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1.   Introduction
This programming specifications document gives the information necessary to program the nonvolatile memory of the 
PSoC 4 BLE 256K and PSoC 4200-L devices. This specification describes the communication protocol required for access 
by an external programmer, explains the programming algorithm, and gives the electrical specifications of the physical con-
nection. The programming algorithms described in the following sections are compatible for all devices mentioned in the title. 
The document will use “Target” as the generic reference to all families mentioned in the title.

1.1 Programmer

A programmer is a hardware-software system that stores a binary program (hex file) in the device's program (flash) memory. 
The programmer is an essential component of the engineer's prototyping environment or an integral element of the manufac-
turing environment (mass programming). Figure 1-1 illustrates a high-level view of the development environment.

Figure 1-1.  Programmer in Development Environment

PROGRAMMER
SILICON

(CYBLE10x7x )

I D E
( PSoC Creator 3.x 

or later )
HEX - File

Software HardwareMiddleware

SWD-bus

In the manufacturing environment, the integrated development environment (IDE) block is absent because its main purpose is 
to produce a hex file. As shown in Figure 1-1, the programmer performs three functions:

 Parses the hex file and extracts the necessary information

 Interfaces with the silicon as a serial wire debug (SWD) master

 Implements the programming algorithm by translating the hex data into SWD signals

The structure of the programmer depends on its exploiting requirements. It can be software- or firmware-centric.

In a software-centric structure, the programmer's hardware works as a bridge between the protocol (such as USB) and SWD. 
An external device (software) passes all SWD commands to the hardware through the protocol. The bridge is not involved in 
parsing the hex file and programming algorithm. This is the task of the upper layer (software). Examples of such programmers 
are the Cypress MiniProg3 and TrueTouchBridge.

A firmware-centric structure is an independent hardware design in which all the functions of the programmer are implemented 
in one device, including storage for the hex file. Its main purpose is to act as a mass programmer in manufacturing.

This document does not include the specific implementation of the programmer. It focuses on data flow, algorithms, and phys-
ical interfacing. Specifically, it covers the following topics, which correspond to the three functions of the programmer: 

 Data to be programmed

 Interface with the chip

 Algorithm used to program the target device
Programming Specifications, Document No. 001-96666 Rev. *C 4



Introduction
1.2 Target Family Overview 

The target family is based on the ARM Cortex-M0 processor 
core (48 MHz). This device family leverages the ARM debug 
interface for programming and debugging operations. It sup-
ports only SWD programming protocols; it does not support 
the JTAG interface.

The nonvolatile subsystem of the silicon consists of a flash 
memory system with a maximum of up to 256 KB. The flash 
memory system stores the user's program and silicon's pro-
tection information.

The part can be programmed after it is installed in the sys-
tem by way of the SWD interface (in-system programming). 

The programming frequency ranges from 1.5 MHz to 
14.0 MHz.

This document focuses on the specific programming opera-
tions without referencing the silicon architecture. Many 
important topics are detailed in the appendices. Other 
device-specific information can be found in the 
PSoC4 BLE 256K datasheet (001-94624) and the 
PSoC 4200-L datasheet (001-91686).

This document includes four appendices:

 Appendix A: Chip-Level Protection

 Appendix B. Intel Hex File Format

 Appendix C: Serial Wire Debug Protocol

 Appendix D: Timing Specifications of the SWD Interface

Document Revision History

Document Title: CYBL10x7x, CY8C4128_BL, CY8C4248_BL (256K), CY8C4246_L, CY8C4247_L, CY8C4248_L Program-
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*C 05/03/2017 AESATMP8 Updated logo and Copyright.
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2.   Required Data
This chapter describes the information that the programmer must extract from the hex file to program the Target silicon. 

2.1 Hex File Origin

Customers will use PSoC Creator to develop their projects. After development is completed, the nonvolatile configuration of 
the silicon is saved in the file. Only three records in this file actually target the flash memory:

 User’s program (code)

 Flash row-level protection

 Chip-level protection

Other records are auxiliary and are used to keep the integrity of the programming flow.

2.2 Nonvolatile Subsystem

The flash memo is organized into two macros of 128 KB each. There are 512 rows in the macro, each consisting of 256 bytes. 
The programming granularity is one row at a time.

In addition to the users' rows, the flash macros contain supervisory rows, which store:

 Row-level protection bits

 Chip-level protection byte (only in macro 1)

 Application-specific Information (up to four rows and only in macro 1) - User Supervisory Flash (SFlash)
Programming Specifications, Document No. 001-96666 Rev. *C 6



Required Data
Figure 2-1.  Nonvolatile Subsystem

User SFlash rows can be used by the application to store 
arbitrary data. However, the primary intent is to store the 
Unique Bluetooth Address of the device. Since these rows 
are not part of the hex file, their programming is optional. 
During mass production, a vendor should define the process 
to guarantee for each device the uniqueness of the pro-
grammed Bluetooth address.

For the User Flash, the maximum number of rows is taken 
into account during programming and it depends only on the 
part's flash size. The formulae are as follows:

L 256= – row size in bytes

 – total number of rows

 – total number of macros

The flash memory is mapped directly to the CPU’s address 
space starting from 0x00000000. Therefore, the firmware or 
external programmer can read its content directly from the 
given address.

The flash row-level protection is a feature to write-protect 
the user’s flash with a granularity of one row. The flash row-
level protection settings prevent rows from being written but 
do not prevent a row’s data from being read. 

Each user’s row in the macro is associated with one protec-
tion bit. For this reason, the maximum number of protection 

bits for each macro is 512. The corresponding number of 
bytes per macro is calculated as follows:

– bytes per macro.

A bit value of 0 means that the row is unprotected and a 
value of 1 means the row is protected.

The last type of nonvolatile information in flash is chip-level 
protection. This consists of one byte that restricts access to 
the chip’s resources (register, SRAM, and flash) by an exter-
nal programmer or debugger. For example, in PROTECTED
mode, the programmer cannot read or write either flash or 
SRAM; in KILL mode, the SWD interface is locked in silicon 
and the chip cannot be reprogrammed. The chip-level pro-
tection setting is programmed along with the flash row-level 
protection into the supervisory row of the “macro” (see 
Figure 2-1 on page 7). Its offset in the supervisory row is 
0x7F. For more information about chip-level protection, see 
Appendix A: Chip-Level Protection on page 36.

2.3 Organization of the Hex File

The hexadecimal (hex) file is a medium to describe the non-
volatile configuration of the project. It is the data source for 
the programmer.

The hex file for the Target family follows the Intel Hex File 
format. Intel’s specification is very generic and defines only 
some types of records that can make up the hex file. The 
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Required Data
specification allows customizing the format for any possible 
silicon architecture. The silicon vendor defines the functional 
meaning of the records, which typically varies for different 
chip families. See Appendix B: Intel Hex File Format on 
page 38 for details of the Intel Hex File format.

The Target family defines five types of data sections in the 
hex file: user flash, checksum, flash protection, metadata, 
and chip-level protection. See Figure 2-2 to determine the 
allocation of these sections in the address space of the Intel 
hex file.

The address space of the hex file does not map to the phys-
ical addresses of the CPU (other than the user’s flash, which 
is an unintentional coincidence). The programmer uses hex 
addresses (see Figure 2-2) to read sections from the hex file 
into its local buffer. Later, this data is programmed (trans-
lated) into the corresponding addresses of the silicon.

Figure 2-2.  Hex File Organization for Target Family

0x0000 0000 – User’s Flash (256 KB): This is the user’s 
program (code) that must be programmed. The size of this 
section matches the flash size of the target part. The pro-
grammer can either read all of this section at once or gradu-
ally by 256-byte blocks. The programming of the flash is 
carried out on the row on the basis of 128 bytes for each 
request.

0x9030 0000 – Checksum (2 bytes): This is the checksum 
of the entire user flash section—the arithmetical sum of 
every byte in the user’s flash. Only two least significant 
bytes (LSB) of the result are saved in this section, in big-
endian format (most significant byte (MSB) first). This must 
be used by the programmer to check the integrity of the hex 
file and to verify the quality of the programming. In this con-
text, “integrity” means that the checksum and user’s flash 

sections must be correlated in this file. At the end of pro-
gramming, the checksum of flash (two LSBs) is compared to 
the checksum from the hex file.

0x9040 0000 – Flash Protection (128 bytes): This data is 
programmed into supervisory rows of the flash macros (see 
Figure 2-1 on page 7). Every bit defines the write-protection 
setting for the corresponding user row. The number of bytes 
to be read from this section depends on the flash size.

Protection Size = Flash Size / Row Size / 8

Therefore, for a 256-KB part, flash protection consists of 128
bytes. 

0x9060 0000 – Chip-level Protection (1 byte): This section 
represents chip-level protection of the programmed part 
(see Figure 2-1 on page 7). For more information, see 
Appendix A: Chip-Level Protection on page 36.

0x9050 0000 – Metadata (12 bytes): This section contains 
data that is not programmed into the target device. Instead, 
it is used to check data integrity of the hex file and the silicon 
ID of the target device. Table 2-1 lists the fields in this sec-
tion.

Table 2-1.  Meta Data in Hex File

Offset Data Type Length in Bytes

0x00 Hex file version 2 (big-endian)

0x02 Silicon ID 4 (big-endian)

0x06 Reserved 1

0x07 Reserved 1

0x08 Internal use 4

 Hex file version: This 2-byte field in Cypress’s hex file 
defines its version (or type). The version for the Target 
family is “2”. The programmer should use this field to 
make sure this file corresponds to the Target device, or 
to select the appropriate parsing algorithm if the file sup-
ports several families.

 Silicon ID: This 4-byte field represents the ID of the tar-
get silicon. During programming, the ID of the acquired 
device is compared with the content of this field. To start 
programming, these fields must match. Cypress does 
not guarantee reliable programming (or data retention) if 
third-party programmers ignore this condition. 

 Reserved: Not used by the Target family.

 Internal Use: This 4-byte field is used internally by the 
PSoC Programmer software. Because it is not related to 
actual programming, this field should be ignored by 
third-party vendors.

0x0000 0000 256 KB

0x9030 0000 2 bytes

0x9040 0000 128 bytes

0x9050 0000 12 bytes

0x9060 0000 1 byte

0xFFFF FFFF

User’s Flash
(program)

Checksum

Flash Protection 
(of user’s rows)

Metadata

Chip Level 
Protection

N Bytes- unused space - populated space
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3.   Communication Interface
This chapter explains the low-level details of the communi-
cation interface. 

3.1 The Protocol Stack

Figure 3-1 illustrates the stack of protocols involved in the 
programming process. The programmer must implement 
both hardware and software components.

Figure 3-1.  Programmer’s Protocol Stack

Programming Algorithm
(Step 1 … Step N)

SWD – Interface
(Hardware Access Commands)

Physical Layer
(Signals, interfacing with chip)

SWD Read / Write

Logical SWD-signal

Signals on the Line

The Programming Algorithm protocol, the topmost protocol, 
implements the whole programming flow in terms of atomic 
SWD commands. It is the most solid and fundamental part 
of this specification. For more information on this algorithm, 
see Chapter 4: Programming Algorithm on page 14.

The SWD Interface and physical layer are the lower layer 
protocols. Note that the physical layer is the complete hard-
ware specification of the signals and interfacing pins, and 
includes drive modes, voltage levels, resistance, and other 
components. Upper protocols are logical and algorithmic 
levels.

The purpose of the SWD interface layer is to act as a bridge 
between pure software and hardware implementations. The 
Programming Algorithm protocol is implemented completely 
in software; its smallest building block is the SWD com-
mand. The whole programming algorithm is the meaningful 
flow of these blocks. The SWD interface helps to isolate the 
programming algorithm from hardware specifics, which 
makes the algorithm reusable. The SWD interface must 
transform the software representation of these commands 
into line signals (digital form).

3.2 SWD Interface

The SWD interface uses the SWD protocol developed by 
ARM. The Target silicon integrates the standard Cortex-M0 
debug access port (DAP) block provided by ARM. There-
fore, it complies with the ARM specification ARM Debug 
Interface v5. Architecture Specification. The CYBKE10x6x 
silicon does not support the JTAG interface. 

Figure 3-2 on page 10 shows the top-level architecture of 
the silicon. It includes the debug interface, CPU subsystem, 
memory, and periphery. The standard ARM modules are 
outlined in red. The following acronyms are used in this fig-
ure:

 HSIOM – High-speed I/O matrix

 DAP – Debug access port

 AHB – Advanced high-performance bus

 SPC – System performance controller
Programming Specifications, Document No. 001-96666 Rev. *C 9



Communication Interface
Figure 3-2.  Top-Level Silicon Architecture

The SWD interface (ARM) defines only two digital pins to 
communicate with an external programmer or a debugger. 
The SWDCK and SWDIO pins are sufficient for bidirectional, 
semi-duplex data exchange.

Only three types of SWD commands can appear on the bus: 
Read, Write, and Line Reset. The Line Reset command is 
used only once during programming to establish a connec-
tion with the device. The Read and Write commands com-
pose the rest of the programming flow.

The programmer can access most resources of the silicon 
through the SWD interface. All programming algorithms are 
stored in SROM; the external programmer uses its system 
APIs to program the flash. During programming of the flash 
row, the system code is executed from the SROM. It com-
municates with the SPC module, which “knows” how to pro-
gram flash. In contrast to a write operation, reading from 
flash is an immediate operation that is carried out directly 
from the necessary address (see Figure 2-1 on page 7 for 
address space). Reading works on a word basis (4-byte); 
writing works on a row basis (256-byte). 

The typical operation of the programmer is to load all neces-
sary parameters into the SRAM (I/O registers) and request a 
system call from the SROM. Only the SWD Read and Write 
commands perform this task.

3.3 Hardware Access 
Commands

The Cortex-M0 DAP module, shown in Figure 3-2, supports 
three types of transactions: Read, Write, and Line Reset. All 
are defined in the ARM specification. The APIs must be 
implemented by the SWD Interface layer shown in 
Figure 3-1 on page 9. In addition, the upper protocol, Pro-
gramming Algorithm, requires two extra commands to 
manipulate the hardware: Power(state) and ToggleReset(). 
Table 3-1 lists the hardware access commands used by the 
software layer.

Table 3-1.  Hardware Access Commands

Command Parameters Description

SWD_LineReset

Standard ARM command to reset the debug port (DAP). It consists of at least 50 clock 
cycles with data = 1, that is, with the SWDIO asserted HIGH by the programmer. Transac-
tion must be completed at least by 1 clock with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and chip; it is a first transaction in programming flow.

SWD_Write
IN APnDP, IN addr, IN data32, 

OUT ack
Sends a 32-bit data to the specified register of the DAP. The register is defined by the 
“APnDP” (1 bit) and “addr”(2 bits) parameters. The DAP returns a 3-bit status in “ack”.

SWD_Read
IN APnDP, IN addr, 

OUT data32, OUT ack, OUT parity

Reads a 32-bit data from the specified register of the DAP. The register is defined by the 
“APnDP” (1 bit) and “addr” (2 bits) parameters. DAP returns a 32-bit data, status, and par-
ity (control) bit of the read 32-bit word.

ToggleReset
Generates the reset signal for target device. The programmer must have a dedicated pin 
connected to the XRES pin of the target device.

Power IN state
If the programmer powers the target device, it must have this function to supply power to 
the device.
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Communication Interface
For information on the structure of the SWD read and write 
packets and their waveform on the bus, see Appendix C: 
Serial Wire Debug (SWD) Protocol on page 39.

The SWD_Read and SWD_Write commands allow access-
ing registers of the Cortex-M0 DAP module from Figure 3-2 
on page 10. The DAP functionally is split into two control 
units:

 Debug Port (DP) – Is responsible for the physical con-
nection to the programmer or debugger.

 Access Port (AP) – Provides the interface between the 
DAP module and one or more debug components (such 
as the Cortex-M0 CPU).

The external programmer can access the registers of these 
access ports using the following bits in the SWD packet:

 APnDP – Select access port (0 – DP, 1 - AP).

 ADDR – 2-bit field addressing a register in the selected 
access port

The SWD_Read and SWD_Write commands are used to 
access these registers. They are the smallest transactions 
that can appear on the SWD bus. Table 3-2 shows the DAP 
registers that are used during programming.

Table 3-2.  DAP Registers (in ARM notation)

For more information about these registers, see the ARM Debug Interface v5. Architecture Specification.

3.4 Pseudocode
This document uses easy-to-read pseudocode to show the programming algorithm. The following two commands are used 
for the programming script:

Write_DAP ( Register,  Data32)
Read_DAP ( Register, OUT Data32)

Where the Register parameter is an AP/DP register defined by APnDP and address bits (see Table 3-2). The pseudocom-
mands correspond to read or write SWD transactions. Following are some examples:

Write_DAP( TAR, 0x20000000)
Write_DAP( DRW, 0x12345678)
Read_DAP ( IDCODE, OUT swd_id)

The Register parameter technically can be represented as the structure in C:
struct DAP_Register
{
BYTE APnDP; // 1-bit field
BYTE Addr;  // 2-bit field
};

Then, DAP registers will be defined as:
DAP_Register TAR   = { 1, 1 },
             DRW   = { 1, 3 },
             IDCODE= { 0, 0 };

The defined Write and Read pseudocommands must be successful if both return the ACK status of the SWD transaction. For 
the Read transaction, the parity bit must be taken into account (corresponds to read data32 value). If the status of the trans-

Register APnDP (1 bit) Address (2-bit) Access (R/W) Full Name

IDCODE 0 2’b00 R Identification Code Register

CTRL/STAT 0 2’b01 R/W Control/Status Register

SELECT 0 2’b10 W AP Select Register

CSW 1 2’b00 R/W Control Status/Word Register (CSW)

TAR 1 2’b01 R/W Transfer Address Register

DRW 1 2’b11 R/W Data Read/Write Register
Programming Specifications, Document No. 001-96666 Rev. *C 11



Communication Interface
action, the parity bit, or both is incorrect, the transaction must be considered to have failed. In this case, depending on the 
programming context, programming must terminate or the transaction must be tried again.

The implementation of Write and Read pseudocommands based on the hardware access commands SWD_Read and 
SWD_Write (Table 3-1 on page 10) is as follows.

SWD_Status Write_DAP ( Register,  data32 ) {
  SWD_Write ( Register.APnDP, Register.Addr, data32, OUT ack);
  Return ack;
}

SWD_Status Read_DAP ( Register, OUT data32){
  SWD_Read ( Register.APnDP, Register.Addr, OUT data32, OUT ack, OUT parity);
  If (ack == 3’b001){ //ACK, then check also the parity bit
    Parity_data32 = 0x00;
    For (i=0; i<32; i++) Parity_data32 ^= ((data32 >> i) & 0x01);
    If (Parity_data32 != parity) ack = 3’b111; //NACK
  }
  Return ack;
}

The programming code in Chapter 4: Programming Algorithm on page 14 is based mostly on the Write and Read pseudo-
commands and some commands in Table 3-1 on page 10.

3.5 Physical Layer

This section describes the hardware connections between the programmer and the target device for programming. It shows 
the connection schematic and gives information on electrical specifications. Check the device datasheet for the actual loca-
tion of SWD/Power pins on the part's package. 

Check the device datasheet for the actual location of SWD/Power pins on the part's package. The generic connection 
between the target and programmer is shown in Figure 3-3. 

Figure 3-3.  Connection Schematic of Programmer

Only five pins are required to communicate with the chip. 
Note that the SWDCLK and SWDIO pins are only required 
by the SWD protocol. The silicon requires an additional 
XRES pin that is not related to the ARM standard. It is used 
to reset the part as a first step in a programming flow. 

You can program a chip in either Reset or Power Cycle 
mode. The mode defines only the first step—how to reset 
the part—in the programming flow. The rest of the steps are 
identical (SWD traffic).
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Communication Interface
 Reset mode: To start programming, the host toggles the 
XRES line and then sends SWD commands (see 
Table 3-1 on page 10). The power on the target board 
can be supplied by the host or by an external power 
adapter (the VDD line can be optional).

 Power Cycle mode: To start programming, the host 
powers on the target and then starts sending the SWD 
commands. The XRES line is not used. 

It is recommended that the programmer uses all five pins 
and supports at least Reset mode programming. The Power 
Cycle mode support is optional.

Table 3-3.  Programming Mode

Table 3-4.  Target Pin Names and Requirements

The SWD timing specifications are described in the datasheet (001-94624 or 001-91686).

.

Mode Necessary Pins Unused Pins Use Cases

Reset

VDD (optional)

GND

XRES

SWDCLK

SWDIO

VDD (if self-powered)

The board can be self-powered (VDD is not needed).

The board consumes too much current, which the programmer cannot supply 
(VDD is not needed).

The 5-pin case: The host supplies power and toggles XRES (this is the most pop-
ular programming method).

Power Cycle

VDD

GND

SWDCLK

SWDIO

XRES

The only use case: The XRES pin is not available on the part’s package, so 
Power Cycle mode is the only way to reset a part.

This is not applicable to the CYBL10x7x family, in which every package has an 
XRES pin. For this reason, Reset is the recommended mode.

Some third-party SWD masters can use this mode if they do not implement the 
XRES line but can supply power (power on/off).

Target Pin Name Function External Programmer Drive Modes

VDDD 

Digital power supply 
Input

(1.71 V–5.5 V)
Positive voltage – powered by external power supply or by programmer.

VSS Power supply return Low resistance ground connection. Connect to circuit ground.

XRES
External active low 
reset input.

Output: Drive CMOS levels

SWDCLK
SWD clock input

(1.5 MHz–14 MHz)
Output: Drive CMOS levels

SWDIO
SWD data line - bidirec-
tional

Output: Drive CMOS levels

Input: Read CMOS levels in HI-Z mode

VDDA
Analog power supply 
input (1.71 V–5.5 V)

Depending on the board configuration, this power can be supplied from a VDDD source, which must be in 
the range 1.9 V–5.5 V. If it is lower, then a separate voltage source is required for analog circuits. Depend-
ing on the board's configuration, this power can be supplied from a VDDD source or own analog power sup-
ply. 

Check the silicon's datasheet for exact power pins configuration. For example, for the BLE family VDDA can 
be powered from VDDD if it is in range of 1.9 V–5.5 V (if VDDD is lower, then own VDDA source is required).

VDDIO I/O pins power supply Available only for PSoC 4200-L series. Typically connected to VDDD (application-specific).
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4.   Programming Algorithm
This chapter describes in detail the programming flow of the 
Target device. It starts with a high-level description of the 
algorithm and then describes every step using pseudocode. 
All code is based on upper-level subroutines composed of 
atomic SWD instructions (see “Pseudocode” on page 11). 
These subroutines are defined in “Subroutines Used in the 
Programming Flow” on page 15. The ToggleReset() and 
Power() commands are also used (see Table 3-1 on 
page 10).

4.1 High-Level Programming 
Flow

Figure 4-1 shows the sequence of steps that must be exe-
cuted to program the Target device. These steps are 
described in detail in the following sections. All the steps in 
this programming flow must be completed successfully for a 
successful programming operation. The programmer should 
stop the programming flow if any step fails. In addition, in 
pseudocode, it is assumed that the programmer checks the 
status of each SWD transaction (Write_DAP, Read_DAP, 
WriteIO, ReadIO). This extra code is not shown in the pro-
gramming script. If any of these transactions fails, then pro-
gramming must be aborted.

Flash programming in the Target family is implemented 
using the SROM APIs. The external programmer puts the 
parameters into the SRAM (or registers) and requests sys-
tem calls, which in turn perform flash updates. 

Figure 4-1.  High-Level Programming Flow of Target Device

Step 1. Acquire Chip

Step 3. Erase All Flash

Step 4. Checksum Privileged

Step 5. Program Flash

Step 6. Verify Flash

Step 7. Program Protection Settings
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FINISH
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Programming Algorithm
4.2 Subroutines Used in the Programming Flow

The programming flow includes some operations that are used in all steps. Eventually, the programming code will look com-
pact and easy to read and understand. Besides that, most of the registers and frequently used constants are named and 
referred from the pseudocode.

Table 4-1.  Constants Used in the Programming Script

Table 4-2.  Subroutines Used in Programming Flow

Constant Name Value Description

Address Space of CPU

CPUSS_SYSREQ 0x40100004
System request register used to make system requests to SROM code; system requests 
transition from User mode to Privileged mode

CPUSS_SYSARG 0x40100008 System request argument register used to make system requests to SROM code

TEST_MODE 0x40030014 Test mode control register used to enter the chip into Programming mode (Test mode)

SRAM_PARAMS_BASE 0x20000100 SRAM address where the parameters for SROM requests will be stored.

SFLASH_MACRO_0 0x0FFFF000 Location of the flash protection settings in the flash macro 0.

SFLASH_MACRO_1 0x0FFFF800 Location of the flash protection settings in the flash macro 1.

SFLASH_CPUSS_PROTECTION 0x0FFFF0FC
Location of chip-level protection in the flash macro (actual byte located at 0x0FFFF0CF, 
but must read whole 32-bit word).

SROM Constants

SROM_KEY1 0xB6 Parameter of SROM call

SROM_KEY2 0xD3 Parameter of SROM call

SROM_SYSREQ_BIT 0x80000000
Mask of SYSREQ bit in CPUSS_SYSREQ register, which starts the execution of the 
SROM command

SROM_PRIVILEGED_BIT 0x10000000
Mask of PRIVILEGED bit in CPUSS_SYSREQ register, which indicates whether the sys-
tem is in Privileged mode (SROM command running) or User mode.

SROM_STATUS_SUCCEEDED 0xA0000000 Successful status of the system request (SROM command).

SROM_STATUS_FAILED 0xF0000000 Fail status of the system request (SROM command).

SROM Requests

SROM_CMD_GET_SILICON_ID 0x00 Reads the silicon ID of the target device.

SROM_CMD_LOAD_LATCH 0x04 Loads data into the volatile buffer (before writing into flash).

SROM_CMD_PROGRAM_ROW 0x06 Programs data into the flash row (from the volatile buffer).

SROM_CMD_ERASE_ALL 0x0A Erases all the user's flash and flash protection settings from the supervisory rows 

SROM_CMD_CHECKSUM 0x0B Verifies the checksums of all flash contents (user and privileged rows)

SROM_CMD_WRITE_PROTECTION 0x0D Writes flash protection and chip-level protection

SROM_CMD_WRITE_SFLASH_ROW 0x18 Writes User SFlash Row. Valid row range is [0..3].

Chip -Level Protection

CHIP_PROT_VIRGIN 0x00 VIRGIN mode, used by Cypress only.

CHIP_PROT_OPEN 0x01 OPEN mode in which the chip is shipped to customers 

CHIP_PROT_PROTECTED 0x02 PROTECTED mode, which can be set by the customer

CHIP_PROT_KILL 0x04 KILL mode, which can be set by the customer (irreversible)

Subroutine Description

bool WriteIO( addr32, data32 )
Writes a 32-bit data into the specified address of the CPU address space.

Returns "true" if all SWD transactions succeeded (ACKed).

bool ReadIO( addr32, OUT data 32)

Reads a 32-bit data from the specified address of the CPU address space. Note that the actual size of the read 
data (8, 16, 32 bits) depends on the setting in the CSW register of DAP (see Table 3-2). By default, all accesses 
are 32 bits long.

Returns "true" if all SWD transactions succeeded (ACKed).

bool PollSROMStatus()
Waits until the SROM command is completed and then checks its status. Timeout is 1 second. Returns "true" (suc-
cess) if the command is completed and its status is successful; otherwise, returns "false".
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Programming Algorithm
The implementation of these subroutines follows. It is based on the pseudocode and registers defined in “Hardware Access 
Commands” on page 10 and “Pseudocode” on page 11. It uses the constants defined in this chapter.

The pseudocode is similar to C-style notation.
 // WriteIO Subroutine
bool “WriteIO” ( addr32, data32 )
{
ack1 = Write_DAP (TAR, addr32);
ack2 = Write_DAP (DRW, data32);
return (ack1 == 3’b001) && (ack2 == 3b’001);
}

// “ReadIO” Subroutine
bool ReadIO ( addr32, OUT data32 )
{
ack1 = Write_DAP (TAR, addr32);
ack2 = Read_DAP (DRW, OUT data32);
ack3 = Read_DAP (DRW, OUT data32);
return (ack1 == 3’b001) && (ack2 == 3b’001) && (ack3 == 3b’001);
}

// “PollSROMStatus” Subroutine
bool PollSROMStatus()
{
do{
ReadIO (CPUSS_SYSREQ, OUT status);
Status &= (SROM_SYSREQ_BIT | SROM_PRIVILEGED_BIT);
}while ((status != 0) && (time_elapsed < 1 sec));

if (time_elapsed >= 1 sec ) return false; // timeout

ReadIO (CPUSS_SYSARG, OUT statusCode);
if ((statusCode & 0xF0000000) != (SROM_STATUS_SUCCEEDED));
return false; // SROM command failed
else 
return true; // SROM command succeeded

}
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Programming Algorithm
4.3 Step 1 – Acquire Chip

The first step in programming the Target device is to enter it into Test mode (or Programming mode). This is a special mode 
in which the CPU is controlled by the external programmer, which also can access other system resources such as SRAM 
and registers. This step has strict timing requirements that the host must meet to enter Test mode successfully. Figure 4-2 
shows the timing diagram of entering Test mode.

Figure 4-2.  Timing Diagram of Entering Test Mode

This diagram details the chip’s internal signals while enter-
ing Test mode. Everything starts from toggling the XRES line 
(or applying power), so the chip enters Internal Reset mode. 
After that, the system boot code starts execution from the 
SROM. When completed, the CPU waits during a 400-µs 
time frame for a special connection sequence on the SWD 
port. If, during this time, the host sends the correct 
sequence of SWD commands, the CPU enters Test mode. 
Otherwise, it starts the execution of the user’s code.

The times of internal reset (<1 ms) and boot code (<100 µs) 
are not specified exactly. Because they depend on the CPU 
clock and the size of the code, they can vary in different revi-
sions of the chip.

In this case, the recommended way to enter Test mode is to 
start sending an acquire sequence right after XRES is tog-
gled (or power is supplied in Power Cycle mode). This 
sequence is sent iteratively until it succeeds; that is, all SWD 
transactions are ACKed and all conditions are met. 
Figure 4-3 on page 18 shows the implementation of the 
Acquire Chip procedure. It is detailed in terms of the SWD 
transaction. Note that the recommended minimum fre-
quency of the programmer is 1.5 MHz, which meets the tim-
ing requirement of this step (400 µs).
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Programming Algorithm
Figure 4-3.  Flow Chart of the Acquire Chip Step
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Programming Algorithm
Pseudocode – Step 1. Acquire Chip

//-------------------------------------------------------------------------------
// Reset Target depending on acquire mode – Reset or Power Cycle
If (AcquireMode == “Reset”) ToggleXRES(); // Toggle XRES pin, target must be powered.
Else If (AcquireMode == “Power Cycle”) PowerOn();// Supply power to target.

//Execute ARM’s connection sequence – acquire SWD-port.
Do
{
SWD_LineReset();
ack = Read_DAP ( IDCODE, out ID);

}While ((ack != 3b’001) && time_elapsed < 1.5 ms); //for PowerCycle timeout must be
   //longer. For example ~30 ms.
If (time_elapsed >= 1.5 ms) Return FAIL;

If (ID != 0x0BB11477) Return FAIL; //SWD ID of Cortex-M0 CPU.

//Initialize Debug Port
Write_DAP (CTRL/STAT, 0x54000000);
Write_DAP (SELECT, 0x00000000);
Write_DAP (CSW, 0x00000002);

//Enter CPU into Test Mode
WriteIO (TEST_MODE, 0x80000000); //Set test_mode bit in TEST_MODE reg from CPU space
ReadIO  (TEST_MODE, out status);

if ((status & 0x80000000) != 0x80000000) Return FAIL;

//Poll SROM_PRIVILEGED_BIT in CPUSS_SYSREQ register
Do
{
ReadIO (CPUSS_SYSREQ, out status);
status &= SROM_PRIVILEGED_BIT;
} While ((status != 0x00000000) && time_elapsed < 1000 ms)

If (time_elapsed >= 1000 ms) Return FAIL;

Return PASS;
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Programming Algorithm
4.4 Step 2 – Check Silicon ID

This step is required to verify that the acquired device corresponds to the hex file. It reads the ID from the hex file and com-
pares it with the ID obtained from the target.

Pseudocode – Step 2. Check Silicon ID

//-------------------------------------------------------------------------------
// Read “Silicon ID” from hex file, 4 bytes from address 0x9050 0002 (big endian).
// HEX_ReadSiliconID() must be implemented.
HexID = HEX_ReadSiliconID();

// Read “Silicon ID” from the target using SROM request
Params = (SROM_KEY1 << 0) +    //KEY1
        ((SROM_KEY2+SROM_CMD_GET_SILICON_ID) << 8);    //KEY2

WriteIO (CPUSS_SYSARG, Params); // Write parameters
WriteIO (CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_GET_SILICON_ID);//Request SROM call
            
status = PollSromStatus();
If (!status) Return FAIL;            

//Read 32-bit ID from the registers
ReadIO( CPUSS_SYSARG, out part0); 
ReadIO( CPUSS_SYSREQ, out part1); 

siliconID[0] = (part0 >> 8) & 0xFF; 
siliconID[1] = (part0 >> 0) & 0xFF; 
siliconID[2] = (part0 >> 16)& 0xFF; 
siliconID[3] = (part1 >> 0) & 0xFF; 

//Compare IDs from the hex and from the target
For ( i = 0; i < 4; i++) 
{
If ( i == 2 ) //Ignore Revision ID
{
    Continue;
}
If ( siliconID[i] != hexID[i] ) Return FAIL;
}

Return PASS;
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Programming Algorithm
4.5 Step 3 – Erase All Flash

Before programming the flash, it must be erased. This step erases all user rows and the corresponding flash protection. It 
also moves chip-level protection to the OPEN state (if it was in PROTECTED mode, see Appendix A:Chip-Level Protection on 
page 36). Figure 4-4 shows the algorithm of the Erase All step.

Figure 4-4.  Flow Chart of the Erase All Step

Pseudocode – Step 3. Erase All Flash

//-------------------------------------------------------------------------------
// Read Chip Level Protection using SROM call
Params = (SROM_KEY1 << 0) + // KEY1
         ((SROM_KEY2 + SROM_CMD_GET_SILICON_ID) << 8); // KEY2

WriteIO( CPUSS_SYSARG, Params);  //Write params in CPUSS_SYSARG
WriteIO( CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_GET_SILICON_ID);//Request SROM call

Status = PollSromStatus();
If (!Status)) Return FAIL;

ReadIO( CPUSS_SYSREQ, out data); // read result
chipProt = (byte)(data  >> 12);

// Check current protection mode
If (chipProt == CHIP_PROT_PROTECTED) // PROTECTED
{
// Move chip to OPEN mode
Params = (SROM_KEY1 << 0) +//KEY1
               ((SROM_KEY2 + SROM_CMD_WRITE_PROTECTION) << 8) +//KEY2
                (0x01 << 16) + //OPEN mode
                (0x00 << 24);//Flash Macro 0

       WriteIO( CPUSS_SYSARG, Params);//Write params in CPUSS_SYSARG
       WriteIO( CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_WRITE_PROTECTION);
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Programming Algorithm
       status = PollSromStatus();
       if (!status) return FAIL;

// Re-acquire chip here to boot it in OPEN mode
// Execute Now: “Step 1 – Acquire Chip”

// Check result of re-acquire
If (!status) Return FAIL;
}
Else  // OPEN (CHIP_PROT_OPEN)
{
Params = (SROM_KEY1 << 0) +//KEY1
              ((SROM_KEY2+SROM_CMD_ERASE_ALL) << 8);//KEY2
            
       WriteIO( SRAM_PARAMS_BASE + 0x00, Params); //Write params in SRAM
       WriteIO( CPUSS_SYSARG, SRAM_PARAMS_BASE);  //Set location of parameters
       WriteIO( CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_ERASE_ALL); //Request SROM call
            
       status = PollSromStatus();
If (!status) Return FAIL;
}
Return PASS;
//-------------------------------------------------------------------------------

4.6 Step 4 – Checksum Privileged

After the user’s flash is erased, its checksum must be 0x00. However, the Checksum(All) API, which is used in “Step 9 – Ver-
ify Checksum” on page 31, also calculates the checksum of the privileged rows (not only the user rows). Therefore, it is nec-
essary to find the checksum of the privileged rows when all the user rows are erased. The result of this operation is needed 
only to calculate the proper checksum of the user’s flash in “Step 9 – Verify Checksum” on page 31. That checksum is calcu-
lated according to the following formula:

Checksum_User = Checksum_Step_9 – Checksum_Step_4

The result of this step must be used in “Step 9 – Verify Checksum” on page 31. A possible alternative solution to avoid this 
step is to calculate the checksum of each row individually and add them. However, this method takes much longer.

Pseudocode – Step 4. Checksum Privileged

//-------------------------------------------------------------------------------
Params = (SROM_KEY1 << 0) +//KEY1
        ((SROM_KEY2+SROM_CMD_CHECKSUM) << 8)+//KEY2
        ((0x0000 & 0x00FF) << 16) +//Row ID[7:0]
        ((0x8000 & 0xFF00) << 16);//Row ID[15:8] – Checksum All(0x8000)
        
WriteIO( CPUSS_SYSARG, Params); //Write params in CPUSS_SYSARG
WriteIO( CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_CHECKSUM); //Request SROM call

status = PollSromStatus();
if (!status) return FAIL;

//Read Checksum from CPUSS_SYSARG register
ReadIO(CPUSS_SYSARG, out checksum_all);

Checksum_Privileged = (checksum_all & 0x0FFFFFFF); //28-bit checksum
return PASS;
//-------------------------------------------------------------------------------
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4.7 Step 5 – Program Flash

Flash memory is programmed in rows. Each row is 256 bytes long. The programmer must serially program each row 
individually. The source data is extracted from the hex file starting from address 0x00000000 (see Figure 2-2 on page 8). The 
flash size and the row size are input parameters of this step. Note that the flash size of the acquired silicon must be equal to 
the size of the user’s code in the hex file, as verified in Step 2 by comparing the silicon IDs of the hex and the target. 
During programming, two SROM APIs are used: 

 SROM_CMD_LOAD_LATCH – Loads the flash row into the silicon’s volatile buffer.

 SROM_CMD_PROGRAM_ROW – Programs the row into flash (from the volatile buffer).

Figure 4-5 illustrates this programming algorithm.

Figure 4-5.  Flow Chart of the “Program Flash” Step
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Pseudocode – Step 5. Program Flash

//-------------------------------------------------------------------------------
// Flash Size must be provided.
RowSize = 256;
TotalRows = FlashSize / RowSize;
RowsPerMacro = 512;
//Program all flash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
    //1. Read Row data from hex
    RowHexAddress = RowSize * RowID;
    //Extract 256-byte row from the hex-file 
    //from address: “RowHexAddress” into buffer - “Data”.
    //HEX_ReadData() must be implemented by Programmer.
    Data = HEX_ReadData( RowHexAddress, RowSize );

    //2. Load Row to volatile buffer (latch)
    MacroID = floor ( RowID / RowsPerMacro ); //Round to largest previous integer

    Params1 = (SROM_KEY1 << 0) +//KEY1
        (SROM_KEY2 + SROM_CMD_LOAD_LATCH) << 8) +//KEY2
        (0x00 << 16);//Byte number in latch from what to write
        (MacroID << 24);       //Flash Macro ID (0 or 1)

    Params2 = (RowSize - 1); //Number of Bytes to load minus 1
    WriteIO(SRAM_PARAMS_BASE + 0x00, Params1);  //Write params in SRAM
    WriteIO(SRAM_PARAMS_BASE + 0x04, Params2); //Write params in SRAM

    // Put row data into SRAM buffer
    for (i = 0; i < RowSize; i += 4)
    {
        Params1 = (Data[i] << 0) + (Data[i + 1] << 8) + 
            Data[i + 2] << 16) + (Data[i + 3] << 24);
            WriteIO(SRAM_PARAMS_BASE + 0x08 + i, Params1);//Write params is SRAM
    }

    // Call "Load Latch" SROM API
    WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
    WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_LOAD_LATCH);//Request SROM operation

    Status = PollSromStatus();
    if (!Status) return FAIL;

    //3. Program Row - call SROM API
    Params =(SROM_KEY1 << 0) +     //KEY1
        ((SROM_KEY2+SROM_CMD_PROGRAM_ROW) << 8) +   //KEY2
        ((RowID & 0x00FF) <<  16) +    //ROW_ID_LOW[7:0]
        ((RowID & 0xFF00) << 16);    //ROW_ID_HIGH[9:8]

    WriteIO(SRAM_PARAMS_BASE+0x00, Params);     //Write params is SRAM
    WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE);    //Set location of parameters
    WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_PROGRAM_ROW);//Request SROM operation
                
    Status = PollSromStatus();
    if (!Status) return FAIL;
}
return PASS;
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4.8 Step 6 – Verify Flash

Because the checksum is verified eventually, this step is optional. It is recommended that it be kept in the programming flow 
for higher reliability. The checksum cannot completely guarantee that the content is written without errors. 

During verification, the programmer reads a row from flash and the corresponding data from the hex file and compares them. 
If any difference is found, the programmer must stop and return a failure. Each row must be considered.

Reading from the flash is achieved by direct access to the memory space of the CPU. No SROM API is required; simply read 
from the address range 0x00000000 – 0x0003FFFF.

Figure 4-6 illustrates the verification algorithm.

Figure 4-6.  Flow Chart of the “Verify Flash” Step
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Pseudocode – Step 6. Verify Flash. 

//-------------------------------------------------------------------------------
// Flash Size must be provided.
RowSize = 256;
TotalRows = FlashSize / RowSize;

//Read and Verify Flash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
//1. Read row from hex file
       RowAddress = rowSize * rowID; //liner address of row in flash
       //Extract 256-byte row from the hex file 
       //from address: “RowHexAddress” into buffer - “Data”.
//HEX_ReadData() must be implemented by Programmer.
hexData = HEX_ReadData( RowAddress, RowSize );

       //2. Read row from chip
       for (i = 0; i < RowSize; i += 4)
       {
//Read flash via AHB-interface
       ReadIO( RowAddress + i, out data32);
             chipData[i + 0] = (data32 >> 0) & 0xFF;
             chipData[i + 1] = (data32 >> 8) & 0xFF;
             chipData[i + 2] = (data32 >> 16) & 0xFF;
             chipData[i + 3] = (data32 >> 24) & 0xFF;
       }

       //3. Compare them
       for (i = 0; i < RowSize; i++)
       {
       if (chipData[i] != hexData[i]) return FAIL;
       }
}
return PASS;

4.9 Step 7 – Program Protection Settings

At this point, the programmer writes into the supervisory flash all protection data: row-level protection and chip-level protec-
tion. For more information, see Figure 2-1 on page 7.

The Target device can have two flash macros, each with its own supervisory rows to store the protection settings of the user’s 
rows. Each user row occupies one bit in the protection space: 0 means unprotected; 1 means protected. This provides write/
erase protection of the row. In the PROTECTED state, a row cannot be erased or written either by the firmware or by an 
external programmer. The protection setting can be reset only by the EraseAll() operation in Step 3, driven by the external 
programmer.

Chip-level protection is only 1 byte and is stored in the supervisory row of macro 0 where the flash protection data resides.

Figure 4-7 shows the algorithm of writing protection settings.
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Figure 4-7.  Flow Chart of the “Program Protection Settings” Step

 Pseudocode – Step 7. Program Protection Settings 

//-------------------------------------------------------------------------------
// Flash Size must be provided.
RowsPerMacro = 512;
ProtectionPerMacro = RowsPerMacro / 8;

TotalMacros = ceiling ( FlashSize / 131072 ); // round to smallest following integer
//1. Read Chip Level Protection from hex-file. It is 1 byte at address 0x90600000.
//HEX_ReadChipLevelProtection() must be implemented. 
ChipLevelProtection = HEX_ReadChipLevelProtection();

for (MacroID = 0; MacroID < TotalMacros; MacroID++)
{
//2. Read Protection settings of current macro from hex-file.
//It is located at address 0x9040 0000.
//HEX_ReadRowProtection() must be implemented by Programmer.

START

    RowsPerMacro  = 512
    ProtectionPerMacro = RowsPerMacro / 8
    TotalMacros = ceiling ( FlashSize / 131072 )

MacroID = 0

Read Chip Level Protection from Hex file. 
It is 1-byte at address 0x9060 0000

hexAddress = 0x9040 0000 + MacroID * 
ProtectionPerMacro

Read flash protection of current macro from hex-
file in Data array. It is “ProtectionPerMacro” bytes 

at address “hexAddress”.

Load macro’s protection into volatile latch of the 
silicon using SROM_CMD_LOAD_LATCH API.

Passed?

Program Flash Protection for current macro and 
Chip Level Protection (only for Macro 0). Use 
SROM_CMD_WRITE_PROTECTION API.

Passed?

MacroID ++

MacroID >= TotalMacros

Return PASS Return FAIL

YES

YES

YES

NO

NO

NO
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HexAddr = ProtectionPerMacro * MacroID;
Data = HEX_ReadRowProtection(HexAddr, ProtectionPerMacro);

//3. Load protection setting of current macro into volatile latch.
//This is same implementation as for “Program Flash” step.
//So this code can be moved into a separate routine – “LoadLatch(MacroID, Data)”. 
Params1 = (SROM_KEY1 << 0) +//KEY1
          ((SROM_KEY2 + SROM_CMD_LOAD_LATCH) << 8) +//KEY2
          (0x00 << 16)+ //Byte number in latch from what to write
          (MacroID << 24);//Flash Macro ID (0 or 1)
Params2 = (ProtectionPerMacro - 1); //Number of Bytes to load minus 1

WriteIO(SRAM_PARAMS_BASE + 0x00, Params1);  //Write params is SRAM
WriteIO(SRAM_PARAMS_BASE + 0x04, Params2); //Write params is SRAM

// Put row data into SRAM buffer
for (i = 0; i < ProtectionPerMacro; i += 4)
{
   Params1 = (Data[i] << 0) + (Data[i + 1] << 8) + 
             (Data[i + 2] << 16) + (Data[i + 3] << 24);
   WriteIO(SRAM_PARAMS_BASE + 0x08 + i, Params1);//Write params is SRAM
}

//  Call "Load Latch" SROM API
WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_LOAD_LATCH);//Request SROM operation
Status = PollSromStatus();
if (!Status) return FAIL;

//4. Program protection setting of current macro into supervisory row.
Params = (SROM_KEY1 << 0) +//KEY1
         ((SROM_KEY2 + SROM_CMD_WRITE_PROTECTION) << 8) +//KEY2
         (ChipLevelProtection << 16)+    //Applicable only for Macro 
         (Macro0 << 24);//Flash Macro

WriteIO(CPUSS_SYSARG, Params);                                            
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_WRITE_PROTECTION);

//Read status of the operation
Status = PollSromStatus();
if (!Status)) return FAIL;

return PASS;
//-------------------------------------------------------------------------------
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4.10 Step 8 – Verify Protection 
Settings

This step verifies the data that was written in Step 7. The 
point is to read back the details of flash protection and chip-
level protection from the silicon and compare this data with 
the corresponding data from the hex file. Although this step 
is optional, Cypress recommends that you implement it in 
the programmer.

Reading of the protection setting is carried out by direct 
access to the memory space of the CPU (via AHB). See 
Figure 2-1 on page 7 to find the address range of protection 
data. The programmer reads out the data in 4-byte words.

Note that when a chip-level protection byte is read from the 
silicon, it must be reviewed. This is because of the   inverted 
values of OPEN and VIRGIN modes written in the supervi-
sory rows (see Appendix A:Chip-Level Protection on page 
36). If VIRGIN mode is read from flash, then it must be con-
verted to OPEN mode; if OPEN mode is read from flash, it 
must be considered as VIRGIN mode. For KILL and PRO-
TECTED modes, no translation is necessary.

Figure 4-8.  Flow Chart of the “Verify Protection Settings” 
Step

START

    RowsPerMacro  = 512
    ProtectionPerMacro = RowsPerMacro / 8
    TotalMacros = ceiling ( FlashSize / 1310726 )

MacroID = 0
FlashProtectionAddress = 0x0FFF F000

Read flash protection of current macro. It is 
“ProtectionPerMacro” bytes from address 

“FlashProtectionAddress”.

Read flash protection of current macro from hex-
file. It is “ProtectionPerMacro” bytes 

from address “hexAddress”.

hexAddress = 0x9040 0000 + MacroID * 
ProtectionPerMacro

HexData == ChipData

FlashProtectionAddress += 0x800
MacroID ++

MacroID >= TotalMacros

Read Chip Level Protection from Hex file. 
It is 1-byte at address 0x9060 0000

YES

NO

YES

Return FAIL

Read ChipLevelProtection from chip:
ChipProt = ReadIO (0x0FFF F0FC)
ChipProt = (ChipProt >> 24) & 0x0F

If ChipProt is VIRGIN or OPEN then change it 
to OPEN or VIRGIN correspondingly

ChipProt == HexProt

Return PASS

YES

NO

NO
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Pseudocode – Step 8. Verify Protection Settings

//-------------------------------------------------------------------------------
// Flash Size must be provided.
RowsPerMacro = 512;
ProtectionPerMacro = RowsPerMacro / 8;

TotalMacros = ceiling ( FlashSize /131072 ); // round to smallest following integer65536
FlashProtectionAddress = SFLASH_MACRO_0; //0x0FFF F000

for (MacroID = 0; MacroID < TotalMacros; MacroID++; FlashProtectionAddress += 0x800)
{
//1. Read Protection settings of current macro from hex-file.
//It is located at address 0x9040 0000.
//HEX_ReadRowProtection() must be implemented.
HexAddr = ProtectionPerMacro * MacroID;
hexProt = HEX_ReadRowProtection(HexAddr, ProtectionPerMacro);

//2. Read Protection of current macro from silicon
for (i = 0; i < ProtectionPerMacro; i += 4)
{
    ReadIO(FlashProtectionAddress + i, out data32);
    flashProt[i + 0] = (data32 >> 0) & 0xFF;     
    flashProt[i + 1] = (data32 >> 8) & 0xFF;
    flashProt[i + 2] = (data32 >> 16) & 0xFF;
    flashProt[i + 3] = (data32 >> 24) & 0xFF;
}

//3. Compare hex and silicon’s data
for (i = 0; i < ProtectionPerMacro; i++ )
{
    If (hexProt[i] != flashProt[i]) return FAIL;
}

//4. Read Chip Level Protection from hex-file. It is 1 byte at address 0x90600000.
//HEX_ReadChipLevelProtection() must be implemented. 
Hex_ChipLevelProtection = HEX_ReadChipLevelProtection();

//5. Read Chip Level Protection from the silicon 
ReadIO(SFLASH_CPUSS_PROTECTION, out Chip_ChipLevelProtection);
Chip_ChipLevelProtection = (Chip_ChipLevelProtection >> 24) & 0x0F;

if (Chip_ChipLevelProtection == CHIP_PROT_VIRGIN) Chip_ChipLevelProtection = CHIP_PROT_OPEN;
else
if (Chip_ChipLevelProtection == CHIP_PROT_OPEN) Chip_ChipLevelProtection = CHIP_PROT_VIRGIN;

//6. Compare hex’s and silicon’s data 
if (Chip_ChipLevelProtection != Hex_ChipLevelProtection) return FAIL;

return PASS;
//-------------------------------------------------------------------------------
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4.11 Step 9 – Verify Checksum

This step validates the result of the flash programming process. It calculates the checksum of the user rows written in Step 5 
and compares this value with the 2-byte checksum from the hex file. The Checksum SROM API computes the checksum of 
the user and privileged rows. To find the checksum of only the user rows, it is necessary to subtract the checksum of the 
privileged rows found in Step 4. Figure 4-9 shows the final checksum algorithm. This is a mandatory step in the programming 
flow, although the checksum operation cannot completely guarantee that the data is written correctly. For this reason, the 
Verify Flash step is also recommended.

Figure 4-9.  Flow Chart of the “Verify Checksum” Step

START

   Call SROM_CMD_CHECKSUM for all flash 
                  (user+privileged rows). 
   Save result in variable “Step9_Checksum”.

Find checksum of user rows:
Chip_Checksum = 0xFFFF &

(Step9_Checksum – Step4_Checksum)

Read 2-byte checksum from hex-file 
located at address 0x9030 0000.

Chip_Checksum == 
Hex_Checksum

Return PASS

YES

Return FAIL

Passed?

YES

NO

NO
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Pseudocode – Step 9. Verify Checksum

//-------------------------------------------------------------------------------
// Checksum of Privileged rows must be taken from Step 4.
// SROM call here is identical to one Step 4, so it can be refactored into one subroutine.
// 1. SROM call - Checksum All
Params = (SROM_KEY1 << 0) +//KEY1
        ((SROM_KEY2+SROM_CMD_CHECKSUM) << 8)+//KEY2
        ((0x0000 & 0x00FF) << 16) +//Row ID[7:0]
        ((0x8000 & 0xFF00) << 16);//Row ID[15:8] - Checksum All(0x8000)
        
WriteIO( CPUSS_SYSARG, Params); //Write params in CPUSS_SYSARG
WriteIO( CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_CHECKSUM); //Request SROM call

status = PollSromStatus();
if (!status) return FAIL;

//Read Checksum from CPUSS_SYSARG register
ReadIO(CPUSS_SYSARG, out Checksum_all);

Checksum_All = (Checksum_All & 0x0FFFFFFF); //28-bit checksum

//2. Find 2-byte checksum of user rows, "Checksum_Privileged" is calculated in Step 4.
Chip_Checksum = (Checksum_All - Checksum_Privileged) & 0xFFFF; 

//3. Read 2-byte checksum of user code from hex-file
//   HEX_ReadChecksum() must be implemented by Programmer.
Hex_Checksum = HEX_ReadChecksum();

//4. Compare silicon's vs hex's checksum
if (Chip_Checksum != Hex_Checksum) return FAIL;

return PASS;
//-------------------------------------------------------------------------------

4.12 Step 10 - Program User SFlash (optional)

The Supervisory Flash of the Target device provides four rows in Macro 1 for application specific use. Every such row con-
sists of 256 bytes - same as other flash rows. Application can store here any information, but typically it is the Unique Blue-
tooth Address of the device. Length and format of the address is also application specific. During mass production vendor 
should define the rule which guarantees that every programmed part is assigned with the unique address.

This step is considered as optional - every application should determine if it needs this flash region and for which purpose. 
Also, User SFlash rows are not stored in the hex file, since this information is unique for each part (for most of applications).

Programming of User SFlash via SWD port is only available in silicon's OPEN mode. So, we have to execute this step some-
time after Erase All step, which guarantees that part is in OPEN mode. But, the recommendation is to execute it as the last 
step in the programming flow, since it's the non-hex flash region (optional). Alternatively, User Application can update this 
SFLash region whenever needed (CPU access via SROM APIs) - e.g. to store calibration data, non-volatile parameters, etc.

The User SFlash Rows are mapped onto CPUs address space in the range 0x0FFF F400 - 0x0FFF F7FF. So, user applica-
tion can read these rows directly from these addresses. 

Following SROM APIs are used in this step:

 SROM_CMD_LOAD_LATCH - Loads the flash row into the silicon's volatile buffer;

 SROM_CMD_WRITE_SFLASH_ROW - Program rows from volatile latch into User's Flash.
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Figure 4-10 illustrates User SFlash programming algorithm.

Figure 4-10.  Flow Chart of "Program User SFlash" Step

START

RowID = 0

Prepare Data for Current Row ID 
(256 bytes)

Write Data using such SROM APIs:
SROM_CMD_LOAD_LATCH,

SROM_CMD_WRITE_SFLASH_ROW

Passed?

YES

NO

RowID ++

RowID < 4
YES

RowID = 0

Read 256 bytes from SFlash Row’s 
Address: 0x0FFFF400 + RowID *256

Flash Row == Source Row

YES

NO

RowID ++

RowID < 4

NO

YES

Return PASS Return FAIL

NO
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Pseudocode. Step 10 - Program User SFlash 

//-------------------------------------------------------------------------------
// Flash Row Size, Number of Rows and Data to Program must be provided.
RowSize = 256;
TotalRows = 4;

//Program all User SFlash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
    //1. Prepare data for current row (256-byte)
    //Read it in the "Data" array .
    //SFlash_ReadSource() must return data for current SFlash row.
Data = SFlash_ReadSource( RowID, RowSize );

    //2. Load Row to volatile buffer (latch)
    MacroID = 0x00; //User SFLash rows are located only in Macro 0

    Params1 = (SROM_KEY1 << 0) +//KEY1
          ((SROM_KEY2 + SROM_CMD_LOAD_LATCH) << 8) +//KEY2
          (0x00 << 16)+//Byte number in latch from what to write
          (MacroID << 24);       //Flash Macro ID (0 or 1)

    Params2 = (RowSize - 1); //Number of Bytes to load minus 1

    WriteIO(SRAM_PARAMS_BASE + 0x00, Params1);  //Write params in SRAM
    WriteIO(SRAM_PARAMS_BASE + 0x04, Params2); //Write params in SRAM

    //  Put row data into SRAM buffer
    for (i = 0; i < RowSize; i += 4)
    {
       Params1 = (Data[i] << 0) + (Data[i + 1 ] << 8) + 
                 Data[i + 2] << 16) + (Data[i + 3] << 24);
       WriteIO(SRAM_PARAMS_BASE + 0x08 + i, Params1);//Write params is SRAM
    }

    //  Call "Load Latch" SROM API
    WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
    WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_LOAD_LATCH);//Request SROM operation

    Status = PollSromStatus();
    if (!Status) return FAIL;

    //3. Program User SFlash Row - call SROM API
       Params1 =(SROM_KEY1 << 0) +  //KEY1
               ((SROM_KEY2+SROM_CMD_WRITE_SFLASH_ROW) << 8)+ //KEY2

    Params2 = RowID  //Row ID of User SFlash

    WriteIO(SRAM_PARAMS_BASE+0x00, Params1); //Write params is SRAM
    WriteIO(SRAM_PARAMS_BASE+0x04, Params2); //Write params is SRAM

    WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE);    //Set location of parameters
    WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_WRITE_SFLASH_ROW); //Request SROM oper-
ation

    Status = PollSromStatus();
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    if (!Status) return FAIL;
}

//Verify all User SFlash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
    //1. Prepare Source data for current row (256-byte)
    sourceData = SFlash_ReadSource( RowID, RowSize );

    //2. Read row from chip
    RowAddress = 0x0FFFF200 + RowID * RowSize;

    for (i = 0; i < RowSize; i += 4)
    {
        //Read flash via AHB-interface
        ReadIO( RowAddress + i, out data32);
        chipData[i + 0] = (data32 >> 0) & 0xFF;
        chipData[i + 1] = (data32 >> 8) & 0xFF;
        chipData[i + 2] = (data32 >> 16) & 0xFF;
        chipData[i + 3] = (data32 >> 24) & 0xFF;
    }

    //3. Compare them
    for (i = 0; i < RowSize; i++)
       {
       if (chipData[i] != sourceData[i]) return FAIL;
       }
}

return PASS;
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Appendix A.   Chip-Level Protection
The difference between chip-level protection and row-level protection may not be obvious at first glance. Chip-level protection 
restricts access to the silicon’s resources by way of the SWD bus by the external programmer. However, it does not restrict 
anything for the firmware. If any resource is not accessible, the SWD transaction is NACKed. Row-level protection restricts 
the firmware and the external programmer from writing to the protected flash rows.

There are four states of chip-level protection into which the silicon can be moved: VIRGIN, OPEN, PROTECTED, KILL.

Table A-1.  States of Chip-Level Protection

The chip-level protection byte is located in the supervisory row of the macro at offset 0x7F. It can be programmed only when 
row-level protection is updated for the macro. The actual value of the OPEN state that is written into flash is 0x00 and not 
0x01, which is the real value in the hex file. For the VIRGIN and OPEN modes, the value saved in the supervisory row is 
inverted. This is done for one reason—to prevent accidental resets to the VIRGIN state during programming.

The EraseAll() operation clears a whole row, resetting every byte to 0. After the EraseAll() operation, which is the first opera-
tion targeting the flash during programming, the chip is left in the VIRGIN mode, which is not correct. It must be in OPEN 
mode even after the chip is reset. During startup, the boot code reads 0x00 from the supervisory row and translates it to 0x01 
before writing to the CPUSS_PROTECTION register, which defines the current mode for the CPU. The corresponding value 
of 0x01 from the supervisory row is translated to 0x00 (VIRGIN) for CPUSS_PROTECTION. PROTECTED and KILL modes 
are not changed by the boot code and are copied directly to the CPUSS_PROTECTION register. Specifically, the OPEN-VIR-
GIN modes swapped in flash must be considered during the verification operation, when the protection byte is read from the 
supervisory row and compared with the corresponding value from hex.

The chip has a special policy of changing the state of chip-level protection; this means that the possible new state is depen-
dent on the current protection state. See Figure A-1 on page 37 for possible transition paths.

Protection State
Value in Hex and 

CPUSS_PROTECTION
Value in Written 

Supervisory Row
Restrictions

VIRGIN 0x00 0x01

In this mode, the silicon is in post-fab (untrimmed state). After trimming, the 
silicon is moved into OPEN mode for customer. This mode is not for custom 
use. Customers are not physically prohibited from bringing parts back to the 
VIRGIN state, but they will be left with parts missing critical trim, wounding, 
and other settings from Cypress. This essentially makes the part unusable 
for the customer.

OPEN 0x01 0x00

In this mode, the silicon is shipped to customers. Most applications use this 
state in which an external debugger can access all the needed resources 
for full-functional debugging of the application. Flash, SRAM, supervisory 
flash, and registers are available via the DAP.

PROTECTED 0x02 0x02

In this mode, the silicon allows limited access via the DAP; it is enough to 
read the silicon ID and move the chip back to OPEN mode. Access to 
Flash, SRAM, and most of the registers is disabled, so SWD transactions 
are NACKed for master. This is true for read and write requests on the SWD 
bus.

KILL 0x04 0x04

KILL mode completely locks the SWD-pins from an external programmer. 
The firmware must be 100 percent operable without bugs because it can no 
longer be updated. If this mode is needed, then it is recommended that you 
enable it only for production programming of end-application.
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Figure A-1.  Chip-Level Protection State Diagram

The customer receives the device in the OPEN mode and can move it to OPEN, PROTECTED, or KILL. Moving to VIRGIN 
mode is discouraged because the part will be untrimmed and therefore not operable. From PROTECTED mote, the customer 
can move the part back to OPEN. There is no way to leave the KILL mode.

VIRGIN

OPEN -> KILL

Sets chip protection 
to PROTECTED or 
KILL and programs 
flash row-level 
protection data. 
(irreversible) 

PROTECTED -> OPEN

Erases all User Region 
flash. Sets chip 
protection to OPEN, 
sets flash row-level 
protection to 
unprotected.

OPEN

PROTECTED

KILL

OPEN -> VIRGIN

Erases all User & 
Privileged FLASH, and 
then erases all 
supervisory flash rows.

OPEN -> PROTECTED

Sets chip protection to 
PROTECTED or KILL and 
programs flash row-level 
protection data.

VIRGIN -> OPEN

Sets chip protection to OPEN, 
sets flash row-level protection to 
unprotected. Manufacturing must 
write the 64-bit key to Supervisory 
FLASH manually for this transition 
to take effect.

CYPRESS: Manufacturing

OPEN -> OPEN

Sets chip protection to 
OPEN and programs flash 
row-level protection data. 

CYPRESS: 
Programming
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Appendix B.   Intel Hex File Format
Intel hex file records are a text representation of hexadecimal-coded binary data. Only ASCII characters are used, so the for-
mat is portable across most computer platforms. Each line (record) of Intel hex file consists of six parts, as shown in 
Figure B-1.

Figure B-1.  Hex File Record Structure

Start code, one character - an ASCII colon ':'

 Byte count, two hex digits (1 byte) - specifies the num-
ber of bytes in the data field. 

 Address, four hex digits (2 bytes) - a 16-bit address of 
the beginning of the memory position for the data.

 Record type, two hex digits (00 to 05) - defines the type 
of the data field. The record types used in the hex file 
generated by Cypress are as follows.

 00 - Data record, which contains data and 16-bit 
address.

 01 - End of file record, which is a file termination 
record and has no data. This must be the last line of 
the file; only one is allowed for every file.

 04 - Extended linear address record, which allows 
full 32-bit addressing. The address field is 0000, the 
byte count is 02. The two data bytes represent the 
upper 16 bits of the 32-bit address, when combined 
with the lower 16-bit address of the 00 type record. 

 Data, a sequence of ‘n’ bytes of the data, represented by 
2n hex digits.

 Checksum, two hex digits (1 byte), which is the least 
significant byte of the two's complement of the sum of 
the values of all fields except fields 1 and 6 (start code ‘:’ 
byte and two hex digits of the checksum).

Examples for the different record types used in the hex file 
generated for CYBL10x7x device are as follows.

Consider that these three records are placed in consecutive 
lines of the hex file (chip-level protection and end of hex 
file).

:0200000490600A

:0100000002FD

:00000001ff

For the sake of readability, “record type” is highlighted in red 
and the 32-bit address of the chip-level protection is in blue.

The first record (:0200000490600A) is an extended linear 
address record as indicated by the value in the Record Type 
field (04). The address field is 0000, the byte count is 02. 
This means that there are two data bytes in this record. 
These data bytes (0x9060) specify the upper 16 bits of the 
32-bit address of data bytes. In this case, all the data 
records that follow this record are assumed to have their 
upper 16-bit address as 0x9060 (in other words, the base 
address is 0x90600000). 0A is the checksum byte for this 
record:

0x0A = 0x100 – (0x02+0x00+0x00+0x04+0x90+0x60).

The next record (:0100000002FD) is a data record, as 
indicated by the value in the Record Type field (00). The 
byte count is 01, meaning there is only one data byte in this 
record (02). The 32-bit starting address for these data bytes 
is at address 0x90600000. The upper 16-bit address 
(0x9060) is derived from the extended linear address record 
in the first line; the lower 16-bit address is specified in the 
address field of this record as 0000. FD is the checksum 
byte for this record.

The last record (:00000001FF) is the end-of-file record, as 
indicated by the value in the Record Type field (01). This is 
the last record of the hex file.

Note The data records of the following multibyte region in 
the hex file are in big-endian format (MSB in lower address): 
checksum data at address 0x9030 0000, metadata at 
address 0x9050 0000. The data records of the rest of the 
multibyte regions in the hex file are all in little-endian format 
(LSB in lower address).

Start Code(Colon 
Character)

Byte Count(1 byte) Address(2 bytes) Record Type(1 byte) Data(N bytes) Checksum(1 byte)
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Appendix C.   Serial Wire Debug (SWD) Protocol
The SWD protocol is a packet-based serial transaction pro-
tocol. At the pin level uses a single bidirectional data con-
nection (SWDIO) and a clock connection (SWDCK). The 
host programmer always drives the clock line, while either 
the programmer or the target device drives the data line. A 
complete data transfer (one SWD packet) requires 46 clocks 
and consists of three phases:

 Packet Request – The host programmer issues a 
request to the target device (silicon).

 Acknowledge Response – The target device (silicon) 
sends an acknowledgement to the host.

 Data Transfer Phase – The data transfer is either from 
the target to the host, following a read request (RDATA), 
or from the host to the target, following a write request 
(WDATA). This phase is only present when a packet 
request phase is followed by a valid (OK) acknowledge 
response.

Figure C-1 shows the timing diagrams of the read and write 
SWD packets.

Figure C-1.  Write and Read SWD Packet Timing Diagrams 
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a) Host Write Cycle – host sends data on the SWDIO line on falling edge of SWDCK and target will read that data on next SWDCK 
    rising edge (for example, 8-bit header data).

b) Host Read Cycle – target sends data on SWDIO line on rising edge of SWDCK and the Host should read that data on next
    SWDCK falling edge (for example, ACK phase (ACK[2:0]), Read Data (rdata[31:0]) ).

c) The Host should not driver the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, target 
     starts driving the ACK data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent 
     falling edge of SWDCK. The second TrN phase is 1.5 clock cycles as shown in figure above. Both target and host will not drive 
     the line during the entire second TrN phase (indicated as ‘z’). Host should start sending the Write data (wdata) on next falling 
     edge of SWDCK after second TrN phase.

Packet Request - Header Acknowledgement Data (32+1 bit)

Packet Request - Header Acknowledgement Data (32+1 bit)
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The SWD packet is transmitted in this sequence:

1. The start bit initiates a transfer; it is always logical ‘1’.

2. The APnDP bit determines whether the transfer is an AP 
access (indicated by ‘1’), or a DP access (indicated by 
‘0’).

3. The next bit is RnW, which is ‘1’ for read from the device 
or ‘0’ for a write to the device.

4. The ADDR bits (A[3:2]) are register select bits for the 
access port or debug port. See Table 3-2 on page 11 for 
register definition.

5. The parity bit contains the parity of APnDP, RnW, and 
ADDR bits. This is an even parity bit. If the number of 
logical 1s in this bits is odd, then the parity must be ‘1’, 
otherwise it is ‘0’.

If the parity bit is not correct, the target device ignores 
the header, and there is no ACK response. From the 
host standpoint, the programming operation should be 
aborted and retried by doing a device reset.

6. The stop bit is always logic ‘0’.

7. The park bit is always logic ‘1’ and should be driven high 
by the host.

8. The ACK bits are device-to-host response. Possible val-
ues are shown in Table C-1. Note that ACK in the current 
SWD transfer reflects the status of the previous transfer. 
OK ACK means that the previous packet was success-
ful. WAIT response requires a data phase, as explained 
in the following list. For a FAULT status, the program-
ming operation should be aborted immediately.

a. For a WAIT response, if the transaction is a read, the 
host should ignore the data read in the data phase. 
The target does not drive the line and the host must 
not check the parity bit as well.

b. For a WAIT response, if the transaction is a write, the 
data phase is ignored by the target device. However, 
the host must still send the data to be written from 
the standpoint of implementation. The parity data 
parity bit corresponding to the data should also be 
sent by the host.

c. For a WAIT response, it means that the target device 
is processing the previous transaction. The host can 
try for a maximum four continuous WAIT responses 
to see if an OK response is received. If it fails, then 
the programming operation should be aborted and 
retried.

d. For a FAULT response, the programming operation 
should be aborted and retried by doing a device 
reset.

 

Table C-1.  ACK Response for SWD Transfers

ACK[2:0] SWD

OK 001

WAIT 010

FAULT 100

NACK 111

9. The data phase includes a parity bit (even parity)

a. For a read packet, if the host detects a parity error, 
then it must abort the programming operation and try 
again.

b. For a write packet, if the target device detects a par-
ity error in the data sent by the host, it generates a 
FAULT ACK response in the next packet.

10. Turnaround (TrN) phase: There is a single-cycle turn-
around phase between the packet request and the ACK 
phases, as well as between the ACK and data phases 
for write transfers as shown in Figure C-1. According to 
the SWD protocol, both the host and the target use the 
TrN phase to change the drive modes on their respective 
SWDIO lines. During the first TrN phase after packet 
request, the target starts driving the ACK data on the 
SWDIO line on the rising edge of SWDCK in the TrN 
phase. This ensures that the host can read the ACK data 
on the next falling edge. Thus, the first TrN cycle lasts for 
only a half-cycle duration. The second TrN cycle of the 
SWD packet is one and one-half cycle long. Neither the 
host nor the target device should drive the SWDIO line 
during the TrN phase, as indicated by ‘z’ in Figure C-1.

11. The address, ACK, and read and write data are always 
transmitted LSB first.

12. According to the SWD protocol, the host can generate 
any number of SWD clock cycles between two packets 
with the SWDIO low. It is recommended that you gener-
ate several dummy clock cycles (three) between two 
packets or make clock free running in IDLE mode.

Note The SWD interface can be reset by clocking 50 or 
more cycles with the SWDIO kept high. To return to the idle 
state, SWDIO must be clocked low once.
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Appendix D.   Timing Specifications of the SWD Interface 
The external host should perform all read or write operations on the SWDIO line on the falling edge of SWDCK. The target 
device performs read or write operations on SWDIO on the rising edge of SWDCK.

Figure D-1.  SWD Interface Timing Diagram

Table D-1.  SWD Interface AC Specifications

Although the ARM specification does not define the minimum frequency of the SWD bus, the minimum for the Target family is 
1.5 MHz. It is only needed on the first step to acquire the silicon during the boot window. After that, the programming fre-
quency can be as low as needed.

Symbol Description Conditions Min Typ Max Units

f_SWDCK SWDCLK frequency 3.3 V  VDDD  5.0 V – – 14 MHz

1.71 V  VDDD  3.3 V – – 7 MHz

T_SWDI_setup SWDIO input setup 
before SWDCK high

T = 1 / f_SWDCK T/4 – – ns

T_SWDI_hold SWDIO input hold 
after SWDCK high

T = 1 / f_SWDCK T/4 – – ns

T_SWDO_valid SWDCK high to 
SWDIO output valid

T = 1 / f_SWDCK – – T/2 ns

T_SWDO_hold SWDIO output hold 
after SWDCK high

T = 1 / f_SWDCK 1 – – ns

SWDIO

SWDCK

SWDIO

 ( host writing, target reading )

 ( host reading, target writing )

T_ SWDI_ setup T_ SWDI_hold

T_ SWDO_valid T_ SWDO_hold

1/f_ SWDCK
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