
 Application Note

R11AN0516EU0100 Rev.1.00 Page 1 of 29
Jul.26.2021

Renesas RA Family
Secure Bootloader for RA2 MCU Series
Introduction
MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software update. MCUboot is operating system and hardware independent and relies on hardware porting
layers from the operating system it works with. Currently MCUboot is maintained by Linaro in the GitHub
mcu-tools page https://github.com/mcu-tools/mcuboot. There is a /docs folder that holds the documentation
for MCUboot in .md file format. This application note will refer to the above-mentioned documents wherever
possible.

The Renesas Flexible Software Package (FSP) integrates an MCUboot port across the entire RA MCU
Families starting from FSP v3.0.0. Renesas RA2 MCU series are based on Arm® Cortex®-M23 core and
have limited flash and RAM memory. This application project is created to address the unique challenges
and provide guidelines on the optimization of the RA2 MCU bootloader memory size. For the MCUboot
cryptographic support for RA2 MCU groups, TinyCrypt (https://github.com/intel/tinycrypt/) is integrated with
the FSP MCUboot module to provide a smaller memory footprint compared with Mbed Crypto. Refer to the
GitHub folder /tinycrypt/documentation/ for details on the TinyCrypt cryptographic algorithm usage
guide.

This application note walks the user through the secure bootloader creation using the MCUboot Module with
TinyCrypt for enhanced security on Renesas EK-RA2E1 kit. In addition, examples of how to configure
application project to use the bootloader are provided. In this first release, the application image is checked
for integrity but not authenticity. This application project will be updated to add application image signature
checking when future FSP release supports this functionality.

For Renesas RA6 and RA4 MCU Series, Renesas provides an application project Using MCUboot with
Renesas RA MCU Application Project which walks users through using MCUboot with RA6 and RA4 MCU
groups with Mbed Crypto module. See the References section for information on this Application Project.

Required Resources
Development tools and software
• e2 studio ISDE v2021-04 or greater
• Renesas Flexible Software Package (FSP) v3.1.0 or later
• SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers, and e2 studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

Hardware
• EK-RA2E1 Evaluation Kit for RA2E1 MCU Group (http://www.renesas.com/ra/ek-ra2e1)
• Workstation running Windows® 10 and Tera Term console, or similar application
• One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience
This application note assumes you have some experience with the Renesas e2 studio IDE development.
Users are required to read the entire the MCUboot Port section in the FSP User’s Manual prior to moving
forward with this application project. In addition, the application note assumes that you have some
knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience are product developers, product manufacturers, product support, or end users who
are involved with designing application systems involving usage of a secure bootloader with Renesas RA2
MCU family.

https://github.com/mcu-tools/mcuboot
https://github.com/intel/tinycrypt/
http://www.renesas.com/fsp
http://www.renesas.com/ra/ek-ra2e1

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 2 of 29
Jul.26.2021

Contents

1. Overview of MCUboot .. 3
1.1.1 Overview of Application Booting Process .. 3
1.1.2 Applications Update Strategies ... 3

2. Architecting an Application with MCUboot Module using FSP for RA2 MCU 5
2.1 Secure Booting with TinyCrypt .. 5
2.2 Designing Bootloader and the Initial Primary Application Overview ... 5
2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs ... 5
2.4 Production Support for RA2 MCU ... 6
2.4.1 Make the Bootloader Immutable ... 6
2.4.2 Disable the Debug and Serial Programming Interface Prior to Deployment ... 6

3. Creating the Bootloader Project ... 6
3.1 Include the MCUboot Module in the Bootloader Project ... 6
3.2 Optimization of the Bootloader Project for Size .. 12
3.3 Compile the Bootloader Project ... 14
3.4 Configure the Python Signing Environment .. 14
3.5 Create the Signing Command ... 15

4. Using the Bootloader with a New Application or Existing Application 18
4.1 Generate the Initial Application Project ... 18
4.2 Configure the Existing Application to Use the Bootloader Project .. 19
4.3 Signing the Application Image ... 20

5. Booting the Initial Application Project ... 21
5.1 Set Up the Hardware ... 21
5.2 Configure the Debugger .. 21
5.3 Download the Primary Application .. 23
5.4 Booting the Primary Application .. 24

6. Mastering and Delivering a New Application .. 25
6.1 Create a New Application .. 25
6.2 Downloading and Booting the New Application .. 27

7. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects 28

8. References .. 28

9. Website and Support ... 28

Revision History .. 29

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 3 of 29
Jul.26.2021

1. Overview of MCUboot
MCUboot is an open source project hosted at mcu-tools github project. It is currently managed by the Linaro
Community Project.

MCUBoot handles the firmware integrity and authenticity check after start-up and the firmware switch part of
the firmware update process. The operation of switching of the firmware from the original image to a new
image depends on the image upgrade methods. The image upgrade methods are described in section 1.1.2.
Downloading the new version of the firmware is out of scope for MCUBoot. Typically, downloading the new
version of the firmware is functionality that is provided by the application project itself.

1.1.1 Overview of Application Booting Process
For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary App
and the Scratch Area. Below is an example of the single image MCUboot memory map. For more
information on the MCUboot memory layout, refer to the Flash Map section of the reference MCUboot
website.

Figure 1. Single Image MCUboot Memory Flash Map
The functionality of the MCUboot during booting and updating follows the process below:

The bootloader is started when CPU is released from reset. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader verifies the integrity and authenticity of the Secondary image.
2. Upon successful authentication, the bootloader will switch to the new image based on the update

method selected. Available update methods are introduced in section 1.2.2.
3. The bootloader will boot the new image.

If there is no new image in the Secondary App memory region, the bootloader will authenticate the Primary
applications and boot the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. The firmware image can be authenticated by hash (SHA-
256) and digital signature validation. For this release of the RA2 MCU bootloader, only integrity of the
bootloader is checked based on hash (SHA-256). Image signature generation is not supported with current
FSP release.

1.1.2 Applications Update Strategies
The following are the update strategies supported by MCUboot. The Renesas FSP MCUboot Module in FSP
v3.1.0 does not yet support all of the MCUboot update strategies. The analysis of pros and cons is based on
the MCUboot functionality, but not the FSP v3.1.0 MCUboot Module functionality. In addition, this application
note is not intended to provide all details on the MCUboot application update strategies. We recommend
acquiring more details on these update strategies by referring to the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

https://github.com/mcu-tools/mcuboot
https://www.linaro.org/community-projects/
https://www.linaro.org/community-projects/
https://mcuboot.com/mcuboot/design.html#flash-map
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 4 of 29
Jul.26.2021

• Overwrite
In the Overwrite update mode, the active firmware image is always executed from the Primary slot, and
the Secondary slot is a staging area for new images. Before the new firmware image is executed, the
entire contents of the primary slot are overwritten with the contents of the secondary slot (the new
firmware image).
• Pros

• Fail-safe and resistant to power-cut failures
• Less memory overhead, with a smaller MCUboot trailer and no scratch area
• Encrypted image support available when using external flash

• Cons
• Does not support pre-testing of the new image prior to overwrite
• Does not support automatic application fallback mechanism

Overwrite upgrade mode is supported by Renesas RA FSP v3.0.0 or later. However encrypted image
support using external flash is not supported yet.

• Swap
In the Swap image upgrade mode, the active image is also stored in the Primary slot and it will always
be started by the bootloader. If the bootloader finds a valid image in the Secondary slot that is marked
for upgrade, then contents of the primary slot and the secondary slot will be swapped. The new image
will then start from the primary slot.
• Pros

• The bootloader can revert the swapping as a fallback mechanism to recover the previous
working firmware version after a faulty update

• The application can perform a self-test to mark itself permanent
• Fail-safe and resistant to power-cut failures
• Encrypted image support available when using external flash

• Cons
• Need to allocate a scratch area
• Larger memory overhead, due to a larger image trailer and additional scratch area
• Larger number of write cycles in the scratch area, wearing the scratch sectors out faster

Swap upgrade mode is supported by Renesas RA FSP v3.0.0 or later. However encrypted image using
external flash is not supported yet. Runtime image testing is not supported at the time of the release of
this application project.

• Direct execute-in-place (XIP)
In the direct execute-in-place mode, the active image slot alternates with each firmware update. If this
update method is used, then two firmware update images must be generated: one of them is linked to be
executed from the primary slot memory region, and the other is linked to be executed from the
secondary slot.
• Pros

• Faster boot time, as there is no overwrite or swap of application images needed
• Fail-safe and resistant to power-cut failures

• Cons
• Added application-level complexity to determine which firmware image needs to be downloaded
• Encrypted image support is not available

Direct execute-in-place is not currently supported by the Renesas RA FSP, but it is planned for a future
release.

• RAM loading firmware update
Like the direct execute-in-place mode, RAM loading firmware update mode selects the newest image by
reading the image version numbers in the image headers. However, instead of executing it in place, the
newest image is copied to RAM for execution. The load address (the location in RAM where the image is
copied to) is stored in the image header. This upgrade method is not typically used in MCU environment.
Please refer to the RAM Loading section in the MCUboot page for more information on this update
strategy. This image update mode does not support encrypted images (see MCUboot documentation on
encrypted image operation).
RAM loading update mode is not supported by the Renesas RA FSP.

https://www.mcuboot.com/documentation/design/#ram-loading
https://www.mcuboot.com/documentation/encrypted-images/

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 5 of 29
Jul.26.2021

2. Architecting an Application with MCUboot Module using FSP for RA2 MCU
This section provides an overview of the FSP MCUboot Module, the available application image upgrade
modes, memory architecture design, and guidelines for mastering the new image. In addition, this section
describes how the lightweight TinyCrypt is used in the RA2 bootloader design. We recommended reviewing
the MCUboot Port section the FSP User’s Manual to understand the build time configurations for MCUboot.

2.1 Secure Booting with TinyCrypt
TinyCrypt is a small-footprint cryptography library targeting constrained devices. Its minimal set of standard
cryptographic primitives are designed to provide secure messages, basic encryption, and random number
generation, which are all needed to secure the small footprint of IoT devices. FSP v3.1.0 release uses
TinyCrypt v0.2.8. For the RA2 bootloader design, SHA256 from TinyCrypt is used to ensure the application
image integrity.

The FSP TinyCrypt port module does not provide any interfaces to the user. Consult the documentation at
https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst for further information on use of the
TinyCrypt port. The software only module is available in FSP on all RA devices. Hardware acceleration for
AES-128 through FSP TinyCrypt port is provided for the RA2 family.

2.2 Designing Bootloader and the Initial Primary Application Overview
A bootloader is typically designed with the initial primary application. The following are the general guidelines
for designing the bootloader and the initial primary application.

• Develop the bootloader and analyze the MCU memory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image as well as the cryptographic library used.

• Develop the initial primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

• Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in adjustment of the memory allocated definition in the bootloader project.

• Sign the application image. For FSP, a template for signing the new firmware image based on the
properties specified in the MCUboot Module is output in a comment at the top of ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h.

• Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs
The MCUboot Module is supported on all RA Family MCUs. For the Renesas RA2 Cortex-M23 MCU series,
image hashing is support with FSP v3.1.0, image signature authentication will be supported in future
releases.

Customize the RA2 Bootloader
Customizing the Bootloader involves main aspects:

• Customized method to download the application. This is very application specific and is not discussed in
this application project.

• Bootloader size optimization.
Some of the bootloader size optimization actions that can be taken are summarized as follows. Details
on the operational flow of these optimization are described in section 3.
• Disable application image validation to reduce code size
• Disable image signing to reduce code size
• Update the linker script to optimize memory usage
• Disable unused FSP components to reduce code size
• Compile the bootloader with Optimization for Size (-Os)

• Refer to section 1 to understand the available features and section 3 for where and how to update the
bootloader features.

https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 6 of 29
Jul.26.2021

2.4 Production Recommendations for RA2 MCU
2.4.1 Make the Bootloader Immutable
Refer to the Renesas RA MCU Family Securing Data at Rest Utilizing the Renesas Security MPU application
project section Permanent Locking of the FAW Region to understand how to make the bootloader
immutable. The PC Application to Permanently Lock the FAW section in the same application note
describes how to handle Flash locking in production mode.

2.4.2 Disable the Debug and Serial Programming Interface Prior to Deployment
Once the bootloader development is finished, you may want to set up ID Code protection on Renesas RA2
MCU to lock down the debugger and the serial programming interface.

Refer to the Securing Data at Rest Utilizing the Renesas Security MPU Application Project section Setting up
the Security Control for Debugging for the desired settings to control the device lifecycle management of the
RA2 MCUs using the ID Code protection method.

3. Creating the Bootloader Project
This section walks the user through the creation process of the RA2 bootloader provided in this application
note.

The example bootloader which user will create by following this section is provided in the
RA2_secure_bootloader.zip. User can follow section 7 to exercise the example bootloader and
application projects without going through the creation process in this section.

3.1 Include the MCUboot Module in the Bootloader Project
1. Launch e2 studio 2021-04 and start to establish a new C/C++ Project. Click File > New > C/C++ Project.

Figure 2. Start a New Project

2. Choose Renesas RA->Renesas RA C/C++ Project. Click Next.

Figure 3. Choose Renesas RA C/C++ Project

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 7 of 29
Jul.26.2021

3. Provide a project name such as ra_mcuboot_ra2e1_tinycrypt. Click Next. You can choose other
names for the bootloader. If a different name is chosen, you need to update the corresponding
instructions in this application note to the project name used.

Figure 4. Name the Bootloader Project

4. In the next screen, choose EK-RA2E1 for Board.

Figure 5. Select the Board

5. Choose Executable for Build Artifact and No RTOS. Click Next.

Figure 6. Choose to Build Executable and No RTOS

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 8 of 29
Jul.26.2021

6. Choose Bare Metal – Minimal for the Project Template and click Finish to establish the initial project.

Figure 7. Choose the Project Template

7. When following prompt opens, click Open Perspective.

Figure 8. Choose Open the FSP Configuration perspective
The project will now be created, and the bootloader project configuration will be displayed.

1. Select the Pins tab and uncheck Generate data for RA2E1 EK.

Figure 9. Uncheck Generate data for RA2E1 EK Pin Configuration

Use the pull-down menu to switch from RA2E1 EK to R7FA2E1A92DFM.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that
here we choose to use this configuration which has fewer peripherals/pins configured since the
bootloader does not use the extra peripheral or GPIO pins configured in the RA2E1 EK configuration.

Figure 10. Select R7FA2E1A92DFM.pincfg and Generate data g_bsp_pin_cfg

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 9 of 29
Jul.26.2021

2. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack->Bootloader->
MCUboot.

Figure 11. Add the MCUboot Port

3. Once the MCUboot module is added to the project, configure General properties of MCUboot as shown
below.

Figure 12. FSP RA2 MCUboot Module General Configuration

The following explains the various properties configured:
• Custom mcuboot_config.h: The default mcuboot_config.h file contains the MCUboot Module

configuration that the user selected from the RA configurator. The user can create a custom version
of this file to achieve additional bootloader functionalities available in MCUboot.

• Upgrade Mode: This property configures the application image upgrade method. The available
options are Overwrite Only, Overwrite Only Fast, and Swap. Choose Overwrite Only for this
bootloader project.

• Validate Primary Image: If this property is enabled, the bootloader will always check the signature
of the image in the primary slot before booting, even if no upgrade was performed. This version of
the FSP does not support signature generation with TinyCrypt, so this function is Disabled.

• Number of Images Per Application: This property allows user to choose one image for Non-
TrustZone-based applications and two images for TrustZone-based applications. RA2 MCU groups
do not support TrustZone, so this property is set to 1.

• Downgrade Prevention (Overwrite Only): When this property is Enabled, a new firmware with a
lower version number will not overwrite the existing application. For how to set the version number of
an image, refer to section 3.5, step 6) .

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 10 of 29
Jul.26.2021

4. Next configure the following properties to remove the warnings for the MCUboot module.

Figure 13. Update Configurations for the MCUboot Module

For both single-image and two-image configurations, the following four properties need to be defined:
• Bootloader Flash Area: Size of the flash area allocated for the bootloader with a boundary of 0x800

since 0x800 is the minimum erase size for code flash .
• Image 1 Header Size: Size of the flash area allocated for the application header for single image

configuration. For Arm Cortex-M23 MCUs, this should be set to 0x100.
• Image 1 Flash Area Size: Size of the flash area allocated for the application image for single image

configuration. This area needs to be equal or larger than the application image with a boundary of
0x800.

• Scratch Flash Area Size: This property is only needed for Swap mode. The scratch area must be
large enough to store the largest sector that is going to be swapped. For both RA2 MCUs, the
scratch area should be set up to 0x800 when Swap mode is used.

The properties under TrustZone are not used for RA2 MCUs since they do not have TrustZone.
The bootloader we are creating in this section will have a size of 0x2000 when all the configuration
updates are followed through in this section. Otherwise, the bootloader may result in different flash
usage size and the Bootloader Flash Area Size property needs to be updated accordingly.
Image 1 Flash Area Size is the application code flash area usage, which should be larger than the
application code flash usage and on a 0x800 boundary for RA2 MCUs.
Application images using MCUboot must be signed to work with MCUboot. At a minimum, this involves
adding a hash and an MCUboot-specific constant value in the image trailer. FSP v3.1.0 does not support
signature generation with TinyCrypt, the Signature Type is set to None, so only hash is used for the
image integrity checking.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 11 of 29
Jul.26.2021

Notes on setting the Custom property:
• By default, FSP sets --confirm for the Custom property.
• When --confirm is set:

• For Overwrite upgrade mode, the new image will always overwrite the original application image.
• For Swap upgrade mode, if the new image passed the integrity check, it will swap with the

original image and will be booted. On the next MCU reset, there will be no Swap.
5. Next add the TinyCrypt module. The TinyCrypt Hardware includes Hardware accelerated AES

functionality which is not used in the bootloader, this module is not selected. The MbedTLS (Crypto
Only) module has a larger memory footprint compared with TinyCrypt and is not used in this bootloader
design.

Figure 14. Select TinyCrypt Module

6. Now click on the Flash Driver block and set the Code Flash Programming to Enabled. As Data Flash
Programming is not used in the bootloader, select Disabled for the Data Flash Programming to
reduce the bootloader memory footprint.

Figure 15. Enable Code Flash programming
7. In this step, save the Configruation.xml and click Generate Project Content. Next, expand the

Developer Assistance->HAL/Common->MCUboot->Quick Setup and drag Call Quick
Setup to the top of the hal_entry.c of the bootloader project.
Add the following function call to the top of the hal_entry() function:
mcuboot_quick_setup();

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 12 of 29
Jul.26.2021

8. Notice that by default the I/O Port Driver is brought in to the project when the project is established.
Because the I/O Port Driver is not used in the bootloader project, this stack can be removed to reduce
the bootloader project size.

Figure 16. Remove the I/O Port Stack

After the I/O Port is deleted, remove all sections of code referencing the I/O Port API. E.g., remove
below two sections of the code in the red boxes in the function R_BSP_WarmStart in hal_entry.c
as shown in Figure 17.

Figure 17. Remove Unused Code in hal_entry.c

3.2 Optimize the Bootloader Project for Size
To further optimize the bootloader project for size, you can put some application code in the first 2k flash
sector. There is about 1k of used flash space between the interrupt vector and the RA2E1 ROM registers.
You can create a section (.code_in_gap) in the linker script to store some application code in this section.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 13 of 29
Jul.26.2021

Figure 18. First Flash Sector
First, update the default linker script to include section .code_in_gap between the interrupt vector and the
ROM register as shown in Figure 19. In addition, the application code after the ROM register can start at
0x43C instead of 0x500 as used in the default linker script.

Figure 19. Linker Script Update
Next, you can choose some functions to put in the .code_in_gap section in order to reduce the flash
usage after 0x43C. What functions to put in the .code_in_gap section is the user’s choice. This example
bootloader has chosen some functions to put in the .code_in_gap section as explained in this section.

In \src\hal_entry.c, put these two function prototypes at the top of hal_entry.c.

void R_BSP_WarmStart(bsp_warm_start_event_t event) BSP_PLACE_IN_SECTION(".code_in_gap*");

void mcuboot_quick_setup() BSP_PLACE_IN_SECTION(".code_in_gap*");

Figure 20. hal_entry.c functions in .code_in_gap
In \ra\mcu-tools\MCUboot\boot\bootutil\include\bootutil\bootutil.h, put below function
in the .code_in_gap section:

fih_int context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
BSP_PLACE_IN_SECTION(".code_in_gap*");

Figure 21. bootutil.h function in .code_in_gap

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 14 of 29
Jul.26.2021

In \ra\mcu-tools\MCUboot\boot\bootutil\include\bootutil\image.h, put below function in
the .code_in_gap section:

fih_int bootutil_img_validate(struct enc_key_data *enc_state, int image_index,

 struct image_header *hdr,

 const struct flash_area *fap,

 uint8_t *tmp_buf, uint32_t tmp_buf_sz,

 uint8_t *seed, int seed_len, uint8_t *out_hash)
BSP_PLACE_IN_SECTION(".code_in_gap*");

Figure 22. image.h function in .code_in_gap

3.3 Compile the Bootloader Project
Once all the above updates are done, change the compiling optimization to Optimize size and compile the
project.

Figure 23. Optimize Bootloader Size
After the above update, compile the project. The size of the flash usage should be around 0x7800.

Figure 24. Compile the Bootloader

3.4 Configure the Python Signing Environment
Signing the application image can be done using a post-build step in e2 studio using the image signing tool
Imgtool.py is included with MCUboot. This tool is integrated as a post-build tool in e2 studio to sign the
application image. If this is NOT the first time you have used the python script signing tool on your computer
you can skip to section 3.5.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the ra_mcuboot_ra2e1>ra>mcu-tools>MCUboot
folder in the Project Explorer, right click and select Command Prompt. This will open a command window
with the path set to the \mcu-tools\MCUboot folder.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 15 of 29
Jul.26.2021

Figure 25. Open the Command Prompt
It is recommended to upgrade pip prior to installing the dependencies. Enter the following command to
update pip:
python -m pip install --upgrade pip

Next, in the command window, enter the following command line to install all the MCUboot dependencies:
pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

3.5 Create the Signing Command
This section provides instructions for creating the signing command using the bootloader. Even though a
signature is not generated, hashing is generated using the following procedure.

e2 studio collects user input from the RA configurator and generates the bootloader configuration in
mcuboot_config.h. The template for generating the signing command is also generated at the top of
mcuboot_config.h. This template is generated based on user selections from the various configuration
properties in the RA Configurator.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 16 of 29
Jul.26.2021

1. In the Project Explorer, navigate to the ra_mcuboot_ra2e1_tinycrypt>ra_cfg>mcu-
tools>include>mcuboot_config folder and open the mcuboot_config.h file.

Figure 26. Open mcuboot_config.h

2. Expand the comment block in red in Figure 26. Type ctrl+F to open the Find/Replace dialogue box and
input the key words in the quotation marks (please do not include the quotation mark). Input Find
<boot_project> and set Replace All with ${workspace_loc:ra_mcuboot_ra2e1_tinycrypt}. Do not
add any spaces before or after the key words in bold when inputting into the Find/Replace dialog.

Figure 27. Configure the Bootloader Project Path

There should be two matches replaced. If the number of matches is not two, check this operation again.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 17 of 29
Jul.26.2021

3. Change the Find setting to path/to/image and the Replace with setting to ${ProjName}. Do not add
any spaces before or after the key words in bold when inputting into the Find/Replace dialog. Click
Replace All.

Figure 28. Configure the Application Project Path

There should be six matches replaced. If the number of matches is not six, it is recommended to check
this operation again. Then Close the dialogue box.

4. Add an & to the end of the following line so it looks like this:
arm-none-eabi-objcopy -O binary ${ProjName}.elf ${ProjName}.bin &

5. Copy the comment block from mcuboot_config.h and paste it into the hal_entry.c file before the
comment block “Quick setup for MCUboot” in the ra_mcuboot_ra2e1_tinycrypt project to save the
edits. Since the mcuboot_config.h file will be overwritten when the project is built, otherwise your
edits will be lost.

6. Navigate to the Window>Editor>Toggle Word Wrap to make the lines easier to read. Delete the
carriage return after the & to join the two command lines.

Figure 29. Application Image Signing Command
Note that the application image version number is defined in the signing command leading by --
version option. By default, FSP generates a signing command with version number 1.0.0+0. You can
manually update this information to define different version numbers. When Downgrade Prevention
property is Enabled, a new image with lower version numbers, such as 0.9.0+0, will not overwrite an
image with version 1.0.0+0 which resides in the Primary slot.
Note that the application image load addresses are indicated in this comment area (in the blue boxes).
These addresses will be used in Figure 41 and Figure 48

7. Save \ra_mcuboot_ra2e1_tinycrypt\hal_entry.c.
The command lines for the primary image in red box as shown in Figure 29 is the signing command for
the Primary image. We will use this command in the next section when signing the Application image.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 18 of 29
Jul.26.2021

4. Using the Bootloader with a New Application or Existing Application
Developing an initial application to use a bootloader starts with developing and testing the application and
the bootloader independently. Using the bootloader with an existing application or developing a new
application to use the bootloader involves below common steps:

• Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

• Configure the application to use the bootloader.
• Sign the application image.
• Developing an application to use a bootloader typically requires the application to have the capability to

download a new application. This aspect is not demonstrated in this application project, customers
typically have customized image download method which differs from one customer to another.

This section uses a simple blinky project to demonstrate how to use the bootloader with the blinky
application. After the initial blinky project is established, we need to configure this blinky project to the use
the bootloader project generated in the previous section. We also need to sign the blinky project using the
signing command generated in Figure 29. Detailed instructions are provided in this section.

Note that user can also follow section 7 to exercise the example bootloader and application projects without
going through the application creation and configuration process to use with the bootloader. This section
provides reference for users to understand how to customize for their specific application.

4.1 Generate the Initial Application Project
Follow the steps below to create a blinky project as the Initial Application Project. The steps in section 4.1
are identical when generating a blinky project whether the application uses a bootloader or not. Launch
e2 studio and open a Workspace, click File > New > C/C++ Project and select Renesas RA and Renesas
RA C/C++ Project.

1. Assign the name blinky to this new project.
2. Click Next and choose EK-RA2E1 as the Board from the drop-down menu. Then click Next.

Figure 30. Choose EK-RA2E1 for the Blinky Project

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 19 of 29
Jul.26.2021

3. In the next screen, select Executable as the Build Artifact and No RTOS for the RTOS Selection.

Figure 31. Choose to Build Executable with No RTOS

4. Select the Bare Metal - Blinky as the Project Template for the board and click Finish. The blinky
project is now created.

Figure 32. Choose Bare Metal – Blinky as Project Template

4.2 Configure the Existing Application to Use the Bootloader Project
Note that the steps described in this section can be applied to any other existing application projects to
configure the application project to use the bootloader. Care should be taken in consideration of the size the
application project. When using the bootloader with a different application project, the Image 1 Flash Area
Size property in Figure 13 should be adjusted accordingly. User also needs to regenerate the signing
command to the corresponding application by following the steps in this section.

Right click on the blinky folder in the Project Explorer and select Properties. Select the C/C++ Build >
Build Variables, click Add and set the Variable name to BootloaderDataFile and check the Apply to all
configurations box. Change the Type to File and enter
${workspace_loc:ra_mcuboot_ra2e1_tinycrypt}/Debug/ra_mcuboot_ra2e1_tinycrypt.bld for the value.
Click OK to save the changes.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 20 of 29
Jul.26.2021

Figure 33. Configure the Build Variable to Use the Bootloader
Click Apply and then Apply and Close.

4.3 Signing the Application Image
In this section, we will use the signing command generated in Figure 29 to sign the newly created
application. Copy the command line generated from Figure 29.

Edit the project Properties for the blinky project and navigate to the C/C++ Build > Settings. Click on the
Build Steps tab and paste the command line that just copied into the Post-build steps > commands and
press Apply and Close.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 21 of 29
Jul.26.2021

Figure 34. Configure the Post Build Command
If you do rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will have to repeat all steps in section 3.4 to resign the application project.

Since the signing command is after the build step, if the application project has already been built without
adding the signing command and there are no updates in the application project, the \debug*.elf file
needs to be removed for the image signing option to proceed. Optionally, user can add the following Pre-
build Steps > Command(s) to allow the signed image to be always regenerated regardless of whether there
are updates from the application project.

Figure 35. Configure the Pre-build Command
Next, a user can add the RTT Viewer usage related application code to the blinky project. Unzip
RA2_secure_bootloader.zip, open the RA2_secure_bootlader\blinky\src folder and copy all
files under \src to the newly established blinky project \src folder.

At this point, user can click Generate Project Content and compile the blinky project and ensure
\debug\blinky_signed.bin is generated.

5. Booting the Initial Application Project
5.1 Set Up the Hardware
Connect J10 using a USB micro to B cable from EK-RA2E1 to the development PC to provide power and
debug connection using the on-board debugger.

5.2 Configure the Debugger
Open the Debug Configurations: blinky->Debug As->Debug Configurations

Make sure the blinky Debug_Flat is selected and select the Startup tab.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 22 of 29
Jul.26.2021

Figure 36. Configure the Primary Project Debug Startup
Click Add… and then Workspace and navigate to the ra_mcuboot_ra2e1_tinycrypt project and select the
ra_mcuboot_ra2e1_tinycrypt.elf file from the debug folder. Click OK.

Figure 37. Add the Bootloader Project to Debug Configuration
Change the load type of the Program Binaries for the blinky project to Symbols only by clicking on the cell
for load type and selecting Symbols only from the drop-down menu.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 23 of 29
Jul.26.2021

Figure 38. Select to load Symbols only for the Application Project
Click Debug. The debugger should hit the reset handler in the bootloader.

Figure 39. Start the Application Execution

5.3 Download the Primary Application
At this point, only the bootloader image has been downloaded to flash. Now download the Application Image
using the Load Ancillary File button. On the top of the e2 studio toolbar, click the icon, then browse to
the signed image \Debug\blinky_signed.bin file.

Figure 40. Load Ancillary File
Check the Load as raw binary image and set the address to 0x2000. Press OK to download the image.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 24 of 29
Jul.26.2021

Figure 41. Configure the Download Address of the Application Image

5.4 Booting the Primary Application
Click Resume to run the project.

The program should now be paused in main at the hal_entry() call in the bootloader.

Figure 42. Start the Application Execution
Click to run again. The Red, Blue, and Green LEDs on the EK-RA2E1 should now be blinking while the
blinky application is running.

Press to pause the program. Note that the program counter is in the application image. Click to run
again.

Open the JLink RTT Viewer and set up the following configurations.

Figure 43. Configure the RTT Viewer
Click OK and observe the followinf output on the RTT Viewer. This output shows the Primary application is
being executed and all three LEDs are blinking.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 25 of 29
Jul.26.2021

Figure 44. RTT Viewer Output from the Primary Application

6. Mastering and Delivering a New Application
This section provides instructions on how to master and deliver a new application that will be loaded into the
Secondary image slot.

Note that the example bootloader, example Primary application (blinky project) as well the example
Secondary application (blinky_new, which this section will establish) are provided in the
RA2_secure_bootloader.zip. The user can also follow section 7 to exercise these project without going
through the New Application Creation and Mastering process described in this section if desired.

6.1 Create a New Application
The new application can be created by modifying the existing application. Import the blinky project to the
same workspace and rename the new project to blinky_new.

Right click in the white space in the Project Explorer area and select Import.

Figure 45. Select Rename and Import the Primary Application
Once the Import window opens, name the project and click Browse for Select root directory as shown in
Figure 46.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 26 of 29
Jul.26.2021

Figure 46. Rename the Project blinky_new

Figure 47. Import blinky Project as blinky_new
Click Finish, and the new application project will be created.

Update Existing Application to a New Application
The user can perform the following simple update to the existing blinky project to a new application:

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 27 of 29
Jul.26.2021

• Open \blinky_new\src\app_definitions.h and change
#define MENUSTATUS1 " Running the Primary application with overwrite update mode. \r\n"

to
#define MENUSTATUS1 " Running the Secondary application with overwrite update mode. \r\n"

• Open \blinky_new\src\hal_entry.h and change
/* Update all board LEDs */

 for (uint32_t i = 0; i < leds.led_count; i++)

 {

 /* Get pin to toggle */

 uint32_t pin = leds.p_leds[i];

 /* Write to this pin */

 R_BSP_PinWrite((bsp_io_port_pin_t) pin, pin_level);

 }

to
 /* update the blue led */

 R_BSP_PinWrite(leds.p_leds[0], pin_level);

Note that since the new application is renamed and imported from the Primary application, the Build
Variable configure in Figure 33, the Post-build steps > Command(s) in Figure 34 and the Pre-build steps
> Command(s) in Figure 35 are already configured for blinky_new.

To create a brand new application without importing the previous application, follow section 4.2 to configure
the application to use the bootloader and section 4.3 to sign the application image.

Click Generate Project Content and compile the blinky_new project.

6.2 Downloading and Booting the New Application
Assume the Primary application blinky is now up and running and the three LEDs are blinking. Click Pause

 and use the Ancillary Download file button load the compiled Secondary Application
blinky_new_signed.bin. Select the new application image and set the download address to 0x4000.

Figure 48. Download the Secondary Application Image
Note that for user-created customized applications, the download address needs to be adjusted by
referencing the specific signing command generated in Figure 29.

Click Resume to allow the system to perform image overwrite and the new image will be booted. Only the
blue LED should be blinking now, which indicates the new image is flashed to the Primary slot of the
application area.

On the RTT Viewer, the following new line will be printed, indicating the new image is loaded to the Primary
slot and is booted.

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 28 of 29
Jul.26.2021

Figure 49. RTT Viewer Output from the New Application

7. Appendix: Compile and Exercise the Included Example Bootloader and
Application Projects

Unzip RA2_secure_bootloader.zip to access the included bootloader and example application projects.
Import all three projects to a Workspace and follow below steps to compile the projects.

1. Compile the RA2 Example Bootloader Project
Open the Configuration.xml file from project ra_mcuboot_ra2e1_tinycrypt. Click Generate
Project Content and compile the project.

2. Compile the Application Projects
Open the Configuration.xml file from example Primary application project blinky. Click Generate
Project Content and compile the project.
Open the Configuration.xml file from example Secondary project blinky_new. Click Generate
Project Content and compile the project.

3. Boot the Primary Application
Follow section 5.1 to set up the EK-RA2E1 hardware connection and section 5.3 and 5.4 to boot the blinky
project. Verify that all three LEDs are blinking and the RTT Viewer output shown in Figure 44 is observed.

4. Boot the Secondary Application
Follow section 6.2 to download and boot the Secondary Application (blinky_new). Verify that the blue
LED is blinking and the RTT Viewer output in Figure 49 is observed.

8. References
1. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)
2. Using MCUboot with RA Family MCUs Application Project (R11AN0497)

9. Website and Support
Visit the following URLs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA2E1 Resources renesas.com/ra/ek-ra2e1
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/ra/ek-ra2e1
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family Secure Bootloader for RA2 MCU Series

R11AN0516EU0100 Rev.1.00 Page 29 of 29
Jul.26.2021

Revision History

Rev. Date
Description
Page Summary

1.00 Jul.26.2021 - First release document

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
 Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

ÿ

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of MCUboot
	1.1.1 Overview of Application Booting Process
	1.1.2 Applications Update Strategies

	2. Architecting an Application with MCUboot Module using FSP for RA2 MCU
	2.1 Secure Booting with TinyCrypt
	2.2 Designing Bootloader and the Initial Primary Application Overview
	2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs
	2.4 Production Recommendations for RA2 MCU
	2.4.1 Make the Bootloader Immutable
	2.4.2 Disable the Debug and Serial Programming Interface Prior to Deployment

	3. Creating the Bootloader Project
	3.1 Include the MCUboot Module in the Bootloader Project
	3.2 Optimize the Bootloader Project for Size
	3.3 Compile the Bootloader Project
	3.4 Configure the Python Signing Environment
	3.5 Create the Signing Command

	4. Using the Bootloader with a New Application or Existing Application
	4.1 Generate the Initial Application Project
	4.2 Configure the Existing Application to Use the Bootloader Project
	4.3 Signing the Application Image

	5. Booting the Initial Application Project
	5.1 Set Up the Hardware
	5.2 Configure the Debugger
	5.3 Download the Primary Application
	5.4 Booting the Primary Application

	6. Mastering and Delivering a New Application
	6.1 Create a New Application
	6.2 Downloading and Booting the New Application

	7. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects
	8. References
	9. Website and Support
	Revision History

