
Programming Specifications

CYBL10x7x, CY8C4128_BL, CY8C4248_BL (256K),

CY8C4246_L, CY8C4247_L, CY8C4248_L

Programming Specifications

Document No. 001-96666 Rev. *C

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
www.cypress.com

www.cypress.com

Copyrights
Copyrights

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or refer-
enced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as spe-
cifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organi-
zation, and (b) to distribute the Softw1are in binary code form externally to end users (either directly or indirectly through
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents
that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the
Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without fur-
ther notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weap-
ons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-
RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.
Programming Specifications, Document No. 001-96666 Rev. *C 2

Contents
1. Introduction ..4

1.1 Programmer..4
1.2 Introduction to CYBL10x7x ...5

2. Required Data ...6
2.1 Hex File Origin ..6
2.2 Nonvolatile Subsystem ...6
2.3 Organization of the Hex File ...7

3. Communication Interface ..9
3.1 The Protocol Stack ...9
3.2 SWD Interface ..9
3.3 Hardware Access Commands ..10
3.4 Pseudocode..11
3.5 Physical Layer ..12

4. Programming Algorithm ...14

4.1 High-Level Programming Flow ...14
4.2 Subroutines Used in the Programming Flow ..15
4.3 Step 1 – Acquire Chip...17
4.4 Step 2 – Check Silicon ID ...20
4.5 Step 3 – Erase All Flash ...21
4.6 Step 4 – Checksum Privileged..22
4.7 Step 5 – Program Flash..23
4.8 Step 6 – Verify Flash ..25
4.9 Step 7 – Program Protection Settings ..26
4.10 Step 8 – Verify Protection Settings ...29
4.11 Step 9 – Verify Checksum ..31
4.12 Step 10 - Program User SFlash (optional)..32

Chip-Level Protection ... 36

Intel Hex File Format ... 38

Serial Wire Debug (SWD) Protocol .. 39

Timing Specifications of the SWD Interface ... 41
Programming Specifications, Document No. 001-96666 Rev. *C 3

1. Introduction
This programming specifications document gives the information necessary to program the nonvolatile memory of the
PSoC 4 BLE 256K and PSoC 4200-L devices. This specification describes the communication protocol required for access
by an external programmer, explains the programming algorithm, and gives the electrical specifications of the physical con-
nection. The programming algorithms described in the following sections are compatible for all devices mentioned in the title.
The document will use “Target” as the generic reference to all families mentioned in the title.

1.1 Programmer

A programmer is a hardware-software system that stores a binary program (hex file) in the device's program (flash) memory.
The programmer is an essential component of the engineer's prototyping environment or an integral element of the manufac-
turing environment (mass programming). Figure 1-1 illustrates a high-level view of the development environment.

Figure 1-1. Programmer in Development Environment

PROGRAMMER
SILICON

(CYBLE10x7x)

I D E
(PSoC Creator 3.x

or later)
HEX - File

Software HardwareMiddleware

SWD-bus

In the manufacturing environment, the integrated development environment (IDE) block is absent because its main purpose is
to produce a hex file. As shown in Figure 1-1, the programmer performs three functions:

 Parses the hex file and extracts the necessary information

 Interfaces with the silicon as a serial wire debug (SWD) master

 Implements the programming algorithm by translating the hex data into SWD signals

The structure of the programmer depends on its exploiting requirements. It can be software- or firmware-centric.

In a software-centric structure, the programmer's hardware works as a bridge between the protocol (such as USB) and SWD.
An external device (software) passes all SWD commands to the hardware through the protocol. The bridge is not involved in
parsing the hex file and programming algorithm. This is the task of the upper layer (software). Examples of such programmers
are the Cypress MiniProg3 and TrueTouchBridge.

A firmware-centric structure is an independent hardware design in which all the functions of the programmer are implemented
in one device, including storage for the hex file. Its main purpose is to act as a mass programmer in manufacturing.

This document does not include the specific implementation of the programmer. It focuses on data flow, algorithms, and phys-
ical interfacing. Specifically, it covers the following topics, which correspond to the three functions of the programmer:

 Data to be programmed

 Interface with the chip

 Algorithm used to program the target device
Programming Specifications, Document No. 001-96666 Rev. *C 4

Introduction
1.2 Target Family Overview

The target family is based on the ARM Cortex-M0 processor
core (48 MHz). This device family leverages the ARM debug
interface for programming and debugging operations. It sup-
ports only SWD programming protocols; it does not support
the JTAG interface.

The nonvolatile subsystem of the silicon consists of a flash
memory system with a maximum of up to 256 KB. The flash
memory system stores the user's program and silicon's pro-
tection information.

The part can be programmed after it is installed in the sys-
tem by way of the SWD interface (in-system programming).

The programming frequency ranges from 1.5 MHz to
14.0 MHz.

This document focuses on the specific programming opera-
tions without referencing the silicon architecture. Many
important topics are detailed in the appendices. Other
device-specific information can be found in the
PSoC4 BLE 256K datasheet (001-94624) and the
PSoC 4200-L datasheet (001-91686).

This document includes four appendices:

 Appendix A: Chip-Level Protection

 Appendix B. Intel Hex File Format

 Appendix C: Serial Wire Debug Protocol

 Appendix D: Timing Specifications of the SWD Interface

Document Revision History

Document Title: CYBL10x7x, CY8C4128_BL, CY8C4248_BL (256K), CY8C4246_L, CY8C4247_L, CY8C4248_L Program-
ming Specifications

Document Number: 001-96666

Revision Issue Date
Origin of
Change

Description of Change

** 03/12/2015 ANDI New specification

*A 05/19/2015 ANDI
Added support for PSoC 4200-L family devices.

Added “Target” as a generic reference to all families mentioned in this document.

*B 08/30/2016 STPP
Removed “SROM_CMD_SET_IMO_48_MHz” from the Table 4.1.

Removed IMO setting for 48 MHz from “Pseudocode - Step1. Acquire Chip”.

*C 05/03/2017 AESATMP8 Updated logo and Copyright.
Programming Specifications, Document No. 001-96666 Rev. *C 5

2. Required Data
This chapter describes the information that the programmer must extract from the hex file to program the Target silicon.

2.1 Hex File Origin

Customers will use PSoC Creator to develop their projects. After development is completed, the nonvolatile configuration of
the silicon is saved in the file. Only three records in this file actually target the flash memory:

 User’s program (code)

 Flash row-level protection

 Chip-level protection

Other records are auxiliary and are used to keep the integrity of the programming flow.

2.2 Nonvolatile Subsystem

The flash memo is organized into two macros of 128 KB each. There are 512 rows in the macro, each consisting of 256 bytes.
The programming granularity is one row at a time.

In addition to the users' rows, the flash macros contain supervisory rows, which store:

 Row-level protection bits

 Chip-level protection byte (only in macro 1)

 Application-specific Information (up to four rows and only in macro 1) - User Supervisory Flash (SFlash)
Programming Specifications, Document No. 001-96666 Rev. *C 6

Required Data
Figure 2-1. Nonvolatile Subsystem

User SFlash rows can be used by the application to store
arbitrary data. However, the primary intent is to store the
Unique Bluetooth Address of the device. Since these rows
are not part of the hex file, their programming is optional.
During mass production, a vendor should define the process
to guarantee for each device the uniqueness of the pro-
grammed Bluetooth address.

For the User Flash, the maximum number of rows is taken
into account during programming and it depends only on the
part's flash size. The formulae are as follows:

L 256= – row size in bytes

 – total number of rows

 – total number of macros

The flash memory is mapped directly to the CPU’s address
space starting from 0x00000000. Therefore, the firmware or
external programmer can read its content directly from the
given address.

The flash row-level protection is a feature to write-protect
the user’s flash with a granularity of one row. The flash row-
level protection settings prevent rows from being written but
do not prevent a row’s data from being read.

Each user’s row in the macro is associated with one protec-
tion bit. For this reason, the maximum number of protection

bits for each macro is 512. The corresponding number of
bytes per macro is calculated as follows:

– bytes per macro.

A bit value of 0 means that the row is unprotected and a
value of 1 means the row is protected.

The last type of nonvolatile information in flash is chip-level
protection. This consists of one byte that restricts access to
the chip’s resources (register, SRAM, and flash) by an exter-
nal programmer or debugger. For example, in PROTECTED
mode, the programmer cannot read or write either flash or
SRAM; in KILL mode, the SWD interface is locked in silicon
and the chip cannot be reprogrammed. The chip-level pro-
tection setting is programmed along with the flash row-level
protection into the supervisory row of the “macro” (see
Figure 2-1 on page 7). Its offset in the supervisory row is
0x7F. For more information about chip-level protection, see
Appendix A: Chip-Level Protection on page 36.

2.3 Organization of the Hex File

The hexadecimal (hex) file is a medium to describe the non-
volatile configuration of the project. It is the data source for
the programmer.

The hex file for the Target family follows the Intel Hex File
format. Intel’s specification is very generic and defines only
some types of records that can make up the hex file. The

R o w 0

R o w 1

R o w 5 1 1

2 5 6 b y te s

M a c ro 1

0 x0 0 0 0 0 0 0 0

0 x0 0 0 0 0 1 0 0

0 x 0 0 0 1 F F 0 0

0 x 0 F F F F 0 0 0

F la s h R o w s
P ro te c tio n

C h ip L e v e l
P ro te c tio n (1 b y te)

0 xF F0 x 3 F

R o w 0

R o w 1

R o w 5 1 1

2 5 6 b y te s

M a c ro 2

0 x 0 0 0 2 0 0 0 0

0 x 0 0 0 2 0 1 0 0

0 x 0 0 0 3 F F 0 0

0 x 0 F F F F 8 0 0

F la s h R o w s
P ro te c tio n

S
up

er
vi

so
ry

 R
o

w
s

0 x 3 F

0 x 0 F F F F 4 0 0 R o w 0
0 x 0 F F F F 5 0 0 R o w 1
0 x 0 F F F F 6 0 0 R o w 2
0 x 0 F F F F 7 0 0 R o w 3 U

se
r

S
F

la
sh

R
ow

s

N FlashSize
L

--------------------------=

K N
512
---------=

ProtectionSize 512
8
--------- 64= =
Programming Specifications, Document No. 001-96666 Rev. *C 7

Required Data
specification allows customizing the format for any possible
silicon architecture. The silicon vendor defines the functional
meaning of the records, which typically varies for different
chip families. See Appendix B: Intel Hex File Format on
page 38 for details of the Intel Hex File format.

The Target family defines five types of data sections in the
hex file: user flash, checksum, flash protection, metadata,
and chip-level protection. See Figure 2-2 to determine the
allocation of these sections in the address space of the Intel
hex file.

The address space of the hex file does not map to the phys-
ical addresses of the CPU (other than the user’s flash, which
is an unintentional coincidence). The programmer uses hex
addresses (see Figure 2-2) to read sections from the hex file
into its local buffer. Later, this data is programmed (trans-
lated) into the corresponding addresses of the silicon.

Figure 2-2. Hex File Organization for Target Family

0x0000 0000 – User’s Flash (256 KB): This is the user’s
program (code) that must be programmed. The size of this
section matches the flash size of the target part. The pro-
grammer can either read all of this section at once or gradu-
ally by 256-byte blocks. The programming of the flash is
carried out on the row on the basis of 128 bytes for each
request.

0x9030 0000 – Checksum (2 bytes): This is the checksum
of the entire user flash section—the arithmetical sum of
every byte in the user’s flash. Only two least significant
bytes (LSB) of the result are saved in this section, in big-
endian format (most significant byte (MSB) first). This must
be used by the programmer to check the integrity of the hex
file and to verify the quality of the programming. In this con-
text, “integrity” means that the checksum and user’s flash

sections must be correlated in this file. At the end of pro-
gramming, the checksum of flash (two LSBs) is compared to
the checksum from the hex file.

0x9040 0000 – Flash Protection (128 bytes): This data is
programmed into supervisory rows of the flash macros (see
Figure 2-1 on page 7). Every bit defines the write-protection
setting for the corresponding user row. The number of bytes
to be read from this section depends on the flash size.

Protection Size = Flash Size / Row Size / 8

Therefore, for a 256-KB part, flash protection consists of 128
bytes.

0x9060 0000 – Chip-level Protection (1 byte): This section
represents chip-level protection of the programmed part
(see Figure 2-1 on page 7). For more information, see
Appendix A: Chip-Level Protection on page 36.

0x9050 0000 – Metadata (12 bytes): This section contains
data that is not programmed into the target device. Instead,
it is used to check data integrity of the hex file and the silicon
ID of the target device. Table 2-1 lists the fields in this sec-
tion.

Table 2-1. Meta Data in Hex File

Offset Data Type Length in Bytes

0x00 Hex file version 2 (big-endian)

0x02 Silicon ID 4 (big-endian)

0x06 Reserved 1

0x07 Reserved 1

0x08 Internal use 4

 Hex file version: This 2-byte field in Cypress’s hex file
defines its version (or type). The version for the Target
family is “2”. The programmer should use this field to
make sure this file corresponds to the Target device, or
to select the appropriate parsing algorithm if the file sup-
ports several families.

 Silicon ID: This 4-byte field represents the ID of the tar-
get silicon. During programming, the ID of the acquired
device is compared with the content of this field. To start
programming, these fields must match. Cypress does
not guarantee reliable programming (or data retention) if
third-party programmers ignore this condition.

 Reserved: Not used by the Target family.

 Internal Use: This 4-byte field is used internally by the
PSoC Programmer software. Because it is not related to
actual programming, this field should be ignored by
third-party vendors.

0x0000 0000 256 KB

0x9030 0000 2 bytes

0x9040 0000 128 bytes

0x9050 0000 12 bytes

0x9060 0000 1 byte

0xFFFF FFFF

User’s Flash
(program)

Checksum

Flash Protection
(of user’s rows)

Metadata

Chip Level
Protection

N Bytes- unused space - populated space
Programming Specifications, Document No. 001-96666 Rev. *C 8

3. Communication Interface
This chapter explains the low-level details of the communi-
cation interface.

3.1 The Protocol Stack

Figure 3-1 illustrates the stack of protocols involved in the
programming process. The programmer must implement
both hardware and software components.

Figure 3-1. Programmer’s Protocol Stack

Programming Algorithm
(Step 1 … Step N)

SWD – Interface
(Hardware Access Commands)

Physical Layer
(Signals, interfacing with chip)

SWD Read / Write

Logical SWD-signal

Signals on the Line

The Programming Algorithm protocol, the topmost protocol,
implements the whole programming flow in terms of atomic
SWD commands. It is the most solid and fundamental part
of this specification. For more information on this algorithm,
see Chapter 4: Programming Algorithm on page 14.

The SWD Interface and physical layer are the lower layer
protocols. Note that the physical layer is the complete hard-
ware specification of the signals and interfacing pins, and
includes drive modes, voltage levels, resistance, and other
components. Upper protocols are logical and algorithmic
levels.

The purpose of the SWD interface layer is to act as a bridge
between pure software and hardware implementations. The
Programming Algorithm protocol is implemented completely
in software; its smallest building block is the SWD com-
mand. The whole programming algorithm is the meaningful
flow of these blocks. The SWD interface helps to isolate the
programming algorithm from hardware specifics, which
makes the algorithm reusable. The SWD interface must
transform the software representation of these commands
into line signals (digital form).

3.2 SWD Interface

The SWD interface uses the SWD protocol developed by
ARM. The Target silicon integrates the standard Cortex-M0
debug access port (DAP) block provided by ARM. There-
fore, it complies with the ARM specification ARM Debug
Interface v5. Architecture Specification. The CYBKE10x6x
silicon does not support the JTAG interface.

Figure 3-2 on page 10 shows the top-level architecture of
the silicon. It includes the debug interface, CPU subsystem,
memory, and periphery. The standard ARM modules are
outlined in red. The following acronyms are used in this fig-
ure:

 HSIOM – High-speed I/O matrix

 DAP – Debug access port

 AHB – Advanced high-performance bus

 SPC – System performance controller
Programming Specifications, Document No. 001-96666 Rev. *C 9

Communication Interface
Figure 3-2. Top-Level Silicon Architecture

The SWD interface (ARM) defines only two digital pins to
communicate with an external programmer or a debugger.
The SWDCK and SWDIO pins are sufficient for bidirectional,
semi-duplex data exchange.

Only three types of SWD commands can appear on the bus:
Read, Write, and Line Reset. The Line Reset command is
used only once during programming to establish a connec-
tion with the device. The Read and Write commands com-
pose the rest of the programming flow.

The programmer can access most resources of the silicon
through the SWD interface. All programming algorithms are
stored in SROM; the external programmer uses its system
APIs to program the flash. During programming of the flash
row, the system code is executed from the SROM. It com-
municates with the SPC module, which “knows” how to pro-
gram flash. In contrast to a write operation, reading from
flash is an immediate operation that is carried out directly
from the necessary address (see Figure 2-1 on page 7 for
address space). Reading works on a word basis (4-byte);
writing works on a row basis (256-byte).

The typical operation of the programmer is to load all neces-
sary parameters into the SRAM (I/O registers) and request a
system call from the SROM. Only the SWD Read and Write
commands perform this task.

3.3 Hardware Access
Commands

The Cortex-M0 DAP module, shown in Figure 3-2, supports
three types of transactions: Read, Write, and Line Reset. All
are defined in the ARM specification. The APIs must be
implemented by the SWD Interface layer shown in
Figure 3-1 on page 9. In addition, the upper protocol, Pro-
gramming Algorithm, requires two extra commands to
manipulate the hardware: Power(state) and ToggleReset().
Table 3-1 lists the hardware access commands used by the
software layer.

Table 3-1. Hardware Access Commands

Command Parameters Description

SWD_LineReset

Standard ARM command to reset the debug port (DAP). It consists of at least 50 clock
cycles with data = 1, that is, with the SWDIO asserted HIGH by the programmer. Transac-
tion must be completed at least by 1 clock with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and chip; it is a first transaction in programming flow.

SWD_Write
IN APnDP, IN addr, IN data32,

OUT ack
Sends a 32-bit data to the specified register of the DAP. The register is defined by the
“APnDP” (1 bit) and “addr”(2 bits) parameters. The DAP returns a 3-bit status in “ack”.

SWD_Read
IN APnDP, IN addr,

OUT data32, OUT ack, OUT parity

Reads a 32-bit data from the specified register of the DAP. The register is defined by the
“APnDP” (1 bit) and “addr” (2 bits) parameters. DAP returns a 32-bit data, status, and par-
ity (control) bit of the read 32-bit word.

ToggleReset
Generates the reset signal for target device. The programmer must have a dedicated pin
connected to the XRES pin of the target device.

Power IN state
If the programmer powers the target device, it must have this function to supply power to
the device.

H
S

IO
M

Cortex M0 DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex M0 CPU

AHB DAP
AHB

ARM’s subsystem

AHB

S
P

C
 In

te
rf

a
ceFlash

SRAM SROM

Peripheral Modules

AHB
Programming Specifications, Document No. 001-96666 Rev. *C 10

Communication Interface
For information on the structure of the SWD read and write
packets and their waveform on the bus, see Appendix C:
Serial Wire Debug (SWD) Protocol on page 39.

The SWD_Read and SWD_Write commands allow access-
ing registers of the Cortex-M0 DAP module from Figure 3-2
on page 10. The DAP functionally is split into two control
units:

 Debug Port (DP) – Is responsible for the physical con-
nection to the programmer or debugger.

 Access Port (AP) – Provides the interface between the
DAP module and one or more debug components (such
as the Cortex-M0 CPU).

The external programmer can access the registers of these
access ports using the following bits in the SWD packet:

 APnDP – Select access port (0 – DP, 1 - AP).

 ADDR – 2-bit field addressing a register in the selected
access port

The SWD_Read and SWD_Write commands are used to
access these registers. They are the smallest transactions
that can appear on the SWD bus. Table 3-2 shows the DAP
registers that are used during programming.

Table 3-2. DAP Registers (in ARM notation)

For more information about these registers, see the ARM Debug Interface v5. Architecture Specification.

3.4 Pseudocode
This document uses easy-to-read pseudocode to show the programming algorithm. The following two commands are used
for the programming script:

Write_DAP (Register, Data32)
Read_DAP (Register, OUT Data32)

Where the Register parameter is an AP/DP register defined by APnDP and address bits (see Table 3-2). The pseudocom-
mands correspond to read or write SWD transactions. Following are some examples:

Write_DAP(TAR, 0x20000000)
Write_DAP(DRW, 0x12345678)
Read_DAP (IDCODE, OUT swd_id)

The Register parameter technically can be represented as the structure in C:
struct DAP_Register
{
BYTE APnDP; // 1-bit field
BYTE Addr; // 2-bit field
};

Then, DAP registers will be defined as:
DAP_Register TAR = { 1, 1 },
 DRW = { 1, 3 },
 IDCODE= { 0, 0 };

The defined Write and Read pseudocommands must be successful if both return the ACK status of the SWD transaction. For
the Read transaction, the parity bit must be taken into account (corresponds to read data32 value). If the status of the trans-

Register APnDP (1 bit) Address (2-bit) Access (R/W) Full Name

IDCODE 0 2’b00 R Identification Code Register

CTRL/STAT 0 2’b01 R/W Control/Status Register

SELECT 0 2’b10 W AP Select Register

CSW 1 2’b00 R/W Control Status/Word Register (CSW)

TAR 1 2’b01 R/W Transfer Address Register

DRW 1 2’b11 R/W Data Read/Write Register
Programming Specifications, Document No. 001-96666 Rev. *C 11

Communication Interface
action, the parity bit, or both is incorrect, the transaction must be considered to have failed. In this case, depending on the
programming context, programming must terminate or the transaction must be tried again.

The implementation of Write and Read pseudocommands based on the hardware access commands SWD_Read and
SWD_Write (Table 3-1 on page 10) is as follows.

SWD_Status Write_DAP (Register, data32) {
 SWD_Write (Register.APnDP, Register.Addr, data32, OUT ack);
 Return ack;
}

SWD_Status Read_DAP (Register, OUT data32){
 SWD_Read (Register.APnDP, Register.Addr, OUT data32, OUT ack, OUT parity);
 If (ack == 3’b001){ //ACK, then check also the parity bit
 Parity_data32 = 0x00;
 For (i=0; i<32; i++) Parity_data32 ^= ((data32 >> i) & 0x01);
 If (Parity_data32 != parity) ack = 3’b111; //NACK
 }
 Return ack;
}

The programming code in Chapter 4: Programming Algorithm on page 14 is based mostly on the Write and Read pseudo-
commands and some commands in Table 3-1 on page 10.

3.5 Physical Layer

This section describes the hardware connections between the programmer and the target device for programming. It shows
the connection schematic and gives information on electrical specifications. Check the device datasheet for the actual loca-
tion of SWD/Power pins on the part's package.

Check the device datasheet for the actual location of SWD/Power pins on the part's package. The generic connection
between the target and programmer is shown in Figure 3-3.

Figure 3-3. Connection Schematic of Programmer

Only five pins are required to communicate with the chip.
Note that the SWDCLK and SWDIO pins are only required
by the SWD protocol. The silicon requires an additional
XRES pin that is not related to the ARM standard. It is used
to reset the part as a first step in a programming flow.

You can program a chip in either Reset or Power Cycle
mode. The mode defines only the first step—how to reset
the part—in the programming flow. The rest of the steps are
identical (SWD traffic).

Host
Programmer

TARGET

VDD VDDD

SWDCLK

XRES

SWDIO

GND

SWDCLK

XRES

SWDIO

VDD

GND

VSS

3.0 V

VCCD

VDDA

VDDIO
Programming Specifications, Document No. 001-96666 Rev. *C 12

Communication Interface
 Reset mode: To start programming, the host toggles the
XRES line and then sends SWD commands (see
Table 3-1 on page 10). The power on the target board
can be supplied by the host or by an external power
adapter (the VDD line can be optional).

 Power Cycle mode: To start programming, the host
powers on the target and then starts sending the SWD
commands. The XRES line is not used.

It is recommended that the programmer uses all five pins
and supports at least Reset mode programming. The Power
Cycle mode support is optional.

Table 3-3. Programming Mode

Table 3-4. Target Pin Names and Requirements

The SWD timing specifications are described in the datasheet (001-94624 or 001-91686).

.

Mode Necessary Pins Unused Pins Use Cases

Reset

VDD (optional)

GND

XRES

SWDCLK

SWDIO

VDD (if self-powered)

The board can be self-powered (VDD is not needed).

The board consumes too much current, which the programmer cannot supply
(VDD is not needed).

The 5-pin case: The host supplies power and toggles XRES (this is the most pop-
ular programming method).

Power Cycle

VDD

GND

SWDCLK

SWDIO

XRES

The only use case: The XRES pin is not available on the part’s package, so
Power Cycle mode is the only way to reset a part.

This is not applicable to the CYBL10x7x family, in which every package has an
XRES pin. For this reason, Reset is the recommended mode.

Some third-party SWD masters can use this mode if they do not implement the
XRES line but can supply power (power on/off).

Target Pin Name Function External Programmer Drive Modes

VDDD

Digital power supply
Input

(1.71 V–5.5 V)
Positive voltage – powered by external power supply or by programmer.

VSS Power supply return Low resistance ground connection. Connect to circuit ground.

XRES
External active low
reset input.

Output: Drive CMOS levels

SWDCLK
SWD clock input

(1.5 MHz–14 MHz)
Output: Drive CMOS levels

SWDIO
SWD data line - bidirec-
tional

Output: Drive CMOS levels

Input: Read CMOS levels in HI-Z mode

VDDA
Analog power supply
input (1.71 V–5.5 V)

Depending on the board configuration, this power can be supplied from a VDDD source, which must be in
the range 1.9 V–5.5 V. If it is lower, then a separate voltage source is required for analog circuits. Depend-
ing on the board's configuration, this power can be supplied from a VDDD source or own analog power sup-
ply.

Check the silicon's datasheet for exact power pins configuration. For example, for the BLE family VDDA can
be powered from VDDD if it is in range of 1.9 V–5.5 V (if VDDD is lower, then own VDDA source is required).

VDDIO I/O pins power supply Available only for PSoC 4200-L series. Typically connected to VDDD (application-specific).
Programming Specifications, Document No. 001-96666 Rev. *C 13

4. Programming Algorithm
This chapter describes in detail the programming flow of the
Target device. It starts with a high-level description of the
algorithm and then describes every step using pseudocode.
All code is based on upper-level subroutines composed of
atomic SWD instructions (see “Pseudocode” on page 11).
These subroutines are defined in “Subroutines Used in the
Programming Flow” on page 15. The ToggleReset() and
Power() commands are also used (see Table 3-1 on
page 10).

4.1 High-Level Programming
Flow

Figure 4-1 shows the sequence of steps that must be exe-
cuted to program the Target device. These steps are
described in detail in the following sections. All the steps in
this programming flow must be completed successfully for a
successful programming operation. The programmer should
stop the programming flow if any step fails. In addition, in
pseudocode, it is assumed that the programmer checks the
status of each SWD transaction (Write_DAP, Read_DAP,
WriteIO, ReadIO). This extra code is not shown in the pro-
gramming script. If any of these transactions fails, then pro-
gramming must be aborted.

Flash programming in the Target family is implemented
using the SROM APIs. The external programmer puts the
parameters into the SRAM (or registers) and requests sys-
tem calls, which in turn perform flash updates.

Figure 4-1. High-Level Programming Flow of Target Device

Step 1. Acquire Chip

Step 3. Erase All Flash

Step 4. Checksum Privileged

Step 5. Program Flash

Step 6. Verify Flash

Step 7. Program Protection Settings

Step 8. Verify Protection Settings

Step 9. Verify Checksum

START

FINISH

Step 2. Check Silicon ID

Step 10. Program User SFlash
(optional)
Programming Specifications, Document No. 001-96666 Rev. *C 14

Programming Algorithm
4.2 Subroutines Used in the Programming Flow

The programming flow includes some operations that are used in all steps. Eventually, the programming code will look com-
pact and easy to read and understand. Besides that, most of the registers and frequently used constants are named and
referred from the pseudocode.

Table 4-1. Constants Used in the Programming Script

Table 4-2. Subroutines Used in Programming Flow

Constant Name Value Description

Address Space of CPU

CPUSS_SYSREQ 0x40100004
System request register used to make system requests to SROM code; system requests
transition from User mode to Privileged mode

CPUSS_SYSARG 0x40100008 System request argument register used to make system requests to SROM code

TEST_MODE 0x40030014 Test mode control register used to enter the chip into Programming mode (Test mode)

SRAM_PARAMS_BASE 0x20000100 SRAM address where the parameters for SROM requests will be stored.

SFLASH_MACRO_0 0x0FFFF000 Location of the flash protection settings in the flash macro 0.

SFLASH_MACRO_1 0x0FFFF800 Location of the flash protection settings in the flash macro 1.

SFLASH_CPUSS_PROTECTION 0x0FFFF0FC
Location of chip-level protection in the flash macro (actual byte located at 0x0FFFF0CF,
but must read whole 32-bit word).

SROM Constants

SROM_KEY1 0xB6 Parameter of SROM call

SROM_KEY2 0xD3 Parameter of SROM call

SROM_SYSREQ_BIT 0x80000000
Mask of SYSREQ bit in CPUSS_SYSREQ register, which starts the execution of the
SROM command

SROM_PRIVILEGED_BIT 0x10000000
Mask of PRIVILEGED bit in CPUSS_SYSREQ register, which indicates whether the sys-
tem is in Privileged mode (SROM command running) or User mode.

SROM_STATUS_SUCCEEDED 0xA0000000 Successful status of the system request (SROM command).

SROM_STATUS_FAILED 0xF0000000 Fail status of the system request (SROM command).

SROM Requests

SROM_CMD_GET_SILICON_ID 0x00 Reads the silicon ID of the target device.

SROM_CMD_LOAD_LATCH 0x04 Loads data into the volatile buffer (before writing into flash).

SROM_CMD_PROGRAM_ROW 0x06 Programs data into the flash row (from the volatile buffer).

SROM_CMD_ERASE_ALL 0x0A Erases all the user's flash and flash protection settings from the supervisory rows

SROM_CMD_CHECKSUM 0x0B Verifies the checksums of all flash contents (user and privileged rows)

SROM_CMD_WRITE_PROTECTION 0x0D Writes flash protection and chip-level protection

SROM_CMD_WRITE_SFLASH_ROW 0x18 Writes User SFlash Row. Valid row range is [0..3].

Chip -Level Protection

CHIP_PROT_VIRGIN 0x00 VIRGIN mode, used by Cypress only.

CHIP_PROT_OPEN 0x01 OPEN mode in which the chip is shipped to customers

CHIP_PROT_PROTECTED 0x02 PROTECTED mode, which can be set by the customer

CHIP_PROT_KILL 0x04 KILL mode, which can be set by the customer (irreversible)

Subroutine Description

bool WriteIO(addr32, data32)
Writes a 32-bit data into the specified address of the CPU address space.

Returns "true" if all SWD transactions succeeded (ACKed).

bool ReadIO(addr32, OUT data 32)

Reads a 32-bit data from the specified address of the CPU address space. Note that the actual size of the read
data (8, 16, 32 bits) depends on the setting in the CSW register of DAP (see Table 3-2). By default, all accesses
are 32 bits long.

Returns "true" if all SWD transactions succeeded (ACKed).

bool PollSROMStatus()
Waits until the SROM command is completed and then checks its status. Timeout is 1 second. Returns "true" (suc-
cess) if the command is completed and its status is successful; otherwise, returns "false".
Programming Specifications, Document No. 001-96666 Rev. *C 15

Programming Algorithm
The implementation of these subroutines follows. It is based on the pseudocode and registers defined in “Hardware Access
Commands” on page 10 and “Pseudocode” on page 11. It uses the constants defined in this chapter.

The pseudocode is similar to C-style notation.
 // WriteIO Subroutine
bool “WriteIO” (addr32, data32)
{
ack1 = Write_DAP (TAR, addr32);
ack2 = Write_DAP (DRW, data32);
return (ack1 == 3’b001) && (ack2 == 3b’001);
}

// “ReadIO” Subroutine
bool ReadIO (addr32, OUT data32)
{
ack1 = Write_DAP (TAR, addr32);
ack2 = Read_DAP (DRW, OUT data32);
ack3 = Read_DAP (DRW, OUT data32);
return (ack1 == 3’b001) && (ack2 == 3b’001) && (ack3 == 3b’001);
}

// “PollSROMStatus” Subroutine
bool PollSROMStatus()
{
do{
ReadIO (CPUSS_SYSREQ, OUT status);
Status &= (SROM_SYSREQ_BIT | SROM_PRIVILEGED_BIT);
}while ((status != 0) && (time_elapsed < 1 sec));

if (time_elapsed >= 1 sec) return false; // timeout

ReadIO (CPUSS_SYSARG, OUT statusCode);
if ((statusCode & 0xF0000000) != (SROM_STATUS_SUCCEEDED));
return false; // SROM command failed
else
return true; // SROM command succeeded

}

Programming Specifications, Document No. 001-96666 Rev. *C 16

Programming Algorithm
4.3 Step 1 – Acquire Chip

The first step in programming the Target device is to enter it into Test mode (or Programming mode). This is a special mode
in which the CPU is controlled by the external programmer, which also can access other system resources such as SRAM
and registers. This step has strict timing requirements that the host must meet to enter Test mode successfully. Figure 4-2
shows the timing diagram of entering Test mode.

Figure 4-2. Timing Diagram of Entering Test Mode

This diagram details the chip’s internal signals while enter-
ing Test mode. Everything starts from toggling the XRES line
(or applying power), so the chip enters Internal Reset mode.
After that, the system boot code starts execution from the
SROM. When completed, the CPU waits during a 400-µs
time frame for a special connection sequence on the SWD
port. If, during this time, the host sends the correct
sequence of SWD commands, the CPU enters Test mode.
Otherwise, it starts the execution of the user’s code.

The times of internal reset (<1 ms) and boot code (<100 µs)
are not specified exactly. Because they depend on the CPU
clock and the size of the code, they can vary in different revi-
sions of the chip.

In this case, the recommended way to enter Test mode is to
start sending an acquire sequence right after XRES is tog-
gled (or power is supplied in Power Cycle mode). This
sequence is sent iteratively until it succeeds; that is, all SWD
transactions are ACKed and all conditions are met.
Figure 4-3 on page 18 shows the implementation of the
Acquire Chip procedure. It is detailed in terms of the SWD
transaction. Note that the recommended minimum fre-
quency of the programmer is 1.5 MHz, which meets the tim-
ing requirement of this step (400 µs).
Programming Specifications, Document No. 001-96666 Rev. *C 17

Programming Algorithm
Figure 4-3. Flow Chart of the Acquire Chip Step

XRES Toggle or Power Cycle

START

Read Device ID:
ACK0 = Read_DAP(IDCODE, OUT ID)

ACK0 == “001”

ID == 0x0BB11477

YES

YES

Timeout >= 2.0 ms

NO

Return FAIL

Configure Debug Port:
ACK1 = Write_DAP(CTRL/STAT, 0x54000000)
ACK2 = Write_DAP(SELECT, 0x00000000)
ACK3 = Write_DAP(CSW, 0x00000002)

Enter Test Mode:
ACK4 = Write_DAP(TAR, 0x40030014)
ACK5 = Write_DAP(DRW, 0x80000000)

All ACKed?
ACKx == “001”?

YES

NO

Check Test Mode:
ACK6 = Write_DAP(TAR, 0x40030014)
ACK7 = Read_DAP(DRW, OUT data)
ACK7 = Read_DAP(DRW, OUT data)

data & 0x80000000
== 0x80000000

YES

NO

Poll SROM_PRIVILIGED_BIT
ACK8 = Write_DAP(TAR, 0x40100004)
ACK9 = Read_DAP (DRW, out data)
ACK9 = Read_DAP (DRW, out data)

(data & 0x10000000) ==
0x00000000

Return PASS

YES
Timeout >= 1000 ms

NO

Return FAIL

YES

NO

YES

NO
Programming Specifications, Document No. 001-96666 Rev. *C 18

Programming Algorithm
Pseudocode – Step 1. Acquire Chip

//---
// Reset Target depending on acquire mode – Reset or Power Cycle
If (AcquireMode == “Reset”) ToggleXRES(); // Toggle XRES pin, target must be powered.
Else If (AcquireMode == “Power Cycle”) PowerOn();// Supply power to target.

//Execute ARM’s connection sequence – acquire SWD-port.
Do
{
SWD_LineReset();
ack = Read_DAP (IDCODE, out ID);

}While ((ack != 3b’001) && time_elapsed < 1.5 ms); //for PowerCycle timeout must be
 //longer. For example ~30 ms.
If (time_elapsed >= 1.5 ms) Return FAIL;

If (ID != 0x0BB11477) Return FAIL; //SWD ID of Cortex-M0 CPU.

//Initialize Debug Port
Write_DAP (CTRL/STAT, 0x54000000);
Write_DAP (SELECT, 0x00000000);
Write_DAP (CSW, 0x00000002);

//Enter CPU into Test Mode
WriteIO (TEST_MODE, 0x80000000); //Set test_mode bit in TEST_MODE reg from CPU space
ReadIO (TEST_MODE, out status);

if ((status & 0x80000000) != 0x80000000) Return FAIL;

//Poll SROM_PRIVILEGED_BIT in CPUSS_SYSREQ register
Do
{
ReadIO (CPUSS_SYSREQ, out status);
status &= SROM_PRIVILEGED_BIT;
} While ((status != 0x00000000) && time_elapsed < 1000 ms)

If (time_elapsed >= 1000 ms) Return FAIL;

Return PASS;
Programming Specifications, Document No. 001-96666 Rev. *C 19

Programming Algorithm
4.4 Step 2 – Check Silicon ID

This step is required to verify that the acquired device corresponds to the hex file. It reads the ID from the hex file and com-
pares it with the ID obtained from the target.

Pseudocode – Step 2. Check Silicon ID

//---
// Read “Silicon ID” from hex file, 4 bytes from address 0x9050 0002 (big endian).
// HEX_ReadSiliconID() must be implemented.
HexID = HEX_ReadSiliconID();

// Read “Silicon ID” from the target using SROM request
Params = (SROM_KEY1 << 0) + //KEY1
 ((SROM_KEY2+SROM_CMD_GET_SILICON_ID) << 8); //KEY2

WriteIO (CPUSS_SYSARG, Params); // Write parameters
WriteIO (CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_GET_SILICON_ID);//Request SROM call

status = PollSromStatus();
If (!status) Return FAIL;

//Read 32-bit ID from the registers
ReadIO(CPUSS_SYSARG, out part0);
ReadIO(CPUSS_SYSREQ, out part1);

siliconID[0] = (part0 >> 8) & 0xFF;
siliconID[1] = (part0 >> 0) & 0xFF;
siliconID[2] = (part0 >> 16)& 0xFF;
siliconID[3] = (part1 >> 0) & 0xFF;

//Compare IDs from the hex and from the target
For (i = 0; i < 4; i++)
{
If (i == 2) //Ignore Revision ID
{
 Continue;
}
If (siliconID[i] != hexID[i]) Return FAIL;
}

Return PASS;
Programming Specifications, Document No. 001-96666 Rev. *C 20

Programming Algorithm
4.5 Step 3 – Erase All Flash

Before programming the flash, it must be erased. This step erases all user rows and the corresponding flash protection. It
also moves chip-level protection to the OPEN state (if it was in PROTECTED mode, see Appendix A:Chip-Level Protection on
page 36). Figure 4-4 shows the algorithm of the Erase All step.

Figure 4-4. Flow Chart of the Erase All Step

Pseudocode – Step 3. Erase All Flash

//---
// Read Chip Level Protection using SROM call
Params = (SROM_KEY1 << 0) + // KEY1
 ((SROM_KEY2 + SROM_CMD_GET_SILICON_ID) << 8); // KEY2

WriteIO(CPUSS_SYSARG, Params); //Write params in CPUSS_SYSARG
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_GET_SILICON_ID);//Request SROM call

Status = PollSromStatus();
If (!Status)) Return FAIL;

ReadIO(CPUSS_SYSREQ, out data); // read result
chipProt = (byte)(data >> 12);

// Check current protection mode
If (chipProt == CHIP_PROT_PROTECTED) // PROTECTED
{
// Move chip to OPEN mode
Params = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2 + SROM_CMD_WRITE_PROTECTION) << 8) +//KEY2
 (0x01 << 16) + //OPEN mode
 (0x00 << 24);//Flash Macro 0

 WriteIO(CPUSS_SYSARG, Params);//Write params in CPUSS_SYSARG
 WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_WRITE_PROTECTION);

Read Chip Level Protection

START

PROTECTED?

Call EraseAll
SROM request

Passed?

Move chip to OPEN mode

Acquire Chip (Execute Step 1)
YES

Passed?

YES

Passed?

YES

Return FAIL

Return PASS

NO

NO

NO

NO YES
Programming Specifications, Document No. 001-96666 Rev. *C 21

Programming Algorithm
 status = PollSromStatus();
 if (!status) return FAIL;

// Re-acquire chip here to boot it in OPEN mode
// Execute Now: “Step 1 – Acquire Chip”

// Check result of re-acquire
If (!status) Return FAIL;
}
Else // OPEN (CHIP_PROT_OPEN)
{
Params = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2+SROM_CMD_ERASE_ALL) << 8);//KEY2

 WriteIO(SRAM_PARAMS_BASE + 0x00, Params); //Write params in SRAM
 WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
 WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_ERASE_ALL); //Request SROM call

 status = PollSromStatus();
If (!status) Return FAIL;
}
Return PASS;
//---

4.6 Step 4 – Checksum Privileged

After the user’s flash is erased, its checksum must be 0x00. However, the Checksum(All) API, which is used in “Step 9 – Ver-
ify Checksum” on page 31, also calculates the checksum of the privileged rows (not only the user rows). Therefore, it is nec-
essary to find the checksum of the privileged rows when all the user rows are erased. The result of this operation is needed
only to calculate the proper checksum of the user’s flash in “Step 9 – Verify Checksum” on page 31. That checksum is calcu-
lated according to the following formula:

Checksum_User = Checksum_Step_9 – Checksum_Step_4

The result of this step must be used in “Step 9 – Verify Checksum” on page 31. A possible alternative solution to avoid this
step is to calculate the checksum of each row individually and add them. However, this method takes much longer.

Pseudocode – Step 4. Checksum Privileged

//---
Params = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2+SROM_CMD_CHECKSUM) << 8)+//KEY2
 ((0x0000 & 0x00FF) << 16) +//Row ID[7:0]
 ((0x8000 & 0xFF00) << 16);//Row ID[15:8] – Checksum All(0x8000)

WriteIO(CPUSS_SYSARG, Params); //Write params in CPUSS_SYSARG
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_CHECKSUM); //Request SROM call

status = PollSromStatus();
if (!status) return FAIL;

//Read Checksum from CPUSS_SYSARG register
ReadIO(CPUSS_SYSARG, out checksum_all);

Checksum_Privileged = (checksum_all & 0x0FFFFFFF); //28-bit checksum
return PASS;
//---
Programming Specifications, Document No. 001-96666 Rev. *C 22

Programming Algorithm
4.7 Step 5 – Program Flash

Flash memory is programmed in rows. Each row is 256 bytes long. The programmer must serially program each row
individually. The source data is extracted from the hex file starting from address 0x00000000 (see Figure 2-2 on page 8). The
flash size and the row size are input parameters of this step. Note that the flash size of the acquired silicon must be equal to
the size of the user’s code in the hex file, as verified in Step 2 by comparing the silicon IDs of the hex and the target.
During programming, two SROM APIs are used:

 SROM_CMD_LOAD_LATCH – Loads the flash row into the silicon’s volatile buffer.

 SROM_CMD_PROGRAM_ROW – Programs the row into flash (from the volatile buffer).

Figure 4-5 illustrates this programming algorithm.

Figure 4-5. Flow Chart of the “Program Flash” Step

 RowSize = 256
 TotalRows = FlashSize / RowSize

START

RowID = 0

Read flash row from hex-file starting
from address: (RowID * RowSize)

Load row into the chip (in volatile
latch) using SROM API –

SROM_CMD_LOAD_LATCH

Passed?

Program row into the Flash using
SROM API –

SROM_CMD_PROGRAM_ROW

Passed?

RowID ++

RowID >= TotalRows
NO

Return PASS

YES

Return FAIL

NO

NO

YES

YES
Programming Specifications, Document No. 001-96666 Rev. *C 23

Programming Algorithm
Pseudocode – Step 5. Program Flash

//---
// Flash Size must be provided.
RowSize = 256;
TotalRows = FlashSize / RowSize;
RowsPerMacro = 512;
//Program all flash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
 //1. Read Row data from hex
 RowHexAddress = RowSize * RowID;
 //Extract 256-byte row from the hex-file
 //from address: “RowHexAddress” into buffer - “Data”.
 //HEX_ReadData() must be implemented by Programmer.
 Data = HEX_ReadData(RowHexAddress, RowSize);

 //2. Load Row to volatile buffer (latch)
 MacroID = floor (RowID / RowsPerMacro); //Round to largest previous integer

 Params1 = (SROM_KEY1 << 0) +//KEY1
 (SROM_KEY2 + SROM_CMD_LOAD_LATCH) << 8) +//KEY2
 (0x00 << 16);//Byte number in latch from what to write
 (MacroID << 24); //Flash Macro ID (0 or 1)

 Params2 = (RowSize - 1); //Number of Bytes to load minus 1
 WriteIO(SRAM_PARAMS_BASE + 0x00, Params1); //Write params in SRAM
 WriteIO(SRAM_PARAMS_BASE + 0x04, Params2); //Write params in SRAM

 // Put row data into SRAM buffer
 for (i = 0; i < RowSize; i += 4)
 {
 Params1 = (Data[i] << 0) + (Data[i + 1] << 8) +
 Data[i + 2] << 16) + (Data[i + 3] << 24);
 WriteIO(SRAM_PARAMS_BASE + 0x08 + i, Params1);//Write params is SRAM
 }

 // Call "Load Latch" SROM API
 WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
 WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_LOAD_LATCH);//Request SROM operation

 Status = PollSromStatus();
 if (!Status) return FAIL;

 //3. Program Row - call SROM API
 Params =(SROM_KEY1 << 0) + //KEY1
 ((SROM_KEY2+SROM_CMD_PROGRAM_ROW) << 8) + //KEY2
 ((RowID & 0x00FF) << 16) + //ROW_ID_LOW[7:0]
 ((RowID & 0xFF00) << 16); //ROW_ID_HIGH[9:8]

 WriteIO(SRAM_PARAMS_BASE+0x00, Params); //Write params is SRAM
 WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
 WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_PROGRAM_ROW);//Request SROM operation

 Status = PollSromStatus();
 if (!Status) return FAIL;
}
return PASS;
Programming Specifications, Document No. 001-96666 Rev. *C 24

Programming Algorithm
4.8 Step 6 – Verify Flash

Because the checksum is verified eventually, this step is optional. It is recommended that it be kept in the programming flow
for higher reliability. The checksum cannot completely guarantee that the content is written without errors.

During verification, the programmer reads a row from flash and the corresponding data from the hex file and compares them.
If any difference is found, the programmer must stop and return a failure. Each row must be considered.

Reading from the flash is achieved by direct access to the memory space of the CPU. No SROM API is required; simply read
from the address range 0x00000000 – 0x0003FFFF.

Figure 4-6 illustrates the verification algorithm.

Figure 4-6. Flow Chart of the “Verify Flash” Step

 RowSize = 256
 TotalRows = FlashSize / RowSize

START

RowID = 0

Read flash row from hex-file starting
from address: (RowID * RowSize)

Read row from the Flash. Use direct
access to AHB – read from flash
address space by 4-byte words.

Hex Row == Flash Row

RowID ++

Return PASS Return FAIL

RowID >= TotalRows
NO

YES

YES

NO
Programming Specifications, Document No. 001-96666 Rev. *C 25

Programming Algorithm
Pseudocode – Step 6. Verify Flash.

//---
// Flash Size must be provided.
RowSize = 256;
TotalRows = FlashSize / RowSize;

//Read and Verify Flash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
//1. Read row from hex file
 RowAddress = rowSize * rowID; //liner address of row in flash
 //Extract 256-byte row from the hex file
 //from address: “RowHexAddress” into buffer - “Data”.
//HEX_ReadData() must be implemented by Programmer.
hexData = HEX_ReadData(RowAddress, RowSize);

 //2. Read row from chip
 for (i = 0; i < RowSize; i += 4)
 {
//Read flash via AHB-interface
 ReadIO(RowAddress + i, out data32);
 chipData[i + 0] = (data32 >> 0) & 0xFF;
 chipData[i + 1] = (data32 >> 8) & 0xFF;
 chipData[i + 2] = (data32 >> 16) & 0xFF;
 chipData[i + 3] = (data32 >> 24) & 0xFF;
 }

 //3. Compare them
 for (i = 0; i < RowSize; i++)
 {
 if (chipData[i] != hexData[i]) return FAIL;
 }
}
return PASS;

4.9 Step 7 – Program Protection Settings

At this point, the programmer writes into the supervisory flash all protection data: row-level protection and chip-level protec-
tion. For more information, see Figure 2-1 on page 7.

The Target device can have two flash macros, each with its own supervisory rows to store the protection settings of the user’s
rows. Each user row occupies one bit in the protection space: 0 means unprotected; 1 means protected. This provides write/
erase protection of the row. In the PROTECTED state, a row cannot be erased or written either by the firmware or by an
external programmer. The protection setting can be reset only by the EraseAll() operation in Step 3, driven by the external
programmer.

Chip-level protection is only 1 byte and is stored in the supervisory row of macro 0 where the flash protection data resides.

Figure 4-7 shows the algorithm of writing protection settings.
Programming Specifications, Document No. 001-96666 Rev. *C 26

Programming Algorithm
Figure 4-7. Flow Chart of the “Program Protection Settings” Step

 Pseudocode – Step 7. Program Protection Settings

//---
// Flash Size must be provided.
RowsPerMacro = 512;
ProtectionPerMacro = RowsPerMacro / 8;

TotalMacros = ceiling (FlashSize / 131072); // round to smallest following integer
//1. Read Chip Level Protection from hex-file. It is 1 byte at address 0x90600000.
//HEX_ReadChipLevelProtection() must be implemented.
ChipLevelProtection = HEX_ReadChipLevelProtection();

for (MacroID = 0; MacroID < TotalMacros; MacroID++)
{
//2. Read Protection settings of current macro from hex-file.
//It is located at address 0x9040 0000.
//HEX_ReadRowProtection() must be implemented by Programmer.

START

 RowsPerMacro = 512
 ProtectionPerMacro = RowsPerMacro / 8
 TotalMacros = ceiling (FlashSize / 131072)

MacroID = 0

Read Chip Level Protection from Hex file.
It is 1-byte at address 0x9060 0000

hexAddress = 0x9040 0000 + MacroID *
ProtectionPerMacro

Read flash protection of current macro from hex-
file in Data array. It is “ProtectionPerMacro” bytes

at address “hexAddress”.

Load macro’s protection into volatile latch of the
silicon using SROM_CMD_LOAD_LATCH API.

Passed?

Program Flash Protection for current macro and
Chip Level Protection (only for Macro 0). Use
SROM_CMD_WRITE_PROTECTION API.

Passed?

MacroID ++

MacroID >= TotalMacros

Return PASS Return FAIL

YES

YES

YES

NO

NO

NO
Programming Specifications, Document No. 001-96666 Rev. *C 27

Programming Algorithm
HexAddr = ProtectionPerMacro * MacroID;
Data = HEX_ReadRowProtection(HexAddr, ProtectionPerMacro);

//3. Load protection setting of current macro into volatile latch.
//This is same implementation as for “Program Flash” step.
//So this code can be moved into a separate routine – “LoadLatch(MacroID, Data)”.
Params1 = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2 + SROM_CMD_LOAD_LATCH) << 8) +//KEY2
 (0x00 << 16)+ //Byte number in latch from what to write
 (MacroID << 24);//Flash Macro ID (0 or 1)
Params2 = (ProtectionPerMacro - 1); //Number of Bytes to load minus 1

WriteIO(SRAM_PARAMS_BASE + 0x00, Params1); //Write params is SRAM
WriteIO(SRAM_PARAMS_BASE + 0x04, Params2); //Write params is SRAM

// Put row data into SRAM buffer
for (i = 0; i < ProtectionPerMacro; i += 4)
{
 Params1 = (Data[i] << 0) + (Data[i + 1] << 8) +
 (Data[i + 2] << 16) + (Data[i + 3] << 24);
 WriteIO(SRAM_PARAMS_BASE + 0x08 + i, Params1);//Write params is SRAM
}

// Call "Load Latch" SROM API
WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_LOAD_LATCH);//Request SROM operation
Status = PollSromStatus();
if (!Status) return FAIL;

//4. Program protection setting of current macro into supervisory row.
Params = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2 + SROM_CMD_WRITE_PROTECTION) << 8) +//KEY2
 (ChipLevelProtection << 16)+ //Applicable only for Macro
 (Macro0 << 24);//Flash Macro

WriteIO(CPUSS_SYSARG, Params);
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_WRITE_PROTECTION);

//Read status of the operation
Status = PollSromStatus();
if (!Status)) return FAIL;

return PASS;
//---
Programming Specifications, Document No. 001-96666 Rev. *C 28

Programming Algorithm
4.10 Step 8 – Verify Protection
Settings

This step verifies the data that was written in Step 7. The
point is to read back the details of flash protection and chip-
level protection from the silicon and compare this data with
the corresponding data from the hex file. Although this step
is optional, Cypress recommends that you implement it in
the programmer.

Reading of the protection setting is carried out by direct
access to the memory space of the CPU (via AHB). See
Figure 2-1 on page 7 to find the address range of protection
data. The programmer reads out the data in 4-byte words.

Note that when a chip-level protection byte is read from the
silicon, it must be reviewed. This is because of the inverted
values of OPEN and VIRGIN modes written in the supervi-
sory rows (see Appendix A:Chip-Level Protection on page
36). If VIRGIN mode is read from flash, then it must be con-
verted to OPEN mode; if OPEN mode is read from flash, it
must be considered as VIRGIN mode. For KILL and PRO-
TECTED modes, no translation is necessary.

Figure 4-8. Flow Chart of the “Verify Protection Settings”
Step

START

 RowsPerMacro = 512
 ProtectionPerMacro = RowsPerMacro / 8
 TotalMacros = ceiling (FlashSize / 1310726)

MacroID = 0
FlashProtectionAddress = 0x0FFF F000

Read flash protection of current macro. It is
“ProtectionPerMacro” bytes from address

“FlashProtectionAddress”.

Read flash protection of current macro from hex-
file. It is “ProtectionPerMacro” bytes

from address “hexAddress”.

hexAddress = 0x9040 0000 + MacroID *
ProtectionPerMacro

HexData == ChipData

FlashProtectionAddress += 0x800
MacroID ++

MacroID >= TotalMacros

Read Chip Level Protection from Hex file.
It is 1-byte at address 0x9060 0000

YES

NO

YES

Return FAIL

Read ChipLevelProtection from chip:
ChipProt = ReadIO (0x0FFF F0FC)
ChipProt = (ChipProt >> 24) & 0x0F

If ChipProt is VIRGIN or OPEN then change it
to OPEN or VIRGIN correspondingly

ChipProt == HexProt

Return PASS

YES

NO

NO
Programming Specifications, Document No. 001-96666 Rev. *C 29

Programming Algorithm
Pseudocode – Step 8. Verify Protection Settings

//---
// Flash Size must be provided.
RowsPerMacro = 512;
ProtectionPerMacro = RowsPerMacro / 8;

TotalMacros = ceiling (FlashSize /131072); // round to smallest following integer65536
FlashProtectionAddress = SFLASH_MACRO_0; //0x0FFF F000

for (MacroID = 0; MacroID < TotalMacros; MacroID++; FlashProtectionAddress += 0x800)
{
//1. Read Protection settings of current macro from hex-file.
//It is located at address 0x9040 0000.
//HEX_ReadRowProtection() must be implemented.
HexAddr = ProtectionPerMacro * MacroID;
hexProt = HEX_ReadRowProtection(HexAddr, ProtectionPerMacro);

//2. Read Protection of current macro from silicon
for (i = 0; i < ProtectionPerMacro; i += 4)
{
 ReadIO(FlashProtectionAddress + i, out data32);
 flashProt[i + 0] = (data32 >> 0) & 0xFF;
 flashProt[i + 1] = (data32 >> 8) & 0xFF;
 flashProt[i + 2] = (data32 >> 16) & 0xFF;
 flashProt[i + 3] = (data32 >> 24) & 0xFF;
}

//3. Compare hex and silicon’s data
for (i = 0; i < ProtectionPerMacro; i++)
{
 If (hexProt[i] != flashProt[i]) return FAIL;
}

//4. Read Chip Level Protection from hex-file. It is 1 byte at address 0x90600000.
//HEX_ReadChipLevelProtection() must be implemented.
Hex_ChipLevelProtection = HEX_ReadChipLevelProtection();

//5. Read Chip Level Protection from the silicon
ReadIO(SFLASH_CPUSS_PROTECTION, out Chip_ChipLevelProtection);
Chip_ChipLevelProtection = (Chip_ChipLevelProtection >> 24) & 0x0F;

if (Chip_ChipLevelProtection == CHIP_PROT_VIRGIN) Chip_ChipLevelProtection = CHIP_PROT_OPEN;
else
if (Chip_ChipLevelProtection == CHIP_PROT_OPEN) Chip_ChipLevelProtection = CHIP_PROT_VIRGIN;

//6. Compare hex’s and silicon’s data
if (Chip_ChipLevelProtection != Hex_ChipLevelProtection) return FAIL;

return PASS;
//---
Programming Specifications, Document No. 001-96666 Rev. *C 30

Programming Algorithm
4.11 Step 9 – Verify Checksum

This step validates the result of the flash programming process. It calculates the checksum of the user rows written in Step 5
and compares this value with the 2-byte checksum from the hex file. The Checksum SROM API computes the checksum of
the user and privileged rows. To find the checksum of only the user rows, it is necessary to subtract the checksum of the
privileged rows found in Step 4. Figure 4-9 shows the final checksum algorithm. This is a mandatory step in the programming
flow, although the checksum operation cannot completely guarantee that the data is written correctly. For this reason, the
Verify Flash step is also recommended.

Figure 4-9. Flow Chart of the “Verify Checksum” Step

START

 Call SROM_CMD_CHECKSUM for all flash
 (user+privileged rows).
 Save result in variable “Step9_Checksum”.

Find checksum of user rows:
Chip_Checksum = 0xFFFF &

(Step9_Checksum – Step4_Checksum)

Read 2-byte checksum from hex-file
located at address 0x9030 0000.

Chip_Checksum ==
Hex_Checksum

Return PASS

YES

Return FAIL

Passed?

YES

NO

NO
Programming Specifications, Document No. 001-96666 Rev. *C 31

Programming Algorithm
Pseudocode – Step 9. Verify Checksum

//---
// Checksum of Privileged rows must be taken from Step 4.
// SROM call here is identical to one Step 4, so it can be refactored into one subroutine.
// 1. SROM call - Checksum All
Params = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2+SROM_CMD_CHECKSUM) << 8)+//KEY2
 ((0x0000 & 0x00FF) << 16) +//Row ID[7:0]
 ((0x8000 & 0xFF00) << 16);//Row ID[15:8] - Checksum All(0x8000)

WriteIO(CPUSS_SYSARG, Params); //Write params in CPUSS_SYSARG
WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_CHECKSUM); //Request SROM call

status = PollSromStatus();
if (!status) return FAIL;

//Read Checksum from CPUSS_SYSARG register
ReadIO(CPUSS_SYSARG, out Checksum_all);

Checksum_All = (Checksum_All & 0x0FFFFFFF); //28-bit checksum

//2. Find 2-byte checksum of user rows, "Checksum_Privileged" is calculated in Step 4.
Chip_Checksum = (Checksum_All - Checksum_Privileged) & 0xFFFF;

//3. Read 2-byte checksum of user code from hex-file
// HEX_ReadChecksum() must be implemented by Programmer.
Hex_Checksum = HEX_ReadChecksum();

//4. Compare silicon's vs hex's checksum
if (Chip_Checksum != Hex_Checksum) return FAIL;

return PASS;
//---

4.12 Step 10 - Program User SFlash (optional)

The Supervisory Flash of the Target device provides four rows in Macro 1 for application specific use. Every such row con-
sists of 256 bytes - same as other flash rows. Application can store here any information, but typically it is the Unique Blue-
tooth Address of the device. Length and format of the address is also application specific. During mass production vendor
should define the rule which guarantees that every programmed part is assigned with the unique address.

This step is considered as optional - every application should determine if it needs this flash region and for which purpose.
Also, User SFlash rows are not stored in the hex file, since this information is unique for each part (for most of applications).

Programming of User SFlash via SWD port is only available in silicon's OPEN mode. So, we have to execute this step some-
time after Erase All step, which guarantees that part is in OPEN mode. But, the recommendation is to execute it as the last
step in the programming flow, since it's the non-hex flash region (optional). Alternatively, User Application can update this
SFLash region whenever needed (CPU access via SROM APIs) - e.g. to store calibration data, non-volatile parameters, etc.

The User SFlash Rows are mapped onto CPUs address space in the range 0x0FFF F400 - 0x0FFF F7FF. So, user applica-
tion can read these rows directly from these addresses.

Following SROM APIs are used in this step:

 SROM_CMD_LOAD_LATCH - Loads the flash row into the silicon's volatile buffer;

 SROM_CMD_WRITE_SFLASH_ROW - Program rows from volatile latch into User's Flash.
Programming Specifications, Document No. 001-96666 Rev. *C 32

Programming Algorithm
Figure 4-10 illustrates User SFlash programming algorithm.

Figure 4-10. Flow Chart of "Program User SFlash" Step

START

RowID = 0

Prepare Data for Current Row ID
(256 bytes)

Write Data using such SROM APIs:
SROM_CMD_LOAD_LATCH,

SROM_CMD_WRITE_SFLASH_ROW

Passed?

YES

NO

RowID ++

RowID < 4
YES

RowID = 0

Read 256 bytes from SFlash Row’s
Address: 0x0FFFF400 + RowID *256

Flash Row == Source Row

YES

NO

RowID ++

RowID < 4

NO

YES

Return PASS Return FAIL

NO
Programming Specifications, Document No. 001-96666 Rev. *C 33

Programming Algorithm
Pseudocode. Step 10 - Program User SFlash

//---
// Flash Row Size, Number of Rows and Data to Program must be provided.
RowSize = 256;
TotalRows = 4;

//Program all User SFlash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
 //1. Prepare data for current row (256-byte)
 //Read it in the "Data" array .
 //SFlash_ReadSource() must return data for current SFlash row.
Data = SFlash_ReadSource(RowID, RowSize);

 //2. Load Row to volatile buffer (latch)
 MacroID = 0x00; //User SFLash rows are located only in Macro 0

 Params1 = (SROM_KEY1 << 0) +//KEY1
 ((SROM_KEY2 + SROM_CMD_LOAD_LATCH) << 8) +//KEY2
 (0x00 << 16)+//Byte number in latch from what to write
 (MacroID << 24); //Flash Macro ID (0 or 1)

 Params2 = (RowSize - 1); //Number of Bytes to load minus 1

 WriteIO(SRAM_PARAMS_BASE + 0x00, Params1); //Write params in SRAM
 WriteIO(SRAM_PARAMS_BASE + 0x04, Params2); //Write params in SRAM

 // Put row data into SRAM buffer
 for (i = 0; i < RowSize; i += 4)
 {
 Params1 = (Data[i] << 0) + (Data[i + 1] << 8) +
 Data[i + 2] << 16) + (Data[i + 3] << 24);
 WriteIO(SRAM_PARAMS_BASE + 0x08 + i, Params1);//Write params is SRAM
 }

 // Call "Load Latch" SROM API
 WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
 WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_LOAD_LATCH);//Request SROM operation

 Status = PollSromStatus();
 if (!Status) return FAIL;

 //3. Program User SFlash Row - call SROM API
 Params1 =(SROM_KEY1 << 0) + //KEY1
 ((SROM_KEY2+SROM_CMD_WRITE_SFLASH_ROW) << 8)+ //KEY2

 Params2 = RowID //Row ID of User SFlash

 WriteIO(SRAM_PARAMS_BASE+0x00, Params1); //Write params is SRAM
 WriteIO(SRAM_PARAMS_BASE+0x04, Params2); //Write params is SRAM

 WriteIO(CPUSS_SYSARG, SRAM_PARAMS_BASE); //Set location of parameters
 WriteIO(CPUSS_SYSREQ, SROM_SYSREQ_BIT | SROM_CMD_WRITE_SFLASH_ROW); //Request SROM oper-
ation

 Status = PollSromStatus();
Programming Specifications, Document No. 001-96666 Rev. *C 34

Programming Algorithm
 if (!Status) return FAIL;
}

//Verify all User SFlash rows
for (int RowID = 0; RowID < TotalRows; RowID++)
{
 //1. Prepare Source data for current row (256-byte)
 sourceData = SFlash_ReadSource(RowID, RowSize);

 //2. Read row from chip
 RowAddress = 0x0FFFF200 + RowID * RowSize;

 for (i = 0; i < RowSize; i += 4)
 {
 //Read flash via AHB-interface
 ReadIO(RowAddress + i, out data32);
 chipData[i + 0] = (data32 >> 0) & 0xFF;
 chipData[i + 1] = (data32 >> 8) & 0xFF;
 chipData[i + 2] = (data32 >> 16) & 0xFF;
 chipData[i + 3] = (data32 >> 24) & 0xFF;
 }

 //3. Compare them
 for (i = 0; i < RowSize; i++)
 {
 if (chipData[i] != sourceData[i]) return FAIL;
 }
}

return PASS;
Programming Specifications, Document No. 001-96666 Rev. *C 35

Appendix A. Chip-Level Protection
The difference between chip-level protection and row-level protection may not be obvious at first glance. Chip-level protection
restricts access to the silicon’s resources by way of the SWD bus by the external programmer. However, it does not restrict
anything for the firmware. If any resource is not accessible, the SWD transaction is NACKed. Row-level protection restricts
the firmware and the external programmer from writing to the protected flash rows.

There are four states of chip-level protection into which the silicon can be moved: VIRGIN, OPEN, PROTECTED, KILL.

Table A-1. States of Chip-Level Protection

The chip-level protection byte is located in the supervisory row of the macro at offset 0x7F. It can be programmed only when
row-level protection is updated for the macro. The actual value of the OPEN state that is written into flash is 0x00 and not
0x01, which is the real value in the hex file. For the VIRGIN and OPEN modes, the value saved in the supervisory row is
inverted. This is done for one reason—to prevent accidental resets to the VIRGIN state during programming.

The EraseAll() operation clears a whole row, resetting every byte to 0. After the EraseAll() operation, which is the first opera-
tion targeting the flash during programming, the chip is left in the VIRGIN mode, which is not correct. It must be in OPEN
mode even after the chip is reset. During startup, the boot code reads 0x00 from the supervisory row and translates it to 0x01
before writing to the CPUSS_PROTECTION register, which defines the current mode for the CPU. The corresponding value
of 0x01 from the supervisory row is translated to 0x00 (VIRGIN) for CPUSS_PROTECTION. PROTECTED and KILL modes
are not changed by the boot code and are copied directly to the CPUSS_PROTECTION register. Specifically, the OPEN-VIR-
GIN modes swapped in flash must be considered during the verification operation, when the protection byte is read from the
supervisory row and compared with the corresponding value from hex.

The chip has a special policy of changing the state of chip-level protection; this means that the possible new state is depen-
dent on the current protection state. See Figure A-1 on page 37 for possible transition paths.

Protection State
Value in Hex and

CPUSS_PROTECTION
Value in Written

Supervisory Row
Restrictions

VIRGIN 0x00 0x01

In this mode, the silicon is in post-fab (untrimmed state). After trimming, the
silicon is moved into OPEN mode for customer. This mode is not for custom
use. Customers are not physically prohibited from bringing parts back to the
VIRGIN state, but they will be left with parts missing critical trim, wounding,
and other settings from Cypress. This essentially makes the part unusable
for the customer.

OPEN 0x01 0x00

In this mode, the silicon is shipped to customers. Most applications use this
state in which an external debugger can access all the needed resources
for full-functional debugging of the application. Flash, SRAM, supervisory
flash, and registers are available via the DAP.

PROTECTED 0x02 0x02

In this mode, the silicon allows limited access via the DAP; it is enough to
read the silicon ID and move the chip back to OPEN mode. Access to
Flash, SRAM, and most of the registers is disabled, so SWD transactions
are NACKed for master. This is true for read and write requests on the SWD
bus.

KILL 0x04 0x04

KILL mode completely locks the SWD-pins from an external programmer.
The firmware must be 100 percent operable without bugs because it can no
longer be updated. If this mode is needed, then it is recommended that you
enable it only for production programming of end-application.
Programming Specifications, Document No. 001-96666 Rev. *C 36

Figure A-1. Chip-Level Protection State Diagram

The customer receives the device in the OPEN mode and can move it to OPEN, PROTECTED, or KILL. Moving to VIRGIN
mode is discouraged because the part will be untrimmed and therefore not operable. From PROTECTED mote, the customer
can move the part back to OPEN. There is no way to leave the KILL mode.

VIRGIN

OPEN -> KILL

Sets chip protection
to PROTECTED or
KILL and programs
flash row-level
protection data.
(irreversible)

PROTECTED -> OPEN

Erases all User Region
flash. Sets chip
protection to OPEN,
sets flash row-level
protection to
unprotected.

OPEN

PROTECTED

KILL

OPEN -> VIRGIN

Erases all User &
Privileged FLASH, and
then erases all
supervisory flash rows.

OPEN -> PROTECTED

Sets chip protection to
PROTECTED or KILL and
programs flash row-level
protection data.

VIRGIN -> OPEN

Sets chip protection to OPEN,
sets flash row-level protection to
unprotected. Manufacturing must
write the 64-bit key to Supervisory
FLASH manually for this transition
to take effect.

CYPRESS: Manufacturing

OPEN -> OPEN

Sets chip protection to
OPEN and programs flash
row-level protection data.

CYPRESS:
Programming
Programming Specifications, Document No. 001-96666 Rev. *C 37

Appendix B. Intel Hex File Format
Intel hex file records are a text representation of hexadecimal-coded binary data. Only ASCII characters are used, so the for-
mat is portable across most computer platforms. Each line (record) of Intel hex file consists of six parts, as shown in
Figure B-1.

Figure B-1. Hex File Record Structure

Start code, one character - an ASCII colon ':'

 Byte count, two hex digits (1 byte) - specifies the num-
ber of bytes in the data field.

 Address, four hex digits (2 bytes) - a 16-bit address of
the beginning of the memory position for the data.

 Record type, two hex digits (00 to 05) - defines the type
of the data field. The record types used in the hex file
generated by Cypress are as follows.

 00 - Data record, which contains data and 16-bit
address.

 01 - End of file record, which is a file termination
record and has no data. This must be the last line of
the file; only one is allowed for every file.

 04 - Extended linear address record, which allows
full 32-bit addressing. The address field is 0000, the
byte count is 02. The two data bytes represent the
upper 16 bits of the 32-bit address, when combined
with the lower 16-bit address of the 00 type record.

 Data, a sequence of ‘n’ bytes of the data, represented by
2n hex digits.

 Checksum, two hex digits (1 byte), which is the least
significant byte of the two's complement of the sum of
the values of all fields except fields 1 and 6 (start code ‘:’
byte and two hex digits of the checksum).

Examples for the different record types used in the hex file
generated for CYBL10x7x device are as follows.

Consider that these three records are placed in consecutive
lines of the hex file (chip-level protection and end of hex
file).

:0200000490600A

:0100000002FD

:00000001ff

For the sake of readability, “record type” is highlighted in red
and the 32-bit address of the chip-level protection is in blue.

The first record (:0200000490600A) is an extended linear
address record as indicated by the value in the Record Type
field (04). The address field is 0000, the byte count is 02.
This means that there are two data bytes in this record.
These data bytes (0x9060) specify the upper 16 bits of the
32-bit address of data bytes. In this case, all the data
records that follow this record are assumed to have their
upper 16-bit address as 0x9060 (in other words, the base
address is 0x90600000). 0A is the checksum byte for this
record:

0x0A = 0x100 – (0x02+0x00+0x00+0x04+0x90+0x60).

The next record (:0100000002FD) is a data record, as
indicated by the value in the Record Type field (00). The
byte count is 01, meaning there is only one data byte in this
record (02). The 32-bit starting address for these data bytes
is at address 0x90600000. The upper 16-bit address
(0x9060) is derived from the extended linear address record
in the first line; the lower 16-bit address is specified in the
address field of this record as 0000. FD is the checksum
byte for this record.

The last record (:00000001FF) is the end-of-file record, as
indicated by the value in the Record Type field (01). This is
the last record of the hex file.

Note The data records of the following multibyte region in
the hex file are in big-endian format (MSB in lower address):
checksum data at address 0x9030 0000, metadata at
address 0x9050 0000. The data records of the rest of the
multibyte regions in the hex file are all in little-endian format
(LSB in lower address).

Start Code(Colon
Character)

Byte Count(1 byte) Address(2 bytes) Record Type(1 byte) Data(N bytes) Checksum(1 byte)
Programming Specifications, Document No. 001-96666 Rev. *C 38

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/Two%27s_complement

Appendix C. Serial Wire Debug (SWD) Protocol
The SWD protocol is a packet-based serial transaction pro-
tocol. At the pin level uses a single bidirectional data con-
nection (SWDIO) and a clock connection (SWDCK). The
host programmer always drives the clock line, while either
the programmer or the target device drives the data line. A
complete data transfer (one SWD packet) requires 46 clocks
and consists of three phases:

 Packet Request – The host programmer issues a
request to the target device (silicon).

 Acknowledge Response – The target device (silicon)
sends an acknowledgement to the host.

 Data Transfer Phase – The data transfer is either from
the target to the host, following a read request (RDATA),
or from the host to the target, following a write request
(WDATA). This phase is only present when a packet
request phase is followed by a valid (OK) acknowledge
response.

Figure C-1 shows the timing diagrams of the read and write
SWD packets.

Figure C-1. Write and Read SWD Packet Timing Diagrams

S
ta

rt

(1
)

A
P

nD
P

R
nW

 (
0)

A[2:3]

P
ar

ity

S
to

p
 (

0)

P
ar

k
 (

1)

T
rN 1 0 0

ACK[0:2]
w

da
ta

[0
]

w
da

ta
[1

]

w
da

ta
[3

1]

P
ar

ity

SWDIO driven by:
Host Target Device Host

SWDCK
(Driven by Host)

SWDIO
(Bidirectional)

T
rN
zz

SWD Write Packet (46 clocks)

SWD Read Packet (46 clocks)

S
ta

rt

(1
)

A
P

n
D

P

R
n

W
 (

1)

A[2:3] P
ar

ity

S
to

p

(0
)

P
ar

k

(1
)

T
rN 1 0 0

ACK[0:2] rd
at

a[
0]

rd
at

a[
1]

rd
at

a[
3

0]

rd
at

a[
31

]

P
ar

ity

T
rN

SWDIO driven by: Host Target Device

SWDCK
(Driven by Host)

SWDIO
(Bidirectional)

a) Host Write Cycle – host sends data on the SWDIO line on falling edge of SWDCK and target will read that data on next SWDCK
 rising edge (for example, 8-bit header data).

b) Host Read Cycle – target sends data on SWDIO line on rising edge of SWDCK and the Host should read that data on next
 SWDCK falling edge (for example, ACK phase (ACK[2:0]), Read Data (rdata[31:0])).

c) The Host should not driver the SWDIO line during TrN phase. During first TrN phase (½ cycle duration) of SWD packet, target
 starts driving the ACK data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent
 falling edge of SWDCK. The second TrN phase is 1.5 clock cycles as shown in figure above. Both target and host will not drive
 the line during the entire second TrN phase (indicated as ‘z’). Host should start sending the Write data (wdata) on next falling
 edge of SWDCK after second TrN phase.

Packet Request - Header Acknowledgement Data (32+1 bit)

Packet Request - Header Acknowledgement Data (32+1 bit)
Programming Specifications, Document No. 001-96666 Rev. *C 39

The SWD packet is transmitted in this sequence:

1. The start bit initiates a transfer; it is always logical ‘1’.

2. The APnDP bit determines whether the transfer is an AP
access (indicated by ‘1’), or a DP access (indicated by
‘0’).

3. The next bit is RnW, which is ‘1’ for read from the device
or ‘0’ for a write to the device.

4. The ADDR bits (A[3:2]) are register select bits for the
access port or debug port. See Table 3-2 on page 11 for
register definition.

5. The parity bit contains the parity of APnDP, RnW, and
ADDR bits. This is an even parity bit. If the number of
logical 1s in this bits is odd, then the parity must be ‘1’,
otherwise it is ‘0’.

If the parity bit is not correct, the target device ignores
the header, and there is no ACK response. From the
host standpoint, the programming operation should be
aborted and retried by doing a device reset.

6. The stop bit is always logic ‘0’.

7. The park bit is always logic ‘1’ and should be driven high
by the host.

8. The ACK bits are device-to-host response. Possible val-
ues are shown in Table C-1. Note that ACK in the current
SWD transfer reflects the status of the previous transfer.
OK ACK means that the previous packet was success-
ful. WAIT response requires a data phase, as explained
in the following list. For a FAULT status, the program-
ming operation should be aborted immediately.

a. For a WAIT response, if the transaction is a read, the
host should ignore the data read in the data phase.
The target does not drive the line and the host must
not check the parity bit as well.

b. For a WAIT response, if the transaction is a write, the
data phase is ignored by the target device. However,
the host must still send the data to be written from
the standpoint of implementation. The parity data
parity bit corresponding to the data should also be
sent by the host.

c. For a WAIT response, it means that the target device
is processing the previous transaction. The host can
try for a maximum four continuous WAIT responses
to see if an OK response is received. If it fails, then
the programming operation should be aborted and
retried.

d. For a FAULT response, the programming operation
should be aborted and retried by doing a device
reset.

Table C-1. ACK Response for SWD Transfers

ACK[2:0] SWD

OK 001

WAIT 010

FAULT 100

NACK 111

9. The data phase includes a parity bit (even parity)

a. For a read packet, if the host detects a parity error,
then it must abort the programming operation and try
again.

b. For a write packet, if the target device detects a par-
ity error in the data sent by the host, it generates a
FAULT ACK response in the next packet.

10. Turnaround (TrN) phase: There is a single-cycle turn-
around phase between the packet request and the ACK
phases, as well as between the ACK and data phases
for write transfers as shown in Figure C-1. According to
the SWD protocol, both the host and the target use the
TrN phase to change the drive modes on their respective
SWDIO lines. During the first TrN phase after packet
request, the target starts driving the ACK data on the
SWDIO line on the rising edge of SWDCK in the TrN
phase. This ensures that the host can read the ACK data
on the next falling edge. Thus, the first TrN cycle lasts for
only a half-cycle duration. The second TrN cycle of the
SWD packet is one and one-half cycle long. Neither the
host nor the target device should drive the SWDIO line
during the TrN phase, as indicated by ‘z’ in Figure C-1.

11. The address, ACK, and read and write data are always
transmitted LSB first.

12. According to the SWD protocol, the host can generate
any number of SWD clock cycles between two packets
with the SWDIO low. It is recommended that you gener-
ate several dummy clock cycles (three) between two
packets or make clock free running in IDLE mode.

Note The SWD interface can be reset by clocking 50 or
more cycles with the SWDIO kept high. To return to the idle
state, SWDIO must be clocked low once.
Programming Specifications, Document No. 001-96666 Rev. *C 40

Appendix D. Timing Specifications of the SWD Interface
The external host should perform all read or write operations on the SWDIO line on the falling edge of SWDCK. The target
device performs read or write operations on SWDIO on the rising edge of SWDCK.

Figure D-1. SWD Interface Timing Diagram

Table D-1. SWD Interface AC Specifications

Although the ARM specification does not define the minimum frequency of the SWD bus, the minimum for the Target family is
1.5 MHz. It is only needed on the first step to acquire the silicon during the boot window. After that, the programming fre-
quency can be as low as needed.

Symbol Description Conditions Min Typ Max Units

f_SWDCK SWDCLK frequency 3.3 V  VDDD  5.0 V – – 14 MHz

1.71 V  VDDD  3.3 V – – 7 MHz

T_SWDI_setup SWDIO input setup
before SWDCK high

T = 1 / f_SWDCK T/4 – – ns

T_SWDI_hold SWDIO input hold
after SWDCK high

T = 1 / f_SWDCK T/4 – – ns

T_SWDO_valid SWDCK high to
SWDIO output valid

T = 1 / f_SWDCK – – T/2 ns

T_SWDO_hold SWDIO output hold
after SWDCK high

T = 1 / f_SWDCK 1 – – ns

SWDIO

SWDCK

SWDIO

 (host writing, target reading)

 (host reading, target writing)

T_ SWDI_ setup T_ SWDI_hold

T_ SWDO_valid T_ SWDO_hold

1/f_ SWDCK
Programming Specifications, Document No. 001-96666 Rev. *C 41

	Contents
	1. Introduction
	1.1 Programmer
	1.2 Target Family Overview
	Document Revision History

	2. Required Data
	2.1 Hex File Origin
	2.2 Nonvolatile Subsystem
	2.3 Organization of the Hex File

	3. Communication Interface
	3.1 The Protocol Stack
	3.2 SWD Interface
	3.3 Hardware Access Commands
	3.4 Pseudocode
	3.5 Physical Layer

	4. Programming Algorithm
	4.1 High-Level Programming Flow
	4.2 Subroutines Used in the Programming Flow
	4.3 Step 1 – Acquire Chip
	Pseudocode – Step 1. Acquire Chip

	4.4 Step 2 – Check Silicon ID
	Pseudocode – Step 2. Check Silicon ID

	4.5 Step 3 – Erase All Flash
	Pseudocode – Step 3. Erase All Flash

	4.6 Step 4 – Checksum Privileged
	Pseudocode – Step 4. Checksum Privileged

	4.7 Step 5 – Program Flash
	Pseudocode – Step 5. Program Flash

	4.8 Step 6 – Verify Flash
	Pseudocode – Step 6. Verify Flash.

	4.9 Step 7 – Program Protection Settings
	Pseudocode – Step 7. Program Protection Settings

	4.10 Step 8 – Verify Protection Settings
	Pseudocode – Step 8. Verify Protection Settings

	4.11 Step 9 – Verify Checksum
	Pseudocode – Step 9. Verify Checksum

	4.12 Step 10 - Program User SFlash (optional)
	Pseudocode. Step 10 - Program User SFlash

	Appendix A. Chip-Level Protection
	Appendix B. Intel Hex File Format
	Appendix C. Serial Wire Debug (SWD) Protocol
	Appendix D. Timing Specifications of the SWD Interface

