MCUXDQS # Quick Start Guide for MCUXpresso Config Tools Rev. 1 — 22 December 2021 User Guide ## 1 Introduction **MCUXpresso Config Tools** set is a suite of evaluation and configuration tools that help you from initial evaluation to production software development. With **MCUXpresso Config Tools**, you can configure NXP Cortex-M processors and | Introduction1 | |--------------------| | Select Tool4 | | Generate code 10 | | Revision history11 | | | Contents generate initialization of SDK-drivers. The MCUXpresso Config Tools is intended for general use and aims to help hardware designers, software engineers, embedded engineers, and field application engineers (FAEs). The tool is distributed free of charge. The installer for Windows, Linux, or Mac can be downloaded from http://nxp.com. To compile the generated code, an MCUXpresso SDK package is required. You can download SDK packages from http://mcuxpresso.nxp.com. The SDK package contains many example projects that can help you get started. Use the link in the installation folder to start the tool. As the first step in the tool, you must create a configuration. The following use cases are described in the document: - Starting with SDK example or existing project This is useful for new users to start with the example project for NXP evaluation board of for users that already have toolchain project with sources generated by the tool. Supported toolchain are Keil µVision, IAR Embedded Workbench, CodeWarrior, and Arm GCC. - Starting with new configuration This is useful to start with new configuration for a custom board or with existing toolchain project that does not contain any tool configuration yet. ### 1.1 Creating a new configuration You can create a configuration from the Start development wizard or by selecting File > New from the Menu bar. New configuration is created automatically on the first run of the tool. The initial processor selection is taken from the active processor/board/kit selection on the **Select Development Board** page. If you start creating your development for any NXP board or kit, we recommended you start with an MCUXpresso SDK example to create a configuration for a board or a kit. Such configuration contains board-specific settings. If you select a processor, the configuration will be empty. After the new configuration is created, you can continue by importing an existing configuration from an MEX file. This is useful if you already have a configuration available or if you want to reuse a previous configuration. To import an existing configuration from an MEX file, select **File > Import... > Import configuration** (*.mex) from the **Menu bar**. #### 1.1.1 Cloning an SDK example You can create a configuration by cloning an SDK example project for IAR Embedded Workbench, Keil μ Vision, CodeWarrior Development Studio, and/or GCC ARM Embedded (command line). The resulting project contains all source files and libraries to build the project and can be easily customized, shared, or put under control version system. SDK example cloning is supported for SDK 2.2 and higher. **NOTE** To be able to clone an SDK example or create a "hello_world" project, you must first download an SDK package. For more information about SDK packages offered by NXP Semiconductors, refer to the MXUXpresso Software Development Kit website. #### NOTE If the server is unavailable, and device data is not cached, creating the project will fail. To clone an SDK example, do the following: - 1. In the **Start development** wizard, select **Create a new configuration based on an SDK example or hello world project**. Alternatively, in the **Menu bar**, select **File > New**. - 2. Click Next. - 3. Specify the path to your locally saved SDK package. - 4. Choose the toolchain you want to create the project for. - 5. Choose the SDK example you want to clone. - 6. Specify a base project directory to save your project to. - 7. Specify project name. - 8. Click Finish. You can also create a basic, minimally customized "hello_world" project without having to select an SDK example from the package. To create a "hello_world" project, do the following: - 1. In the **Start development** wizard, select **Create a new configuration based on an SDK example or hello world project**. Alternatively, in the **Menu bar**, select **File > New**. - 2. Click Next. - 3. Specify the path to your locally saved SDK package. - 4. Choose the toolchain you want to create the project for. - 5. Select Create "hello world". - 6. Specify a base project directory to save your project to. - 7. Specify project name. - 8. Click Finish. The Config tools Overview window shows the details of the configuration and supported tools. Now select a tool by clicking its icon. #### 1.1.2 Creating a new toolchain configuration You can create a configuration for an existing toolchain project. Once done, configuration files associated with the project are updated directly. MCUXpresso Config Tools currently supports the following toolchains: - MCUXpresso IDE - CodeWarrior - · IAR Embedded Workbench - Keil MDK uVision - Arm GCC NOTE For proper functionality of Config Tools, it is required that the toolchain project originates from the SDK package or has been created using the cloning feature of Config Tools. To create a configuration based on an existing IDE/Toolchain project, do the following: - 1. In the **Start development** wizard, select the **Create a new configuration based on an existing IDE/Toolchain project**. Alternatively, in the **Menu bar**, select **File > New**. - Click Browse. - 3. Select the project file and confirm by clicking OK. - 4. Click Finish. #### 1.1.3 Creating a new standalone configuration You can create a new configuration that is not part of any toolchain project. You can later include this configuration in a project by saving the configuration (MEX) file in the toolchain project folder. To create a standalone configuration, do the following: - 1. In the **Start development** wizard select **Create a new standalone configuration for processor, board, or kit**. Alternatively, in the **Menu bar**, select **File > New**. - 2. Click Next. - 3. Select the processor, board, or kit from the list. NOTE If you are working offline, you will only see locally saved options. For more information, see the Working offline section. - 4. Name your configuration. Optionally, you can select processor package, core, and SDK version. - 5. Click Finish. ### 2 Select Tool The right-hand side of the toolbar contains tool-selection buttons. Use these buttons to switch between the tools. Table 1. Config Tools | Name | Description | |-----------|---| | Pins Tool | Enables you to configure the pins of a device. Pins tool enables you to create, inspect, change, and modify any aspect of the pin configuration and muxing of the device. | Table continues on the next page... Table 1. Config Tools (continued) | Clocks Tool | Enables you to configure initialization of the system clock (core, system, bus, and peripheral clocks) and generates the C code with clock initialization functions and configuration structures. The web version of the Clocks tool gives a preview of the system clock (core, system, bus, and peripheral clocks) and configuration structures of the clocking environment. | | |--|---|--| | Peripherals Tool | Enable you to configure the initialization for the SDK drivers. | | | Device
Configuration Tool | Enables you to generate a Device Configuration Data (DCD) image using the format and constrains specified in the Boot ROM reference manual. | | | TEE (Trusted
Execution
Environment) Tool | isolate and safeguard sensitive areas of your application. | | #### 2.1 Pins Tool In Pins tool, you can display and configure the pins of the processor. Basic configuration can be done in the Pins, Peripheral Signals or Package views. More advanced settings (pin electrical features) can be adjusted in Routed Pins view. #### 2.2 Clocks Tool In the Clocks tool, you can display and modify clock sources and outputs. Use the Clocks Table view to set clock sources and outputs, More advanced settings can be adjusted via Clocks Diagram and Details views. Global settings of the clocking environment such as run modes, MCG modes, and SCG modes can be modified in Clocks Table, Clocks Diagram, in Functional group properties, and in the Details view. ### 2.3 Peripherals Tool In the **Peripherals** tool, you can configure initialization of selected peripherals and generate code for them. In the **Peripherals view**, select the peripherals to configure and confirm addition of the configuration component. Then you can select the mode of the peripheral and configure the settings within the settings editor. 7 / 12 # 2.4 Device Configuration Tool **Device Configuration** tool allows you to configure the initialization of memory interfaces of your hardware. Use the **Device Configuration Data (DCD)** view to create different types of commands and specify their sequence, define their address, values, sizes, and polls. #### 2.5 Trusted Execution Environment Tool In the **Trusted Execution Environment**, or **TEE** tool, you can configure security policies of memory areas, bus masters, and peripherals, in order to isolate and safeguard sensitive areas of your application. You can set security policies of different parts of your application in the **Security Access Configuration** and its subviews, and review these policies in the **Memory Attribution Map**, **Access Overview** and **Domains Overview** views. Use the **User Memory Regions** view to create a convenient overview of memory regions and their security levels. You can also view registers handled by the TEE tool in the Registers view, and inspect the code in the Code Preview tool. NOTE In order for your configuration to come into effect, make sure you have enabled the relevant enable secure check option in the Miscellaneous subview of the Security Access Configuration view. Quick Start Guide for MCUXpresso Config Tools, Rev. 1, 22 December 2021 ### 3 Generate code You can update source files generated by the MCUXpresso Config Tools by clicking the Update Code button. The command opens dialog with list of files that will be re-generated and allows to select which tools will generate the code. ``` Figure 9. Update Code button ``` Alternatively, you can also export a selected source file by clicking the export button in the Code Preview view. Quick Start Guide for MCUXpresso Config Tools, Rev. 1, 22 December 2021 # 4 Revision history Table 2. Revision history | Revision number | Date | Substantive changes | |-----------------|------------------|---------------------| | 0 | 23 June 2021 | Initial release | | 1 | 22 December 2021 | Minor updates | How To Reach Us : Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © NXP B.V. 2017-2021. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 22 December 2021 Document identifier: MCUXDOS