

SKD-300D Laser Distance Sensor USER MANUAL

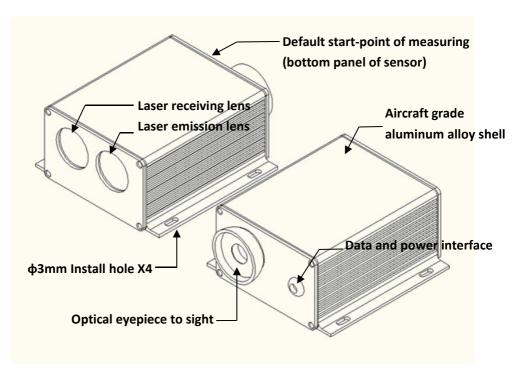
version 1.0

Getting more info & supports from http://www.top1sensor.com

Contents

1. Overview	1 -
2. Features	2 -
3. Specifications	2 -
4.Using instructions	- 4 -
4.1 Cable connecting definitions	- 4 -
4.2 Operating Steps	- 4 -
4.2.1 Connection	4 -
4.2.2 Single Trigger Measuring mode	4 -
4.2.3 Continuous Measuring Mode	- 4 -
5. Input and output	5 -
5.1 Data format	5 -
5.2 Input frame format	- 5 -
5.3 Output frame format	- 5 -
6.Troubleshooting	- 6 -
6.1 Factors affecting the measurement range	- 6 -
6.2 Error code display	- 7 -
7. Contact us	- 8 -

Thank you for your choice for SKD laser distance sensor by SANKOE.LTD


Please read this user manual carefully before using our products

1. Overview

SANKOE.LTD is a professional manufacturer from China who provides high performance laser distance sensors and customized service. TOP1SENSOR.COM is our official e-commerce website.

SKD Laser distance sensor is a new kind of un-contact distance measuring equipment. It has many strengths such as high accuracy, long range and fast measuring speed when it's integrated in mine, wharf, bridge, tunnel, buildings, and other industrial measuring and controlled applications.

SKD-300D(RS232) Laser distance sensor

2. Features

- 1 Long detection range (5 to 300m)
- 2 High measuring accuracy (typical precision: ±0.3m)
- 3 Fast to install

Using 4 screws can be quickly and firmly installed

4 Easy to operating

To sight a distant target easily with optical eyepiece

Automatic measurement by simple commands from computer

5 Safety in use

Laser class 1, harmless to the human body (avoid direct eye exposure)

6 Kinds of output type

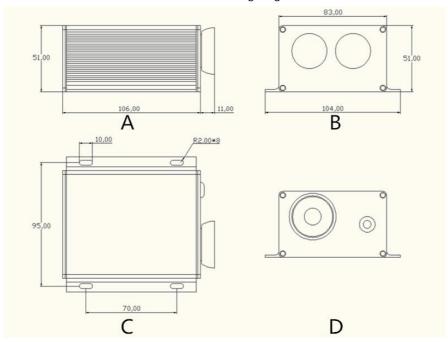
RS232/485/TTL serial data output

Two-way switch output based on thresholds set by users

7 Long-life and high reliability with good protection

High waterproof and dustproof performance with aircraft grade aluminum alloy shell

8 Fully customized service based on 15+ years industry experience


3. Specifications

Laser Distance Sensor	SKD-300D(RS232)
Measuring Range	5m to 300m①
Measuring accuracy	typ:±0.3m②
Smallest unit displayed	0.1m
Laser class	1
Laser type	905nm
Laser beam diameter approx.	
-at 10m distance	6mm
-at 50m distance	30mm
Measuring mode	
-trigger measuring	yes
-continuous measuring	yes
Operation mode	commands by computer

RS232 serial digital output
DC 9~24V/1A
<3W
-25℃ to 70℃
-10°C to 50°C
106 x 104 x 51 mm3
390g

- ①Use a target plate to increase the measurement range during daylight or if the target has poor reflection properties.
- ②The highest measuring accuracy is ± 0.3 m when sensor measures in 5 to 300m. If measuring range is further than 300m, the measuring accuracy of sensor is ± 1 m.
- ③The details of dimension are shown in the following image.

A: Right side view B: F

B : Front view

C: Top view D: Back view

4. Using instructions

4.1 Cable connecting definitions

Red line —— VCC
Black line —— PGND
Yellow line —— RX(PC)
Green line —— TX(PC)
Blue line —— DGND

4.2 Operating Steps

4.2.1 Connection

Connect the sensor to a serial port of computer (or other device which has serial ports), then connect to a power port of adapter with special data cable.

4.2.2 Single Trigger Measuring mode

- 4.2.2.1 Send a command "O" (ASCII) or "0X4F" (HEX) by computer to turn on the sensor. Then sensor will emit a laser beam and prepare for working, and return the data "FF 00 0A 0A 0A 00" to the serial interface.
- 4.2.2.2 Send a command "O" (ASCII) or "0X4F" (HEX) again to the sensor to start to measure distance. The sensor will return the measured data like "FF XX XX XX XX XX" to the serial interface and turn off laser beam when it finished one time measurement. For example, if measured distance is 123.4m, computer will receive data like "FF 00 01 02 03 04".
 - 4.2.2.3 Send a command "U" (ASCII) or "0X55" (HEX) to turn off the sensor.

4.2.3 Continuous Measuring Mode

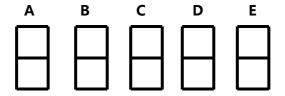
- 4.2.3.1 Send a command "O" (ASCII) or "0X4F" (HEX) by computer to turn on the sensor. Then the sensor will turn on the laser and prepare for working, and return the data "FF 00 0A 0A 0A 0O" to the serial interface
- 4.2.3.2 Send a command "C" (ASCII) or "0X43" (HEX) to the sensor. The sensor will begin to measure continuously after 3 seconds when it got the order, and return the data continuously like "FF XX XX XX XX XX". If the sensor couldn't get any available data, it will return "FF 00 0A 0A 0A 00" to the serial interface.
- 4.2.3.3 Send a command "U" (ASCII) or "0X55" (HEX) to turn off the whole sensor (include both of laser unit and measuring unit).

5. Input and output

5.1 Data format

Baud rate: 9600 bps, Data bits: 8, Stop bit: 1, Parity bit: None

5.2 Input frame format


There is only one byte in every input frame. The user could send different commands to the sensor for different purpose, the functions of command are shown in the following table.

HEX	0X4F 0X43		0X55
ASCII(Capital letter)	o C		U
Functions of command	Power On & Trigger Measuring	Continuous Measuring	Power Off

5.3 Output frame format

There is six bytes in every output frame, the frame header is OXFF, MSB is A, LSB is E. Their orders are shown in this table here.

0XFF	Α	В	С	D	Е
-			-		

The mapping table of HEX and BCD codes:

	11 0	<u> </u>									
HEX	0X00	0X01	0X02	0X03	0X04	0X05	0X06	0X07	0X08	0X09	0X0A
BCD	0	1	2	3	4	5	6	7	8	9	-

6. Troubleshooting

6.1 Factors affecting the measurement range

Laser distance sensor is a new of un-contact optical measuring equipment. Its measuring range and accuracy will be effect by many external environmental factors. So actual measuring result might be different with typical value which is measured in standard environment.

The following factors will effect actual measuring range:

Effect Factors	Increase measuring range	Decrease measuring range			
Surface of target	Bright and smooth surface with good reflection, like target plate	Deep color and rough surface, like green or blue target surface			
Air visibility	Clean air	Dust, fog, storm and rain, snow			
Ambient light	Dark environment	Target exposure to strong light,			
Laser Laser emission lens and emission protection glass keep clean and smooth		Laser emission lens and protection glass get dirty or scratched			

In conclusion, the best measuring result will be happen in a dark environment and with a good reflection target. We strongly suggest to use a target plate when laser distance sensor works in a poor environment.

We also suggest to keep laser emission lens and protection glass clean with a soft cloth before start to using.

6.2 Error code display

All error code are either displayed with "FF AA 00 XX XX XX".

The following errors can be corrected.

Display Notice	Cause	Correction	
FF AA 00 02 00 04	Calculation error	Repeat procedure	
FF AA 00 02 05 02	Temperature too high	Let device cool down	
FF AA 00 02 05 03	Temperature too low	Warm device up	
	Received signal too weak,		
FF AA 00 02 05 05	time for a measurement	Use a target plate	
	too long.		
FF AA 00 02 05 06	Descived signal too strong	Use target plate(gray	
FF AA 00 02 05 06	Received signal too strong	side)	
FF AA 00 02 05 07	Faulty measurement, too	Use target plate(brown	
FF AA 00 02 05 07	much background light	side)	
	Outside of the range of	Select measurement	
FF AA 00 02 05 08	Outside of the range of	distance within the range	
	measurement	of measurement	
FF AA 00 02 06 00	Laser beam interrupted	Repeat the measurement	

7. Contact us

Xi'an Zhizun International Trade Co., LTD Xi'an SANK Optical Electronic Co., LTD.

Tel: +86-29-87858956, +86-29-82252810

Mobile: 86-15353715490 Mr. Yang **E-mail:** contact@ top1sensor.com

Add: No.299, Jinhua North Road, Xi'an, China

Getting more info & supports from http://www.top1sensor.com