opcode is used by the owner device to set the time duration to transition
from nearby state to separated state, TNEARBY. The valid range for the NearbyTimeOut parameter is 0 to
900 seconds. A NearbyTimeOut of 0 seconds indicates an immediate transition to separated state.

.

Table 4-8 Persistent connection status

Operand Data type Size (octets) Description

Persistent_
Connection_Status Boolean 1 0: Persistent connection disabled

1: Persistent connection enabled

Table 4-9 Set NearbyTimeOut

Operand Data type Size (octets) Description

NearbyTimeOut Uint16 2 TimeOut in seconds

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

27

4.5.3.4.4. Unpair

The Unpair opcode is used to unpair the accessory from the Apple device. This opcode has no
parameters. See Unpair for details.

4.5.3.4.5. Configure separated state

The Configure_Separated_State opcode is sent on every connection and indicates the time in
milliseconds until the next 4 a.m. local time. The valid range for nextPrimaryKeyRoll parameter is
0 to 15 minutes.

The valid range for secondaryKeyEvaluationIndex parameter is CurrentPrimaryKeyIndex -
4 to currentPrimaryKeyIndex + 96.

4.5.3.4.6.Latch separated key

The Latch_Separated_Key opCode instructs the accessory to use the current primary key as
Separated key until the next 4 a.m. local time. This message has no parameters.

4.5.3.4.7.Set max connections

The Set_Max_Connections opcode is used to set the maximum number of Bluetooth connections
that must be supported by the accessory. Accessories shall support up to two simultaneous
connections.

4.5.3.4.8.Set UTC

The Set_UTC opcode is used to set the current UTC time on the accessory.

Table 4-10 Configure separated state

Operand Data type Size
(octets) Description

NextPrimaryKeyRoll Uint32 4 Time in milliseconds until the next primary
key rotation

SecondaryKeyEvaluation-
Index Uint32 4 Primary key index at which secondary key

is re-evaulated

Table 4-11 Set max connections

Operand Data type Size (octets) Description

MaxConnections Uint8 1 Maximum Bluetoothconnected to be supported by ac-
cessory

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

28

4.5.3.4.9.Keyroll indication

The Keyroll_Indication opcode must be used by the accessory to indicate that a primary key roll
has occurred.

4.5.3.4.10.Command response

The command_response opcode must be used by the accessory to respond to every configuration
procedure initiated by the Apple device. The CommandOpCode indicates the procedure that the
accessory is responding to, and ResponseStatus indicates the status of the response.

4.5.3.4.11.Get multi status response

The Get_Multi_Status_Response opcode must be used by the accessory to respond to the
Get_Multi_Status command from the Apple device. The multiStatus is a bit mask that indicates the
current state of the accessory. Setting a bit in MultiStatus indicates that the accessory is in that
state.

Table 4-12 Set UTC

Operand Data type Size (octets) Description

CurrentTime Uint32 4 Current UTC time in ms (Jan 1 2001 Epoch)

Table 4-13 Keyroll indication

Operand Data type Size (octets) Description

KeyIndex Uint8 6 Current primary key index

Table 4-14 Command response

Operand Data type Size (octets) Description

CommandOpCode Uint16 2 The control procedure matching this response

ResponseStatus Uint16 2
0x00 success
0x01 No_Sound_Session
0xFF Invalid_command

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

29

4.5.3.4.12. Firmware version

The Get_Firmware_Version and Get_Firmware_Version_Response opcode are used to
exchange the firmware version of the accessory. The firmware revision string shall meet the
requirements listed below.

For revision string x[.y[.z]] (for example, ”100.1.1”):

• <x> is the major version number, required.

• <y> is the minor version number, required if it is non zero or if <z> is present.

• <z> is the revision version number, required if non zero.

The firmware revision must follow these rules:

• <x> is incremented when there is significant change; for example, 1.0.0, 2.0.0, 3.0.0, and so on.

• <y> is incremented when minor changes are introduced, such as 1.1.0, 2.1.0, 3.1.0, and so on.

• <z> is incremented when bug fixes are introduced, such as 1.0.1, 2.0.1, 3.0.1, and so on.

• Subsequent firmware updates can have a lower <y> version only if <x> is incremented.

• Subsequent firmware updates can have a lower <z> version only if <x> or <y> is incremented.

• Each number (major, minor, and revision version) must not be greater than (2^32 -1).

• The characteristic value must change after every firmware update.

• The Get_Firmware_version_response shall return the firmware version.

Table 4-15 Multistatus

Operand Data type Size (octets) Description

MultiStatus Uint8 1

 Bit0: MULTI_STATUS_PERSISTENT_CON-
NECTION,
 Bit1: RESERVED,
 Bit2: MULTI_STATUS_PLAYING_SOUND
 Bit13 MULTI_STATUS_DOWNLOADING
 Bit4: RESERVED
 Bit5: MULTI_STATUS_OWNER_CONNECTED
 Bit6: RESERVED
 Bit7: RESERVED

Table 4-16 Firmware version

Operand Data type Size (octets) Description

FirmwareVersion String 64 (maximum) Firmware version

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

30

4.5.3.4.13. Battery status

The Get_Battery_Status and Get_Battery_Status_Response opcode are used to exchange
the battery status of the accessory.

4.5.3.5. Non-owner control point

The non-owner control point enables a non-owner device to locate the accessory by playing a sound.
The opCodes for the control point are defined in Table 4-18.

This control point shall be available to the Apple device only when the accessory is in separated state.
In all other states, the accessory shall return the Invalid_command error as the responseStatus in
CommandResponse.

4.5.3.6.Non-owner control point procedures

The accessory, as server, shall indicate the non-owner control point for responding to the commands
from the Apple device.

4.5.3.6.1. Play sound—non-owner control point

Play sound requirements are applicable only to accessories that include a sound maker. See Product-
specific requirements.

The Sound_Start opcode is used to play sound on the sound maker of the accessory.

The Sound_Stop opcode is used to stop an ongoing sound request.
If the sound event is completed or was not initiated by the Apple device, the accessory responds with
the No_Sound_Session ResponseStatus code.

Table 4-17 Battery status

Operand Data type Size (octets) Description

BatteryStatus Uint8 1

0 = Full
1 = Medium
2 = Low
3 = Critically low

Table 4-18 Non-owner control point

OpCode OpCode
value Operands GATT

subprocedure Direction

Sound_Start 0x300 None Write To accessory

Sound_Stop 0x301 None Write To accessory

Command Response 0x302 CommandOpCode
ResponseStatus Indications From accessory

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

31

4.5.3.7.Debug control point

The debug control point enables you to debug the accessory during development. This control point
shall not be enabled in shipping firmware.

The opCodes for the control point are defined in Table 4-19.

4.5.3.8.Debug control point procedures

4.5.3.8.1.Set key rotation time-out

The Set_Key_Rotation_Timeout debug command accelerates key rotation by configuring a short
time-out.

4.5.3.8.2.Retrieve logs

The Retrieve_Logs debug command is used to dump logs from an accessory. The accessory
transfers the logs with multiple Log_Response Indications. The size of the Log_Response is limited
by the MTU size negotiated during connection setup. The accessory indicates the end of the log dump
by sending a Log_Response with empty payload.

Table 4-19 Debug control point

OpCode OpCode
value Operands GATT

subprocedure Direction

Set_Key_Rotation_Timeout 0x400 Timeout Write To accessory

Retrieve_Logs 0x401 None Write To accessory

Log_Response 0x402 LogResponse Indications From accessory

Table 4-20 Set key rotation timeout

Operand Data type Size
(octets) Description

Timeout Uint32 4 Time in milliseconds until the next primary
key rotation

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

32

5. Advertisements

5.1. BTLE advertising

An accessory that is not Find My network paired shall advertise the Find My network service as a
primary service when the user puts the accessory in pairing mode.

After Find My network pairing, the accessory shall advertise the Find My network BTLE payload in the
format defined in Table 5-1.

The Find My network advertising payloads replaces the AdvA field of the advertising PDU defined by
the BT SIG with the first 0 to 5 bytes of the current key. The nearby or separated state of the
accessory determines the current key. Most significant bits of byte 0 shall be 0b11, indicating a static
device address.

The Find My network advertisement payload shall not contain other data types. An accessory must
always advertise the Find My network payloads once every TADVINT. The accessory may use another
advertising instance to broadcast other data types and services.

The manufacturer AD type is defined by the BT SIG, and the payload indicates that the type is Apple.

5.1.1. Payload for nearby state

When the accessory is in the nearby state or connected to a paired owner device, the advertising
payload format must be as defined in Table 5-3.

Table 5-1 BTLE advertising

AdvAddress Manuf AD Type Find My network payload

PrimaryKey[0..5] AD Type CompanyID Nearby or separated payload

Table 5-2 Manufacturer data

Byte Value Description

0 3 Length of manufacturer AD type

1 0xFF Manufacturer data AD type

2..3 0x004C Apple company ID

Table 5-3 Payload for nearby state

Byte Value Description

0 0x12 Apple payload type

Byte

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

33

5.1.2. Payload for separated state

When the accessory is in the separated state, the advertising payload format must be as defined in
Table 5-4.

1 0x02 Length of payload

2

Bits 0–1: Reserved.
Bit 2: Maintained
Bits 3–4: Reserved
Bits 5: 0b1
Bits 6–7: Battery state.

Maintained
Set if owner connected within current key rotation
period (15 minutes)
Battery state definition
0 = Full
1 = Medium
2 = Low
3 = Critically low

3 Bits 0–1: Public key
 Bits 2–7: Reserved

Bits 6–7 of byte 0 of the primary key (Pi)

Value DescriptionByte

Table 5-4 Payload for wild state

Byte Value Description

0 0x12 Apple payload type

1 0x19 Length of payload

2

Bits 0–1: Reserved.
Bit 2: Maintained
Bits 3–4: Reserved
Bits 5: 0b1
Bits 6–7: Battery state.

Maintained
Set if owner connected within current key rotation
period (15 minutes)
0 = Full
1 = Medium
2 = Low
3 = Critically low

3 — 24 Separated public key

Bytes 6–27 of the Public Key, Pi or PWj depending
on accessory state. See Nearby to separated, Sep-
arated to separated, and After power cycle for pos-
sible separated state transitions.

25 Bits 0–1: Public key
 Bits 2–7: Reserved

Bits 6–7 of byte 0 of the public key (Pi or PWj)

26 Hint Byte 5 of the Bluetooth address of the current pri-
mary key Pi

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

34

6. Pairing and Key Management

6.1. Overview

An accessory must be paired to an owner device before it can be locatable. An owner device will initiate
the standard BTLE encryption before it accesses the Find My network services.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

35

6.2. Pairing

Find My network pairing is initiated by the owner device using the pairing control point procedures.
When an accessory pairs, it must not expose the Find My network pairing control point and it must
respond to any of the pairing control point procedures with an invalid_command error message.

An accessory will not be able to Find My network pair if it is paired to an owner device with a different
Apple ID.

6.2.1. Pairing mode

The accessory must require explicit user intent to enable the Find My network pairing mode. When the
user initiates the Find My network pairing mode, the accessory must advertise the Find My network
service as a primary service. See Find My network service. The accessory must exit the pairing mode
after a time-out.

6.2.2.Generate pairing data

Upon establishing standard BLE encrypted pairing session, the accessory must generate collaborative
commitment (C1) to start the pairing process and generate per pairing session encryption key seed
(SeedK1). See Random generation for the generation of SeedK1. The accessory must regenerate
SeedK1 for every new pairing session.

See Collaborative key generation for C1 details.

See Send pairing data pairing control point for details.

6.2.3.Send pairing data

The accessory must send encrypted payload generated using Apple server encryption key (Q_E).
The parameters listed in Table 6-1 are included in generating E2. See ECIES Encryption for E2
generation.

Table 6-1 Payload to generate E2

Key Data type Size
(octets) Description

SessionNonce bytes 32 Nonce generated by Apple device

C1 bytes 32 Data sent by the accessory as initial commitment for pair-
ing (see Collaborative key generation for C1 details)

Software auth
token bytes 1024 Software authentication token that’s vended by Apple for

each accessory

Software auth
UUID bytes 16 Accessory UUID that’s associated with software auth

Key

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

36

6.2.4.Finalize pairing

The owner device initiates the finalize pairing process to complete pairing. See Finalize pairing for
details.

6.2.5.Validate and confirm pairing

The accessory must validate the Apple server signature (S2) using an Apple server signature
verification key (Q_A) in order to finalize pairing.
The parameters listed in Table 6-2 are included in generating S2.

See Apple server public keys and ECDSA signature verification for signature verification key (Q_A)
details.

Serial Number bytes 16 Accessory serial number

Product ID String 16 Accessory product ID

Vendor ID String 16 Accessory vendor ID

FW version String 4 Accessory firmware version

E1 bytes 89 Encrypted blob generated by owner device

SeedK1 bytes 16 Per pairing session seed for encryption key

Data type Size
(octets) DescriptionKey

Table 6-2 Payload to generate signature message for S2 verification

Key Data type Size
(octets) Description

Software auth
UUID bytes 16 Accessory UUID that’s associated with software to-

ken

SessionNonce bytes 32 Nonce generated by owner device

SeedS bytes 32 Unique server seed for each accessory that’s paired

H1 bytes 32 Compute H1=SHA-256(C2)

E1 bytes 89 Encrypted blob generated by owner device

E3 bytes 1052 Encrypted software token that’s vended by Apple
server for each accessory

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

37

In case of signature verification failure, the accessory must abort pairing. See Send Pairing Status for
more details about success and error status.

If Apple server signature verification is successful, then the accessory must decrypt Apple server
encrypted blob (E3) using per pairing session symmetric AES 128-bit key (K1).

See derivation of the Pairing Session Key K1 for details on obtaining K1. See AES-GCM decryption for
E3 decryption details.

If S2 verification and E3 decryption are successful, then the accessory must store a new software
token from E3 and generate a collaborative key (C3) as an acknowledgement to confirm pairing.

The accessory must always use the latest (renewed) software token for any subsequent operations that
require authentication with Apple servers (for example, unpair).

See Collaborative key generation for C3 details. See Finalize pairing for E3 details.

6.2.6.Send pairing status

After successful pairing, the accessory must go into nearby state and send an acknowledgement to the
owner device to confirm the pairing.

The accessory must initialize a 64-bit counter to 0. This counter is used along with the serial number in
the NFC payload.

In case of pairing error, the accessory must abort pairing and send a pairing error code. For both
success and error, the accessory must generate an encrypted blob (E4) and send it to the owner
device.

The payload parameters listed in Table 6-3 are included in generating E4. See ECIES Encryption for E4
generation.

Pairing error codes will be provided in an updated developer preview. See Send pairing status for
details.

Table 6-3 Payload to generate E4

Key Data type Size
(octets) Description

Software auth
UUID bytes 16 Accessory UUID that’s associated with software token

Serial Number bytes 16 Accessory serial number

SessionNonce bytes 32 Nonce generated by the owner device

E1 bytes 89 Encrypted blob generated by the owner device

Software token bytes 1024 Latest Software token

Status bytes 4 Success/failure status code

OpCode bytes 4 Context, value =“Ack”

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

38

6.3. Key management

6.3.1. Key definitions

As part of a successful pairing flow, the accessory and the owner device will collaboratively generate
both of the following:

• A master public key, P
• Two symmetric keys, SKN and SKS

A derivative of the public key P will be broadcast over BTLE. Finder devices can use it to encrypt their
current location and provide it to Apple servers for the accessory owner to download and decrypt.

Additionally, the accessory and the server generate a shared secret. The shared secret is used to derive
a key and protects requests related to obtaining lost mode information:

• Secret shared with server: ServerSharedSecret

• Symmetric key for pairing session: K1

• Symmetric key for queries with serial number: KSN

6.3.2. Key sequences and rotation policy

The accessory must generate public key sequences with different key rotation intervals, referred to as
primary and secondary keys.

• P and SKN are used to derive the primary key (Pi), which rotates every 15 minutes.

• P and SKS are used to derive the secondary key (PWj), which rotates every 24 hours (that is,
after every 96 iterations of primary key Pi).

6.3.3. Bluetooth advertisement key selection policy

6.3.3.1. After pairing

The accessory must use the primary key Pi (where i=1) as a BTLE advertisement and enters nearby
state. See Payload for nearby state for details.

6.3.3.2. Nearby to nearby state transition

If at the end of period ‘i’ the accessory is still in nearby state, it must use the next primary key Pi+1
(where ‘i’ is the last primary key index) as a BTLE advertisement. See Payload for nearby state for
details.

6.3.3.3. Nearby to separated state transition

When the accessory switches to separated state, it must continue to use the current primary key Pi as
a BTLE advertisement until the end of the current separated key period (4 a.m. local time). See Payload
for separated state for details.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

39

6.3.3.4. Separated to separated state transition

If at the end of the current separated key period (4 a.m. local time) the accessory is still in separated
state, and it was previously advertising the last primary key Pi right after the state transition, it must
compute j=i/96+1 and the secondary key PWj and use the latter as a BTLE advertisement.
If at the end of the current separated key period (4 a.m. local time) the accessory is still in separated
state, and it was previously advertising the secondary key PWj, it now must use the next secondary
key PWj+1 as a BTLE advertisement. See Payload for separated state for details.

6.3.3.5. After power cycle

The accessory must compute j=i/96+1 and the secondary key PWj (where ‘i’ is the current
primary key index) and use the latter as a BTLE advertisement. See Payload for separated state for
details.

6.3.4.Key schedule definitions

a || b denotes concatenation of the values a and b.
G is the base point of the NIST P-224 elliptic curve. See FIPS 186-4, D.1.2.2. Curve P-224.
q is the order of the base point G. x(P) denotes the x coordinate of the elliptic curve point P.
ANSI-X9.63-KDF(Z, sharedInfo) denotes the KDF described by SEC1, 3.6.1 ANSI X9.63 Key Derivation
Function. Z is the secret value (the input key material) and sharedInfo is data shared between the two
parties.

Random values and scalars must be generated using a cryptographically secure DRBG. See
Operations.

6.3.4.1. Collaborative key generation

As part of the pairing flow, the owner device and the accessory must collaboratively generate a public
key P and two symmetric keys, SKN and SKS.
1. The accessory generates a P-224 scalar s (see Random scalar generation) and a 32-byte random

value r. It sends the value C1 = SHA-256(s || r), where len(C1) = 32 bytes, to the
owner device. (See Send pairing data.)

2. The owner device generates a P-224 scalar s’ (see Radom Scalar Generation) and a 32-byte
random value r’. It computes S’ = s’ ⋅ G and sends C2 = {S’, r’}, where len(C2) =
89 bytes, to the accessory. (See Finalize pairing.)

3. The accessory checks S’ and aborts if it is not a valid point on the curve. (See Elliptic curve point
validation.) It computes the final public key P = S’ + s ⋅ G and sends C3 = {s, r}, where
len(C3) = 60 bytes, to the owner device. (See Send pairing status.)

4. The owner device aborts if s is not a valid P-224 scalar (see Scalar validation) or if C1 ≠
SHA-256(s || r). It computes the final public key P = S’ + s ⋅ G and the private key d
= s + s’ (mod q).

5. Both the owner device and the accessory compute the final symmetric keys SKN and SKS as the
64-byte output of ANSI-X9.63-KDF(x(P), r || r’), where SKN is the first 32 bytes and SKS
is the last 32 bytes.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

40

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf
https://www.secg.org/SEC1-Ver-1.0.pdf

6.3.4.2. Derivation of primary and secondary keys

The accessory must derive primary and secondary keys from the public key P generated at pairing
time. P itself must never be sent out and must be stored in a secure location.

For a given 15-minute period i:
1. Derive SKNi = ANSI-X9.63-KDF(SKNi-1, “update”), where SKN0 is the SKN as agreed

upon at pairing time.

2. Derive ATi = (ui, vi) = ANSI-X9.63-KDF(SKNi, “diversify”) where len(ATi) = 72 bytes and
len(ui) = len(vi) = 36 bytes.

3. Reduce the 36-byte values ui, vi into valid P-224 scalars by computing the following:

a. ui = ui (mod q-1) + 1
b. vi = vi (mod q-1) + 1

4. Compute Pi = ui ⋅ P + vi ⋅ G.
Secondary keys are generated as shown above, using period j instead of i and SKS instead of SKN.
The result will then be called PWj instead of Pi.

6.3.4.3. Derivation of link encryption key LTKi

The Find My network key generation algorithm generates LTKs, rotating every 15 minutes. The
accessory shall use the LTK that corresponds to the current key period as the LTK to encrypt the link on
connection to the owner device. A paired owner device also picks the same LTK to encrypt the link. If
the device is not a paired Apple device or if the LTK results in a failed encryption, the accessory must
disconnect.

The accessory must derive a new link encryption key LTKi for every 15-minute period i. If the paired
owner device is nearby, it can use this key to establish a Bluetooth connection and encrypt the link.

For a given 15-minute period i:
1. Derive the symmetric key SKNi = ANSI-X9.63-KDF(SKNi-1, “update”), where SKN0 is the

symmetric key SKN as agreed upon at pairing time.

2. Derive the Intermediate key IKi = ANSI-X9.63-KDF(SKNi, “intermediate”), where
len(IKi) = 32 bytes.

3. Derive the Link Encryption key LTKi = ANSI-X9.63-KDF(IKi, “connect”), where
len(LTKi) = 16 bytes.

6.3.4.4. Derivation of command key CKi

The accessory must derive a new command key CKi for every 15-minute period i. The paired owner
device uses CKi to ensure the authenticity of commands sent to the accessory.

For a given 15-minute period i:
1. Derive the symmetric key SKNi = ANSI-X9.63-KDF(SKNi-1, “update”), where SKN0 is the

symmetric key SKN as agreed upon at pairing time.

2. Derive the Intermediate key IKi = ANSI-X9.63-KDF(SKNi, “intermediate”), where
len(IKi) = 32 bytes.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

41

3. Derive the command key CKi = ANSI-X9.63-KDF(IKi, “command”), where len(CKi) =
32 bytes.

6.3.4.5. Derivation of the NearbyAuthTokeni

The accessory and owner device will derive a new NearbyAuthTokeni for a given 15-minute period
i. The paired owner device broadcasts with an advertising address derived from the
NearbyAuthTokeni. An accessory in separated state must switch to nearby state upon detecting
such a broadcast.

For a given 15-minute period i:

1. Derive the primary key Pi as shown in Derivation of primary and secondary keys.
2. Derive the command key CKi as shown in Derivation of command key CKi.
3. Denote x(Pi) as the x-coordinate of the primary key Pi, where x(Pi) is represented as a

28-byte big-endian integer.
4. Compute NOATi = HMAC-SHA256(CKi, x(Pi) || “NearbyAuthToken”).
5. Compute NearbyAuthTokeni = MostSignificant6Bytes(NOATi).

6.3.4.6. Derivation of ServerSharedSecret

Upon successful pairing, the accessory must generate and retain ServerSharedSecret, where
ServerSharedSecret is a 32-byte shared secret:

ServerSharedSecret = ANSI-X9.63-KDF(SeedS || SeedK1, “ServerSharedSecret”)

6.3.4.7. Derivation of the pairing session key K1

To generate the NFC tap payload, KSN must be generated as follows, where K1 is a 16-byte symmetric
key:

K1 = ANSI-X9.63-KDF(ServerSharedSecret, “PairingSession”)

6.3.4.8.Derivation of the serial number protection key

To generate the NFC tap payload, KSN must be generated as follows, where KSN is a 16-byte
symmetric key:

KSN = ANSI-X9.63-KDF(ServerSharedSecret, “SerialNumberProtection”)

6.4. Unpair

Unpair action is initiated by the paired owner device to delete Find My network data.

See Unpair for the unpair procedure. See Factory reset for details on resetting the accessory.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

42

7. Unwanted Tracking Detection

7.1. Overview

During separated UT state, sound playback from the accessory is designed to bring awareness to the
person with whom it’s detected. Accessories that support motion-triggered UT sound alerts (see
Product-specific requirements) must implement the requirements from this chapter.

7.2. Hardware

7.2.1. Motion detector

The accessory must include a motion detector that can detect accessory motion reliably (for example,
an accelerometer). If the accessory includes an accelerometer, it must be configured to detect an
orientation change of ±10° along any two axes of the accessory.

7.2.2. Sound maker

The accessory must include a sound maker (for example, a speaker) to play sound when motion is
detected in separated UT state.

It must also play sound when a non-owner tries to locate the accessory by initiating a play sound
command from a non-owner device when the accessory is in range and connectable through BTLE.
See Play sound—non-owner control point.

Additional requirements on acceptable sound maker performance (for example, minimum decibel level)
will be provided in an updated developer preview.

7.3. Implementation

After TSEPARATED_UT_TIMEOUT in separated state, the accessory must enter the separated UT state and
enable the motion detector (for example, accelerometer) to detect any motion within
TSEPARATED_UT_SAMPLING_RATE1.

If motion is not detected within the TSEPARATED_UT_SAMPLING_RATE1 period, the accessory must stay in this
state until it exits separated state.

If motion is detected within the TSEPARATED_UT_SAMPLING_RATE1 the accessory must play a sound. After first
motion is detected, the movement detection period is decreased to TSEPARATED_UT_SAMPLING_RATE2. The
accessory must continue to play a sound for every detected motion. The accessory shall disable the
motion detector for TSEPARATED_UT_BACKOFF under either of the following conditions:

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

43

• Motion has been detected for 20 seconds at TSEPARATED_UT_SAMPLING_RATE2 periods.
• Ten sounds are played.

If the accessory is still in separated state at the end of TSEPARATED_UT_BACKOFF, the UT behavior must
restart.

A BTLE connection from a paired Apple device must reset the separated UT behavior and transition the
accessory to connected state.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

44

8. NFC Requirements

8.1. Overview

Accessories that include NFC (see Serial number lookup) must support the requirements from this
chapter.

8.2. Hardware

These are the hardware requirements for accessories that include NFC:
• The accessory must use a programmable NFC tag.
• NFC tags must use the NFC Data Exchange Format (NDEF) as defined by NFC Forum™ in NDEF
1.0 NFCForum-TS-NDEF 1.0.

• An NDEF message is defined as a group of individual NDEF records as defined by NFC Forum™ in
NFC Record Type Definition (RTD) RTD 1.0 NFCForum-TS-RTD 1.0.

• The Find My network payload for NFC tags must use NDEF URI Record Type Definition as defined
by NFC Forum™ in URI Record Type Definition RTD-URI 1.0 NFCForum-TS-RTD URI 1.0.

• The minimum payload that must be supported is 30 bytes.
• NFC tag types must be type 2 or greater.
• The NFC tag should not be scannable when the Find My network-enabled accessory is still in the
packaging.

• The Find My network payload must be scannable when holding the top of the iOS controller near
the center of the NFC tag on the accessory. Recommended NFC tag performance guidelines are
defined by NFC Forum™ in Tag Performance Requirements Document.

8.3. Implementation

On NFC tap, the accessory must generate encrypted payload using the Apple server encryption key
(Q_E), including the serial number, a counter, and MAC, using the KSN symmetric key. The counter
must monotonically increase every time an NFCTap occurs.

See ECIES Encryption for generating encrypted payload.

The NFC on an accessory must be configured as an NFC tag.

Unpaired accessories advertise the following payload:

https://found.apple.com/accessory?
pid=%04x&b=%02x&pt=%04x&fv=%08x&bt=%s&sr=%s

Paired accessories advertise the following payload:

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

45

https://found.apple.com/accessory?
pid=%04x&b=%02x&pt=%04x&fv=%08x&e=%s&op=%s

The payload parameters are defined in Table 8-1.

Table 8-1 NFC payload

Key Size (Bytes) NFC URL Format Notes

b 1 ASCII Hex String Battery status

bt 6 ASCII Hex String Bluetooth MAC address

fv 4 ASCII Hex String FW version, in little endian format

op 4 ASCII Context, value “tap”

e 141 ASCII Hex String Encrypted: Serial Number || Counter ||
HMAC(KSN, SerialNumber || Counter || op) || op

pid 2 ASCII Hex String Accessory product ID

pt 2 ASCII Hex String Accessory vendor ID

sr 16 ASCII Accessory serial number

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

46

9. Timers and Constants

9.1. Overview

Table 9-1 defines the timers and constants used by the Find My network protocol.

Table 9-1 Timers and constants

Timer Name Value Description

TSEPARATED_UT_TIMEOUT 3 days Time span in separated state before enabling separated
UT state.

TSEPARATED_UT_BACKOFF 6 hours Period to disable motion detector if accessory is in sepa-
rated UT state.

TNEARBY 15 minutes Default value.
Configured by the owner device on connection.

TFMN_ADV_INTERVAL 2 seconds Find My network BTLE Advertising Interval.

TSEPARATED_UT_SAMPLING_RATE1 10 seconds Motion detector sampling rate when separated UT state is
enabled.

TSEPARATED_UT_SAMPLING_RATE2 0.5 seconds Motion detector sampling rate when movement is detected
in separated UT state.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

47

10. Firmware Update

10.1.Overview

The accessory must support the download of new firmware image from the owner device.

Details on firmware download procedures will be provided in an updated developer preview.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

48

11. Revision History

Revision history

Version Date Notes

1.0 2020-06-22 Developer Preview 1

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

49


Apple Inc.
Copyright © 2020 Apple Inc.
All rights reserved.

Access to and use of this document and the information contained herein is governed by the terms of the Limited License to the “Find My
network accessory specification – Developer Preview” (the “Agreement”) between Apple and the receiving party. This document is intended to
be used for informational purposes only. Any other use of this document is strictly prohibited. If you have not agreed to be bound by the terms
of the Agreement, you may not access or use this document.

No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: the receiving party is
hereby authorized to store this document on a single computer for personal use only and to print copies of this document for personal use
subject to the terms of the Agreement provided that the documentation contains Apple’s copyright notice.

Except as set forth in the Agreement, no licenses, express or implied, are granted with respect to any of the technology described in this
document. Apple retains all intellectual property rights associated with the technology described in this document.

Apple, the Apple logo, AirPort, Bonjour, iPad, iPhone, iPod, Mac, OS X, and watchOS are trademarks of Apple Inc., registered in the U.S. and
other countries.

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.

Java is a registered trademark of Oracle and/or its affiliates.

Even though Apple has reviewed this document, THIS DOCUMENT IS PROVIDED “AS IS” AND WITHOUT REPRESENTATION,
WARRANTY, UPGRADES OR SUPPORT OF ANY KIND. APPLE AND APPLE’S DISTRIBUTORS, AFFILIATES, LICENSOR(S) AND
SUPPLIER(S) (“APPLE PARTIES”) EXPRESSLY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND CONDITIONS, EXPRESS OR
IMPLIED, INCLUDING THE IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, OF SATISFACTORY QUALITY, OF
FITNESS FOR A PARTICULAR PURPOSE, OF NON-INFRINGEMENT AND OF ACCURACY. NONE OF THE APPLE PARTIES
WARRANTS THAT THE SPECIFICATION OR ANY ACCESSORY WILL MEET YOUR REQUIREMENTS, THAT DEFECTS IN THEM WILL
BE CORRECTED OR THAT THEY WILL BE COMPATIBLE WITH FUTURE APPLE PRODUCTS. NO ORAL OR WRITTEN INFORMATION
OR ADVICE GIVEN BY ANY APPLE PARTY OR AN APPLE AUTHORIZED REPRESENTATIVE WILL CREATE A WARRANTY.

EXCEPT TO THE EXTENT SUCH A LIMITATION IS PROHIBITED BY LAW, IN NO EVENT WILL ANY APPLE PARTY BE LIABLE FOR
ANY INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL, EXEMPLARY OR PUNITIVE DAMAGES, INCLUDING LOST PROFITS,
LOST REVENUES OR BUSINESS INTERRUPTIONS, ARISING OUT OF OR RELATING TO THIS DOCUMENT UNDER A THEORY OF
CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCTS LIABILITY OR OTHERWISE, EVEN IF ANY APPLE PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL PURPOSE
OF ANY REMEDY. IN NO EVENT WILL THE APPLE PARTIES’ TOTAL LIABILITY TO YOU FOR ALL DAMAGES AND CLAIMS UNDER
OR RELATED TO THIS DOCUMENT EXCEED THE AMOUNT OF US$50.00.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the
above limitation or exclusion may not apply to you.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

50

	Contents
	Introduction
	Requirements, recommendations, and permissions
	Terminology

	Core Concepts
	Overview
	Find My app
	Transport
	Operation
	Roles
	Owner device
	Accessory
	Find My network
	Apple server

	Features
	Unwanted tracking detection
	Lost mode
	Play sound

	States
	Unpaired
	Connected
	Nearby
	Separated

	Requirements
	Overview
	General
	Hardware
	Bluetooth
	Product-specific requirements
	Serial number lookup
	Disable
	Clock accuracy

	Cryptography
	Operations
	Implementation
	Endianness and wire format
	Random scalar generation
	Scalar validation
	Elliptic curve point validation
	ECDSA signature verification
	ECIES encryption
	AES-GCM decryption
	Random generation

	Software authentication
	Apple server public keys
	Factory reset
	Power cycle
	Firmware updates

	Bluetooth Requirements
	Overview
	Bluetooth advertising
	Bluetooth connection
	Bluetooth host
	Services
	MTU size
	Link encryption key
	Handling concurrent operations
	Bluetooth pairing
	Error codes
	Time-out

	Find My network service
	Service
	Byte transmission order
	Characteristics
	Pairing control point
	Pairing control point procedures
	Initiate pairing
	Send pairing data
	Finalize pairing
	Send pairing status
	Pairing complete
	Configuration control point
	Configuration control point procedures
	Play sound—owner control point
	Persistent connection status
	Set nearby timeout
	Unpair
	Configure separated state
	Latch separated key
	Set max connections
	Set UTC
	Keyroll indication
	Command response
	Get multi status response
	Firmware version
	Battery status
	Non-owner control point
	Non-owner control point procedures
	Play sound—non-owner control point
	Debug control point
	Debug control point procedures
	Set key rotation time-out
	Retrieve logs

	Advertisements
	BTLE advertising
	Payload for nearby state
	Payload for separated state

	Pairing and Key Management
	Overview
	Pairing
	Pairing mode
	Generate pairing data
	Send pairing data
	Finalize pairing
	Validate and confirm pairing
	Send pairing status

	Key management
	Key definitions
	Key sequences and rotation policy
	Bluetooth advertisement key selection policy
	After pairing
	Nearby to nearby state transition
	Nearby to separated state transition
	Separated to separated state transition
	After power cycle
	Key schedule definitions
	Collaborative key generation
	Derivation of primary and secondary keys
	Derivation of link encryption key LTKi
	Derivation of command key CKi
	Derivation of the NearbyAuthTokeni
	Derivation of ServerSharedSecret
	Derivation of the pairing session key K1
	Derivation of the serial number protection key

	Unpair

	Unwanted Tracking Detection
	Overview
	Hardware
	Motion detector
	Sound maker

	Implementation

	NFC Requirements
	Overview
	Hardware
	Implementation

	Timers and Constants
	Overview

	Firmware Update
	Overview

	Revision History
	Revision history

