LENESANS Application Note

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Introduction

MCUDboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader,
defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy
software update. MCUboot is operating system and hardware independent and relies on hardware porting
layers from the operating system it works with. Currently MCUboot is maintained by Linaro in the GitHub
mcu-tools page https://github.com/mcu-tools/mcuboot. There is a /docs folder that holds the documentation
for MCUboot in .md file format. This application note will refer to the above-mentioned documents wherever
possible.

The Renesas Flexible Software Package (FSP) integrates an MCUboot port across the entire RA MCU
Families starting from FSP v3.0.0. Renesas RA2 MCU series are based on Arm® Cortex®-M23 core and
have limited flash and RAM memory. This application project is created to address the unique challenges
and provide guidelines on the optimization of the RA2 MCU bootloader memory size. For the MCUboot
cryptographic support for RA2 MCU groups, TinyCrypt (https://github.com/intel/tinycrypt/) is integrated with
the FSP MCUboot module to provide a smaller memory footprint compared with Mbed Crypto. Refer to the
GitHub folder /tinycrypt/documentation/ for details on the TinyCrypt cryptographic algorithm usage
guide.

This application note walks the user through the secure bootloader creation using the MCUboot Module with
TinyCrypt for enhanced security on Renesas EK-RA2EL kit. In addition, examples of how to configure
application project to use the bootloader are provided. In this first release, the application image is checked
for integrity but not authenticity. This application project will be updated to add application image signature
checking when future FSP release supports this functionality.

For Renesas RA6 and RA4 MCU Series, Renesas provides an application project Using MCUboot with
Renesas RA MCU Application Project which walks users through using MCUboot with RA6 and RA4 MCU
groups with Mbed Crypto module. See the References section for information on this Application Project.

Required Resources
Development tools and software

e e?studio ISDE v2021-04 or greater
e Renesas Flexible Software Package (FSP) v3.1.0 or later
e SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers, and e2 studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

Hardware

e EK-RAZ2E1 Evaluation Kit for RA2E1 MCU Group (http://www.renesas.com/ra/ek-ra2el)
e Workstation running Windows® 10 and Tera Term console, or similar application
e One USB device cable (type-A male to micro-B male)

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio IDE development.
Users are required to read the entire the MCUboot Port section in the FSP User’s Manual prior to moving
forward with this application project. In addition, the application note assumes that you have some
knowledge of cryptography. Prior knowledge of Python usage is also helpful.

The intended audience are product developers, product manufacturers, product support, or end users who
are involved with designing application systems involving usage of a secure bootloader with Renesas RA2
MCU family.

R11AN0516EU0100 Rev.1.00 Page 1 of 29
Jul.26.2021 RENESAS

https://github.com/mcu-tools/mcuboot
https://github.com/intel/tinycrypt/
http://www.renesas.com/fsp
http://www.renesas.com/ra/ek-ra2e1

Renesas RA Family Secure Bootloader for RA2 MCU Series

Contents

I @ V=T V= VAo) 1Y @ U Yo Lo | S 3
1.1.1 Overview of Application BOOLING PrOCESSccuveiiiiieiiiiiiiieieee e s s sttt e e e e e e s s siaer e e e e e e snnnnnaeeee e e e e s annnsnaeees 3
1.1.2 Applications UPdate Strat@gi€Sccuvururireeeiiiiiiieire e e e e s rsit e e e e e s s sstere e e e e e e s s sasb e e e aeeesanssnaeeeeeeeeesnnnrnneees 3
2. Architecting an Application with MCUboot Module using FSP for RA2 MCU..............euvviiiinnnnee 5
2.1 Secure Booting With TINYCIYPLueiiie it s s e e e e e e e e e e e e e s snaba e e e e e e e e s snntnnneeeeessannnes 5
2.2 Designing Bootloader and the Initial Primary Application OVErVIEWceeeeeiiiiiiieieeeensiiiiineeeeeeennnns 5
2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUScvvveiiiiiiiiiiieeee e e e 5
2.4 Production SUpport FOr RAZ2 MCU ...ttt ettt e e e e et e e e e e e e s e snbbereeeaeeeeaanes 6
2.4.1 Make the Bootloader IMmMULADIEouiiiiii e e e e e 6
2.4.2 Disable the Debug and Serial Programming Interface Prior to Deployment............cccccoeiiiiiiiiineeennnne 6
3. Creating the BOOtIOAEr PrOJEC........uuiiiiiiiiiiiiii e a e 6
3.1 Include the MCUboot Module in the Bootloader Projectcooiiiiiiiiiiiiiieae e 6
3.2 Optimization of the Bootloader Project fOr SIZeoooiiii i 12
3.3 Compile the BOOIOAAE! PrOJECT.......ccciiiieriiiieie e e ceeiteeee e s s sttt e e e e s e st e e e e e s ssne e eeaeeeessnnntnreeeeeessnnnnes 14
3.4 Configure the Python Signing ENVIFONMENTcuuiiiiiie et e e s e e e e e e s st e e e e e e e e ennes 14
3.5 Create the Signing COMMEANGccceeeiiiiiiiire e e e e s s e e e e s e s e e aeeeaaae b ereeeeessnnsrerneeeeessnnnnes 15
4. Using the Bootloader with a New Application or Existing Applicationccccceeeiiieeenennnnn, 18
4.1 Generate the Initial APPlICAtION PrOJECTuuviiiiie i e e e e e e e e e nnnraneeeeees 18
4.2 Configure the Existing Application to Use the Bootloader Projectccccveeveeeiiiiiciiiieeie e scsciieeeeee e 19
4.3 Signing the APPlICAtION IMEAGEuuiiiiiee ettt e e e e e e e b e e e e e e e e e e nnbbeeeaaaa s 20
5. Booting the Initial Application ProjECT.........ccoiviiiiiiiii e 21
5.1 SEtUP the HAIAWAIEcciie e ettt e e e e e st e e e e e e s s ssa e e e e e eeessnnntsteeeeeeeessnnstneeneeeeannnnnes 21
5.2 CoNfigure the DEDUGOETottt e e e e e e ettt et e e e e e e s e abbbe e e e e e e e e sanbbeseeeaaeeaaannes 21
5.3 Download the Primary APPHCAIONueiiiiiiiiieiei ettt e e e e e e e e e e e e e anes 23
5.4 Booting the Primary APPIICALIONcoieeiiiii ettt e e e e ettt e e e e e e e sbbereeeaaeeaaannes 24
6. Mastering and Delivering a New APPIICALIONuuuuuiiiiiiiii s 25
6.1 Create a NeW APPICALIONttt e e e ettt e e e e e s ab bt e e e e e e e e e snbbebeeeaaeeaannes 25
6.2 Downloading and Booting the New APPIICALIONcoiiiiiiiii e 27

7. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects28

8. REIEIEINCESttt e e 28
9. WEDSItE AN SUPPOIT ... e e e e e e e e e e e e e e e e aeeas 28
REVISION HISTOMY ... ettt nnnnenes 29
R11ANO516EU0100 Rev.1.00 Page 2 of 29

Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

1. Overview of MCUboot

MCUboot is an open source project hosted at mcu-tools github project. It is currently managed by the Linaro
Community Project.

MCUBoot handles the firmware integrity and authenticity check after start-up and the firmware switch part of
the firmware update process. The operation of switching of the firmware from the original image to a new
image depends on the image upgrade methods. The image upgrade methods are described in section 1.1.2.
Downloading the new version of the firmware is out of scope for MCUBoot. Typically, downloading the new
version of the firmware is functionality that is provided by the application project itself.

1.1.1 Overview of Application Booting Process

For applications using MCUboot, the MCU memory is separated into MCUboot, Primary App, Secondary App
and the Scratch Area. Below is an example of the single image MCUboot memory map. For more
information on the MCUboot memory layout, refer to the Flash Map section of the reference MCUboot
website.

Scratch Area

Secondary App

Primary App

MCUboot

Figure 1. Single Image MCUboot Memory Flash Map
The functionality of the MCUboot during booting and updating follows the process below:

The bootloader is started when CPU is released from reset. If there are images in the Secondary App
memory marked as to be updated, the bootloader performs the following actions:

1. The bootloader verifies the integrity and authenticity of the Secondary image.

2. Upon successful authentication, the bootloader will switch to the new image based on the update
method selected. Available update methods are introduced in section 1.2.2.

3. The bootloader will boot the new image.

If there is no new image in the Secondary App memory region, the bootloader will authenticate the Primary
applications and boot the Primary image.

The authentication of the application is configurable in terms of the authentication methods and whether the
authentication is to be performed with MCUboot. The firmware image can be authenticated by hash (SHA-
256) and digital signature validation. For this release of the RA2 MCU bootloader, only integrity of the
bootloader is checked based on hash (SHA-256). Image signature generation is not supported with current
FSP release.

1.1.2 Applications Update Strategies

The following are the update strategies supported by MCUboot. The Renesas FSP MCUboot Module in FSP
v3.1.0 does not yet support all of the MCUboot update strategies. The analysis of pros and cons is based on
the MCUboot functionality, but not the FSP v3.1.0 MCUboot Module functionality. In addition, this application
note is not intended to provide all details on the MCUboot application update strategies. We recommend
acquiring more details on these update strategies by referring to the MCUboot design page:

https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

R11AN0516EU0100 Rev.1.00 Page 3 of 29
Jul.26.2021 RENESAS

https://github.com/mcu-tools/mcuboot
https://www.linaro.org/community-projects/
https://www.linaro.org/community-projects/
https://mcuboot.com/mcuboot/design.html#flash-map
https://github.com/mcu-tools/mcuboot/blob/master/docs/design.md

Renesas RA Family Secure Bootloader for RA2 MCU Series

Overwrite
In the Overwrite update mode, the active firmware image is always executed from the Primary slot, and
the Secondary slot is a staging area for new images. Before the new firmware image is executed, the
entire contents of the primary slot are overwritten with the contents of the secondary slot (the new
firmware image).
e Pros

o Fail-safe and resistant to power-cut failures

e Less memory overhead, with a smaller MCUboot trailer and no scratch area

e Encrypted image support available when using external flash
e Cons

e Does not support pre-testing of the new image prior to overwrite

e Does not support automatic application fallback mechanism
Overwrite upgrade mode is supported by Renesas RA FSP v3.0.0 or later. However encrypted image
support using external flash is not supported yet.
Swap
In the Swap image upgrade mode, the active image is also stored in the Primary slot and it will always
be started by the bootloader. If the bootloader finds a valid image in the Secondary slot that is marked
for upgrade, then contents of the primary slot and the secondary slot will be swapped. The new image
will then start from the primary slot.
e Pros

e The bootloader can revert the swapping as a fallback mechanism to recover the previous

working firmware version after a faulty update

e The application can perform a self-test to mark itself permanent

e Fail-safe and resistant to power-cut failures

e Encrypted image support available when using external flash
e Cons

¢ Need to allocate a scratch area

e Larger memory overhead, due to a larger image trailer and additional scratch area

e Larger number of write cycles in the scratch area, wearing the scratch sectors out faster
Swap upgrade mode is supported by Renesas RA FSP v3.0.0 or later. However encrypted image using
external flash is not supported yet. Runtime image testing is not supported at the time of the release of
this application project.
Direct execute-in-place (XIP)
In the direct execute-in-place mode, the active image slot alternates with each firmware update. If this
update method is used, then two firmware update images must be generated: one of them is linked to be
executed from the primary slot memory region, and the other is linked to be executed from the
secondary slot.
e Pros

e Faster boot time, as there is no overwrite or swap of application images needed

e Fail-safe and resistant to power-cut failures
e Cons

e Added application-level complexity to determine which firmware image needs to be downloaded

e Encrypted image support is not available
Direct execute-in-place is not currently supported by the Renesas RA FSP, but it is planned for a future
release.
RAM loading firmware update
Like the direct execute-in-place mode, RAM loading firmware update mode selects the newest image by
reading the image version numbers in the image headers. However, instead of executing it in place, the
newest image is copied to RAM for execution. The load address (the location in RAM where the image is
copied to) is stored in the image header. This upgrade method is not typically used in MCU environment.
Please refer to the RAM Loading section in the MCUboot page for more information on this update
strategy. This image update mode does not support encrypted images (see MCUboot documentation on
encrypted image operation).
RAM loading update mode is not supported by the Renesas RA FSP.

R11AN0516EU0100 Rev.1.00 Page 4 of 29
Jul.26.2021 RENESAS

https://www.mcuboot.com/documentation/design/#ram-loading
https://www.mcuboot.com/documentation/encrypted-images/

Renesas RA Family Secure Bootloader for RA2 MCU Series

2. Architecting an Application with MCUboot Module using FSP for RA2 MCU

This section provides an overview of the FSP MCUboot Module, the available application image upgrade
modes, memory architecture design, and guidelines for mastering the new image. In addition, this section
describes how the lightweight TinyCrypt is used in the RA2 bootloader design. We recommended reviewing
the MCUboot Port section the FSP User’'s Manual to understand the build time configurations for MCUboot.

2.1 Secure Booting with TinyCrypt

TinyCrypt is a small-footprint cryptography library targeting constrained devices. Its minimal set of standard
cryptographic primitives are designed to provide secure messages, basic encryption, and random number
generation, which are all needed to secure the small footprint of 10T devices. FSP v3.1.0 release uses
TinyCrypt v0.2.8. For the RA2 bootloader design, SHA256 from TinyCrypt is used to ensure the application
image integrity.

The FSP TinyCrypt port module does not provide any interfaces to the user. Consult the documentation at
https://qgithub.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst for further information on use of the
TinyCrypt port. The software only module is available in FSP on all RA devices. Hardware acceleration for
AES-128 through FSP TinyCrypt port is provided for the RA2 family.

2.2 Designing Bootloader and the Initial Primary Application Overview

A bootloader is typically designed with the initial primary application. The following are the general guidelines
for designing the bootloader and the initial primary application.

e Develop the bootloader and analyze the MCU memaory resource allocation needed for the bootloader
and the application. The bootloader memory usage is influenced by the application image update mode,
signature type, and whether to validate the Primary Image as well as the cryptographic library used.

e Develop the initial primary application, perform the memory usage analysis, and compare with the
bootloader memory allocation for consistency and adjust as needed.

e Determine the bootloader configurations in terms of image authentication and new image update mode.
This may result in adjustment of the memory allocated definition in the bootloader project.

e Sign the application image. For FSP, a template for signing the new firmware image based on the
properties specified in the MCUboot Module is output in a comment at the top of ra_cfg/mcu-
tools/include/mcuboot_config/mcuboot_config.h.

e Test the bootloader and the initial primary application.

The above guidelines are demonstrated in the walk-through sections in this application note.

2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs

The MCUboot Module is supported on all RA Family MCUSs. For the Renesas RA2 Cortex-M23 MCU series,
image hashing is support with FSP v3.1.0, image signature authentication will be supported in future
releases.

Customize the RA2 Bootloader
Customizing the Bootloader involves main aspects:

e Customized method to download the application. This is very application specific and is not discussed in
this application project.
e Bootloader size optimization.
Some of the bootloader size optimization actions that can be taken are summarized as follows. Details
on the operational flow of these optimization are described in section 3.
e Disable application image validation to reduce code size
e Disable image signing to reduce code size
e Update the linker script to optimize memory usage
e Disable unused FSP components to reduce code size
e Compile the bootloader with Optimization for Size (-Os)

e Refer to section 1 to understand the available features and section 3 for where and how to update the
bootloader features.

R11AN0516EU0100 Rev.1.00 Page 5 of 29
Jul.26.2021 RENESAS

https://github.com/intel/tinycrypt/blob/master/documentation/tinycrypt.rst

Renesas RA Family Secure Bootloader for RA2 MCU Series

2.4 Production Recommendations for RA2 MCU

2.4.1 Make the Bootloader Immutable

Refer to the Renesas RA MCU Family Securing Data at Rest Utilizing the Renesas Security MPU application
project section Permanent Locking of the FAW Region to understand how to make the bootloader

immutable. The PC Application to Permanently Lock the FAW Section in the same application note
describes how to handle Flash locking in production mode.

2.4.2 Disable the Debug and Serial Programming Interface Prior to Deployment

Once the bootloader development is finished, you may want to set up ID Code protection on Renesas RA2
MCU to lock down the debugger and the serial programming interface.

Refer to the Securing Data at Rest Utilizing the Renesas Security MPU Application Project section Setting up
the Security Control for Debugging for the desired settings to control the device lifecycle management of the
RA2 MCUs using the ID Code protection method.

3. Creating the Bootloader Project

This section walks the user through the creation process of the RA2 bootloader provided in this application
note.

The example bootloader which user will create by following this section is provided in the
RA2_secure_bootloader.zip. User can follow section 7 to exercise the example bootloader and
application projects without going through the creation process in this section.

3.1 Include the MCUboot Module in the Bootloader Project
1. Launch e? studio 2021-04 and start to establish a new C/C++ Project. Click File > New > C/C++ Project.

&) r11an0516 - % studia

Edit Source Refactor Mavigate Search Project RenesasViews Run Window Help
Alt+Shift+M > Renesas C/C++ Project »
OpenFile.. [& _Makefile Project with Existing Code
[} Dpen Projects frorn File Systern.., @I C/C++ Praject I | Create a new C or C++ project

Rarant Filas 3 | PR Deaiart

Figure 2. Start a New Project

2. Choose Renesas RA->Renesas RA C/C++ Project. Click Next.

18} Mew C/C++ Project O X

Templates for New CfC+ + Project

Renesas RA CfC++ Project
== Cregte on evecutabis or static library C/C++
project for feneses K4,

'/?3' < Back | Finish Cancel

Figure 3. Choose Renesas RA C/C++ Project

R11AN0516EU0100 Rev.1.00 Page 6 of 29
Jul.26.2021 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

3. Provide a project name such as ra_mcuboot_ra2el_tinycrypt. Click Next. You can choose other

names for the bootloader. If a different name is chosen, you need to update the corresponding
instructions in this application note to the project name used.

Project narne

Q Renesas RS C/C++ Project

Renesas RA CfC+ + Project

Project Marne and Location

I | ra_mcuhnnt_ra2e1_tiny'crypti I

Use default location

Civra?_bootloaderrepo_devira_solutionshapplication_projectsir]

Finish

Brorse,.,

Cancel

Figure 4. Name the Bootloader Project
4. In the next screen, choose EK-RAZ2E1 for Board.

{8 Renesas RA C/C++ Praject

m] *
Renesas RA C/C+ + Project —
Device and Tools Selection
Device Selection
£5p versiors [V] Board Description
Ewvaluation kit for RAZET MCLU Group
Board; ¥ Visit bt/ Avunrenesas com/rafek-raZe] to get kit user's
N FETYEev manual, quick start guide, errata, design package, example
projects, etc,
Language: @®C OC++
Device Details
TrustZone Mo
Pins 64
Processor Cortex-M23
Tanlchains Debugger
GMU ARM Embedded ‘ J-Link &RM ~
9.3.1.20200408 ~
@ <Back Finish Cancel
Figure 5. Select the Board
5. Choose Executable for Build Artifact and No RTOS. Click Next.
8 Renesas RA 0/C++ Project O
Renesas RA C/C++ Project —
Build Artifact and RTOS Selection
Build Artifact Selection FTOS Selection
(@) Executable Mo RTOS
* Project builds to an executable file
() Static Library
* Project builds to a static library file
(O Executable Using an RA Static Library
* Project builds to an executable file
* Project uses an existing RA static library project
@' Finish Cancel

Figure 6. Choose to Build Executable and No RTOS

R11ANO516EU0100 Rev.1.00

Jul.26.2021

RENESAS

Page 7 of 29

Renesas RA Family Secure Bootloader for RA2 MCU Series

6. Choose Bare Metal — Minimal for the Project Template and click Finish to establish the initial project.

{8 Renesas R C/C++ Project O X

Renesas RA CfC+ + Project —

Project Template Selection

Project Ternplate Selection

O d Bare Metal - Blinky
- Bare metal FSP project that includes BSP and will blink LEDs if available, This project will initialize clocks, pins, stacks, and
the C runtime ervironrment,
[Renesas RA3.1.0.pack]

I© g Bare Metal - Minimal I
W% Bare metal FSP project that includes BSP, This project will initialize clocks, pins, stacks, and the C runtirme ervironrmert,

[Renesas, Ra.3.1.0.pack]

Code Generation Settings
Use Renesas Code Formatter

Figure 7. Choose the Project Template

7. When following prompt opens, click Open Perspective.

ﬁ Open Sssociated Perspective? X

3 1 Open the F5P Configuration perspective?

[JRemember my decision

Open Perspective | MNa

Figure 8. Choose Open the FSP Configuration perspective
The project will now be created, and the bootloader project configuration will be displayed.

1. Select the Pins tab and uncheck Generate data for RA2E1 EK.

Pin Configuration

Select Pin Configuration _iﬂ Exportto CEV file |52 Configure Pin Driver Warnings

I| FaZE1 EE i vl Manage configurations... ||:| Generate data: | g_hsp_pin_cfg I

Figure 9. Uncheck Generate data for RA2E1 EK Pin Configuration

Use the pull-down menu to switch from RA2E1 EK to R7FA2E1A92DFM.pincfg for the Select Pin
Configuration option, then select the Generate data check box and enter g_bsp_pin_cfg. Note that
here we choose to use this configuration which has fewer peripherals/pins configured since the
bootloader does not use the extra peripheral or GPIO pins configured in the RA2E1 EK configuration.

Select Pin Configuration _Eﬂ Export to CSV file E'__Z| Configure Pin Driver Warnings

I | R7FAZEIAIZDFM.pincfg v |lManaue configurations.., Generate data: | g_bsp_pin_cfg

Figure 10. Select R7TFA2E1A92DFM.pincfg and Generate data g_bsp_pin_cfg

R11AN0516EU0100 Rev.1.00 Page 8 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

2. Once the project is created, click the Stacks tab on the RA configurator. Add New Stack->Bootloader->

MCUboot.
[g | & YT m#F AT NI T e e h & L | o7
ﬁ? [ra_mcuboot_ra2el_tinycryept] FSP Configuration &3 = 0 | %

Stacks Configuration

Th
Generate Project Content

Threads - HAL{Com mon Stacks 4| Mew Stack >
) Al >
w gt HAL/Common — rm
47 g ioport|/0 Port Driver an r_ioport 4 g joport /0 Port lml >| <+ MCUboot I
- - Diriver on r_ioport Dri

river >
® Intel ¥
tiddleware >

Objects % Search..

Figure 11. Add the MCUboot Port

3. Once the MCUboot module is added to the project, configure General properties of MCUboot as shown
below.

Cra_mcuboot_raZel_tinger A gromm
;;3 Binaries
[Includes T HALfCom mon Stacks
']’9 ra hr
2 ra_gen & E 4 MEUboot
2 sre
= Debug
[ra_cfg 0 @
> script T T
] v - -
> Surnmmary | BSP | Clocks | Pins | Interrupts | Bwvent Links | Stacks | Components

n Conflicts (31 Problems @ Srart Browser [C] Properties 2

Ihoot

ngs Property Walue

+fo w Cornmon

s General

Custorn mouboot_config.h
Upgrade hMode Creepnrite Cnly
Walidate Primary lrmage Disabled
Dowengrade Prevention (Overatite Onlyd Enabled
Murmber of lrmages Per Application it

Figure 12. FSP RA2 MCUboot Module General Configuration

The following explains the various properties configured:

Custom mcuboot_config.h: The default mcuboot_config. h file contains the MCUboot Module
configuration that the user selected from the RA configurator. The user can create a custom version
of this file to achieve additional bootloader functionalities available in MCUboot.

Upgrade Mode: This property configures the application image upgrade method. The available
options are Overwrite Only, Overwrite Only Fast, and Swap. Choose Overwrite Only for this
bootloader project.

Validate Primary Image: If this property is enabled, the bootloader will always check the signature
of the image in the primary slot before booting, even if no upgrade was performed. This version of
the FSP does not support signature generation with TinyCrypt, so this function is Disabled.
Number of Images Per Application: This property allows user to choose one image for Non-
TrustZone-based applications and two images for TrustZone-based applications. RA2 MCU groups
do not support TrustZone, so this property is set to 1.

Downgrade Prevention (Overwrite Only): When this property is Enabled, a new firmware with a
lower version number will not overwrite the existing application. For how to set the version number of
an image, refer to section 3.5, step 6) .

R11AN0516EU0100 Rev.1.00 Page 9 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

4. Next configure the following properties to remove the warnings for the MCUboot module.

HAL/Common Stacks
hreads
— “+ MCUboot
(i)
hjects I =

rimaty | BSP | Clacks | Pins | Interrupts | Bvent Links | Stacks | Components

Problerns B Console [O] Properties 52 @ Srart Broweser LR} Smart Manua

CUboot
sttings Property Walue
3 Info w Commaon

General
w Signing Options
TrustZone
sighature Type

Boot Record

Custom --confirm

Debugging
w Flash Layout
Trustlone
Bootloader Flash Area Size (Bytes) Che2 000
Irmage 1 Header Size (Bytes) 100
Irmage 1 Flash Area Size (Bytes) (2000
scratch Flash Area Size (Bytes) 0

Figure 13. Update Configurations for the MCUboot Module

For both single-image and two-image configurations, the following four properties need to be defined:

e Bootloader Flash Area: Size of the flash area allocated for the bootloader with a boundary of 0x800
since 0x800 is the minimum erase size for code flash .

e Image 1 Header Size: Size of the flash area allocated for the application header for single image
configuration. For Arm Cortex-M23 MCUSs, this should be set to 0x100.

e Image 1 Flash Area Size: Size of the flash area allocated for the application image for single image
configuration. This area needs to be equal or larger than the application image with a boundary of
0x800.

e Scratch Flash Area Size: This property is only needed for Swap mode. The scratch area must be
large enough to store the largest sector that is going to be swapped. For both RA2 MCUSs, the
scratch area should be set up to 0x800 when Swap mode is used.

The properties under TrustZone are not used for RA2 MCUs since they do not have TrustZone.

The bootloader we are creating in this section will have a size of 0x2000 when all the configuration

updates are followed through in this section. Otherwise, the bootloader may result in different flash

usage size and the Bootloader Flash Area Size property needs to be updated accordingly.

Image 1 Flash Area Size is the application code flash area usage, which should be larger than the

application code flash usage and on a 0x800 boundary for RA2 MCUs.

Application images using MCUboot must be signed to work with MCUboot. At a minimum, this involves

adding a hash and an MCUboot-specific constant value in the image trailer. FSP v3.1.0 does not support

signature generation with TinyCrypt, the Signature Type is set to None, so only hash is used for the
image integrity checking.

R11AN0516EU0100 Rev.1.00 Page 10 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

Notes on setting the Custom property:
e By default, FSP sets --confirm for the Custom property.
e When --confirm is set:
e For Overwrite upgrade mode, the new image will always overwrite the original application image.
e For Swap upgrade mode, if the new image passed the integrity check, it will swap with the
original image and will be booted. On the next MCU reset, there will be no Swap.

5. Next add the TinyCrypt module. The TinyCrypt Hardware includes Hardware accelerated AES
functionality which is not used in the bootloader, this module is not selected. The MbedTLS (Crypto
Only) module has a larger memory footprint compared with TinyCrypt and is not used in this bootloader
design.

uboot_raZel_tinycrypt] FSP Configuration ©2

tonfiguration

HAL/Com mon Stacks

& g_ioport 10 Port & MCUboot
Driver on r_ioport:
@® 6]
a
1 1
MCUboot Port for RA, 57 Add [Optional] Add
Example Keys
@®
|
5.1 Add MbedCrypto or 4 g_flashD Flash Driver
TiryCrypt onr_flash_lp
I New > | & MbedTLS (Crypto Only)
L TinyCrypt
RS0 | P lacke [Dine | Intarminte | Buant Linke | f3 Sacke | Mamnanante ¢ Tlny*Cuypt Ul AT

Figure 14. Select TinyCrypt Module

6. Now click on the Flash Driver block and set the Code Flash Programming to Enabled. As Data Flash
Programming is not used in the bootloader, select Disabled for the Data Flash Programming to
reduce the bootloader memory footprint.

[l Includes
= ra Thr HAL/Common Stacks
2 ra_gen ead I
2 src s = & MCUboot Port for RA
= ra_cfg
(= seript VoA ®
ﬂiE_:.‘x configuration.xml v
[0 R7FAZEIADIDFM.pincfg | | I . 1
= ra_mcuboot_radel_tinycr 4 TirmyCrypt s g_flashQ Flash Driver
(?) Deweloper Assistance Obj on t_flash_lp
t
e @ o
18
[

» surnmary | BSP | Clocks |Pins | Interrupts | Event Links | Stacks | Components
Properties 52 1] Problerns @& Smart Browser

flashO Flash Driver on r_flash_Ip

Atings Property Walue

)| Info w Common
Parameter Checking Dlefaylt LBEP)
Code Flash Programming Enabled
Data Flash Programming Dizabled

Figure 15. Enable Code Flash programming

7. In this step, save the Configruation.xml and click Generate Project Content. Next, expand the
Developer Assistance->HAL/Common->MCUboot->Quick Setup and drag Call Quick
Setup to the top of the hal _entry.c of the bootloader project.

Add the following function call to the top of the hal _entry() function:
mcuboot_quick setup(Q);

R11AN0516EU0100 Rev.1.00 Page 11 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

8. Notice that by default the 1/O Port Driver is brought in to the project when the project is established.
Because the 1/0 Port Driver is not used in the bootloader project, this stack can be removed to reduce
the bootloader project size.

HAL/Com mon Stacks 4| Mewr Stack =

4% g_ioport [f0 Port 4 MCUboot
Driver on r_ioport
®
A
I I
@ MCUboot Port for R, @ﬁ Add [Optional] Add
Exarnple Keys
®
A
I I
48 TiryCrypt & g_flashQ Flash Driver
on r_flash_lp
® @

Figure 16. Remove the I/O Port Stack

After the I/O Port is deleted, remove all sections of code referencing the I/O Port API. E.g., remove
below two sections of the code in the red boxes in the function R_BSP_WarmStart in hal_entry.c

as shown in Figure 17.

I fr
* This function is called at warious points during the startup process. This implementaticn uses the ewvent that is
* called right before main{) to set up the pins.

*
®

[in] ewent Where at in the start up process the code is currently at

void R_BSP_WarmStart(bsp_warm start_event_t event)

if (BSP_WARM START_RESET == event)
s

#if BSP_FEATURE_FLASH_LP_YERSION l= @

/* Enable reading from data flash. */
R_FACI_LP->CFLCTL = 1U;

S* Would normally have to wait tDsTOP(Eus) for data flash recowery. Placing the enable here, before cleck and
* C runtime initialization, should negate the need for a delay since the initialization will typically take more than Gus. */

wendif
I

if (BSP_WARM START_POST_C == evert)

S* C runtime environment and system clocks are setup. *f

/* Configure pins. */
R_ICPORT Open (&g iopert.ctrl, &g bsp_pin_cfg);
e e ——

Figure 17. Remove Unused Code in hal_entry.c

3.2 Optimize the Bootloader Project for Size

To further optimize the bootloader project for size, you can put some application code in the first 2k flash
sector. There is about 1k of used flash space between the interrupt vector and the RA2E1 ROM registers.
You can create a section (.code_in_gap) in the linker script to store some application code in this section.

R11AN0516EU0100 Rev.1.00 Page 12 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

0x800
Code Flash
O0x43C
ROM Register
0x400
Code Flash
{.code_in_gap)
Ox40
Interrupt Vector
ox0

Figure 18. First Flash Sector

First, update the default linker script to include section .code_in_gap between the interrupt vector and the
ROM register as shown in Figure 19. In addition, the application code after the ROM register can start at
0x43C instead of 0x500 as used in the default linker script.

SECTIONS
{
text s

i

__tz FLASH_S = ABSOLUTE(FLASH_START);
_ ROM Start = .;

/* Ewen though the wector table is not 256 entries (1KB) long, we still allocate that much
* space because ROM registers are at address @@ and there is very little space

* in between. */

KEEP{*(.fixed_vectors*))

KEEP(*(.application_wectors*))

_ Yectors_End = . ;

(.code_in_gap)

/* ROM Registers start at address @x@e@e24ee for dewices that do not have the OPTION_SETTING region. *f
. = OPTION_SETTING_LENGTH > @ ¢ . : _ ROM_Start + @x4@@;
KEEP{*(.rom_registers*))

/% Reserwing @x3C bytes of space for ROM registers. %/

. = OPTION_SETTING_LENGTH > @ ¢ . : _ ROM_Start +J@wd3C;

Figure 19. Linker Script Update

Next, you can choose some functions to put in the .code_in_gap section in order to reduce the flash
usage after 0x43C. What functions to put in the .code_in_gap section is the user’s choice. This example
bootloader has chosen some functions to put in the .code_in_gap section as explained in this section.

In\src\hal_entry.c, put these two function prototypes at the top of hal_entry.c.

void R_BSP_WarmStart(bsp_warm_start_event_t event) BSP_PLACE_IN_SECTION(".code_in_gap*");
void mcuboot_quick_setup() BSP_PLACE_IN_SECTION(".code_in_gap*');

Figure 20. hal_entry.c functions in .code_in_gap

In \ra\mcu-tools\MCUboot\boot\bootutiI\include\bootutil\bootutil_h, put below function
in the .code_in_gap section:

Ffih_int context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
BSP_PLACE_IN_SECTION(" .code_in_gap*");

Figure 21. bootutil.h function in .code_in_gap

R11AN0516EU0100 Rev.1.00 Page 13 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

In \ra\mcu-tools\MCUboot\boot\bootuti I\include\bootutil\image.h, put below function in
the .code_in_gap section:

fih_int bootutil_img_validate(struct enc_key data *enc_state, int image_index,
struct image_header *hdr,
const struct flash_area *fap,
uint8_t *tmp_buf, uint32_t tmp_buf_sz,

uint8_t *seed, int seed_len, uint8_t *out_hash)

BSP_PLACE_IN_SECTION(".code_in_gap*");

Figure 22. image.h function in .code_in_gap

3.3 Compile the Bootloader Project

Once all the above updates are done, change the compiling optimization to Optimize size and compile the
project.

&) Properties for ra_mcuboot_raZel_tinycrypt O *
|| Settings - -~ 8
Resource ~
~
Builders
~v C/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations..,

Build Yariables
Ervironment

Logging

Tool Chain Editar
C/C++ General
MCL
Project MNatures

B Tool Settings %5 Toalchain

Build Steps Build Artifact [mf Binary Parsers @ Error Parsers

(55 Target Processor

Optimization

Warnings

(# Debugging

COptimize size (-0s) w
Message length (-fmessage-length=0
‘char' is signed (-fsigned-char)

Function sections {-ffunction-sections)

Optimization Lewel

w83 GMU ARM Crass Assembler

o

Project References

L PR S -8 TV SR

Apply and Close

Cancel

Figure 23. Optimize Bootloader Size

After the above update, compile the project. The size of the flash usage should be around 0x7800.

arm-none-eabi-ebjcopy -0 srec “ra_mcuboot raZel tinycrypt.elf" "ra_mcuboet raZel tinycrypt.srec
arm-none-eabi-size --format=berkeley "ra_mcuboot raZel tinycrypt.elf”
text data bss dec hex filename
7856 2 2780 12636 298c ra_mcuboot_raZel tinyerypt.elf
'Finished building: ra_mcubocot raZel tinycrypt.srec’
‘Finished building: ra_mcuboot raZel tinycrypt.siz®

Figure 24. Compile the Bootloader

3.4 Configure the Python Signing Environment

Signing the application image can be done using a post-build step in e? studio using the image signing tool
Imgtool . py is included with MCUboot. This tool is integrated as a post-build tool in e2 studio to sign the
application image. If this is NOT the first time you have used the python script signing tool on your computer
you can skip to section 3.5.

If this is the first time you are using the Python script signing tool on your system, you will need to install the
dependencies required for the script to work. Navigate to the ra_mcuboot_ra2el>ra>mcu-tools>MCUboot
folder in the Project Explorer, right click and select Command Prompt. This will open a command window
with the path set to the \mcu-tools\MCUboot folder.

R11ANO516EU0100 Rev.1.00
Jul.26.2021

Re Page 14 of 29
KENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

=5 DINKY

v 125 ra_mcuboot_raZe1_tinycrypt [Debug) Summary
¥ Binaries
) Includes Project Summary
vl
= am Board: EK-RAZE1
(& board Device: RTFAZE1A92DFM
- T,E | Toolchain: GCC ARM Embedde
o Toolchain Version: 93120200408
W g mecu-tools A
o= MCUboc* FSP Version: 31.0

(2 ra_gen New » Flat

B sre Go Into
Debug Jare components

v (= racfg Open in New Window
’ _fsp_cfg Show In Alt+Shift+w > cation that blinks an LED. NI

v [meu-tools an Package Commaon Files

Coy Ctrl+C
w = include B4 .

v (= mcut Version 5 - Core (M)

Paste :
[€ m 3 Delete Delete =
ke m Source > £
& sysfia Move. po
(= script

Rename... F2

€ acks | Ping | Interrupts | Event Lin
= iy Import. -
] Properties &3 18] F rt 8
iy Expor..
fra_mcuboot_rale
Build Project Ctrl+B
Resource Property Refresh F5
~ Info

der Index »

edit Build Targets H

last Resource Configurations »

link

lac: Team * tions\application_projectsirlla

nar Compare With »

pat Restore from Local History... w-toolsMCUboot

3 C/C++ Project Setting 0oan Command Pro gt 1
Change Device

#* Run C/C++ Cade Analysis

W& Systern Explorer

-]

~| Walidate

Figure 25. Open the Command Prompt

It is recommended to upgrade pip prior to installing the dependencies. Enter the following command to
update pip:

python -m pip install --upgrade pip
Next, in the command window, enter the following command line to install all the MCUboot dependencies:
pip3 install --user -r scripts/requirements.txt

This will verify and install any dependencies that are required.

3.5 Create the Signing Command

This section provides instructions for creating the signing command using the bootloader. Even though a
signature is not generated, hashing is generated using the following procedure.

e? studio collects user input from the RA configurator and generates the bootloader configuration in
mcuboot_config.h. The template for generating the signing command is also generated at the top of
mcuboot_config.h. This template is generated based on user selections from the various configuration
properties in the RA Configurator.

R11AN0516EU0100 Rev.1.00 Page 15 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

1. Inthe Project Explorer, navigate to the ra_mcuboot_ra2el_tinycrypt>ra cfg>mcu-
tools>include>mcuboot_config folder and open the mcuboot_config.h file.

w {3% ra_mcuboot_raZe1_tinycrypt [Debug]

iff Binaries

[Includes

2 ra

2 ra_gen

= sre

= Debug

v [ra_cfg

= fsp_cfg

w (= mcu-tools
w = include

[mcuboot_logging.h
= sysflash

' [ra_mcuboot_rael_tinycrypt] FSP Configuration | Lo, Rt N S

[* generated configuratiof header file - do not edif */
= #ifndef MCUBOOT_CONFIG_H_
#define MCUBOOT CONFIG H_

1
2
e
4
5 Use the follewing commands to sign the image, replacing path/te/image.elf with the path to your image elf file.[]
e

—

Figure 26. Open mcuboot_config.h

2. Expand the comment block in red in Figure 26. Type ctrl+F to open the Find/Replace dialogue box and
input the key words in the quotation marks (please do not include the quotation mark). Input Find
<boot_project> and set Replace All with ${workspace_loc:ra_mcuboot_ra2el_tinycrypt}. Do not
add any spaces before or after the key words in bold when inputting into the Find/Replace dialog.

& Find/Replace O *

Eind: I <hoot_projects I v|

Replace with: || cuboot_raZel_tinycrypt} vI

Direction Scope

(®) Forward (@) Al

() Backward () Selected lines
Options

[JCase sensitive [Z]%rap search
YWholeword [lncremental

[Regular expressions

Find Replace/Find
Replace Replace &ll
2 matches replaced Close

Figure 27. Configure the Bootloader Project Path

There should be two matches replaced. If the number of matches is not two, check this operation again.

R11AN0516EU0100 Rev.1.00 Page 16 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

3. Change the Find setting to path/to/image and the Replace with setting to ${ProjName}. Do not add
any spaces before or after the key words in bold when inputting into the Find/Replace dialog. Click
Replace All.

&) Find/Replace O x
Find: | pathftofimage I v|
|

Replace with: | HProjName} I v|
Direction Scope
(®) Forward @ Al
() Backward () Selected lines
Options

[Case sensitive [%Wrap search
Yyhole word [lncremental
DReguIarezpressinns

Find Replace/Find
Replace Replace All
| 6 rmatches replaced Close

Figure 28. Configure the Application Project Path

There should be six matches replaced. If the number of matches is not six, it is recommended to check
this operation again. Then Close the dialogue box.

4. Add an & to the end of the following line so it looks like this:
arm-none-eabi-objcopy -0 binary ${ProjName}.elf ${ProjName}.bin &

5. Copy the comment block from mcuboot_config.h and paste it into the hal _entry. c file before the
comment block “Quick setup for MCUboot” in the ra_mcuboot_ra2el_tinycrypt project to save the
edits. Since the mcuboot_config.h file will be overwritten when the project is built, otherwise your
edits will be lost.

6. Navigate to the Window>Editor>Toggle Word Wrap to make the lines easier to read. Delete the
carriage return after the & to join the two command lines.

#* Use the following commands to sign the image, replacing ${ProjName}.elf with the path to your image elf file.

* Regenerate this template if any MCUbeoot properties change in the igm et

Make the fellewing updates te convert to binary, then sign image 1 Jprimary slet: 2080, secondary/upgrade slot: 4008): I
1. Update ${ProjMame} to reflect the lecation of the image 1 .elf fITE

13 LlyorkE=p g 2 moubo u o = gcation o he o ne oo D Dr‘o"lic‘t
arm-none-eabi-ebhjcopy -0 binary ${PrejNamel.elf ${ProjName}.bin & pythen f{workspace lec:ra_mcuboot_raZel tinweryptl}/ra/meu-
ools/MCUboot /scripts/imgtool. py sign --wersion 1.@.84+@ --header-size @x1@@ --align 8 --max-align 8 --slot-size @x200@ --max-
sectors 4 --owerwrite-only --cenfirm --pad-header ${ProjMame}.bin ${ProjMame}_signed.bin
T

Figure 29. Application Image Signing Command

Note that the application image version number is defined in the signing command leading by --
version option. By default, FSP generates a signing command with version number 1.0.0+0. You can
manually update this information to define different version numbers. When Downgrade Prevention
property is Enabled, a new image with lower version numbers, such as 0.9.0+0, will not overwrite an
image with version 1.0.0+0 which resides in the Primary slot.
Note that the application image load addresses are indicated in this comment area (in the blue boxes).
These addresses will be used in Figure 41 and Figure 48

7. Save \ra_mcuboot_ra2el tinycrypt\hal_entry._c.
The command lines for the primary image in red box as shown in Figure 29 is the signing command for
the Primary image. We will use this command in the next section when signing the Application image.

R11AN0516EU0100 Rev.1.00 Page 17 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

4. Using the Bootloader with a New Application or Existing Application

Developing an initial application to use a bootloader starts with developing and testing the application and
the bootloader independently. Using the bootloader with an existing application or developing a new
application to use the bootloader involves below common steps:

e Adjust the memory map of the bootloader to allow the application and bootloader to fit the available MCU
memory area.

e Configure the application to use the bootloader.

e Sign the application image.

e Developing an application to use a bootloader typically requires the application to have the capability to
download a new application. This aspect is hot demonstrated in this application project, customers
typically have customized image download method which differs from one customer to another.

This section uses a simple blinky project to demonstrate how to use the bootloader with the blinky
application. After the initial blinky project is established, we need to configure this blinky project to the use
the bootloader project generated in the previous section. We also need to sign the blinky project using the
signing command generated in Figure 29. Detailed instructions are provided in this section.

Note that user can also follow section 7 to exercise the example bootloader and application projects without
going through the application creation and configuration process to use with the bootloader. This section
provides reference for users to understand how to customize for their specific application.

4.1 Generate the Initial Application Project

Follow the steps below to create a blinky project as the Initial Application Project. The steps in section 4.1
are identical when generating a blinky project whether the application uses a bootloader or not. Launch

e? studio and open a Workspace, click File > New > C/C++ Project and select Renesas RA and Renesas
RA C/C++ Project.

1. Assign the name blinky to this new project.
2. Click Next and choose EK-RA2E1 as the Board from the drop-down menu. Then click Next.

8 Renesas R C/T++ Project m] x
Renesas RA CfC+ + Project —
Device and Tools Selection
Device Selection
Board Descripti
FSP Version: |3.1.0 w| | Deare Beseription
Evaluation kit for RAZET MCU Group -
Eoal [GIE Y Wisit httns:favrenesas.comytafek-raZel to get kit user's
Drewice: RIFAZE1A02DFM manual, quick start quide, errata, design packaqe, example W
ol Detail
Language: @®C (OC++ evice Letalls
TrustZone Mo)
v
< >
Toolchains Debugger
GMU ARM Embedded ‘ I-Link ARM ~
9.3.1.20200408 ~
"?:‘ < Back Finish Cancel

Figure 30. Choose EK-RAZ2EL1 for the Blinky Project

R11AN0516EU0100 Rev.1.00 Page 18 of 29
Jul.26.2021 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

3.

In the next screen, select Executable as the Build Artifact and No RTOS for the RTOS Selection.

a Renesas RA C/C++ Project

Renesas RA C/C++ Project
Euild Artifact and RTOS Selection

Build Artifact Selection

(® Executable
* Project builds to an executable file

() Static Library
® Project builds to a static library file

() Executable Using an RA Static Library
® Project builds to an executable file
® Projectuses an existing RA static library project

Yy
|\3/.

RTOS Selection

‘ BaCk FInISh

[m] et

Cancel

Figure 31. Choose to Build Exec

utable with No RTOS

4. Select the Bare Metal - Blinky as the Project Template for the board and click Finish. The blinky

project is now created.

a Renesas RA C/C++ Project

Renesas RA CfC+ + Project

Project Template Selection

Project Template Selection

L

Bare Metal - Blinkyl

stacks, and the C runtime enviranment,
[Renesas.Ra,3.1.0.pack]

O

o/

Bare Metal - Minimal

ervvironment,
[Renesas.Ra3.1.0pack]

Code Generation Settings
Use Renesas Code Formatter

‘/?3' < Back

Bare rnetal FSP project that includes BSP and will blink LEDs if available. This project will initialize clocks, pins,

Bare metal FSP project that includes BSP, This project will initialize clocks, pins, stacks, and the C runtirme

Mext » Cancel

Figure 32. Choose Bare Metal — Blinky as Project Template
4.2 Configure the Existing Application to Use the Bootloader Project

Note that the steps described in this section can be applied to

any other existing application projects to

configure the application project to use the bootloader. Care should be taken in consideration of the size the

application project. When using the bootloader with a different

application project, the Image 1 Flash Area

Size property in Figure 13 should be adjusted accordingly. User also needs to regenerate the signing
command to the corresponding application by following the steps in this section.

Right click on the bl inky folder in the Project Explorer and select Properties. Select the C/C++ Build >
Build Variables, click Add and set the Variable name to BootloaderDataFile and check the Apply to all

configurations box. Change the Type to File and enter

${workspace_loc:ra_mcuboot_ra2el_tinycrypt}/Debug/ra_

Click OK to save the changes.

mcuboot_ra2el tinycrypt.bld for the value.

R11ANO516EU0100 Rev.1.00

Jul.26.2021 RENESAS

Page 19 of 29

Renesas RA Family

Secure Bootloader for RA2 MCU Series

type filter text

Resource
Builders
v 4+ Build
Erwironment
Logging
Settings
Tool Chain Editor
C/C++ General
MCH
Praject Matures
Project References
Renesas QF
Run/Debug Settings
Task Tags
Walidation

Build Variahles

Canfiguration: | Debug [Active |

~ | | hManage Configurations..,

Marne Type Yalue Add...
Edit..,
(&) Define a Mew Build Yariable x
= Delete
‘ariable name: | BootloaderDataFile
pply to all configurations
Walue: ra2eLtinycrypt}fDebugfra,mcuboot,ra2e1,tinycrypt.bldI Erouvse

Cancel

[Shows systern variables

Build Variables are IDE only variables, which can be used for string substitution when defining external builder
configuration, such as environment variable value or command line parameter in farm of $WARY, internal builder

may use them directly,

Restore Defaults Apply

Apply and Close Cancel

Figure 33. Configure the Build Variable to Use the Bootloader
Click Apply and then Apply and Close.

4.3 Signing the Application Image

In this section, we will use the signing command generated in Figure 29 to sign the newly created

application. Copy the command line generated from Figure 29.

Edit the project Properties for the blinky project and navigate to the C/C++ Build > Settings. Click on the
Build Steps tab and paste the command line that just copied into the Post-build steps > commands and

press Apply and Close.

R11ANO516EU0100 Rev.1.00

Jul.26.2021

RENESAS

Page 20 of 29

Renesas RA Family Secure Bootloader for RA2 MCU Series

a Properties for blinky O %
[type filter text Sattings G v 8
Resource
~
Builders
w CfC++ Build Configuration: |Debug [Active | ~ | | Manage Configurations...
Build Yariahles
Erwironment
Loaaing 83 Tool Settings & Taolchain | # Build Steps Build Artifact Binary Parsers @ Error Parsers
_
Toal Chain Editor Pre-build steps
C/C++ General Command(s}:

MU | V]
Project Natures

D tian:
Project References esenption
Renesas OF | v|
Run/Debug Settings i
Task Tags Paost-build steps
“alidation :

--pad-header $ProjMarmelbin $Projlame} s
Description:
2| |
@} Apply and Close Cancel

Figure 34. Configure the Post Build Command

If you do rebuild the bootloader project after changing any of the signing and signature Properties of the
MCUboot module, you will have to repeat all steps in section 3.4 to resign the application project.

Since the signing command is after the build step, if the application project has already been built without
adding the signing command and there are no updates in the application project, the \debug*_elf file
needs to be removed for the image signing option to proceed. Optionally, user can add the following Pre-
build Steps > Command(s) to allow the signed image to be always regenerated regardless of whether there
are updates from the application project.

| type filter text | Settings
Resource
Builders
w CfC++ Build Configuration: |Debug [Active]

Build Wariables
Environment

Lagging B3 Tool Settings &3 Toolchain L Build Steps Build Artifact Binary Parsers
BoTram Editor Pre-build steps

CfC++ General Cammandis)

MCU Ij del ${ProjMamelelf |
Project Matures

8 Description:
Project References P

Renesas QF |

Figure 35. Configure the Pre-build Command

Next, a user can add the RTT Viewer usage related application code to the blinky project. Unzip
RA2_secure_bootloader.zip, open the RA2_secure_bootlader\bl inky\src folder and copy all
files under \src to the newly established blinky project \src folder.

At this point, user can click Generate Project Content and compile the blinky project and ensure
\debug\blinky_ signed.bin is generated.

5. Booting the Initial Application Project

5.1 Set Up the Hardware

Connect J10 using a USB micro to B cable from EK-RA2EL to the development PC to provide power and
debug connection using the on-board debugger.

5.2 Configure the Debugger
Open the Debug Configurations: blinky->Debug As->Debug Configurations

Make sure the blinky Debug_Flat is selected and select the Startup tab.

R11AN0516EU0100 Rev.1.00 Page 21 of 29
Jul.26.2021 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Q Debug Caonfigurations

Create, , and run confi

FoEX BT~

Marne: ‘ blinky Debug_Flat

|type filter text

| [E] C/C++ Application

[] C/C++ Remote Application
=/ EASE Script

[©] GDB Hardware Debugging

‘ [Z] Main X&Dehuggerlb Startupl Common | - Source

Initialization Carmmands

[[JReset and Delay (seconds): 3

[JHalt

[€] GDB OpenOCD Debugging
[E7] GDB Simulator Debugging {
| Java Applet

[Java Application
@ Launch Group

Load image and symbals

T Remote Java Application
w [£7 Renesas GOB Hardware Deb
[T Bl Db P
7] ra_rmcuboot_radel_tnyc
[£] Renesas Simulator Debuggit

< >
Filter matched 14 of 16 iterns

5
@

Filename

Prograrn Binary [blinky.eHf]

Offset (hex) On connect|

“es

Load type
Irmage and Symhbols

Add...

Edit...

Remowve

Rewert

Apply

Clase

Figure 36. Configure the Primary Project Debug Startup

Click Add... and then Workspace and navigate to the ra_mcuboot_ra2el_tinycrypt project and select the
ra_mcuboot_ra2el tinycrypt.elf file from the debug folder. Click OK.

a8

| Create, manage, and run configurations

FoEX BT~

Marme: | blinky Debug_Flat

[-
1 |t}fpe filter text |

[Main | %5 Debugger,] Comman | &

Source

| [E] CfC++ Application Initialization Commands ~
[T] C/C++ Rermote Application [JReset and Delay (seconds): 3
= EASE Script
[E] GDB Hardware Debugging LlHait
[€] GDE CpenOCD Debugging
[E7] GDEB Simulatar Debugging |
1 Java Applet
[T Java Application
1 Launch Group Load image and symbals
T Remate Java Application -
« [E] Renesas GDE Hardwsare Deb Filename Load type Offset thex) On connect add..
[c7] blinky Debug_Flat Pragram Binary [blinky.elf] Irmage and Symbals Yes
lc¥| ra_mcuboot_radel_tinycr Q Add d load aul % Edit..
. . owenload maodule
[E7] Renesas Sirnulatar Debuggit Rermove
1 Specify download module narme:
1 Move up
| c:\ra_mcuboot_ra2e1_tinycr}-’pt\Debudra_mcuboot_raEe‘I_tinycrypt.elf}I
1 horve dowen
< Wariables... Search Project... File Systern... i
Ru
=
ELOTEGEPOTTTT Ty Friamf
(- P, d
£ >
Rewert Appl
|| Filter matched 14 of 16 items R

Figure 37.

Add the Bootloader Project to Debug Configuration

Change the load type of the Program Binaries for the blinky project to Symbols only by clicking on the cell
for load type and selecting Symbols only from the drop-down menu.

R11ANO516EU0100 Rev.1.00
Jul.26.2021

RENESAS

Page 22 of 29

Renesas RA Family Secure Bootloader for RA2 MCU Series

& Debug Configurations m} *
Create, manage, and run configurations
B &2 % B ¥V ~ || Name: [blinky Debug Flat |
|type filter text | [Z] Main :%? Debugger §i= Startupl] Cormman E_’-Source
[T] C/C++ Application Initialization Commands ~
[E] C/C++ Remote Application [JReset and Delay (seconds): 3
EASE Script
— Halt
[£] GDB Hardware Debugging LHa
[£] GDB OpenOCD Debugging
[£7] GDE Simulator Debugging |
1l Java Applet
[T Java Application
Launch Group Load image and symbols
g !
E Rernote Java Spplication
Filename Load type Offset (hex) On connect
w £ Benesas GOE Harduare Deb Add...
[£7] blinky Debug_Flat Program Binary [blinky.elf] Symbiols only Yes
lc¥ ra_mecuboot_raZel_timecr ra_rncuboot_raZel_tinycryptelf., Image and Symbols 0 Yes Edit...
[£7] Reresas Sirmulator Debuggir T
v
< >
i . Rewvert Bpply
Filter rnatched 14 of 16iterms

Figure 38. Select to load Symbols only for the Application Project
Click Debug. The debugger should hit the reset handler in the bootloader.

1 [ra_rncuboot_ra?el_tinycrypt] FSP Configuration 510:3 [blinky] FSP Configuration startup.c &%

57

59 ® * MCU starts executing here out of reset. Main stack pointer is set up already.[]
=8 = void Reset_Handler {void)

a2 i

=] /* Initialize system using BSP. */

o4 eooelass | SystemInit();

65

[} f* Call user application. */

67 220@l4ce maing);

Figure 39. Start the Application Execution

5.3 Download the Primary Application

At this point, only the bootloader image has been downloaded to flash. Now download the Application Image
using the Load Ancillary File button. On the top of the e? studio toolbar, click the % ‘icon, then browse to
the signed image \Debug\blinky signed.bin file.

mild | ®- Q- d =S~ CO = - Rl HF -G~k
uboot_razel_tinycrypt] FSP Configuration iﬁ? [blinky] FSP Configuration [€] startup.c 82 [g] main.c = 0 ==va. ¢
-~
® * MCU starts executing here out of reset. Main stack pointer is set up already.[]
—void Reset_Handler {void) Type
{
f* Initislize system using BSP. */ D
2a1468 SystemInit(); E
/* Call user application. */ [
BAl46e maini); s

Figure 40. Load Ancillary File

Check the Load as raw binary image and set the address to 0x2000. Press OK to download the image.

R11AN0516EU0100 Rev.1.00 Page 23 of 29
Jul.26.2021 RENESAS

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Load Ancillary File

Select an ancillary file for loading

File: I | ${W0rkspace_loc:\bIinky\Debug\blinky_signed.bin}l

oad as raw binary image

VI Workspace...l File Systerm...

Address:l (00002 00!

Cancel

Figure 41. Configure the Download Address of the Application Image

5.4 Booting the Primary Application

Click Resume "™ to run the project.

The program should now be paused in main at the hal_entry() call in the bootloader.

1 /* generated main source file - do not edit *f
2 #inclode "hal_data.h"

3 —int main(void)

4 {

5 poeoeass | hal_emtry ();

[Spelelelelo L i=F) return 2;

7 3

blinky application is running.

Figure 42. Start the Application Execution
Click ™ to run again. The Red, Blue, and Green LEDs on the EK-RA2E1 should now be blinking while the

Press to pause the program. Note that the program counter is in the application image. Click " to run

again.

Open the JLink RTT Viewer and set up the following configurations.

Connection to J-Link,

[serial Mo
O TCRyIP
O Existing Session
Specify Target Device
| reFezLiag | ~|

Script: file {optional)

Target Interface & Speed
WD * | 4000kHz -

RTT Control Black,

() Auko Detection () Address (® Search Range
Enter one or more address range(s) the RTT Control block can be loc

Synkax: <Rangestart [Hex]= <RangeSize=[, <Rangelstart [Hex]>
Example: 0x10000000 Q:1000, 0x2000000 0:x1000

| 020000000 08000 | |

Cancel

Figure 43. Configure the RTT Viewer

Click OK and observe the followinf output on the RTT Viewer. This output shows the Primary application is
being executed and all three LEDs are blinking.

R11ANO516EU0100 Rev.1.00
Jul.26.2021

RENESAS

Page 24 of 29

Renesas RA Family

Secure Bootloader for RA2 MCU Series

File Terminals

All Terminals

Input Logging

Terminal 0

Help

Terminal 1

@@> Running the Primary application with overwrite update mede.

Figure 44. RTT Viewer Output from the Primary Application
6. Mastering and Delivering a New Application

This section provides instructions on how to master and deliver a new application that will be loaded into the

Secondary image slot.

Note that the example bootloader, example Primary application (blinky project) as well the example
Secondary application (blinky_new, which this section will establish) are provided in the
RA2_secure_bootloader.zip. The user can also follow section 7 to exercise these project without going
through the New Application Creation and Mastering process described in this section if desired.

6.1 Create a New Application

The new application can be created by modifying the existing application. Import the blinky project to the
same workspace and rename the new project to blinky _new.

Right click in the white space in the Project Explorer area and select Import.

{2 Project Explorer &2 =
| blinky [Dehual_|
b ra_mcubo e
Go Into

Open in New Window

Show In
Copy
Paste
¥ Delete
Source

Rename...

; Export.

iof [ra_mcub

y b

Alt+ShifteW > -
Crl+C

Delete
>

F2

13 Irmport
| Select

Choose import wizard.

| Selectan impart wizard:

4| type filker text

~ [General
M Archive File
1) CM3IS Pack
1=F Existing Projects into Workspace
4 File System
1 Preferences
: Projects from Falder orArchLve
—+ Rename & Import Basting C/C ++ Project into Workspace
T Henesas roject for
T Renesas CS+ Project for CC-R¥ and CC-RL
= C/C++
= Install
= Qomph
| (= Run/Debug

e Tearn

Cancel

Figure 45. Select Rename and Import the Primary Application

Once the Import window opens, name the project and click Browse for Select root directory as shown in

Figure 46.

R11ANO516EU0100 Rev.1.00
Jul.26.2021

RENESAS

Page 25 of 29

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Rename 8¢ Import Project

Select a directory to search for existing Eclipse projects,

Froject name:l blinky_new I ‘

| Use default location

= = alication_projects » rl1an0516 v O Search r11an0516
Cihra?_boatloaderirepo_devtra_solutions\applicati Browise...
Create Directory for Project o SEENR
default Mame Date modified Type
Lopoticny metadata 732001 BATPM File folder
@ Select oot directory: o | Browse.. || blinky /32021 TS6PM File folder
O Select archive files Bromse ra_mcuboot_rael tinycrypt TR0 10:22 A File folder
! Projects:
Options
[[1Keep build configuration output falders
| <
1

< Back Mext = Finish

Cancel | Select Folder || Cancel
|

Figure 46. Rename the Project blinky_new

Q Import

O X
Rename 8 Import Project i
Select a directory to search for existing Eclipse projects. { ‘,
Project name: Iblinky_new I |
Use default location
Cihra2_bootloadertrepo_devira_salutions\applicati Browwse..,
Create Directory for Project:
default
Impaort from:
(@ Select root directory: | Civra2_bootloaderirepo_dewtra_solutions Browwse...
() Select archive file: Browse..,

Projects:

l hIinkxIC:\ra?_bootloader\repo_dev\ra_s0|utions\application_projects\r‘l1an0516\b|ink
ra_mcuboat_raZel_tinycrypt (Chra2_bootloaderirepo_devira_salutions\application_pra

<

Optiohs
[Keep build configuration output folders

< Back [ext »

Cancel

Figure 47. Import blinky Project as blinky _new
Click Finish, and the new application project will be created.

Update Existing Application to a New Application

The user can perform the following simple update to the existing blinky project to a new application:

R11ANO516EU0100 Rev.1.00

Page 26 of 29
Jul.26.2021

RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

e Open \blinky new\src\app_definitions.h and change

#define MENUSTATUS1 " Running the application with overwrite update mode. \r\n"
to
#define MENUSTATUS1 " Running the application with overwrite update mode. \r\n"

e Open\blinky new\src\hal_entry_h and change
/* Update all board LEDs */
for (Uuint32_t 1 = 0; 1 < leds.led_count; i++)

{
/* Get pin to toggle */
uint32_t pin = leds.p_leds[i];
/* Write to this pin */
R_BSP_PinWrite((bsp_io_port_pin_t) pin, pin_level);
}

to
/* update the blue led */
R_BSP_PinWrite(leds.p_leds[0], pin_level);

Note that since the new application is renamed and imported from the Primary application, the Build
Variable configure in Figure 33, the Post-build steps > Command(s) in Figure 34 and the Pre-build steps
> Command(s) in Figure 35 are already configured for blinky_new.

To create a brand new application without importing the previous application, follow section 4.2 to configure
the application to use the bootloader and section 4.3 to sign the application image.

Click Generate Project Content and compile the blinky _new project.
6.2 Downloading and Booting the New Application

Assume the Primary application blinky is now up and running and the three LEDs are blinking. Click Pause

and use the Ancillary Download file button load the compiled Secondary Application
blinky new_signed.bin. Select the new application image and set the download address to 0x4000.

& x
Load Ancillary File

Select an ancillary file for loading

File: |${Workspace_loc:\hlinky_neW\Debub\bIinky_new_signed.bin}IV| Wéarkspace.., | | File Systerm.,

| oad as raw binary image
Address: | (00004000

Figure 48. Download the Secondary Application Image

Note that for user-created customized applications, the download address needs to be adjusted by
referencing the specific signing command generated in Figure 29.

Click Resume ¥ to allow the system to perform image overwrite and the new image will be booted. Only the
blue LED should be blinking now, which indicates the new image is flashed to the Primary slot of the
application area.

On the RTT Viewer, the following new line will be printed, indicating the new image is loaded to the Primary
slot and is booted.

R11AN0516EU0100 Rev.1.00 Page 27 of 29
Jul.26.2021 RENESAS

Renesas RA Family Secure Bootloader for RA2 MCU Series

28> Running the Secondary (New) application with overwrite update mede.

Figure 49. RTT Viewer Output from the New Application

7. Appendix: Compile and Exercise the Included Example Bootloader and
Application Projects

Unzip RA2_secure_bootloader.zip to access the included bootloader and example application projects.
Import all three projects to a Workspace and follow below steps to compile the projects.

1. Compile the RA2 Example Bootloader Project
Open the Configuration.xml file from project ra_mcuboot_ra2el_ tinycrypt. Click Generate
Project Content and compile the project.
2. Compile the Application Projects
Open the Configuration.xml file from example Primary application project blinky. Click Generate
Project Content and compile the project.
Open the Configuration.xml file from example Secondary project blinky _new. Click Generate
Project Content and compile the project.
3. Boot the Primary Application
Follow section 5.1 to set up the EK-RA2E1 hardware connection and section 5.3 and 5.4 to boot the blinky
project. Verify that all three LEDs are blinking and the RTT Viewer output shown in Figure 44 is observed.

4. Boot the Secondary Application
Follow section 6.2 to download and boot the Secondary Application (blinky_new). Verify that the blue
LED is blinking and the RTT Viewer output in Figure 49 is observed.

8. References

. Renesas RA Family MCU Securing Data at Rest using Security MPU Application Project (R11AN0416)
2. Using MCUboot with RA Family MCUs Application Project (R11AN0497)

9. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA2E1 Resources renesas.com/ra/ek-ra2el
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ra/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11ANO516EU0100 Rev.1.00 Page 28 of 29

Jul.26.2021 RENESAS

https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/document/apn/securing-data-rest-utilizing-renesas-security-mpu?language=en&r=1168086
https://www.renesas.com/ra/ek-ra2e1
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Revision History

Rev.

Date

Description

Page

Summary

1.00

Jul.26.2021

First release document

R11ANO516EU0100 Rev.1.00

Jul.26.2021

RENESAS

Page 29 of 29

Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. lItis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Rev.4.0-1 November 2017)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
WWww.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics .
Corporation. All trademarks and registered trademarks are the property y
of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview of MCUboot
	1.1.1 Overview of Application Booting Process
	1.1.2 Applications Update Strategies

	2. Architecting an Application with MCUboot Module using FSP for RA2 MCU
	2.1 Secure Booting with TinyCrypt
	2.2 Designing Bootloader and the Initial Primary Application Overview
	2.3 Guidelines for Using the MCUboot Module with RA2 Series MCUs
	2.4 Production Recommendations for RA2 MCU
	2.4.1 Make the Bootloader Immutable
	2.4.2 Disable the Debug and Serial Programming Interface Prior to Deployment

	3. Creating the Bootloader Project
	3.1 Include the MCUboot Module in the Bootloader Project
	3.2 Optimize the Bootloader Project for Size
	3.3 Compile the Bootloader Project
	3.4 Configure the Python Signing Environment
	3.5 Create the Signing Command

	4. Using the Bootloader with a New Application or Existing Application
	4.1 Generate the Initial Application Project
	4.2 Configure the Existing Application to Use the Bootloader Project
	4.3 Signing the Application Image

	5. Booting the Initial Application Project
	5.1 Set Up the Hardware
	5.2 Configure the Debugger
	5.3 Download the Primary Application
	5.4 Booting the Primary Application

	6. Mastering and Delivering a New Application
	6.1 Create a New Application
	6.2 Downloading and Booting the New Application

	7. Appendix: Compile and Exercise the Included Example Bootloader and Application Projects
	8. References
	9. Website and Support
	Revision History

