
Explore more resources
Altera® Design Hub

Nios® V Embedded Processor Design
Handbook

Updated for Quartus® Prime Design Suite: 25.1

Online Version

Send Feedback

726952

2025.07.16

https://manuals.plus/m/5baee061059747dc20ccde6aa93a5d8b18ac3f4b1b1315a5b09a9115706c0236

Contents

1. About the Nios® V Embedded Processor..6
1.1. Altera® FPGA and Embedded Processors Overview... 6
1.2. Quartus® Prime Software Support..7
1.3. Nios V Processor Licensing..7
1.4. Embedded System Design.. 8

2. Nios V Processor Hardware System Design with Quartus Prime Software and
Platform Designer..10
2.1. Creating Nios V Processor System Design with Platform Designer 10

2.1.1. Instantiating Nios V Processor Altera FPGA IP.. 11
2.1.2. Defining System Component Design... 23
2.1.3. Specifying Base Addresses and Interrupt Request Priorities24

2.2. Integrating Platform Designer System into the Quartus Prime Project......................... 25
2.2.1. Instantiating the Nios V Processor System Module in the Quartus Prime

Project... 25
2.2.2. Connecting Signals and Assigning Physical Pin Locations............................... 25
2.2.3. Constraining the Altera FPGA Design...25

2.3. Designing a Nios V Processor Memory System .. 26
2.3.1. Volatile Memory...26
2.3.2. Non-Volatile Memory.. 35

2.4. Clocks and Resets Best Practices..35
2.4.1. System JTAG Clock...35
2.4.2. Reset Request Interface..36
2.4.3. Reset Release IP.. 37

2.5. Assigning a Default Agent... 37
2.6. Assigning a UART Agent for Printing... 38

2.6.1. Preventing Stalls by the JTAG UART..38
2.7. JTAG Signals... 39
2.8. Optimizing Platform Designer System Performance...39

3. Nios V Processor Software System Design.. 42
3.1. Nios V Processor Software Development Flow.. 43

3.1.1. Board Support Package Project.. 43
3.1.2. Application Project... 43

3.2. Altera FPGA Embedded Development Tools..43
3.2.1. Nios V Processor Board Support Package Editor..44
3.2.2. RiscFree IDE for Altera FPGAs..45
3.2.3. Nios V Utilities Tools... 45
3.2.4. File Format Conversion Tools... 46
3.2.5. Other Utilities Tools.. 46

4. Nios V Processor Configuration and Booting Solutions..47
4.1. Introduction..47
4.2. Linking Applications... 47

4.2.1. Linking Behavior.. 48
4.3. Nios V Processor Booting Methods..49
4.4. Introduction to Nios V Processor Booting Methods.. 51

4.4.1. Nios V Processor Application Execute-In-Place from Boot Flash.......................51

Contents

Nios® V Embedded Processor Design Handbook Send Feedback

2

4.4.2. Nios V Processor Application Copied from Boot Flash to RAM Using Boot
Copier.. 52

4.4.3. Nios V Processor Application Execute-In-Place from OCRAM........................... 54
4.4.4. Nios V Processor Application Execute-In-Place from TCM............................... 55

4.5. Nios V Processor Booting from On-Chip Flash (UFM)... 55
4.5.1. MAX 10 FPGA On-Chip Flash Description... 56
4.5.2. Nios V Processor Application Execute-In-Place from UFM............................... 58
4.5.3. Nios V Processor Application Copied from UFM to RAM using Boot Copier......... 67

4.6. Nios V Processor Booting from General Purpose QSPI Flash....................................... 76
4.6.1. Nios V Processor Application Executes-In-Place from General Purpose QSPI

Flash..77
4.6.2. Nios V Processor Application Copied from General Purpose QSPI Flash to

RAM Using Boot Copier (Bootloader via GSFI).. 86
4.7. Nios V Processor Booting from Configuration QSPI Flash..94

4.7.1. Nios V Processor Application Executes-In-Place from Configuration QSPI
Flash..95

4.7.2. Nios V Processor Design, Configuration and Boot Flow (Control Block-
based Device)..106

4.7.3. Nios V Processor Design, Configuration and Boot Flow (SDM-based Devices).. 119
4.8. Nios V Processor Booting from On-Chip Memory (OCRAM)....................................... 140

4.8.1. Nios V Processor Application Executes in-place from OCRAM........................ 140
4.9. Nios V Processor Booting from Tightly Coupled Memory (TCM)................................. 147

4.9.1. Nios V Processor Application Executes in-place from TCM.............................147
4.10. Summary of Nios V Processor Vector Configuration and BSP Settings...................... 154
4.11. Reducing Nios V Processor Booting Time..156

4.11.1. Boot Methods...156
4.11.2. Boot devices.. 156
4.11.3. Peripheral Initialization..156
4.11.4. Caches..156
4.11.5. System Speed..157

5. Nios V Processor - Using the MicroC/TCP-IP Stack... 158
5.1. Introduction.. 158
5.2. Software Architecture... 158
5.3. Support and Licensing.. 159
5.4. MicroC/TCP-IP Example Designs...159

5.4.1. Hardware and Software Requirements...159
5.4.2. Overview.. 160
5.4.3. Acquiring the Example Design Files...162
5.4.4. Hardware Design Files.. 163
5.4.5. Software Design Files... 164

5.5. Development Flow..165
5.5.1. Hardware Development Flow... 165
5.5.2. Software Development Flow.. 167
5.5.3. Device Programming...170

5.6. Operating the Example Designs..171
5.6.1. Operating the MicroC/TCP-IP IPerf.. 171
5.6.2. Operating the MicroC/TCP-IP Simple Socket Server.....................................173

5.7. Optional Configuration.. 176
5.7.1. Configuring Hardware Name.. 176
5.7.2. Configuring MAC and IP Addresses... 177
5.7.3. Configuring MicroC/TCP-IP Initialization...177

Contents

Send Feedback Nios® V Embedded Processor Design Handbook

3

5.7.4. Configuring iPerf Server Auto-Initialization...180
5.8. MicroC/TCP-IP Simple Socket Server Concepts... 181

5.8.1. MicroC/OS-II Resources ... 181
5.8.2. Error Handling... 182
5.8.3. MicroC/TCP-IP Stack Default Configuration.. 182

6. Nios V Processor Debugging, Verifying, and Simulating..183
6.1. Debugging Nios V/c Processor ...183

6.1.1. Pilot System with Non-pipelined Nios V/m Processor................................... 183
6.1.2. printf() Debugging...185

6.2. Debugging Nios V Processor Hardware Designs.. 186
6.2.1. JTAG Server.. 186
6.2.2. System Console... 187
6.2.3. Signal Tap Logic Analyzer.. 189
6.2.4. In-System Sources and Probes...198

6.3. Debugging Nios V Processor Software Designs... 199
6.3.1. Ashling RiscFree IDE for Altera FPGAs... 199
6.3.2. Ashling Visual Studio Code Extension for Altera FPGAs................................ 200
6.3.3. OpenOCD..200
6.3.4. Objdump File...200
6.3.5. Show Make Commands... 200

6.4. Debugging Tools.. 201
6.5. Additional Embedded Design Considerations.. 201

6.5.1. JTAG Signal Integrity.. 201
6.5.2. Additional Memory Space for System Prototyping....................................... 201

6.6. Simulating Nios V Processor Designs...201
6.6.1. Prerequisites... 202
6.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer202
6.6.3. Creating Nios V Processor Software.. 203
6.6.4. Generating Memory Initialization File.. 204
6.6.5. Generating System Simulation Files.. 204
6.6.6. Running Simulation in the QuestaSim Simulator Using Command Line...........205

7. Nios V Processor — Remote System Update.. 207
7.1. Overview.. 207
7.2. Quartus Prime Pro Edition Software and Tool Support..208

7.2.1. Quartus Prime Pro Edition Software.. 208
7.2.2. Programming File Generator.. 210

7.3. Nios V Processor RSU Quick Start Guide in SDM-based Devices................................ 212
7.3.1. Individual Factory, Application, and Update Images.....................................213
7.3.2. Hardware Design Flow.. 213
7.3.3. Software Design Flow... 216
7.3.4. Individual Images Generation.. 221
7.3.5. Remote System Update Image Files Generation..221
7.3.6. QSPI Flash Programming...228
7.3.7. Operating the RSU Client API...230

8. Nios V Processor — Using Custom Instruction...234
8.1. Introduction.. 234
8.2. Unimplemented Instruction Example Design.. 234

8.2.1. Hardware and Software Requirements...234
8.2.2. Overview.. 235

Contents

Nios® V Embedded Processor Design Handbook Send Feedback

4

8.2.3. Acquiring the Example Design File.. 235
8.2.4. Hardware Design Files.. 235
8.2.5. Software Design Files... 237
8.2.6. Development Flow..237
8.2.7. Operating the Example Design... 238

8.3. Hardware Acceleration Example Design... 240
8.3.1. Hardware and Software Requirements...241
8.3.2. Overview.. 241
8.3.3. Acquiring the Example Design File.. 241
8.3.4. Hardware Design Files.. 242
8.3.5. Software Design Files... 242
8.3.6. Development Flow..243
8.3.7. Operating the Example Design... 244

9. Nios V Embedded Processor Design Handbook Archives... 246

10. Document Revision History for the Nios V Embedded Processor Design Handbook... 247

Contents

Send Feedback Nios® V Embedded Processor Design Handbook

5

1. About the Nios® V Embedded Processor

1.1. Altera® FPGA and Embedded Processors Overview

Altera FPGA devices can implement logic that functions as a complete microprocessor
while providing many options.

An important difference between discrete microprocessors and Altera FPGA is that
Altera FPGA fabric contains no logic when it powers up. The Nios® V processor is a soft
intellectual property (IP) processor based on the RISC-V specification. Before you run
software on a Nios V processor based system, you must configure the Altera FPGA
device with a hardware design that contains a Nios V processor. You can place the Nios
V processor anywhere on the Altera FPGA, depending on the requirements of the
design.

To enable your Altera® FPGA IP-based embedded system to behave as a discrete
microprocessor-based system, your system should include the following:

• A JTAG interface to support Altera FPGA configuration, hardware and software
debugging

• A power-up Altera FPGA configuration mechanism

If your system has these capabilities, you can begin refining your design from a
pretested hardware design loaded in the Altera FPGA. Using an Altera FPGA also allows
you to modify your design quickly to address problems or to add new functionality.
You can test these new hardware designs easily by reconfiguring the Altera FPGA
using your system's JTAG interface.

The JTAG interface supports hardware and software development. You can perform the
following tasks using the JTAG interface:

• Configure the Altera FPGA

• Download and debug software

• Communicate with the Altera FPGA through a UART-like interface (JTAG UART
terminal)

• Debug hardware (with the Signal Tap embedded logic analyzer)

• Program flash memory

After you configure the Altera FPGA with a Nios V processor-based design, the
software development flow is similar to the flow for discrete microcontroller designs.

Related Information

• AN 985: Nios V Processor Tutorial
A quick start guide about creating a simple Nios V processor system and
running the Hello World application.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

• Nios V Processor Reference Manual
Provides information about the Nios V processor performance benchmarks,
processor architecture, the programming model, and the core implementation.

• Embedded Peripherals IP User Guide

• Nios V Processor Software Developer Handbook
Describes the Nios V processor software development environment, the tools
that are available, and the process to build software to run on Nios V processor.

• Ashling* RiscFree* Integrated Development Environment (IDE) for Altera FPGAs
User Guide

Describes the RiscFree* integrated development environment (IDE) for Altera
FPGAs Arm*-based HPS and Nios V core processor.

• Nios V Processor Altera FPGA IP Release Notes

1.2. Quartus® Prime Software Support

Nios V processor build flow is different for Quartus® Prime Pro Edition software and
Quartus Prime Standard Edition software. Refer to AN 980: Nios V Processor Quartus
Prime Software Support for more information about the differences.

Related Information

AN 980: Nios V Processor Quartus Prime Software Support

1.3. Nios V Processor Licensing

Each Nios V processor variant has its license key. Once you acquire the license key,
you can use the same license key for all Nios V processor projects until the expiration
date. You can acquire the Nios V Processor Altera FPGA IP licenses at zero cost.

The Nios V processor license key list is available in the Altera FPGA Self-Service
Licensing Center. Click the Sign up for Evaluation or Free License tab, and select
the corresponding options to make the request.

Figure 1. Altera FPGA Self-Service Licensing Center

With the license keys, you can:

1. About the Nios® V Embedded Processor

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

7

• Implement a Nios V processor within your system.

• Simulate the behavior of a Nios V processor system.

• Verify the functionality of the design, such as size and speed.

• Generate device programming files.

• Program a device and verify the design in hardware.

You do not need a license to develop software in the Ashling* RiscFree* IDE for Altera
FPGAs.

Related Information

• Altera FPGA Self-Service Licensing Center
For more information about obtaining the Nios V Processor Altera FPGA IP
license keys.

• Altera FPGA Software Installation and Licensing
For more information about licensing the Altera FPGA software and setting up a
fixed license and network license server.

1.4. Embedded System Design

The following figure illustrates a simplified Nios V processor based system design flow,
including both hardware and software development.

1. About the Nios® V Embedded Processor

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

8

Figure 2. Nios V Processor System Design Flow

Nios® V

Processor Cores

and Standard
Components

System Concept

System Complete

No

No

Yes

Yes

Define and Generate
System in

Platform Designer

Hardware Flow:
Integrate and Compile

Intel Quartus Prime Project

Software Flow:
Develop and Build

Nios V Proposal Software

Analyze System
Requirements

Hardware Flow:

Download FPGA Design
to Target Board

Software Flow:
Test and Debug

Nios V Processor Software

Software
Meets
Spec?

Hardware
Meets
Spec?

1. About the Nios® V Embedded Processor

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

9

2. Nios V Processor Hardware System Design with
Quartus Prime Software and Platform Designer

The following diagram illustrates a typical Nios V processor hardware design.

Figure 3. Nios V Processor System Hardware Design Flow

Use Platform Designer to

Design a Nios V Based System

Generate Platform Designer Design

Integrate Platform Designer

System with Intel Quartus Prime Project

Compile Hardware

for Target Device in Intel Quartus Prime

Assign Pin Locations, Timing

Requirements, and other Design Constraints

Start

Ready to Download

Nios V Cores

and Standard

Components

2.1. Creating Nios V Processor System Design with Platform
Designer

The Quartus Prime software includes the Platform Designer system integration tool
that simplifies the task of defining and integrating Nios V processor IP core and other
IPs into an Altera FPGA system design. The Platform Designer automatically creates
interconnect logic from the specified high-level connectivity. The interconnect
automation eliminates the time-consuming task of specifying system-level HDL
connections.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

After analyzing the system hardware requirements, you use Quartus Prime to specify
the Nios V processor core, memory, and other components your system requires. The
Platform Designer automatically generates the interconnect logic to integrate the
components in the hardware system.

2.1.1. Instantiating Nios V Processor Altera FPGA IP

You can instantiate any of the processor IP cores in Platform Designer ➤ IP
Catalog ➤ Processors and Peripherals ➤ Embedded Processors.

The IP core of each processor supports different configuration options based on its
unique architecture. You can define these configurations to better suit your design
needs.

Table 1. Configuration Options Across Core Variants

Configuration Options Nios V/c Processor Nios V/m Processor Nios V/g Processor

Debug — √ √

Use Reset Request √ √ √

Traps, Exceptions, and Interrupts √ √ √

CPU Architecture √ √ √

ECC √ √ √

Caches, Peripheral Regions and TCMs — — √

Custom Instructions — — √

Lockstep — — √

2.1.1.1. Instantiating Nios V/c Compact Microcontroller Altera FPGA IP

Figure 4. Nios V/c Compact Microcontroller Altera FPGA IP

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

11

2.1.1.1.1. CPU Architecture Tab

Table 2. CPU Architecture Tab

Feature Description

Enable Avalon® Interface Enables Avalon Interface for instruction manager and data manager. If disabled, the system
uses AXI4-Lite interface.

mhartid CSR value • Invalid IP option.
• Do not use mhartid CSR value in Nios V/c processor.

2.1.1.1.2. Use Reset Request Tab

Table 3. Use Reset Request Tab Parameter

Use Reset Request Tab Description

Add Reset Request
Interface

• Enable this option to expose local reset ports where a local master can use it to trigger the
Nios V processor to reset without affecting other components in a Nios V processor
system.

• The reset interface consists of an input resetreq signal and an output ack signal.
• You can request a reset to the Nios V processor core by asserting the resetreq signal.
• The resetreq signal must remain asserted until the processor asserts ack signal. Failure

for the signal to remain asserted can cause the processor to be in a non-deterministic
state.

• The Nios V processor responds that the reset is successful by asserting the ack signal.
• After the processor is successfully reset, the assertion of the ack signal can happen

multiple times periodically until the de-assertion of the resetreq signal.

2.1.1.1.3. Traps, Exceptions, and Interrupts Tab

Table 4. Traps, Exceptions, and Interrupts Tab Parameters

Traps, Exceptions, and
Interrupts

Description

Reset Agent • The memory hosting the reset vector (the Nios V processor reset address) where the reset
code resides.

• You can select any memory module connected to the Nios V processor instruction master
and supported by a Nios V processor boot flow as the reset agent.

Reset Offset • Specifies the offset of the reset vector relative to the chosen reset agent's base address.
• Platform Designer automatically provides a default value for the reset offset.

Note: Platform Designer provides an Absolute option, which allows you to specify an
absolute address in Reset Offset. Use this option when the memory storing the reset
vector is located outside the processor system and subsystems.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

12

2.1.1.1.4. ECC Tab

Table 5. ECC Tab

ECC Description

Enable Error Detection
and Status Reporting

• Enable this option to apply ECC feature for Nios V processor internal RAM blocks.
• ECC features detect up to 2-bits errors and react based on the following behavior:

— If it is a correctable error 1-bit, the processor continues to operate after correcting the
error in the processor pipeline. However, the correction is not reflected in the source
memories.

— If the error is uncorrectable, the processor continues to operate without correcting it in
the processor pipeline and source memories, which might cause the processor to enter
a nondeterministic state.

2.1.1.2. Instantiating Nios V/m Microcontroller Altera FPGA IP

Figure 5. Nios V/m Microcontroller Altera FPGA IP

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

13

2.1.1.2.1. Debug Tab

Table 6. Debug Tab Parameters

Debug Tab Description

Enable Debug • Enable this option to add the JTAG target connection module to the Nios V processor.
• The JTAG target connection module allows connecting to the Nios V processor through the

JTAG interface pins of the FPGA.
• The connection provides the following basic capabilities:

— Start and stop the Nios V processor
— Examine and edit registers and memory.
— Download the Nios V application .elf file to the processor memory at runtime via

niosv-download.
— Debug the application running on the Nios V processor

• Connect dm_agent port to the processor instruction and data bus. Ensure the base
address between both buses are the same.

Enable Reset from Debug
Module

• Enable this option to expose dbg_reset_out and ndm_reset_in ports.
• JTAG debugger or niosv-download -r command trigger the dbg_reset_out, which

allows the Nios V processor to reset system peripherals connecting to this port.
• You must connect the dbg_reset_out interface to ndm_reset_in instead of reset

interface to trigger reset to processor core and timer module. You must not connect
dbg_reset_out interface to reset interface to prevent indeterminate behavior.

2.1.1.2.2. Use Reset Request Tab

Table 7. Use Reset Request Tab Parameter

Use Reset Request Tab Description

Add Reset Request
Interface

• Enable this option to expose local reset ports where a local master can use it to trigger the
Nios V processor to reset without affecting other components in a Nios V processor
system.

• The reset interface consists of an input resetreq signal and an output ack signal.
• You can request a reset to the Nios V processor core by asserting the resetreq signal.
• The resetreq signal must remain asserted until the processor asserts ack signal. Failure

for the signal to remain asserted can cause the processor to be in a non-deterministic
state.

• Assertion of the resetreq signal in debug mode has no effect on the processor's state.
• The Nios V processor responds that the reset is successful by asserting the ack signal.
• After the processor is successfully reset, the assertion of the ack signal can happen

multiple times periodically until the de-assertion of the resetreq signal.

2.1.1.2.3. Traps, Exceptions, and Interrupts Tab

Table 8. Traps, Exceptions, and Interrupts Tab

Traps, Exceptions, and
Interrupts Tab

Description

Reset Agent • The memory hosting the reset vector (the Nios V processor reset address) where the reset
code resides.

• You can select any memory module connected to the Nios V processor instruction master
and supported by a Nios V processor boot flow as the reset agent.

Reset Offset • Specifies the offset of the reset vector relative to the chosen reset agent's base address.
• Platform Designer automatically provides a default value for the reset offset.

Interrupt Mode Specific the type of interrupt controller either Direct or Vectored.
Note: The Nios V/m non-pipelined processor does not support Vectored interrupts.

Therefore, avoid using the Vectored interrupt mode when the processor is in Non-
pipelined mode.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

14

Note: Platform Designer provides an Absolute option, which allows you to specify an
absolute address in Reset Offset. Use this option when the memory storing the reset
vector is located outside the processor system and subsystems.

2.1.1.2.4. CPU Architecture

Table 9. CPU Architecture Tab Parameters

CPU Architecture Description

Enable Pipelining in CPU • Enable this option to instantiate pipelined Nios V/m processor.
— IPC is higher at the cost of higher logic area and lower Fmax frequency.

• Disable this option to instantiate non-pipelined Nios V/m processor.
— Has similar core performance as the Nios V/c processor.
— Supports debugging and interrupt capability
— Lower logic area and higher Fmax frequency at the cost of lower IPC.

Enable Avalon Interface Enables Avalon Interface for instruction manager and data manager. If disabled, the system
uses AXI4-Lite interface.

mhartid CSR value • Hart ID register (mhartid) value is 0 at default.
• Assign a value between 0 and 4094.
• Compatible with Altera FPGA Avalon Mutex Core HAL API.

Related Information

Embedded Peripheral IP User Guide - Intel FPGA Avalon® Mutex Core

2.1.1.2.5. ECC Tab

Table 10. ECC Tab

ECC Description

Enable Error Detection
and Status Reporting

• Enable this option to apply ECC feature for Nios V processor internal RAM blocks.
• ECC features detect up to 2-bits errors and react based on the following behavior:

— If it is a correctable error 1-bit, the processor continues to operate after correcting the
error in the processor pipeline. However, the correction is not reflected in the source
memories.

— If the error is uncorrectable, the processor continues to operate without correcting it in
the processor pipeline and source memories, which might cause the processor to enter
a nondeterministic state.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

15

2.1.1.3. Instantiating Nios V/g General Purpose Processor Altera FPGA IP

Figure 6. Nios V/g General Purpose Processor Altera FPGA IP - Part 1

Figure 7. Nios V/g General Purpose Processor Altera FPGA IP - Part 2 (Turn Off Enable
Core Level Interrupt Controller)

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

16

Figure 8. Nios V/g General Purpose Processor Altera FPGA IP - Part 2 (Turn On Enable
Core Level Interrupt Controller)

Figure 9. Nios V/g General Purpose Processor Altera FPGA IP - Part 3

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

17

Figure 10. Nios V/g General Purpose Processor Altera FPGA IP - Part 4

2.1.1.3.1. CPU Architecture

Table 11. CPU Architecture Parameters

CPU Architecture Tab Description

Enable Floating Point Unit Enable this option to add the floating-point unit (“F” extension) in the processor core.

Enable Branch Prediction Enable static branch prediction (Backward Taken and Forward Not Taken) for branch
instructions.

mhartid CSR value • Hart ID register (mhartid) value is 0 at default.
• Assign a value between 0 and 4094.
• Compatible with Altera FPGA Avalon Mutex Core HAL API.

Disable FSQRT & FDIV
instructions for FPU

• Remove floating-point square root (FSQRT) and floating-point division (FDIV) operations in
FPU.

• Apply software emulation on both instructions during runtime.

Related Information

Embedded Peripheral IP User Guide - Intel FPGA Avalon® Mutex Core

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

18

2.1.1.3.2. Debug Tab

Table 12. Debug Tab Parameters

Debug Tab Description

Enable Debug • Enable this option to add the JTAG target connection module to the Nios V processor.
• The JTAG target connection module allows connecting to the Nios V processor through the

JTAG interface pins of the FPGA.
• The connection provides the following basic capabilities:

— Start and stop the Nios V processor
— Examine and edit registers and memory.
— Download the Nios V application .elf file to the processor memory at runtime via

niosv-download.
— Debug the application running on the Nios V processor

• Connect dm_agent port to the processor instruction and data bus. Ensure the base
address between both buses are the same.

Enable Reset from Debug
Module

• Enable this option to expose dbg_reset_out and ndm_reset_in ports.
• JTAG debugger or niosv-download -r command trigger the dbg_reset_out, which

allows the Nios V processor to reset system peripherals connecting to this port.
• You must connect the dbg_reset_out interface to ndm_reset_in instead of reset

interface to trigger reset to processor core and timer module. You must not connect
dbg_reset_out interface to reset interface to prevent indeterminate behavior.

2.1.1.3.3. Lockstep Tab

Table 13. Lockstep Tab

Parameters Description

Enable Lockstep • Enable the dual core Lockstep system.

Default Timeout Period • Default value of programmable timeout on reset exit (between 0 and 255).

Enable Extended Reset Interface • Enable the optional Extended Reset Interface for Extended Reset Control.
• When disabled, the fRSmartComp implements Basic Reset Control.

2.1.1.3.4. Use Reset Request Tab

Table 14. Use Reset Request Tab Parameter

Use Reset Request Tab Description

Add Reset Request
Interface

• Enable this option to expose local reset ports where a local master can use it to trigger the
Nios V processor to reset without affecting other components in a Nios V processor
system.

• The reset interface consists of an input resetreq signal and an output ack signal.
• You can request a reset to the Nios V processor core by asserting the resetreq signal.
• The resetreq signal must remain asserted until the processor asserts ack signal. Failure

for the signal to remain asserted can cause the processor to be in a non-deterministic
state.

• Assertion of the resetreq signal in debug mode has no effect on the processor's state.
• The Nios V processor responds that the reset is successful by asserting the ack signal.
• After the processor is successfully reset, the assertion of the ack signal can happen

multiple times periodically until the de-assertion of the resetreq signal.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

19

2.1.1.3.5. Traps, Exceptions, and Interrupts Tab

Table 15. Traps, Exceptions, and Interrupts Tab when Enable Core Level Interrupt
Controller is Turned Off

Traps, Exceptions, and
Interrupts Tab

Description

Reset Agent • The memory hosting the reset vector (the Nios V processor reset address) where the reset
code resides.

• You can select any memory module connected to the Nios V processor instruction master
and supported by a Nios V processor boot flow as the reset agent.

Reset Offset • Specifies the offset of the reset vector relative to the chosen reset agent's base address.
• Platform Designer automatically provides a default value for the reset offset.

Enable Core Level
Interrupt Controller
(CLIC)

• Enable CLIC to support pre-emptive interrupts and configurable interrupt trigger condition.
• When enabled, you can configure the number of platform interrupts, set trigger conditions,

and designate some of the interrupts as pre-emptive.

Interrupt Mode Specify the interrupt types as Direct, or Vectored

Shadow Register Files Enable shadow register to reduce context switching upon interrupt.

Table 16. Traps, Exceptions and Interrupts when Enable Core Level Interrupt Controller
is Turned On

Traps, Exceptions, and
Interrupts

Descriptions

Reset Agent • The memory hosting the reset vector (the Nios V processor reset address) where the reset
code resides.

• You can select any memory module connected to the Nios V processor instruction master
and supported by a Nios V processor boot flow as the reset agent.

Reset Offset • Specifies the offset of the reset vector relative to the chosen reset agent's base address.
• Platform Designer automatically provides a default value for the reset offset.

Enable Core Level
Interrupt Controller
(CLIC)

• Enable CLIC to support pre-emptive interrupts and configurable interrupt trigger condition.
• When enabled, you can configure the number of platform interrupts, set trigger conditions,

and designate some of the interrupts as pre-emptive.

Interrupt Mode • Specify the interrupt types as Direct, Vectored, or CLIC.

Shadow Register Files • Enable shadow register to reduce context switching upon interrupt.
• Offers two approaches:

— Number of CLIC interrupt levels
— Number of CLIC interrupt levels - 1: This option is useful when you want the

number of register file copies to fit in an exact number of M20K or M9K blocks.
• Enable the Nios V processor to use shadow register files which reduce context switching

overhead upon interrupt.
For more information about shadow register files, refer to the Nios V Processor Reference
Manual.

Number of Platform
interrupt sources

• Specifies the number of platform interrupt between 16 to 2048.
Note: CLIC supports up to 2064 interrupt inputs, and the first 16 interrupt inputs are also

connected to the basic interrupt controller.

CLIC Vector Table
Alignment

• Automatically determined based on the number of platform interrupt sources.
• If you use an alignment that is below the recommended value, the CLIC increases logic

complexity by adding an extra adder to perform vectoring calculations.
• If you use an alignment that is below the recommended value, this results in increased

logic complexity in the CLIC.

continued...

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

20

Traps, Exceptions, and
Interrupts

Descriptions

Number of Interrupt
Levels

• Specifies the number of interrupt levels with an additional level 0 for application code.
Interrupts of a higher level can interrupt (pre-empt) a running handler for a lower-level
interrupt.

• With non-zero interrupt levels as the only options for interrupts, the application code is
always at the lowest level 0.
Note: Run-time configuration of an interrupt's level and priority is done in a single 8-bit

register. If the number of interrupt levels is 256, it is not possible to configure the
interrupt priority at run-time. Otherwise, the maximum number of configurable
priorities is 256 / (number of interrupt levels - 1).

Number of Interrupt
Priorities per level

• Specifies the number of interrupt priorities, which the CLIC uses to determine the order in
which non pre-empting interrupt handlers are called.
Note: Concatenation of binary values of the selected interrupt level and selected interrupt

priority must be less than 8 bits.

Configurable interrupt
polarity

• Allows you to configure interrupt polarity during runtime.
• Default polarity is positive polarity.

Support edge triggered
interrupts

• Allows you to configure interrupt trigger condition during runtime, i.e. high-level triggered
or positive-edge triggered (when interrupt polarity is positive in Configurable interrupt
polarity).

• Default trigger condition is level triggered interrupt.

Note: Platform Designer provides an Absolute option, which allows you to specify an
absolute address in Reset Offset. Use this option when the memory storing the reset
vector is located outside the processor system and subsystems.

Related Information

Nios® V Processor Reference Manual

2.1.1.3.6. Memory Configurations Tab

Table 17. Memory Configuration Tab Parameters

Category Memory
Configuration Tab

Description

Caches Data Cache Size • Specifies the size of the data cache.
• Valid sizes are from 0 kilobytes (KB) to 16 KB.
• Turn off data cache when size is 0 KB.

Instruction Cache
Size

• Specifies the size of the instruction cache.
• Valid sizes are from 0 KB to 16 KB.
• Turn off instruction cache when size is 0 KB.

Peripheral Region A
and B

Size • Specifies the size of the peripheral region.
• Valid sizes are from 64 KB to 2 gigabytes (GB), or None. Choosing None

disables the peripheral region.

Base Address • Specifies the base address of peripheral region after you select the size.
• All addresses in the peripheral region produce uncacheable data

accesses.
• Peripheral region base address must be aligned to the peripheral region

size.

Tightly Coupled
Memories

Size • Specifies the size of the tightly-coupled memory.
— Valid sizes are from 0 MB to 512 MB.

Base Address • Specifies the base address of tightly-coupled memory.

Initialization File • Specifies the initialization file for tightly-coupled memory.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

21

Note: In a Nios V processor system with cache enabled, you must place system peripherals
within a peripheral region. You can use peripheral regions to define a non-cacheable
transaction for peripherals such as UART, PIO, DMA, and others.

2.1.1.3.7. ECC Tab

Table 18. ECC Tab

ECC Description

Enable Error Detection
and Status Reporting

• Enable this option to apply ECC feature for Nios V processor internal RAM blocks.
• ECC features detect up to 2-bits errors and react based on the following behavior:

— If it is a correctable single bit error and Enable Single Bit Correction is turned off,
the processor continues to operate after correcting the error in the processor pipeline.
However, the correction is not reflected in the source memories.

— If it is a correctable single bit error and Enable Single Bit Correction is turned on,
the processor continues to operate after correcting the error in the processor pipeline
and the source memories.

— If it is an uncorrectable error, the processor halts its operation.

Enable Single Bit
Correction

Enable single bit correction on embedded memory blocks in the core.

2.1.1.3.8. Custom Instruction Tab

Note: This tab is only available for the Nios V/g processor core.

Custom Instruction Description

Nios V Custom Instruction
Hardware Interface Table

• Nios V processor uses this table to define its custom instruction manager
interfaces.

• Defined custom instruction manager interfaces are uniquely encoded by an
Opcode (CUSTOM0-3) and 3 bits of funct7[6:4].

• You can define up to a total of 32 individual custom instruction manager
interfaces.

Nios V Custom Instruction
Software Macro Table

• Nios V processor uses this table is used to define custom instruction software
encodings for defined custom instruction manager interfaces.

• For each defined custom instruction software encoding, the Opcode (CUSTOM0-3)
and 3 bits of funct7[6:4] encoding must correlate to a defined custom
instruction manager interface encoding in the Custom Instruction Hardware
Interface Table.

• You can use funct7[6:4], funct7[3:0], and funct3[2:0] to define
additional encoding for a given custom instruction, or specified as Xs to be passed
in as additional instruction arguments.

• Nios V processor provides defined custom instruction software encodings as
generated C-macros in system.h, and follow the R-type RISC-V instruction
format.

• Mnemonics may be used to define custom names for:
— The generated C-Macros in system.h.
— The generated GDB debug mnemonics in

custom_instruction_debug.xml.

Related Information

AN 977: Nios V Processor Custom Instruction
For more information about custom instructions that allow you to customize the
Nios® V processor to meet the needs of a particular application.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

22

2.1.2. Defining System Component Design

Use the Platform Designer to define the hardware characteristics of the Nios V
processor system and add in the desired components. The following diagram
demonstrates a basic Nios V processor system design with the following components:

• Nios V processor core

• On-Chip Memory

• JTAG UART

• Interval Timer (optional)(1)

When a new On-Chip Memory is added to a Platform Designer system, perform Sync
System Infos to reflect the added memory components in reset. Alternatively, you
can enable Auto Sync in Platform Designer to automatically reflect the latest
component changes

Figure 11. Example connection of Nios V processor with other peripherals in Platform
Designer

(1) You have the option to use the Nios V Internal Timer features to replace the external Interval
Timer in Platform Designer.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

23

You must also define operation pins to export as conduit in your Platform Designer
system. For example, a proper FPGA system operation pin list is defined as below but
not limited to:

• Clock

• Reset

• I/O signals

2.1.3. Specifying Base Addresses and Interrupt Request Priorities

To specify how the components added in the design interact to form a system, you
need to assign base addresses for each agent component and assign interrupt request
(IRQ) priorities for the JTAG UART and the interval timer. The Platform Designer
provides a command - Assign Base Addresses - which automatically assigns
proper base addresses to all components in a system. However, you can adjust the
base addresses based on your needs.

The following are some guidelines for assigning base addresses:

• Nios V processor core has a 32-bit address span. To access agent components,
their base address must range between 0x00000000 and 0xFFFFFFFF.

• Nios V programs use symbolic constants to refer to addresses. You do not have to
choose address values that are easy to remember.

• Address values that differentiate components with only a one-bit address
difference produce more efficient hardware. You do not have to compact all base
addresses into the smallest possible address range because compacting can create
less efficient hardware.

• Platform Designer does not attempt to align separate memory components in a
contiguous memory range. For example, if you want multiple On-Chip Memory
components addressable as one contiguous memory range, you must explicitly
assign base addresses.

Platform Designer also provides an automation command - Assign Interrupt
Numbers which connects IRQ signals to produce valid hardware results. However,
assigning IRQs effectively requires an understanding of the overall system response
behavior. Platform Designer cannot make educated guesses about the best IRQ
assignment.

The lowest IRQ value has the highest priority. In an ideal system, Altera recommends
that the timer component to have the highest priority IRQ, i.e., the lowest value, to
maintain the accuracy of the system clock tick.

In some cases, you might assign a higher priority to real time peripherals (such as
video controllers), which demands a higher interrupt rate than timer components.

Related Information

Quartus Prime Pro Edition User Guide:
More information about creating a System with Platform Designer.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

24

2.2. Integrating Platform Designer System into the Quartus Prime
Project

After generating the Nios V system design in Platform Designer, perform the following
tasks to integrate the Nios V system module into the Quartus Prime FPGA design
project.

• Instantiate the Nios V system module in the Quartus Prime project

• Connect signals from Nios V system module to other signals in the FPGA logic

• Assign physical pins location

• Constrain the FPGA design

2.2.1. Instantiating the Nios V Processor System Module in the Quartus
Prime Project

Platform Designer generates a system module design entity which you can instantiate
in Quartus Prime. How you instantiate the system module depends on the design
entry method for the overall Quartus Prime project. For example, if you were using
Verilog HDL for design entry, instantiate the Verilog based system module. If you
prefer to use the block diagram method for design entry, instantiate a system module
symbol .bdf file.

2.2.2. Connecting Signals and Assigning Physical Pin Locations

To connect your Altera FPGA design to your board-level design, perform the following
tasks:

• Identify the top-level file for your design and signals to connect to external Altera
FPGA device pins.

• Understand which pins to connect through your board-level design user guide or
schematics.

• Assign signals in the top-level design to ports on your Altera FPGA device with pin
assignment tools.

Your Platform Designer system can be the top level design. However, the Altera FPGA
can also include additional logic based on your needs and thus introduces a custom
top-level file. The top-level file connects the Nios V processor system module signals
to other Altera FPGA design logic.

Related Information

Quartus Prime Pro Edition User Guide: Design Constraints

2.2.3. Constraining the Altera FPGA Design

A proper Altera FPGA system design includes design constraints to ensure the design
meets timing closure and other logic constraint requirements. You must constrain your
Altera FPGA design to meet these requirements explicitly using tools provided in the
Quartus Prime software or third-party EDA providers. The Quartus Prime software
uses the provided constraints during the compilation phase to get the optimum
placement results.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

25

Related Information

• Quartus Prime Pro Edition User Guide: Design Constraints

• Third-party EDA Partners

• Quartus Prime Pro Edition User Guide: Timing Analyzer

2.3. Designing a Nios V Processor Memory System

This section describes the best practices for selecting memory devices in a Platform
Designer embedded system with a Nios V processor and achieving optimum
performance. Memory devices play a critical role in improving the overall performance
of an embedded system. Embedded system memory stores the program instructions
and data.

2.3.1. Volatile Memory

A primary distinction in a memory type is volatility. Volatile memory only holds its
contents while you supply power to the memory device. As soon as you remove the
power, the memory loses its contents.

Examples of volatile memory are RAM, cache, and registers. These are fast memory
types that increases running performance. Altera recommends you load and execute
Nios V processor instructions in RAM and pair Nios V IP core with On-Chip Memory IP
or External Memory Interface IP for optimum performance.

To improve performance, you can eliminate additional Platform Designer adaptation
components by matching Nios V processor data manager interface type or width with
boot RAM. For example, you can configure On-Chip Memory II with a 32-bits AXI-4
interface, which matches the Nios V data manager interface.

Related Information

• External Memory Interfaces IP Support Center

• On-Chip Memory (RAM or ROM) Altera FPGA IP

• On-Chip Memory II (RAM or ROM) Altera FPGA IP

• Nios V Processor Application Execute-In-Place from OCRAM on page 54

2.3.1.1. On-Chip Memory Configuration – RAM or ROM

You can configure Altera FPGA On-Chip Memory IPs as RAM or ROM.

• RAM provides read and write capability and has a volatile nature. If you are
booting the Nios V processor from an On-Chip RAM, you must make sure boot
content is preserved and not corrupted in the event of a reset during run time.

• If a Nios V processor is booting from ROM, any software bug on the Nios V
processor cannot erroneously overwrite the contents of On-Chip Memory. Thus,
reducing the risk of boot software corruption.

Related Information

• On-Chip Memory (RAM or ROM) Altera FPGA IP

• On-Chip Memory II (RAM or ROM) Altera FPGA IP

• Nios V Processor Application Execute-In-Place from OCRAM on page 54

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

26

2.3.1.2. Caches

On-chip memories are commonly used to implement the cache functionality because
of their low latency. The Nios V processor uses on-chip memory for its instruction and
data caches. The limited capacity of on-chip memory is usually not an issue for caches
because they are typically small.

Caches are commonly used under the following conditions:

• Regular memory is located off-chip and has a longer access time than on-chip
memory.

• The performance-critical sections of the software code can fit in the instruction
cache, improving system performance.

• The performance-critical, most frequently used section of the data can fit in the
data cache, improving system performance.

Enabling caches in Nios V processor creates a memory hierarchy, which minimize the
memory access time.

2.3.1.2.1. Peripheral region

Any embedded peripherals IP, such as UART, I2C, and SPI must not be cached. Cache
is highly recommended for external memories which are affected by long access time,
while internal on-chip memories may be excluded due to their short access time. You
must not cache any embedded peripheral IPs, such as UART, I2C, and SPI, except for
memories. This is important because events from external devices, such as agent
devices updating the soft IPs, are not captured by the processor cache, in turn not
received by the processor. As a result, these events can go unnoticed until you flush
the cache, which can lead to unintended behavior in your system. In summary, the
memory-mapped region of embedded peripheral IPs is uncacheable and must reside
within the processor’s peripheral regions.

To set a peripheral region, follow these steps:

1. Open the system’s Address Map in the Platform Designer.

2. Navigate to the address map of the processor’s Instruction Manager and Data
Manager.

3. Identify the peripherals and memories in your system.

Figure 12. Example of Address Map

Note: The blue arrows are pointing to memories.

4. Group the peripherals:

a. Memory as cacheable

b. Peripherals as uncacheable

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

27

Table 19. Cacheable and Uncacheable Region

Subordinate Address Map Status Peripheral Region

Size Base Address

user_application_mem.s1 0x0 ~ 0x3ffff Cacheable N/A N/A

cpu.dm_agent 0x40000 ~ 0x4ffff Uncacheable 65536 bytes 0x40000

bootcopier_rom.s1 0x50000 ~ 0x517ff Cacheable N/A N/A

bootcopier_ram.s1 0x52000 ~ 0x537ff Cacheable

cpu.timer_sw_agent 0x54000 ~ 0x5403f Uncacheable 144 bytes
(min size is 65536 bytes)

0x54000

mailbox.avmm 0x54040 ~ 0x5407f Uncacheable

sysid_qsys_0.control_slave 0x54080 ~ 0x54087 Uncacheable

uart.avalon_jtag_slave 0x54088 ~ 0x5408f Uncacheable

5. Align the peripheral regions with their specific sizes:

• For example, if the size is 65536 bytes, it corresponds to 0x10000 bytes.
Therefore, the allowed base address must be a multiple of 0x10000.

• The CPU.dm_agent uses a base address of 0x40000, which is a multiple of
0x10000. As a result, Peripheral Region A, with a size of 65536 bytes and a
base address of 0x40000, meets the requirements.

• The base address of the collection of uncacheable regions at 0x54000 is not a
multiple of 0x10000. You must reassign them to 0x60000 or other multiple of
0x10000. Thus, Peripheral Region B, which has a size of 65536 bytes and a
base address of 0x60000, satisfies the criteria.

Table 20. Cacheable and Uncacheable Region with Reassignment

Subordinate Address Map Status Peripheral Region

Size Base Address

user_application_mem.s1 0x0 ~ 0x3ffff Cacheable N/A N/A

cpu.dm_agent 0x40000 ~ 0x4ffff Uncacheable 65536 bytes 0x40000

bootcopier_rom.s1 0x50000 ~ 0x517ff Cacheable N/A N/A

bootcopier_ram.s1 0x52000 ~ 0x537ff Cacheable

cpu.timer_sw_agent 0x60000 ~ 0x6003f Uncacheable 144 bytes
(min size is 65536 bytes)

0x60000

mailbox.avmm 0x60040 ~ 0x6007f Uncacheable

sysid_qsys_0.control_slave 0x60080 ~ 0x60087 Uncacheable

uart.avalon_jtag_slave 0x60088 ~ 0x6008f Uncacheable

2.3.1.3. Tightly Coupled Memory

Tightly coupled memories (TCMs) are implemented using on-chip memory as their low
latency makes them well suited to the task. TCMs are memories mapped in the typical
address space but have a dedicated interface to the microprocessor and possess the
high-performance, low-latency properties of cache memory. TCM also provides a
subordinate interface for the external host. The processor and external host have the
same permission level to handle the TCM.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

28

Note: When the TCM subordinate port is connected to an external host, it may be displayed
with a different base address than the base address assigned in the processor core.
Altera recommends to align both addresses to the same value.

2.3.1.4. External Memory Interface (EMIF)

EMIF (External Memory Interface) functions similarly to SRAM (Static Random Access
Memory), but it is dynamic and requires periodic refreshing to maintain its content.
The dynamic memory cells in EMIF are much smaller than the static memory cells in
SRAM, which results in higher capacity and lower-cost memory devices.

In addition to the refresh requirement, EMIF has specific interface requirements that
often necessitate specialized controller hardware. Unlike SRAM, which has a fixed set
of address lines, EMIF organizes its memory space into banks, rows, and columns.
Switching between banks and rows introduces some overhead, so you must carefully
order memory accesses to use EMIF efficiently. EMIF also multiplexes row and column
addresses over the same address lines, reducing the number of pins required for a
given EMIF size.

Higher-speed versions of EMIF, such as DDR, DDR2, DDR3, DDR4, and DDR5, impose
strict signal integrity requirements that PCB designers must consider.

EMIF devices rank among the most cost-effective and high-capacity RAM types
available, making them a popular option. A key component of an EMIF interface is the
EMIF IP, which manages tasks related to address multiplexing, refreshing, and
switching between rows and banks. This design allows the rest of the system to access
EMIF without needing to understand its internal architecture.

Related Information

External Memory Interfaces IP Support Center

2.3.1.4.1. Address Span Extender IP

The Address Span Extender Altera FPGA IP allows memory-mapped host interfaces to
access a larger or smaller address map than the width of their address signals allows.
The Address Span Extender IP splits the addressable space into multiple separate
windows so that the host can access the appropriate part of the memory through the
window.

The Address Span Extender does not limit host and agent widths to a 32-bit and 64-
bit configuration. You can use the Address Span Extender with 1-64 bit address
windows.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

29

Figure 13. Address Span Extender Altera FPGA IP

A

A

Control Port

Address Span Extender

Mapping Table

Control Register Z-1

Control Register 0

Agent Word Address

Expanded Host Address
. .

 .

H

Related Information

Quartus® Prime Pro Edition User Guide: Platform Designer
Refer to the topic Address Span Extender Intel® FPGA IP for more information.

2.3.1.4.2. Using Address Span Extender IP with Nios V Processor

The 32-bit Nios V processor can address up to 4 GB of an address span. If the EMIF
contains more than 4GB of memory, it exceeds the maximum supported address span,
rendering the Platform Designer system as erroneous. An Address Span Extender IP is
required to resolve this issue by dividing a single EMIF address space into multiple
smaller windows.

Altera recommends that you consider the following parameters.

Table 21. Address Span Extender Parameters

Parameter Recommended Settings

Datapath Width Select 32-bits, which corelates to the 32-bit processor.

Expanded Master Byte Address
Width

Depends on the EMIF memory size.

Slave Word Address Width Select 2 GB or less. Remaining address span of Nios V processor is reserved for other
embedded soft IPs.

Burstcount Width Start with 1 and gradually increase this value to improve performance.

Number of sub-windows Select 1 sub-window if you are connecting EMIF to the Nios V processor as
instruction and data memory, or both. Switching between multiple sub-windows while
Nios V processor is executing from EMIF is hazardous.

Enable Slave Control Port Disable the slave control port if you are connecting EMIF to the Nios V processor as
instruction and/or data memory. Same concerns as Number of sub-windows.

Maximum Pending Reads Start with 1 and gradually increase this value to improve performance.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

30

Figure 14. Connecting Instruction and Data Manager to Address Span Extender

Figure 15. Address Mapping

Notice that the Address Span Extender can access the whole 8GB memory space of
the EMIF. However, via the Address Span Extender, the Nios V processor can access
only the first 1GB memory space of the EMIF.

Figure 16. Simplified Block Diagram

Remaining 3 GB

Nios V processor address

span is for embedded

soft IPs in the same

system.
Nios V

Processor

M S M
Address Span

Extender S

EMIF

Nios V

Processor
1 GB

window

Only the first 1 GB

of EMIF memory is

connected to Nios V

processor.

8 GB

Platform Designer System

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

31

2.3.1.4.3. Defining Address Span Extender Linker Memory Device

1. Define the Address Span Extender (EMIF) as the reset vector. Alternatively, you
can assign the Nios V processor reset vector to other memories, such as OCRAM
or flash devices.

Figure 17. Multiple Options as Reset Vector

However, the Board Support Package (BSP) Editor cannot automatically register
the Address Span Extender (EMIF) as a valid memory. Depending on the choice
you made, you see two different situations as shown in the following figures.

Figure 18. BSP Error when Defining Address Span Extender (EMIF) as Reset Vector

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

32

Figure 19. Missing EMIF when Defining Other Memories as Reset Vector

2. You must manually add the Address Span Extender (EMIF) using Add Memory
Device, Add Linker Memory Region, and Add Linker Section Mappings in
the BSP Linker Script tab.

3. Follow these steps:

a. Determine the address span of the Address Span Extender using the Memory
Map (The example in the following figure uses Address Span Extender range
from 0x0 to 0x3fff_ffff).

Figure 20. Memory Map

b. Click Add Memory Device, and fill in based on the information in your
design’s Memory Map:

i. Device Name: emif_ddr4.

Note: Ensure you copy the same name from Memory Map.

ii. Base Address: 0x0

iii. Size: 0x40000000

c. Click Add to add a new linker memory region:

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

33

Table 22. Adding Linker Memory Region

Steps Reset Vector

emif_ddr4 Other memories

1 Add a new Linker Memory Region called reset.
• Region Name: reset
• Region Size: 0x20
• Memory Device: emif_ddr4
• Memory Offset: 0x0

Add a new Linker Memory Region for the
emif_ddr4.
• Region Name: emif_ddr4
• Region Size: 0x40000000
• Memory Device: emif_ddr4
• Memory Offset: 0x0

2 Add a new Linker Memory Region for the
remaining emif_ddr4.
• Region Name: emif_ddr4
• Region Size: 0x3fffffe0
• Memory Device: emif_ddr4
• Memory Offset: 0x20

Figure 21. Linker Region when Defining Address Span Extender (EMIF) as Reset Vector

Figure 22. Linker Region when Defining Other Memories as Reset Vector

d. Once the emif_ddr4 is added to the BSP, you can select it for any Linker
Section.

Figure 23. Added Address Span Extender (EMIF) Successfully

e. Ignore the warning about Memory device emif_ddr4 is not visible in the SOPC
design.

f. Proceed to Generate BSP.

Related Information

Introduction to Nios V Processor Booting Methods on page 51

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

34

2.3.2. Non-Volatile Memory

Non-volatile memory retains its contents when the power switches off, making it a
good choice for storing information that the system must retrieve after a system
power cycle. Non-volatile memory commonly stores processor boot-code, persistent
application settings, and Altera FPGA configuration data. Although non-volatile
memory has the advantage of retaining its data when you remove the power, it is
much slower compare to volatile memory, and often has more complex writing and
erasing procedures. Non-volatile memory is also usually only guaranteed to be
erasable a given number of times, after which it may fail.

Examples of non-volatile memory include all types of flash, EPROM, and EEPROM.
Altera recommends you to store Altera FPGA bitstreams and Nios V program images in
a non-volatile memory, and use serial flash as the boot device for Nios V processors.

Related Information

• Generic Serial Flash Interface Altera FPGA IP User Guide

• Mailbox Client Altera FPGA IP User Guide

• MAX® 10 User Flash Memory User Guide: On-Chip Flash Altera FPGA IP Core

2.4. Clocks and Resets Best Practices

Understanding how the Nios V processor clock and reset domain interacts with every
peripheral it connects to is important. A simple Nios V processor system starts with a
single clock domain, and it can get complicated with a multi-clock domain system
when a fast clock domain collides with a slow clock domain. You need to take note and
understand how these different domains sequence out of reset and make sure there
aren't any subtle problems.

For best practice, Altera recommends placing the Nios V processor and boot memory
in the same clock domain. Do not release the Nios V processor from reset in a fast
clock domain when it boots from a memory that resides in a very slow clock domain,
which may cause an instruction fetch error. You may require some manual sequencing
beyond what Platform Designer provides by default, and plan out reset release
topology accordingly based on your use case. If you want to reset your system after it
comes up and runs for a while, apply the same considerations to system reset
sequencing and post reset initialization requirement.

2.4.1. System JTAG Clock

Specifying the clock constraints in every Nios V processor system is an important
system design consideration and is required for correctness and deterministic
behavior. The Quartus Prime Timing Analyzer performs static timing analysis to
validate the timing performance of all logic in your design using industry-standard
constraint, analysis, and reporting methodology.

Example 1. Basic 100 MHz Clock with 50/50 Duty Cycle and 16 MHz JTAG Clock

#**
Create 100MHz Clock
#**
create_clock -name {clk} -period 10 [get_ports {clk}]
#************************
Create 16MHz JTAG Clock
#************************

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

35

create_clock -name {altera_reserved_tck} -period 62.500 [get_ports
{altera_reserved_tck}]
set_clock_groups -asynchronous -group [get_clocks {altera_reserved_tck}]

Related Information

Quartus Prime Timing Analyzer Cookbook

2.4.2. Reset Request Interface

Nios V processor includes an optional reset request facility. The reset request facility
consists of reset_req and reset_req_ack signals.

To enable the reset request in Platform Designer:

1. Launch the Nios V Processor IP Parameter Editor.

2. On the Use Reset Request setting, turn on the Add Reset Request Interface
option.

Figure 24. Enable Nios V Processor Reset Request

The reset_req signal acts like an interrupt. When you assert the reset_req, you
are requesting to reset to the core. The core waits for any outstanding bus transaction
to complete its operation. For example, if there is a pending memory access
transaction, the core waits for a complete response. Similarly, the core accepts any
pending instruction response but does not issue an instruction request after receiving
the reset_req signal.

The reset operation consists of the following flow:

1. Complete all pending operations

2. Flush the internal pipeline

3. Set the Program Counter to the reset vector

4. Reset the core

The whole reset operation takes a few clock cycles. The reset_req must remain
asserted until reset_req_ack is asserted indicating core reset operation has
successfully completed. Failure to do so results in core’s state being non-deterministic.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

36

2.4.2.1. Typical Use Cases

• You can assert the reset_req signal from power-on to prevent the Nios V
processor core from starting program execution from its reset vector until other
FPGA hosts in the system initialize the Nios V processor boot memory. In this
case, the entire subsystem can experience a clean hardware reset. The Nios V
processor is held indefinitely in a reset request state until the other FPGA hosts
initialize the processor boot memory.

• In a system where you must reset the Nios V processor core without disrupting
the rest of the system, you can assert the reset_req signal to cleanly halt the
current operation of the core and restart the processor from the reset vector once
the system releases the reset_req_ack signal.

• An external host can use the reset request interface to ease the implementations
of the following tasks:

— Halt the current Nios V processor program.

— Load a new program into the Nios V processor boot memory.

— Allow the processor to begin executing the new program.

Altera recommends you to implement a timeout mechanism to monitor the state of
reset_req_ack signal. If the Nios V processor core falls into an infinite wait state
condition and stalls for an unknown reason, reset_req_ack cannot assert
indefinitely. The timeout mechanism enables you to:

• Define a recovery timeout period and perform system recovery with system level
reset.

• Perform a hardware level reset.

2.4.3. Reset Release IP

Altera SDM-based devices use a parallel, sector-based architecture that distributes the
core fabric logic across multiple sectors. Altera recommends you to use the Reset
Release Altera FPGA IP as one of the initial inputs to the reset circuit. Intel® SDM-
based devices includes Stratix® 10, and Agilex™ devices. Control-block based devices
are not affected by this requirement.

Related Information

AN 891: Using the Reset Release Altera FPGA IP

2.5. Assigning a Default Agent

Platform Designer allows you to specify a default agent which acts as the error
response default agent. The default agent you designate provides an error response
service for hosts that attempt non-decoded accesses into the address map.

The following scenarios trigger a non decoded event:

• Bus transaction security state violation

• Transaction access to undefined memory region

• Exception event and etc.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

37

A default agent should be assigned to handle such events, where undefined
transaction is rerouted to the default agent and subsequently responds to Nios V
processor with an error response.

Related Information

• Quartus Prime Pro Edition User Guide: Platform Designer. Designating a Default
Agent

• Quartus Prime Pro Edition User Guide: Platform Designer. Error Response Slave
Altera FPGA IP

• Github - Supplemental Reset Components for Qsys

2.6. Assigning a UART Agent for Printing

Printing is useful for debugging the software application, as well as for monitoring the
status of your system. Altera recommends printing basic information such as a start-
up message, error message, and execution progress of the software application.

Avoid using the printf() library function under the following circumstances:

• The printf() library causes the application to stall if no host is reading output.
This is applicable to the JTAG UART only.

• The printf() library consumes large amounts of program memory.

2.6.1. Preventing Stalls by the JTAG UART

Table 23. Differences between Traditional UART and JTAG UART

UART Type Description

Traditional UART Transmits serial data regardless of whether an external host is listening. If no host
reads the serial data, the data is lost.

JTAG UART Writes the transmitted data to an output buffer and relies on an external host to read
from the buffer to empty it.

The JTAG UART driver waits when the output buffer is full. The JTAG UART driver waits
for an external host to read from the output buffer before writing more transmit data.
This process prevents the loss of transmit data.

However, when system debugging is not required, such as during production,
embedded systems are deployed without a host PC connected to JTAG UART. If the
system selected the JTAG UART as the UART agent, it could cause stalling system
because no external host is connected.

To prevent stalling by JTAG UART, apply of the following options:

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

38

Table 24. Prevention on Stalling by JTAG UART

Options During Hardware Development
(in Platform Designer)

During Software Development (in Board Support
Package Editor)

No UART interface and
driver present

Remove JTAG UART from the
system

Configure hal.stdin, hal.stdout and hal.stderr as
None.

Use other UART
interface and driver

Replace JTAG UART with other soft
UART IP

Configure hal.stdin, hal.stdout and hal.stderr
with other soft UART IP.

Preserve JTAG UART
interface (without
driver)

Preserve JTAG UART in the system • Configure hal.stdin, hal.stdout and hal.stderr
as None in the Board Support Package Editor.

• Disable JTAG UART driver in BSP Driver tab.

2.7. JTAG Signals

The Nios V processor debug module uses the JTAG interface for software ELF
download and software debugging. When you debug your design with the JTAG
interface, the JTAG signals TCK, TMS, TDI, and TDO are implemented as part of the
design. Specifying the JTAG signal constraints in every Nios V processor system is an
important system design consideration and is required for correctness and
deterministic behavior.

Altera recommends that any design’s system clock frequency be at least four times
the JTAG clock frequency to ensure that the on-chip instrumentation (OCI) core
functions properly.

Related Information

• Quartus® Prime Timing Analyzer Cookbook: JTAG Signals
For more information about JTAG timing constraints guidelines.

• KDB: Why does niosv-download fail with a non-pipelined Nios® V/m processor at
JTAG frequency 24MHz or 16Mhz?

2.8. Optimizing Platform Designer System Performance

Platform Designer provides tools for optimizing the performance of the system
interconnect for Altera FPGA designs.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

39

Figure 25. Optimization Examples

The example shown in the figure demonstrates the following steps:

1. Adds Pipeline Bridge to alleviate critical paths by placing it:

a. Between the Instruction Manager and its agents

b. Between the Data Manager and its agents

2. Apply True Dual port On-Chip RAM, with each port dedicated to the Instruction
Manager and the Data Manager respectively

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

40

Refer to the following related links below, which present techniques for leveraging the
available tools and the trade-offs of each implementation.

Related Information

• Quartus® Prime Pro Edition User Guide: Platform Designer
Refer to the topic Optimizing Platform Designer System Performance for more
information.

• Quartus® Prime Standard Edition User Guide: Platform Designer
Refer to the topic Optimizing Platform Designer System Performance for more
information.

2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform
Designer

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

41

3. Nios V Processor Software System Design
This chapter describes the Nios V processor software development flow and the
software tools that you can use in developing your embedded design system. The
content serves as an overview before developing a Nios V processor software system.

Figure 26. Software Design Flow

Generate the BSP in

the Platform Designer

Using the BSP Editor

Generate the BSP

Using the Nios V

Command Shell

End

Import the BSP and

Application CMake Build File Build the Nios V Processor
application using any

command-line source code

editor, CMake, and Make

commands

Generate the Application

CMake Build File Using the

Nios V Command Shell

Start

Build the Nios V Processor
Application using the

RiscFree IDE for Intel FPGA

Note: Altera recommends that you use an Altera FPGA development kit or a custom
prototype board for software development and debugging. Many peripherals and
system-level features are available only when your software runs on an actual board.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

3.1. Nios V Processor Software Development Flow

3.1.1. Board Support Package Project

A Nios V Board Support Package (BSP) project is a specialized library containing
system-specific support code. A BSP provides a software runtime environment
customized for one processor in a Nios V processor hardware system.

The Quartus Prime software provides Nios V Board Support Package Editor and
niosv-bsp utility tools to modify settings that control the behavior of the BSP.

A BSP contains the following elements:

• Hardware abstraction layer

• Device drivers

• Optional software packages

• Optional real-time operating system

3.1.2. Application Project

A Nios V C/C++ application project has the following features:

• Consists of a collection of source code and a CMakeLists.txt.

— The CMakeLists.txt compiles the source code and links it with a BSP and one
or more optional libraries, to create one .elf file

• One of the source files contains function main().

• Includes code that calls functions in libraries and BSPs.

Altera provides niosv-app utility tool in the Quartus Prime software utility tools to
create the Application CMakeLists.txt, and RiscFree IDE for Altera FPGAs to modify the
source code in an Eclipse-based environment.

3.2. Altera FPGA Embedded Development Tools

The Nios V processor supports the following tools for software development:

• Graphical User Interface (GUI) - Graphical development tools that are available in
both Windows* and Linux* Operating Systems (OS).

— Nios V Board Support Package Editor (Nios V BSP Editor)

— Ashling RiscFree IDE for Altera FPGAs

• Command-Line Tools (CLI) - Development tools that are initiated from the Nios V
Command Shell. Each tool provides its own documentation in the form of help
accessible from the command line. Open the Nios V Command Shell and type the
following command: <name of tool> --help to view the Help menu.

— Nios V Utilities Tools

— File Format Conversion Tools

— Other Utilities Tools

3. Nios V Processor Software System Design

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

43

Table 25. GUI Tools and Command-line Tools Tasks Summary

Task GUI Tool Command-line Tool

Creating a BSP Nios V BSP Editor • In Quartus Prime Pro Edition software:
niosv-bsp -c -s=<.qsys file> -t=<bsp type>
[OPTIONS] settings.bsp

• In Quartus Prime Standard Edition software:
niosv-bsp -c -s=<.sopcinfo file> -t=<bsp
type>[OPTIONS] settings.bsp

Generating a BSP using
existing .bsp file

Nios V BSP Editor niosv-bsp -g [OPTIONS] settings.bsp

Updating a BSP Nios V BSP Editor niosv-bsp -u [OPTIONS] settings.bsp

Examining a BSP Nios V BSP Editor niosv-bsp -q -E=<tcl script> [OPTIONS]
settings.bsp

Creating an application - niosv-app -a=<application directory> -b=<bsp
directory> -s=<source files directory>
[OPTIONS]

Creating a user library - niosv-app -l=<library directory> -s=<source
files directory> -p=<public includes
directory> [OPTIONS]

Modifying an application RiscFree IDE for Altera
FPGAs

Any command-line source editor

Modifying a user library RiscFree IDE for Altera
FPGAs

Any command-line source editor

Building an application RiscFree IDE for Altera
FPGAs

• make

• cmake

Building a user library RiscFree IDE for Altera
FPGAs

• make

• cmake

Downloading an application
ELF

RiscFree IDE for Altera
FPGAs

niosv-download

Converting the .elf file - • elf2flash

• elf2hex

Related Information

Ashling RiscFree Integrated Development Environment (IDE) for Altera FPGAs User
Guide

3.2.1. Nios V Processor Board Support Package Editor

You can use the Nios V processor BSP Editor to perform the following tasks:

• Create or modify a Nios V processor BSP project

• Edit settings, linker regions, and section mappings

• Select software packages and device drivers.

The capabilities of the BSP Editor include the capabilities of the niosv-bsp utilities.
Any project created in the BSP Editor can also be created using the command-line
utilities.

3. Nios V Processor Software System Design

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

44

Note: For Quartus Prime Standard Edition software, refer to AN 980: Nios V Processor
Quartus Prime Software Support for the steps to invoke the BSP Editor GUI.

To launch the BSP Editor, follow these steps:

1. Open Platform Designer, and navigate to the File menu.

a. To open an existing BSP setting file, click Open...

b. To create a new BSP, click New BSP...

2. Select the BSP Editor tab and provide the appropriate details.

Figure 27. Launch BSP Editor

Related Information

AN 980: Nios V Processor Quartus Prime Software Support

3.2.2. RiscFree IDE for Altera FPGAs

The RiscFree IDE for Altera FPGAs is an Eclipse-based IDE for the Nios V processor.
Altera recommends that you develop the Nios V processor software in this IDE for the
following reasons:

• The features are developed and verified to be compatible with the Nios V
processor build flow.

• Equipped with all the necessary toolchains and supporting tools which enables you
to easily start Nios V processor development.

Related Information

Ashling RiscFree Integrated Development Environment (IDE) for Altera FPGAs User
Guide

3.2.3. Nios V Utilities Tools

You can create, modify, and build Nios V programs with commands typed at a
command line or embedded in a script. The Nios V command-line tools described in
this section are in the <Intel Quartus Prime software installation
directory>/niosv/bin directory.

3. Nios V Processor Software System Design

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

45

Table 26. Nios V Utilities Tools

Command-Line Tools Summary

niosv-app To generate and configure an application project.

niosv-bsp To create or update a BSP settings file and create the BSP files.

niosv-download To download the ELF file to a Nios® V processor.

niosv-shell To open the Nios V Command Shell.

niosv-stack-report To inform you of the left-over memory space available to your application .elf for stack or heap
usage.

3.2.4. File Format Conversion Tools

File format conversion is sometimes necessary when passing data from one utility to
another. The file format conversion tools are in the <Intel Quartus Prime
software installation directory>/niosv/bin directory.

Table 27. File Format Conversion Tools

Command-Line Tools Summary

elf2flash To translate the .elf file to .srec format for flash memory programming.

elf2hex To translate the .elf file to .hex format for memory initialization.

3.2.5. Other Utilities Tools

You might require the following command-line tools when building a Nios V processor
based system. These command-line tools are either provided by Intel in <Intel
Quartus Prime installation directory>/quartus/bin or acquired from
open-source tools.

Table 28. Other Command-Line Tools

Command-Line Tools Type Summary

juart-terminal Intel-provided To monitor stdout and stderr, and to provide input to a Nios® V processor
subsystem through stdin. This tool only applies to the JTAG UART IP when it is
connected to the Nios® V processor.

openocd Intel-provided To execute OpenOCD.

openocd-cfg-gen Intel-provided • To generate the OpenOCD configuration file.
• To display JTAG chain device index.

3. Nios V Processor Software System Design

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

46

4. Nios V Processor Configuration and Booting Solutions
You can configure the Nios V processor to boot and execute software from different
memory locations. The boot memory is the Quad Serial Peripheral Interface (QSPI)
flash, On-Chip Memory (OCRAM), or Tightly Coupled Memory (TCM).

Related Information

• Power-Up Trigger Conditions on page 193

• Power-Up Triggers
For more information about power-up triggers.

4.1. Introduction

The Nios V processor supports two types of boot processes:

• Execute-in-Place (XIP) using alt_load() function

• Program copied to RAM using boot copier.

The Nios V embedded programs development is based on the hardware abstraction
layer (HAL). The HAL provides a small boot loader program (also known as boot
copier) that copies relevant linker sections from the boot memory to their run time
location at boot time. You can specify the program and data memory run time
locations by manipulating the Board Support Package (BSP) Editor settings.

This section describes:

• Nios V processor boot copier that boots your Nios V processor system according to
the boot memory selection

• Nios V processor booting options and general flow

• Nios V programming solutions for the selected boot memory

4.2. Linking Applications

When you generate the Nios V processor project, the BSP Editor generates two linker
related files:

• linker.x: The linker command file that the generated application's makefile uses
to create the .elf binary file.

• linker.h: Contains information about the linker memory layout.

All linker setting modifications you make to the BSP project affect the contents of
these two linker files.

Every Nios V processor application contains the following linker sections:

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

Table 29. Linker Sections

Linker Sections Descriptions

.text Executable code.

.rodata Any read-only data used in the execution of the program.

.rwdata Stores read-write data used in the execution of the program.

.bss Contains uninitialized static data.

.heap Contains dynamically allocated memory.

.stack Stores function-call parameters and other temporary data.

You can add additional linker sections to the .elf file to hold custom code and data.
These linker sections are placed in named memory regions, defined to correspond with
physical memory devices and addresses. By default, BSP Editor automatically
generates these linker sections. However, you can control the linker sections for a
particular application.

4.2.1. Linking Behavior

This section describes the BSP Editor default linking behavior and how to control the
linking behavior.

4.2.1.1. Default BSP Linking

During BSP configuration, the tools perform the following steps automatically:

1. Assign memory region names: Assign a name to each system memory device and
add each name to the linker file as a memory region.

2. Find largest memory: Identify the largest read-and-write memory region in the
linker file.

3. Assign linker sections: Place the default linker sections
(.text, .rodata, .rwdata, .bss, .heap, and .stack) in the memory region
identified in the previous step.

4. Write files: Write the linker.x and linker.h files.

Typically, the linker section allocation scheme works during the software development
process because the application is guaranteed to function if the memory is large
enough.

The rules for the default linking behavior are contained in the Altera-generated Tcl
scripts bsp-set-defaults.tcl and bsp-linker-utils.tcl found in the <Intel
Quartus Prime installation directory>/niosv/scripts/bsp-defaults
directory. The niosv-bsp command invokes these scripts. Do not modify these
scripts directly.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

48

4.2.1.2. Configurable BSP Linking

You can manage the default linking behavior in the Linker Script tab of the BSP
Editor. Manipulate the linker script using the following methods:

• Add a memory region: Maps a memory region name to a physical memory device.

• Add a section mapping: Maps a section name to a memory region. The BSP
Editor allows you to view the memory map before and after making changes.

4.3. Nios V Processor Booting Methods

There are a few methods to boot up the Nios V processor in Altera FPGA devices. The
methods to boot up Nios V processor vary according to the flash memory selection
and device families.

Table 30. Supported Flash Memories with Respective Boot Options

Supported Boot
Memories

Device Nios V Processor
Booting Methods

Application Runtime
Location

Boot Copier

On-Chip Flash (for
Internal configuration)

Max 10 devices only
(with On-Chip Flash
IP)

Nios V processor
application execute-
in-place from On-Chip
Flash

On-Chip Flash (XIP) +
OCRAM/ External RAM
(for writable data
sections)

alt_load() function

Nios V processor
application copied
from On-Chip Flash to
RAM using boot copier

OCRAM/External RAM Reusing Bootloader
via GSFI

General Purpose QSPI
Flash (for user data
only)

All supported FPGA
devices (with Generic
Serial Flash Interface
FPGA IP)

Nios V processor
application execute-
in-place from general
purpose QSPI flash

General purpose QSPI
flash (XIP) + OCRAM/
External RAM (for
writable data sections)

alt_load() function

Nios V processor
application copied
from general purpose
QSPI flash to RAM
using boot copier

OCRAM/External RAM Bootloader via GSFI

Configuration QSPI
Flash (for Active Serial
configuration)

Control block-based
devices (with Generic
Serial Flash Interface
Intel FPGA IP)(2)

Nios V processor
application execute-
in-place from
configuration QSPI
flash

Configuration QSPI
flash (XIP) + OCRAM/
External RAM (for
writable data sections)

alt_load()
function

Nios V processor
application copied
from configuration
QSPI flash to RAM
using boot copier

OCRAM/ External RAM Bootloader via GSFI

continued...

(2) Refer to AN 980: Nios V Processor Quartus Prime Software Support for the device list.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

49

Supported Boot
Memories

Device Nios V Processor
Booting Methods

Application Runtime
Location

Boot Copier

SDM-based devices
(with Mailbox Client
Intel FPGA IP). (2)

Nios V processor
application copied
from configuration
QSPI flash to RAM
using boot copier

OCRAM/ External RAM Bootloader via SDM

On-chip Memory
(OCRAM)

All supported Altera
FPGA devices (2)

Nios V processor
application execute-
in-place from OCRAM

OCRAM alt_load()
function

Tightly Coupled
Memory (TCM)

All supported Altera
FPGA devices(2)

Nios V processor
application execute-
in-place from TCM

Instruction TCM (XIP)
+ Data TCM (for
writable data sections)

None

Figure 28. Nios V Processor Boot Flow

Reset

Processor jumps to reset vector (boot code start)

Boot code initializes the processor

Boot code initializes the application code

and data memory space

Entry to main

Application code may be copied to another

memory location (depending on boot options)

Depending on boot options, the boot code may

copy initial values for data/code to another

memory space (alt_load)

Boot code initializes all the system peripherals

with HAL drivers (alt_main)

Related Information

• Generic Serial Flash Interface Altera FPGA IP User Guide

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

50

• Mailbox Client Altera FPGA IP User Guide

• AN 980: Nios V Processor Quartus Prime Software Support

4.4. Introduction to Nios V Processor Booting Methods

Nios V processor systems require the software images to be configured in system
memory before the processor can begin executing the application program. Refer to
Linker Sections for the default linker sections.

The BSP Editor generates a linker script that performs the following functions:

• Ensures that the processor software is linked in accordance with the linker settings
of the BSP editor and determines where the software resides in memory.

• Positions the processor's code region in the memory component according to the
assigned memory components.

The following section briefly describes the available Nios V processor booting methods.

4.4.1. Nios V Processor Application Execute-In-Place from Boot Flash

Altera designed the flash controllers such that the boot flash address space is
immediately accessible to the Nios V processor upon system reset, without the need
to initialize the memory controller or memory devices. This enables the Nios V
processor to execute application code stored on the boot devices directly without using
a boot copier to copy the code to another memory type. The flash controllers are:

• On-Chip Flash with On-Chip Flash IP (only in MAX® 10 device)

• General purpose QSPI flash with Generic Serial Flash Interface IP

• Configuration QSPI flash with Generic Serial Flash Interface IP (except MAX 10
devices)

When the Nios V processor application execute-in-place from boot flash, the BSP
Editor performs the following functions:

• Sets the .text linker sections to the boot flash memory region.

• Sets the .bss,.rodata, .rwdata, .stack and .heap linker sections to the RAM
memory region.

You must enable the alt_load() function in the BSP Settings to copy the data
sections (.rodata, .rwdata,, .exceptions) to the RAM upon system reset. The
code section (.text) remains in the boot flash memory region.

Related Information

• Generic Serial Flash Interface Altera FPGA IP User Guide

• Altera MAX 10 User Flash Memory User Guide

4.4.1.1. alt_load()

You can enable the alt_load() function in the HAL code using the BSP Editor.

When used in the execute-in-place boot flow, the alt_load() function performs the
following tasks:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

51

• Operates as a mini boot copier that copies the memory sections to RAM based on
the BSP settings.

• Copies data sections (.rodata, .rwdata, .exceptions) to RAM but not the
code sections (.text).The code section (.text) section is a read-only section
and remains in the booting flash memory region. This partitioning helps to
minimize the RAM usage but may limit the code execution performance because
accesses to flash memory are slower than accesses to the on-chip RAM.

The following table lists the BSP Editor settings and functions:

Table 31. BSP Editor Settings

BSP Editor Setting Function

hal.linker.enable_alt_load Enables alt_load() function.

hal.linker.enable_alt_load_copy_rodata alt_load() copies .rodata section to RAM.

hal.linker.enable_alt_load_copy_rwdata alt_load() copies .rwdata section to RAM.

hal.linker.enable_alt_load_copy_exceptions alt_load() copies .exceptions section to RAM.

4.4.2. Nios V Processor Application Copied from Boot Flash to RAM Using
Boot Copier

The Nios V processor and HAL include a boot copier that provides sufficient
functionality for most Nios V processor applications and is convenient to implement
with the Nios V software development flow.

When the application uses a boot copier, it sets all linker sections
(.text, .heap , .rwdata, .rodata , .bss, .stack) to an internal or external
RAM. Using the boot copier to copy a Nios V processor application from the boot flash
to the internal or external RAM for execution helps to improve the execution
performance.

For this boot option, the Nios V processor starts executing the boot copier software
upon system reset. The software copies the application from the boot flash to the
internal or external RAM. Once the process is complete, the Nios V processor transfers
the program control over to the application.

Note: If the boot copier is in flash, then the alt_load() function does not need to be called
because they both serve the same purpose.

4.4.2.1. Nios V Processor Bootloader via Generic Serial Flash Interface

The Bootloader via GSFI is the Nios V processor boot copier that supports QSPI flash
memory in control block-based devices. The Bootloader via GSFI includes the following
features:

• Locates the software application in non-volatile memory.

• Unpacks and copies the software application image to RAM.

• Automatically switches processor execution to application code in RAM after copy
completes.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

52

The boot image is located right after the boot copier. You need to ensure the Nios V
processor reset offset points to the start of the boot copier. The Figure: Memory Map
for QSPI Flash with Bootloader via GSFI memory map for QSPI Flash with Bootloader
via GSFI shows the flash memory map for QSPI flash when using a boot copier. This
memory map assumes the flash memory memory stores the FPGA image and the
application software.

Table 32. Bootloader via GSFI for Nios V Processor Core

Nios V Processor
Core

Bootloader via GSFI File Location

Nios V/m processor <Intel Quartus Installation Directory>/niosv/components/bootloader/
niosv_m_bootloader.srec

Nios V/g processor <Intel Quartus Installation Directory>/niosv/components/bootloader/
niosv_g_bootloader.srec

Figure 29. Memory Map for QSPI Flash with Bootloader via GSFI

0x01E00000Reset Vector Offset

0x00000000

Customer Data (*.hex)

Application Code

Boot Copier

FPGA Image (*.sof)

Note: 1. At the start of the memory map is the FPGA image followed by your data, which
consists of boot copier and application code.

2. You must set the Nios V processor reset offset in Platform Designer and point it to
the start of the boot copier.

3. The size of the FPGA image is unknown.You can only know the exact size after the
Quartus Prime project compilation. You must determine an upper bound for the
size of the Altera FPGA image. For example, if the size of the FPGA image is
estimated to be less than 0x01E00000, set the Reset Offset to 0x01E00000 in
Platform Designer, which is also the start of the boot copier.

4. A good design practice consists of setting the reset vector offset at a flash sector
boundary to ensure no partial erase of the FPGA image occurs in case the software
application is updated.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

53

4.4.2.2. Nios V Processor Bootloader via Secure Device Manager

The Bootloader via Secure Device Manager (SDM) is a HAL application code utilizing
the Mailbox Client Altera FPGA IP HAL driver for processor booting. Altera recommends
this bootloader application when using the configuration QSPI flash in SDM-based
devices to boot the Nios V processor.

Upon system reset, the Nios V processor first boots the Bootloader via SDM from a
tiny on-chip memory and executes the Bootloader via SDM to communicate with the
configuration QSPI flash using the Mailbox Client IP.

The Bootloader via SDM performs the following tasks:

• Locates the Nios V software in the configuration QSPI flash.

• Copies the Nios V software into the on-chip RAM or external RAM.

• Switches the processor execution to the Nios V software within the on-chip RAM or
external RAM.

Once the process is complete, the Bootloader via SDM transfers program control over
to the user application. Altera recommends the memory organization as outlined in
Memory Organization for Bootloader via SDM.

Figure 30. Bootloader via SDM Process Flow

On-Chip
RAM

On-Chip Memory

Bootloader via SDM

Nios V

FPGA Logic

Configuration
Flash

SDM-Based FPGA Device

EMIF
IP

Mailbox
Client IP

Nios V
Software

Nios V
Software

External RAM

Nios V
Software

1

4

3 3

2

SDM

4

1. Nios V processor runs the Bootloader via SDM from the on-chip memory.

2. Bootloader via SDM communicates with the configuration flash and locates the
Nios V software.

3. Bootloader via SDM copies the Nios V software from the Configuration Flash into
on-chip RAM / external RAM.

4. Bootloader via SDM switches the Nios V processor execution to the Nios V
software in the on-chip RAM / external RAM.

4.4.3. Nios V Processor Application Execute-In-Place from OCRAM

In this method, the Nios V processor reset address is set to the base address of the
on-chip memory (OCRAM). The application binary (.hex) file is loaded into the
OCRAM when the FPGA is configured, after the hardware design is compiled in the
Quartus Prime software. Once the Nios V processor resets, the application begins
executing and branches to the entry point.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

54

Note: • Execute-In-Place from OCRAM does not require boot copier because Nios V
processor application is already in place at system reset.

• Altera recommends enabling alt_load() for this booting method so that the
embedded software behaves identically when reset without reconfiguring the FPGA
device image.

• You must enable the alt_load() function in the BSP Settings to copy
the .rwdata section upon system reset. In this method, the initial values for
initialized variables are stored separately from the corresponding variables to
avoid overwriting on program execution.

4.4.4. Nios V Processor Application Execute-In-Place from TCM

The execute-in-place method sets the Nios V processor reset address to the base
address of the tightly coupled memory (TCM). The application binary (.hex) file is
loaded into the TCM when you configure the FPGA after you compile the hardware
design in the Quartus Prime software. Once the Nios V processor resets, the
application begins executing and branches to the entry point.

Note: Execute-In-Place from TCM does not require boot copier because Nios V processor
application is already in place at system reset.

4.5. Nios V Processor Booting from On-Chip Flash (UFM)

Nios V processor booting and executing software from on-chip flash (UFM) is available
in MAX 10 FPGA devices. The Nios V processor supports the following two boot options
using On-Chip Flash under Internal Configuration mode:

• Nios V processor application executes in-place from On-Chip Flash.

• Nios V processor application is copied from On-Chip Flash to RAM using boot
copier.

Table 33. Supported Flash Memories with respective Boot Options

Supported Boot Memories Nios V Booting Methods Application Runtime
Location

Boot Copier

MAX 10 devices only (with On-
Chip Flash IP)

Nios V processor application execute-
in-place from On-Chip Flash

On-Chip Flash (XIP) +
OCRAM/ External RAM (for
writable data sections)

alt_load() function

Nios V processor application copied
from On-Chip Flash to RAM using boot
copier

OCRAM/ External RAM Reusing
Bootloader via
GSFI

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

55

Figure 31. Design, Configuration, and Booting Flow

Design

 • Create your Nios V Processor based project using Platform Designer.
 • Ensure that there is external RAM or on-chip RAM in the system design.

FPGA Configuration and Compilation

 • Set the same internal configuration mode in On-chip Flash IP in Platform Designer and Quartus Prime software.

 • Set Nios V processor reset agent to On-chip Flash.

 • Create Nios V processor HAL BSP based on .sopcinfo file created by Platform Designer.

 • Edit Nios V processor BSP settings and Linker Script in BSP Editor.

User Application BSP Project

 • Develop Nios V processor application code.
 • Compile Nios V processor application and generate Nios V processor application (.hex) file.

User Application APP Project

 • Compile your project in Quartus Prime software.

 • Generate the On-Chip Flash .pof file using Convert Programming Files feature in Quartus Prime software.

Programming Files Conversion, Download and Run

 • Generate BSP project.

 • Generate your design in Platform Designer.

 • Choose your preferred UFM initialization method.

 • Recompile your project in Quartus Prime software if you check Initialize memory content option in
 Intel FPGA On-Chip Flash IP.

• Program the .pof file into your MAX 10 device.

• Power cycle your hardware.

4.5.1. MAX 10 FPGA On-Chip Flash Description

MAX 10 FPGA devices contain on-chip flash that is segmented into two parts:

• Configuration Flash Memory (CFM) — stores the hardware configuration data for
MAX 10 FPGAs.

• User Flash Memory (UFM) — stores the user data or software applications.

The UFM architecture of MAX 10 device is a combination of soft and hard IPs. You can
only access the UFM using the On-Chip Flash IP Core in the Quartus Prime software.

The On-chip Flash IP core supports the following features:

• Read or write accesses to UFM and CFM (if enabled in Platform Designer) sectors
using the Avalon MM data and control slave interface.

• Supports page erase, sector erase and sector write.

• Simulation model for UFM read/write accesses using various EDA simulation tools.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

56

Table 34. On-chip Flash Regions in MAX 10 FPGA Devices

Flash Regions Functionality

Configuration Flash Memory (sectors CFM0-2) FPGA configuration file storage

User Flash Memory
(sectors UFM0-1)

Nios V processor application and user data

MAX 10 FPGA devices support several configuration modes and some of these modes
allow CFM1 and CFM2 to be used as an additional UFM region. The following table
shows the storage location of the FPGA configuration images based on the MAX 10
FPGA's configuration modes.

Table 35. Storage Location of FPGA Configuration Images

Configuration Mode CFM2 CFM1 CFM0

Dual compressed images Compressed Image 2 Compressed Image 1

Single uncompressed image Virtual UFM Uncompressed image

Single uncompressed image with Memory
Initialization

Uncompressed image (with pre-initialized on-chip memory content)

Single compressed image with Memory Initialization Compressed image (with pre-initialized on-chip memory content)

Single compressed image Virtual UFM Compressed Image

You must use the On-chip Flash IP core to access to the flash memory in MAX 10
FPGAs. You can instantiate and connect the On-chip Flash IP to the Quartus Prime
software. The Nios V soft core processor uses the Platform Designer interconnects to
communicate with the On-chip Flash IP.

Figure 32. Connection between On-chip Flash IP and Nios V Processor

Note: Ensure the On-chip Flash csr port is connected to the Nios V processor
data_manager to enable the processor to control write and erase operations.

The On-chip Flash IP core can provide access to five flash sectors - UFM0, UFM1,
CFM0, CFM1, and CFM2.

Important information about the UFM and CFM sectors.:

• CFM sectors are intended for configuration (bitstream) data (*.pof) storage.

• User data can be stored in the UFM sectors and may be hidden, if the correct
settings are selected in the Platform Designer tool.

• Certain devices do not have a UFM1 sector. You can refer to the table: UFM and
CFM Sector Size for available sectors in each individual MAX 10 FPGA device.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

57

• You can configure CFM2 as a virtual UFM by selecting Single Uncompressed
Image configuration mode.

• You can configure CFM2 and CFM1 as a virtual UFM by selecting Single
Uncompressed Image configuration mode.

• The size of each sector varies with the selected MAX 10 FPGA devices.

Table 36. UFM and CFM Sector Size
This table lists the dimensions of the UFM and CFM arrays.

Device Pages per Sector Page Size
(Kbit)

Maximum User
Flash Memory Size

(Kbit) (3)

Total Configuration
Memory Size (Kbit)

OCRAM Size
(Kbit)

UFM1 UFM0 CFM2 CFM1 CFM0

10M02 3 3 0 0 34 16 96 544 108

10M04 0 8 41 29 70 16 1248 2240 189

10M08 8 8 41 29 70 16 1376 2240 378

10M16 4 4 38 28 66 32 2368 4224 549

10M25 4 4 52 40 92 32 3200 5888 675

10M40 4 4 48 36 84 64 5888 10752 1260

10M50 4 4 48 36 84 64 5888 10752 1638

Related Information

• MAX 10 FPGA Configuration User Guide

• Altera MAX 10 User Flash Memory User Guide

4.5.2. Nios V Processor Application Execute-In-Place from UFM

The Execute-In-Place from UFM solution is suitable for Nios V processor applications
which require limited on-chip memory usage. The alt_load() function operates as a
mini boot copier that copies the data sections (.rodata, .rwdata, or .exceptions)
from boot memory to RAM based on the BSP settings. The code section (.text),
which is a read only section, remains in the MAX 10 On-chip Flash memory region.
This setup minimizes the RAM usage but may limit the code execution performance as
access to the flash memory is slower than the on-chip RAM.

The Nios V processor application is programmed into the UFM sector. The Nios V
processor's reset vector points to the UFM base address to execute code from the UFM
after the system resets.

If you are using the source-level debugger to debug your application, you must use a
hardware breakpoint. This is because the UFM does not support random memory
access, which is necessary for soft breakpoint debugging.

Note: You cannot erase or write UFM while performing execute-in-place in the MAX 10.
Sswitch to boot copier approach if you need to erase or write the UFM.

(3) The maximum possible value, which is dependent on the configuration mode you select.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

58

Figure 33. Nios V Processor Application XIP from UFM

Nios V Hardware
.SOF

Quartus
Programmer

Internal
Configuration

FPGA Logic

Max 10 Device

On-Chip
Flash

IP

EMIF
IP

Nios V
Processor

.POF On-Chip Flash

CFM

UFMNios V Software
.HEX

Nios V
Hardware

Nios V
Software

External
RAM

On-Chip
RAM

4.5.2.1. Hardware Design Flow

The following section describes a step-by-step method for building a bootable system
for a Nios V processor application from On-Chip Flash. The example below is built
using MAX 10 device.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Make sure external RAM or On-Chip Memory (OCRAM) is added to your Platform
Designer system.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

59

Figure 34. Example IP Connections in Platform Designer for Booting Nios V from On-
Chip Flash (UFM)

3. In the On-Chip Flash IP parameter editor, set the Configuration Mode to one of the
following, according to your design preference:

• Single Uncompressed Image

• Single Compressed Image

• Single Uncompressed Image with Memory Initialization

• Single Compressed Image with Memory Initialization

For more information about Dual Compressed Images, refer to the MAX 10 FPGA
Configuration User Guide - Remote System Upgrade.

Note: You must assign Hidden Access to every CFM regions in the On-Chip Flash IP.

Figure 35. Configuration Mode Selection in On-Chip Flash Parameter Editor

On-Chip Flash IP Settings - UFM Initialization

You can choose one of the following methods according to your preference:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

60

Note: The steps in the subsequent subchapters (Software Design Flow and Programming)
depend on the selection you make here.

• Method 1: Initialize the UFM data in the SOF during compilation

Quartus Prime includes the UFM initialization data in the SOF during compilation.
SOF recompilation is needed if there are changes in the UFM data.

1. Check Initialize flash content and Enable non-default initialization file.

Figure 36. Initialize Flash Contents and Enable Non-default Initialization File

2. Specify the path of the generated .hex file (from the elf2hex command) in
the User created hex or mif file.

Figure 37. Adding the .hex File Path

• Method 2: Combine UFM data with a compiled SOF during POF generation

UFM data is combined with the compiled SOF when converting programming files.
You do not need to recompile the SOF, even if the UFM data changes. During
development, you do not have to recompile SOF files for changes in the
application. Alterarecommends this method for application developers.

1. Uncheck Initialize flash content..

Figure 38. Initialize Flash Content with Non-default Initialization File

Reset Agent Settings for Nios V Processor Execute-In-Place Method

1. In the Nios V processor parameter editor, set the Reset Agent to On-Chip Flash.

Figure 39. Nios V Processor Parameter Editor Settings with Reset Agent Set to On-Chip
Flash

2. Click Generate HDL when the Generation dialog box appears.

3. Specify output file generation options and click Generate.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

61

Quartus Prime Software Settings

1. In the Quartus Prime software, click Assignments ➤ Device ➤ Device and Pin
Options ➤ Configuration. Set the Configuration mode according to the setting
in On-Chip Flash IP.

Figure 40. Configuration Mode Selection in Quartus Prime Software

2. Click OK to exit the Device and Pin Options window,

3. Click OK to exit the Device window.

4. Click Processing ➤ Start Compilation to compile your project and generate
the .sof file.

Note: If the configuration mode setting in Quartus Prime software and Platform Designer
parameter editor is different, the Quartus Prime project fails with the following error
message.

Figure 41. Error Message for Different Configuration Mode Setting

Error (14740): Configuration mode on atom "q_sys:q_sys_inst|
altera_onchip_flash:onchip_flash_1|altera_onchip_flash_block:
altera_onchip_flash_block|ufm_block" does not match the project setting. Update
and regenerate the Qsys system to match
the project setting.

Related Information

MAX 10 FPGA Configuration User Guide

4.5.2.2. Software Design Flow

This section provides the design flow to generate and build the Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create a
similar directory tree in your design project. The following software design flow is
based on this directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called hal_app and hal_bsp.

Figure 42. Software Project Directory Tree

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

62

Creating the Application BSP Project

To launch the BSP Editor, follow these steps:

1. Enter the Nios V Command Shell.

2. Invoke the BSP Editor with niosv-bsp-editor command.

3. In the BSP Editor, click File ➤ New BSP to start your BSP project.

4. Configure the following settings:

• SOPC Information File name: Provide the SOPCINFO file (.sopcinfo).

• CPU name: Select Nios V processor.

• Operating system: Select the operating system of the Nios V processor.

• Version: Leave as default.

• BSP target directory: Select the directory path of the BSP project. You can
pre-set it at <Project directory>/software/hal_bsp by enabling Use
default locations.

• BSP Settings File name: Type the name of the BSP Settings File.

• Additional Tcl scripts: Provide a BSP Tcl script by enabling Enable
Additional Tcl script.

5. Click OK.

Figure 43. Configure New BSP

Configuring the BSP Editor and Generating the BSP Project

You can define the processor’s exception vector either in On-Chip Memory (OCRAM) or
On-Chip Flash based on your design preference. Setting the exception vector memory
to OCRAM/External RAM is recommended to make the interrupt processing faster.

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

2. If you select On-Chip Flash as exception vector,

a. Enable the following settings:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

63

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rodata

• enable_alt_load_copy_rwdata

Figure 44. Advanced.hal.linker Settings

b. Click on the Linker Script tab in the BSP Editor.

c. Set the .exceptions and .text regions in the Linker Section Name to
On-Chip Flash.

d. Set the rest of the regions in the Linker Section Name list to the On-Chip
Memory (OCRAM) or external RAM.

Figure 45. Linker Region Settings (Exception Vector Memory: On-Chip Flash)

3. If you select OCRAM/External RAM as exception vector,

a. Enable the following settings:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rodata

• enable_alt_load_copy_rwdata

• enable_alt_load_copy_exception

Figure 46. Linker Region Settings (Exception Vector Memory: OCRAM/External RAM)

b. Click on the Linker Script tab in the BSP Editor.

c. Set the.text regions in the Linker Section Name to On-Chip Flash.

d. Set the rest of the regions in the Linker Section Name list to the On-Chip
Memory (OCRAM) or external RAM.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

64

Figure 47. Linker Region Settings (Exception Vector Memory: OCRAM)

4. Click Generate to generate the BSP project.

Generating the User Application Project File

1. Navigate to the software/hal_app folder and create your application source
code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the application CMakeLists.txt.

niosv-app --app-dir=software/hal_app --bsp-dir=software/hal_bsp \
--srcs=software/hal_app/<user application>

Building the User Application Project

You can choose to build the user application project using Ashling RiscFree IDE for
Altera FPGAs or through the command line interface (CLI).

If you prefer using CLI, you can build the user application using the following
command:

cmake -G "Unix Makefiles" -B software/hal_app/build -S software/hal_app
make -C software/hal_app/build

The application (.elf) file is created in software/hal_app/build folder.

Generating the HEX File

You must generate a .hex file from your application .elf file, so you can create
a .pof file suitable for programming the devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from On-Chip Flash, use the following
command line to convert the ELF to HEX for your application. This command
creates the user application (onchip_flash.hex) file.

elf2hex software/hal_app/build/<user_application>.elf -o onchip_flash.hex \
 -b <base address of On-Chip Flash UFM region> \
 -w 8 \
 -e <end address of On-Chip Flash UFM region>

3. Recompile the hardware design if you check Initialize memory content option in
On-Chip Flash IP (Method 1). This is to include the software data (.HEX) in the
SOF file.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

65

4.5.2.3. Programming

1. In Quartus Prime, click File ➤ Convert Programming Files.

2. Under Output programming file, choose Programmer Object File (.pof) as
Programming file type.

3. Set Mode to Internal Configuration.

Figure 48. Convert Programming File Settings

4. Click Options/Boot info…, the MAX 10 Device Options window appears.

5. Based on the Initialize flash content settings in the On-chip Flash IP, perform
one of the following steps:

• If Initialize flash content is checked (Method 1), the UFM initialization data
was included in the SOF duringQuartus Prime compilation.

— Select Page_0 for UFM source: option. Click OK and proceed to the
next.

Figure 49. Setting Page_0 for UFM Source if Initialize Flash Content is Checked

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

66

• If Initialize flash content is not checked (Method 2), choose Load memory
file for the UFM source option. Browse to the generated On-chip Flash HEX
file (onchip_flash.hex) in the File path: and click OK. This step adds UFM
data separately to the SOF file during the programming file conversion.

Figure 50. Setting Load Memory File for UFM Source if Initialize Flash Content is Not
Checked

6. In the Convert Programming File dialog box, at the Input files to convert
section, click Add File... and point to the generated Quartus Prime .sof file.

Figure 51. Input Files to Convert in Convert Programming Files for Single Image Mode

7. Click Generate to create the .pof file.

8. Program the .pof file into your MAX 10 device.

9. Power cycle your hardware.

4.5.3. Nios V Processor Application Copied from UFM to RAM using Boot
Copier

Altera recommends this solution for MAX 10 FPGA Nios V processor system designs
where multiple iterations of application software development and high system
performance are required. The boot copier is located within the UFM at an offset that
is the same address as the reset vector. The Nios V application is located next to the
boot copier.

For this boot option, the Nios V processor starts executing the boot copier upon
system reset to copy the application from the UFM sector to the OCRAM or external
RAM. Once copying is complete, the Nios V processor transfers the program control
over to the application.

Note: The applied boot copier is the same as the Bootloader via GSFI.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

67

Figure 52. Nios V Application Copied from UFM to RAM using Boot Copier

Nios V Hardware
.SOF

Quartus
Programmer

Internal
Configuration

FPGA Logic

Max 10 Device

On-Chip
Flash

IP

EMIF
IP

Nios V

.POF On-Chip Flash

CFM

UFM

UFM

Nios V Software
.HEX

Bootloader
.SREC

Nios V
Hardware

Nios V
Software

Nios V
Software

Boot
Copier

External
RAM

Nios V
Software

On-Chip
RAM

4.5.3.1. Hardware Design Flow

The following section describes a step-by-step method for building a bootable system
for a Nios V processor application copied from On-Chip Flash to RAM using boot copier.
The example below is built using MAX 10 device.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Make sure external RAM or On-Chip Memory (OCRAM) is added to your Platform
Designer system.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

68

Figure 53. Example IP Connections in Platform Designer for Booting Nios V Processor
from On-Chip Flash (UFM)

3. In the On-Chip Flash IP parameter editor, set the Configuration Mode to one of the
following, according to your design preference:

• Single Uncompressed Image

• Single Compressed Image

• Single Uncompressed Image with Memory Initialization

• Single Compressed Image with Memory Initialization

For Dual Compressed Images, refer to the MAX 10 FPGA Configuration User
Guide - Remote System Upgrade for more information.

Note: You must assign Hidden Access to every CFM regions in the On-Chip Flash
IP.

Figure 54. Configuration Mode Selection in On-Chip Flash Parameter Editor

On-Chip Flash IP Settings - UFM Initialization

You can choose one of the following methods according to your preference:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

69

Note: The steps in the subsequent subchapters (Software Design Flow and Hardware Design
Flow) depend on the selection you make here.

• Method 1: Initialize the UFM data in the SOF during compilation

Quartus Prime includes the UFM initialization data in the SOF during compilation.
SOF recompilation is needed if there are changes in the UFM data.

1. Check Initialize flash content and Enable non-default initialization file.

Figure 55. Initialize Flash Contents and Enable Non-default Initialization File

2. Specify the path of the generated .hex file (from the elf2hex command and
riscv32-unknown-elf-objcopy) in the User created hex or mif file.

Figure 56. Adding the .hex File Path

• Method 2: Combine UFM data with a compiled SOF during POF generation

UFM data is combined with the compiled SOF when converting programming files.
You do not need to recompile the SOF, even if the UFM data changes. During
development, you do not have to recompile SOF files for changes in the
application. Alterarecommends this method for application developers.

1. Uncheck Initialize flash content..

Figure 57. Initialize Flash Content with Non-default Initialization File

Reset Agent Settings for Nios V Processor Boot-copier Method

1. In the Nios V processor parameter editor, set the Reset Agent to On-Chip Flash.

Figure 58. Nios V Processor Parameter Editor Settings with Reset Agent Set to On-Chip
Flash

2. Click Generate HDL when the Generation dialog box appears.

3. Specify output file generation options and click Generate.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

70

Quartus Prime Software Settings

1. In the Quartus Prime software, click Assignments ➤ Device ➤ Device and Pin
Options ➤ Configuration. Set the Configuration mode according to the setting
in On-Chip Flash IP.

Figure 59. Configuration Mode Selection in Quartus Prime Software

2. Click OK to exit the Device and Pin Options window,

3. Click OK to exit the Device window.

4. Click Processing ➤ Start Compilation to compile your project and generate
the .sof file.

Note: If the configuration mode setting in Quartus Prime software and Platform
Designer parameter editor is different, the Quartus Prime project fails with
the following error message.

Figure 60. Error Message for Different Configuration Mode Setting

Error (14740): Configuration mode on atom "q_sys:q_sys_inst|
altera_onchip_flash:onchip_flash_1|
altera_onchip_flash_block:altera_onchip_flash_block|ufm_block" does not match
the project setting.
Update and regenerate the Qsys system to match the project setting.

4.5.3.2. Software Design Flow

This section provides the design flow to generate and build the Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create a
similar directory tree in your design project. The following software design flow is
based on this directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called hal_app and hal_bsp.

Figure 61. Software Project Directory Tree

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

71

Creating the Application BSP Project

To launch the BSP Editor, follow these steps:

1. Enter the Nios V Command Shell.

2. Invoke the BSP Editor with niosv-bsp-editor command.

3. In the BSP Editor, click File ➤ New BSP to start your BSP project.

4. Configure the following settings:

• SOPC Information File name: Provide the SOPCINFO file (.sopcinfo).

• CPU name: Select Nios V processor.

• Operating system: Select the operating system of the Nios V processor.

• Version: Leave as default.

• BSP target directory: Select the directory path of the BSP project. You can
pre-set it at <Project directory>/software/hal_bsp by enabling Use
default locations.

• BSP Settings File name: Type the name of the BSP Settings File.

• Additional Tcl scripts: Provide a BSP Tcl script by enabling Enable
Additional Tcl script.

5. Click OK.

Figure 62. Configure New BSP

Configuring the BSP Editor and Generating the BSP Project

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker

2. Leave all settings unchecked.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

72

Figure 63. Advanced.hal.linker Settings

3. Click on the Linker Script tab in the BSP Editor.

4. Set all regions in the Linker Section Name list to the On-Chip Memory (OCRAM)
or external RAM.

Figure 64. Linker Region Settings

5. Click Generate BSP to generate the BSP project.

Generating the User Application Project File

1. Navigate to the software/hal_app folder and create your application source
code,

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the application CMakeLists.txt.

niosv-app --app-dir=software/hal_app --bsp-dir=software/hal_bsp \
--srcs=software/hal_app/<user application>

Building the User Application Project

You can choose to build the user application project using Ashling RiscFree IDE for
Altera FPGAs or through the command line interface (CLI).

If you prefer using CLI, you can build the user application using the following
command:

cmake -G "Unix Makefiles" -B software/hal_app/build -S software/hal_app
make -C software/hal_app/build

The application (.elf) file is created in software/hal_app/build folder.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

73

Generating the HEX File

You must generate a .hex file from your application .elf file, so you can create
a .pof file suitable for programming the devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from On-Chip Flash, use the following
command line to convert the ELF to HEX for your application. This command
creates the user application (onchip_flash.hex) file.

3. Select the suitable Bootloader via GSFI in the elf2flash command.

elf2flash
--boot <Intel Quartus Prime installation directory>/
niosv/components/bootloader/<Bootloader via GSFI>
--input software/hal_app/build/<Nios V application>.elf \
--output flash.srec --reset <reset offset + base address of On-Chip Flash
UFM region> \
--base <base address of On-Chip Flash UFM region> \
--end <end address of On-Chip Flash UFM region>

riscv32-unknown-elf-objcopy --input-target srec --output-target ihex \
flash.srec <Nios V application>.hex

4. Recompile the hardware design if you check Initialize memory content option in
On-Chip Flash IP (Method 1). This is to include the software data (.HEX) in the
SOF file.

4.5.3.3. Programming

1. In Quartus Prime, click File ➤ Convert Programming Files.

2. Under Output programming file, choose Programmer Object File (.pof) as
Programming file type.

3. Set Mode to Internal Configuration.

Figure 65. Convert Programming File Settings

4. Click Options/Boot info…, the MAX 10 Device Options window appears.

5. Based on the Initialize flash content settings in the On-chip Flash IP, do one of
the following:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

74

• If you select Initialize flash content (Method 1), the UFM initialization data
was included in the SOF during Quartus Prime compilation.

— For Single Uncompressed/ Compressed Image configuration mode,
select Page_0 for UFM source: option. Click OK and proceed to the next
step.

Figure 66. Setting Page_0 for UFM Source if Initialize Flash Content is Checked

• — If you turn off Initialize flash content (Method 2), choose Load
memory file for the UFM source option. Browse to the generated On-
chip Flash HEX file (onchip_flash.hex) in the File path: and click OK.
This step adds UFM data separately to the SOF file during the
programming file conversion.

Figure 67. Setting Load Memory File for UFM Source if Initialize Flash Content is Not
Checked

6. In the Convert Programming File dialog box, at the Input files to convert
section, click Add File... and point to the generated Quartus Prime .sof file.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

75

Figure 68. Input Files to Convert in Convert Programming Files for Single Image Mode

7. Click Generate to create the .pof file.

8. Program the .pof file into your MAX 10 device.

9. Power cycle your hardware.

4.6. Nios V Processor Booting from General Purpose QSPI Flash

The Nios V processor supports the following two boot options using general purpose
QSPI flash:

• Nios V processor application executes in-place from general purpose QSPI flash.

• Nios V processor application is copied from general purpose QSPI flash to RAM
using boot copier.

Table 37. Supported Flash Memories with respective Boot Options

Supported Boot Memories Nios V Booting Methods Application Runtime
Location

Boot Copier

All FPGA devices (with
Generic Serial Flash
Interface Altera FPGA IP)

Nios V processor application
execute-in-place from
general purpose QSPI flash

Configuration QSPI flash
(XIP) + OCRAM/ External
RAM (for writable data
sections)

alt_load() function

Nios V processor application
copied from general purpose
QSPI flash to RAM using
boot copier

OCRAM/ External RAM Bootloader via GSFI

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

76

Figure 69. Design, Configuration and Booting Flow

Design
• Create your Nios V processor based project using Platform Designer.
• Ensure that there is OCRAM / External RAM and Generic Serial Flash Interface Intel FPGA IP in the system design.

Generate Platform Designer Design
FPGA Configuration and Compilation
• Set Nios V processor reset agent to QSPI Flash.
• Generate your design in Platform Designer.
• Compile your project in Intel Quartus Prime software.

Nios V Application BSP Project
• Create Nios V application BSP file based on .qsys file created by Platform Designer.
• Edit BSP settings and Linker Script in BSP Editor.
• Generate BSP project.

Nios V Application Project
• Develop Nios V application code.
• Compile Nios V application and generate Nios V application (.hex) file.

Programming Files Conversion, Download & Run
• Generate the .jic file using Convert Programming Files tool with the FPGA design (.sof) file and user application (.hex) file.
• Program the .jic file into the configuration QSPI Flash.
• Power cycle your hardware.
• Reset the Nios V processor system upon entering user mode.

4.6.1. Nios V Processor Application Executes-In-Place from General
Purpose QSPI Flash

The execute-in-place (XIP) option is suitable for Nios V processor application, when
only a limited amount of on-chip memory is available to the processor.

The alt_load() function operates as a mini boot copier that initializes and copies
the writable memory sections only to OCRAM or external RAM. The code section
(.text), which is a read-only section, remains in the general purpose QSPI flash
memory region. Retaining the read-only section in general purpose QSPI minimizes
RAM usage but may limit the code execution performance.

The Nios V processor application is programmed into the general purpose QSPI flash.
The Nios V processor reset the agent points to the general purpose QSPI flash to allow
code execution after the system resets.

Figure 70. Nios V Processor Application Executes-In-Place from General Purpose QSPI
Flash

On-Chip

RAM

Nios V

FPGA Logic

Control Block-Based
FPGA Device

EMIF

IP

GSFI

IP

QSPI Flash

External

RAM

Nios V Software
.HEX

.POF

Nios V
Software

Active
Serial

Quartus
Programmer

Any

configuration

scheme
Nios V

Hardware

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

77

4.6.1.1. Hardware Design Flow

The following sections describe the steps for building a bootable system for a Nios V
processor, which executes in place from the general purpose QSPI flash.

The following example is built using MAX 10 FPGA Development Kit.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Add Generic Serial Flash Interface Altera FPGA IP into your Platform Designer.

Figure 71. Connections for Nios V Processor Project

Figure 72. Generic Serial Flash Interface Altera FPGA IP Parameter Settings

3. Change the Device Density (Mb) according to the QSPI flash size.

4. To access general purpose QSPI flash, enable Disable dedicated Active Serial
Interface and Enable SPI pins interface.

5. Change the addressing mode by modifying bit 8 of the Control Register value in
the Default Settings parameter section. Changing bit 8 to 0x0 enables 3-byte
addressing, or 0x1 enables 4-byte addressing.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

78

Note: The Micron N25Q512A83GSF40F devices (in the Altera MAX 10 FPGA
Development Kit) is at 4-byte addressing mode after power cycle.

6. Export the qspi_pins conduit.

Note: You may configure the SPI Clock Baud-rate Register to modify the flash access
speed.

For MAX 10 FPGA Development Kit, Altera recommends you to apply 0x1 (/2) when
the Generic Serial Flash Interface IP is connected to 50 MHz system clock. The default
0x10 (/32) divisor results in QSPI clock of 1.56 MHz, which causes a racing condition
when XIP from the QSPI. Increasing the QSPI clock (by reducing the divisor) alleviates
the issue.

Reset Agent Settings for Nios V Processor Execute-In-Place from General
Purpose QSPI Method

1. In the Nios V processor IP parameter editor, set the Reset Agent to QSPI Flash.

Figure 73. Nios V Parameter Editor Settings

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

Quartus Prime Software Settings

1. In the Quartus Prime software, click Assignment ➤ Device ➤ Device and Pin
Options ➤ Configuration.

2. Set the Configuration scheme according to your FPGA configuration scheme.

3. Click OK to exit the Device and Pin Options window.

4. Click OK to exit the Device window

5. Assign the GSFI pin assignment to the general purpose QSPI flash. Refer to MAX
10 FPGA Development Kit User Guide for more information on the board
components and their respective MAX 10 FPGA pin number.

6. Click Start Compilation to compile your project.

4.6.1.2. Software Design Flow

This section provides the design flow to generate and build a Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create a
similar directory tree in your design project. The software design flow is based on this
directory tree.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

79

Use the following steps to create the software project directory tree:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called app and bsp.

Figure 74. Software Project Directory Tree

Creating the BSP Project Application

To launch the BSP Editor, perform the following steps:

1. Enter the Nios V Command Shell.

2. Invoke the BSP Editor with niosv-bsp-editor command.

3. In the BSP Editor, click File ➤ New BSP to start your BSP project.

4. Configure the following settings:

• SOPC Information File name: Provide the SOPCINFO file (.sopcinfo).

• CPU name: Select Nios V processor.

• Operating system: Select the operating system of the Nios V processor.

• Version: Leave as default.

• BSP target directory: Select the directory path of the BSP project. You can
pre-set it at <Project directory>/software/hal_bsp by enabling Use
default locations.

• BSP Settings File name: Type the name of the BSP Settings File.

• Additional Tcl scripts: Provide a BSP Tcl script by enabling Enable
Additional Tcl script.

• Click OK.

Figure 75. Configure New BSP

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

80

Configuring BSP Editor and Generating the BSP Project

You can define the processor’s exception vector either in On-Chip Memory (OCRAM) or
QSPI Flash based on your design preference. Setting the exception vector memory to
OCRAM/External RAM is recommended to make the interrupt processing faster.

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

2. If you select QSPI Flash as exception vector, follow these steps:

a. Turn on the following settings:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rodata

• enable_alt_load_copy_rwdata

Figure 76. Advanced.hal.linker Settings
This setting is available if exception vector memory is set to On-Chip Memory (OCRAM)

b. Click on the Linker Script tab in the BSP Editor.

c. Set .exceptions and .text regions in the Linker Section Name to QSPI
Flash.

d. Set the rest of the regions in the Linker Section Name list to the On-Chip
Memory (OCRAM) or external RAM.

Figure 77. Linker Region Settings (Exception Vector Memory: QSPI Flash)

3. If you select OCRAM/External RAM as exception vector, follow these steps:

a. Enable the following settings:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rodata

• enable_alt_load_copy_rwdata

• enable_alt_load_copy_exception

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

81

Figure 78. Advanced.hal.linker Settings
This setting is available if exception vector memory is set to On-Chip Memory (OCRAM) or external RAM.

b. Click on the Linker Script tab in the BSP Editor.

c. Set the .text regions in the Linker Section Name to QSPI Flash.

d. Set the rest of the regions in the Linker Section Name list to the On-Chip
Memory (OCRAM) or external RAM.

Figure 79. Linker Region Settings (Exception Vector Memory: OCRAM)

4. Navigate to the BSP Drivers tab.

5. Turn off the Generic Serial Flash Interface driver
(intel_generic_serial_flash_interface_top).

6. Click Generate to generate the BSP project.

Generating the User Application Project File

1. Navigate to the software/hal folder and create your application source code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the application CMakeLists.txt.

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
 --srcs=software/hal app/<user application>

Building the Application Project

You can choose to build the application project using the RiscFree IDE for Altera FPGAs
or through the command line interface (CLI).

If you prefer using CLI, you can build the application using the following command:

cmake -G "Unix Makefiles" -B software \
 hal_app/build -S software/hal_app

 make -C software/hal app/debug

The application (.elf) file is created in software/app/debug folder.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

82

Generating HEX File

You must generate a .hex file from your application .elf file, so you can create
a .pof file suitable for programming flash devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from QSPI flash, use the following
commands line to convert the ELF to HEX for your application.

elf2flash --input software/hal_app/debug/<Nios V application>.elf \
 --output flash.srec --reset <reset offset + base address of GSFI AVL MEM> \
 --base <base address of GSFI AVL MEM> \
 --end <end address of GSFI AVL MEM>

riscv32-unknown-elf-objcopy --input-target srec --output-target ihex \
 flash.srec <Nios V application>.hex

4.6.1.3. Programming Files Generation

The programming files generation for FPGA configuration is not included. Unlike Max
10 On-Chip Flash or Active Serial configuration flash, the general purpose QSPI flash is
not for FPGA configuration.

Software Programmer Object File (.pof) Generation

Note: The quartus.ini file with PGMIO_SWAP_HEX_BYTE_DATA=ON content is required
to byteswap the software HEX file during the POF generation. Create the
quartus.ini file or use the quartus.ini available in the related information. Place
the quartus.ini file under Quartus Prime tool directory or project directory before
you proceed.

1. In Quartus Prime, click Convert Programming Files from the File tab.

2. Choose Programmer Object File (.pof) as Programming file type.

3. Set Mode to 1-bit Passive Serial.

4. Set Configuration device to CFI_512Mb.

5. Change the File name to the desired path and name.

6. Remove the SOF Page_0.

7. Click on Add HEX Data, choose the HEX file generated in HEX file section.

8. Select Absolute Addressing and Little endian, and click OK.

9. Click Generate to create the software .pof file.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

83

Figure 80. HEX to POF File Conversion

4.6.1.4. QSPI Flash Programming

Generate Parallel Flash Loader

1. Create a new Max 10 FPGA project.

2. Instantiate a Parallel Flash Loader in the system.

3. Configure the IP as follows:

a. What operating mode will be used? Flash Programming

b. What is the target flash? Quad SPI Flash

c. How many flash devices will be used? 1

d. What’s the Quad SPI flash device manufacturer? Micron

e. What’s the Quad SPI flash device density? QSPI 512 Mbit

4. Connect the IP interface as follows:

a. flash_io0 - QSPI data 0

b. flash_io1 - QSPI data 1

c. flash_io2 - QSPI data 2

d. flash_io3 - QSPI data 3

e. flash_ncs - QSPI chip select

f. flash_sck - QSPI clock

g. pfl_flash_access_granted - VCC (1’b1)

h. pfl_nreset - VCC (1’b1)

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

84

Figure 81. Interface Connection

5. Apply timing constraints.

derive_pll_clocks

JTAG Signal Constraints constrain the TCK port, assuming a 24MHz JTAG
clock and 5ns delays
create_clock -name {altera_reserved_tck} -period 41.667 [get_ports
{ altera_reserved_tck }]
set_input_delay -clock altera_reserved_tck -clock_fall -max 5 [get_ports
altera_reserved_tdi]
set_input_delay -clock altera_reserved_tck -clock_fall -max 5 [get_ports
altera_reserved_tms]
set_output_delay -clock altera_reserved_tck 5 [get_ports altera_reserved_tdo]

#
#some clock uncertainty is required
#
derive_clock_uncertainty

set_false_path -from [get_ports {flash_io1}]
set_false_path -to [get_ports {flash_*}]

6. Compile the PFL design.

7. Generate the PFL design SOF file.

Software POF File Programming into General Purpose QSPI

Note: You need to program the parallel flash loader into the Intel MAX 10 device before
programming the QSPI flash.

1. Program the PFL design SOF file using Quartus Programmer.

2. Click on Auto-Detect after the PFL is successfully programmed.

3. Click Yes to overwrite the existing JTAG chain.

4. A new QSPI flash device will be shown on the screen, connected to MAX 10 device.
It is the targeted general purpose QSPI flash.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

85

Figure 82. General Purpose QSPI Flash in JTAG Chain

5. Click QSPI_512Mb and select Change File.

6. Choose the software .pof file, and program it.

Figure 83. Programming Software POF File

7. Wait for the software .pof file programming to complete.

8. Proceed with the FPGA configuration (JTAG, Active Serial, Passive Serial or AvST)
to configure the processor hardware.

4.6.2. Nios V Processor Application Copied from General Purpose QSPI
Flash to RAM Using Boot Copier (Bootloader via GSFI)

You can use a boot copier to copy the Nios V processor application from the general
purpose QSPI flash to RAM when you require multiple iterations of the application
software development and high system performance.

The boot copier is located at the Nios V processor reset address in flash, and is
immediately followed by the application. For this boot option, the Nios V processor
starts executing the boot copier software upon system reset, which copies the
application from the general purpose QSPI to the internal or external RAM. Once
copying is complete, the Nios V processor transfers the program control over to the
application.

Note: The applied boot copier is the same as the Bootloader via GSFI.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

86

Figure 84. Nios V Processor Application Copied from General Purpose QSPI Flash to RAM
Using Boot Copier (Bootloader via GSFI)

On-Chip RAM

Nios V

FPGA Logic

Control Block-Based
FPGA Device

EMIF
IP

GSFI
IP

Nios V
Software

Nios V
Software

Boot Copier

QSPI Flash

External RAM

Nios V Software
.HEX

Bootloader via GSFI
.SREC

.JIC

Nios V
Software

Quartus
Programmer

Nios V
Hardware

4.6.2.1. Hardware Design Flow

The following sections describe a step-by-step method for building a bootable system
for a Nios V processor application copied from general purpose QSPI flash to RAM
using Bootloader. The following example is built using MAX 10 FPGA Development Kit.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Add the Generic Serial Flash Interface Altera FPGA IP into your Platform Designer
system.

Figure 85. Connections for Nios V Processor Project

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

87

Figure 86. Generic Serial Flash Interface Altera FPGA IP Parameter Settings

3. Change the Device Density (Mb) according to the QSPI flash size.

4. To access general purpose QSPI flash, enable Disable dedicated Active Serial
Interface and Enable SPI pins interface.

5. Change the addressing mode by modifying bit 8 of the Control Register value in
the Default Settings parameter section. Changing bit 8 to 0x0 enables 3-byte
addressing, or 0x1 enables 4-byte addressing.

Note: The Micron N25Q512A83GSF40F devices (in the MAX 10 FPGA Development
Kit) is at 4-byte addressing mode after power cycle.

6. Export the qspi_pins conduit.

Reset Agent Settings for Nios V Processor Boot-copier Method

1. In the Nios V processor parameter editor, set the Reset Agent to QSPI Flash.

Figure 87. Nios V Parameter Editor Settings

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

Quartus Prime Software Settings

1. In the Quartus Prime software, click Assignment ➤ Device ➤ Device and Pin
Options ➤ Configuration.

2. Set Configuration scheme according to your FPGA configuration scheme

3. Click OK to exit the Device and Pin Options window.

4. Click OK to exit the Device window.

5. Assign the GSFI pin assignment to the general purpose QSPI flash. Refer to MAX
10 FPGA Development Kit User Guide for more information on the board
components and their respective MAX 10 FPGA pin number.

6. Click Start Compilation to compile your project.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

88

4.6.2.2. Software Design Flow

This section provides the design flow to generate and build the Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create a
similar directory tree in your design project. The following software design flow is
based on this directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called hal_app and hal_bsp.

Figure 88. Software Project Directory Tree

Creating the Application BSP Project

To launch the BSP Editor, follow these steps:

1. Enter the Nios V Command Shell.

2. Invoke the BSP Editor with niosv-bsp-editor command.

3. In the BSP Editor, click File ➤ New BSP to start your BSP project.

4. Configure the following settings:

• SOPC Information File name: Provide the SOPCINFO file (.sopcinfo).

• CPU name: Select Nios V processor.

• Operating system: Select the operating system of the Nios V processor.

• Version: Leave as default.

• BSP target directory: Select the directory path of the BSP project. You can
pre-set it at <Project directory>/software/hal_bsp by enabling Use
default locations.

• BSP Settings File name: Type the name of the BSP Settings File.

• Additional Tcl scripts: Provide a BSP Tcl script by enabling Enable
Additional Tcl script.

5. Click OK.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

89

Figure 89. Configure New BSP

Configuring the BSP Editor and Generating the BSP Project

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker

2. Leave all settings unchecked.

Figure 90. Advanced.hal.linker Settings

3. Click on the Linker Script tab in the BSP Editor.

4. Set all regions in the Linker Section Name list to the On-Chip Memory (OCRAM)
or external RAM.

Figure 91. Linker Region Settings

5. Click Generate to generate the BSP project.

Generating the User Application Project File

1. Navigate to the software/hal_app folder and create your application source
code,

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the application CMakeLists.txt.

niosv-app --app-dir=software/hal_app --bsp-dir=software/hal_bsp \
--srcs=software/hal_app/<user application>

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

90

Building the User Application Project

You can choose to build the user application project using Ashling RiscFree IDE for
Altera FPGAs or through the command line interface (CLI).

If you prefer using CLI, you can build the user application using the following
command:

cmake -G "Unix Makefiles" -B software/hal_app/build -S software/hal_app
make -C software/hal_app/build

The application (.elf) file is created in software/hal_app/build folder.

Generating the HEX File

You must generate a .hex file from your application .elf file, so you can create
a .pof file suitable for programming the devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from general purpose QSPI flash, use the
following command line to convert the ELF to HEX for your application. This
command creates the user application (onchip_flash.hex) file.

3. Select the suitable Bootloader via GSFI in the elf2flash command.

elf2flash
--boot <Intel Quartus Prime installation directory>/
niosv/components/bootloader/<Bootloader via GSFI>
--input software/hal_app/build/<Nios V application>.elf \
--output flash.srec --reset <reset offset + base address of GSFI AVL MEM> \
--base <base address of GSFI AVL MEM> \
--end <end address of GSFI AVL MEM>

riscv32-unknown-elf-objcopy --input-target srec --output-target ihex \
flash.srec <Nios V application>.hex

4.6.2.3. Programming Files Generation

The method for processor application copied from General Purpose QSPI Flash to RAM
Using Boot Copier (Bootloader via GSFI) does not include the programming files
generation for FPGA configuration. Unlike MAX 10 On-Chip Flash or Active Serial
configuration flash, the general purpose QSPI flash is not for FPGA configuration.

Software Programmer Object File (.pof) Generation

Note: The quartus.ini file with PGMIO_SWAP_HEX_BYTE_DATA=ON content is required
to byteswap the software HEX file during the POF generation. Create the
quartus.ini file or use the quartus.ini available in the related information. Place
the quartus.ini file under Quartus Prime tool directory or project directory before
you proceed.

1. In Quartus Prime, click Convert Programming Files from the File tab.

2. Choose Programmer Object File (.pof) as Programming file type.

3. Set Mode to 1-bit Passive Serial.

4. Set Configuration device to CFI_512Mb.

5. Change the File name to the desired path and name.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

91

6. Remove the SOF Page_0.

7. Click on Add HEX Data, choose the HEX file generated in HEX file section.

8. Select Absolute Addressing and Little endian, and click OK.

9. Click Generate to create the software .pof file.

Figure 92. HEX to POF File Conversion

4.6.2.4. QSPI Flash Programming

Generate Parallel Flash Loader

1. Create a new MAX 10 FPGA project.

2. Instantiate a Parallel Flash Loader in the system.

3. Configure the IP as follows:

a. What operating mode will be used? Flash Programming

b. What is the target flash? Quad SPI Flash

c. How many flash devices will be used? 1

d. What’s the Quad SPI flash device manufacturer? Micron

e. What’s the Quad SPI flash device density? QSPI 512 Mbit

4. Connect the IP interface as follows:

a. flash_io0 - QSPI data 0

b. flash_io1 - QSPI data 1

c. flash_io2 - QSPI data 2

d. flash_io3 - QSPI data 3

e. flash_ncs - QSPI chip select

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

92

f. flash_sck - QSPI clock

g. pfl_flash_access_granted - VCC (1’b1)

h. pfl_nreset - VCC (1’b1)

Figure 93. Interface Connection

5. Apply timing constraints.

Figure 94. Example Timing Constraints

derive_pll_clocks

JTAG Signal Constraints constrain the TCK port, assuming a 24MHz JTAG
clock and 5ns delays
create_clock -name {altera_reserved_tck} -period 41.667 [get_ports
{ altera_reserved_tck }]
set_input_delay -clock altera_reserved_tck -clock_fall -max 5 [get_ports
altera_reserved_tdi]
set_input_delay -clock altera_reserved_tck -clock_fall -max 5 [get_ports
altera_reserved_tms]
set_output_delay -clock altera_reserved_tck 5 [get_ports altera_reserved_tdo]

#
#some clock uncertainty is required
#
derive_clock_uncertainty

set_false_path -from [get_ports {flash_io1}]
set_false_path -to [get_ports {flash_*}]

6. Compile the PFL design.

7. Generate the PFL design SOF file.

Software POF File Programming into General Purpose QSPI

Note: You need to program the parallel flash loader into the MAX 10 device before
programming the QSPI flash.

1. Program the PFL design SOF file using Quartus Programmer.

2. Click on Auto-Detect after the PFL is successfully programmed.

3. Click Yes to overwrite the existing JTAG chain.

4. A new QSPI flash device will be shown on the screen, connected to Max 10 device.
It is the targeted general purpose QSPI flash.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

93

Figure 95. General Purpose QSPI Flash in JTAG Chain

5. Click on QSPI_512Mb and select Change File.

6. Choose the software .pof file, and program it.

Figure 96. Programming Software POF file

7. Wait for the software .pof file programming to complete.

8. Proceed with the FPGA configuration (JTAG, Active Serial, Passive Serial or AvST)
to configure the processor hardware.

4.7. Nios V Processor Booting from Configuration QSPI Flash

The Nios V processor supports the following two boot options using configuration QSPI
flash under Active Serial configuration mode:

• Nios V processor application executes in-place from configuration QSPI flash.

• Nios V processor application is copied from configuration QSPI flash to RAM using
boot copier.

Based on the related Altera FPGA devices, refer to the following sections:

• Control block-based devices:

— Nios V Processor Application Executes-In-Place from Configuration QSPI Flash

— Processor Application Copied from Configuration QSPI Flash to RAM Using Boot
Copier (Bootloader via GSFI)

• SDM-based devices:

— Nios V Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (Bootloader via SDM)

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

94

Table 38. Supported Flash Memories with respective Boot Options

Supported Boot Memories Nios V Booting Methods Application Runtime
Location

Boot Copier

Control block-based
devices(4) (with Generic
Serial Flash Interface Altera
FPGA IP)

Nios V processor application
execute-in-place from
configuration QSPI flash

Configuration QSPI flash
(XIP) + OCRAM/ External
RAM (for writable data
sections)

alt_load() function

Nios V processor application
copied from configuration
QSPI flash to RAM using
boot copier

OCRAM/ External RAM Bootloader via GSFI

SDM-based devices(4) (with
Mailbox Client Altera FPGA
IP

Nios V processor application
copied from configuration
QSPI flash to RAM using
boot copier

OCRAM/ External RAM Bootloader via SDM

4.7.1. Nios V Processor Application Executes-In-Place from Configuration
QSPI Flash

The execute-in-place (XIP) option is suitable for Nios V processor application, when
only a limited amount of on-chip memory is available to the processor. This boot
option is only available for control block-based devices.

The alt_load() function operates as a mini boot copier that initializes and copies
the writable memory sections only to OCRAM or external RAM. The code section
(.text), which is a read-only section, remains in the configuration QSPI flash
memory region. Retaining the read-only section in configuration QSPI minimizes RAM
usage but may limit the code execution performance.

The Nios V processor application is programmed into the configuration QSPI flash. The
Nios V processor reset the agent points to the configuration QSPI flash to allow code
execution after the system resets.

Figure 97. Nios V Processor Application Executes-In-Place from Configuration QSPI
Flash

On-Chip

RAM

Nios V

FPGA Logic

Control Block-Based
FPGA Device

EMIF

IP

GSFI

IP

QSPI Flash

External

RAM

Nios V Software
.HEX

Nios V Hardware
.SOF

.JIC

Nios V
Software

Active
SerialNios V

Hardware

Quartus
Programmer

(4) Refer to AN 980: Nios V Processor Quartus Prime Software Support for the device list.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

95

Related Information

Bootloader via GSFI Example Design on page 117

4.7.1.1. Hardware Design Flow

The following sections describe the steps for building a bootable system for a Nios V
processor application, which executes in place from the configuration QSPI flash.

The following example is built using an Intel Arria 10 SoC Development Kit.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Add Generic Serial Flash Interface Intel FPGA IP into your Platform Designer.

Figure 98. Connections for Nios V Processor Project

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

96

Figure 99. Generic Serial Flash Interface Intel FPGA IP Parameter Settings

3. Change the Device Density (Mb) according to the QSPI flash size.

4. Change the addressing mode by modifying bit 8 of the Control Register value in
the Default Settings parameter section. Changing bit 8 to 0x0 enables 3-byte
addressing, or 0x1 enables 4-byte addressing.

Note: Refer to Intel Supported Configuration Devices tab ➤ Intel Supported Third
Party Configuration Devices in the Device Configuration Support Center to check
the byte addressing mode supported for each flash device in each Altera FPGA device.

For example, Arria® 10 devices support the 4-byte addressing mode when used with
Micron flash devices .

Reset Agent Settings for Nios V Processor Execute-In-Place Method

1. In the Nios V processor IP parameter editor, set the Reset Agent to QSPI Flash.

a. Your (.sof) image size influences your reset offset configuration. The reset
offset is the start address of the HEX file in QSPI flash and it must point to a
location after the (.sof) image. If the (.sof) image space and the reset
offset location overlap, Quartus Prime software displays an overlap error. You
can determine the minimum reset offset by using the configuration bitstream
size from the device datasheet.

Refer to the following example:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

97

• The uncompressed configuration bitstream size for Arria 10 GX 660 is
252,959,072 bits (31,619,884 bytes).

• If the SOF image starts at address 0x0, the SOF image can extend up to
address 0x1E27B2C. In this case, the minimum reset offset you can select
to avoid overlap errors is 0x1E27B30.

• Altera recommends you to use a flash sector boundary address for the
reset offset. Doing so allows you to update the application software image
at a later time without interfering with the FPGA image.

Figure 100. Parameter Editor Settings

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

Quartus Prime Software Settings

1. In the Quartus Prime software, click Assignment ➤ Device ➤ Device and Pin
Options ➤ Configuration.

2. Set Configuration scheme to Active Serial x4 (can use Configuration
Device).

3. Set the Active serial clock source to 100 MHz Internal Oscillator.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

98

Figure 101. Device and Pin Options

4. Click OK to exit the Device and Pin Options window.

5. Click OK to exit the Device window.

6. Click Start Compilation to compile your project.

Related Information

Arria 10 SoC Development Kit

4.7.1.2. Software Design Flow

This section provides the design flow to generate and build a Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create a
similar directory tree in your design project. The software design flow is based on this
directory tree.

Use the following steps to create the software project directory tree:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called app and bsp.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

99

Figure 102. Software Project Directory Tree

Creating the BSP Project Application

You must edit the BSP editor settings according to the selected Nios V processor boot
options.

To launch the BSP Editor, perform the following steps:

1. In the Platform Designer window, select File ➤ New BSP. The Create New BSP
windows appears.

2. For BSP setting file, navigate to the software/bsp folder and name the BSP as
settings.bsp.

BSP path: <project directory>/software/bsp/settings.bsp

1. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system (*.qsys).

Note: For Quartus Prime Standard Edition software, generate the BSP file using
SOPCINFO file. Refer to AN 980: Nios V Processor Intel Quartus Prime
Software Support for more information.

2. For Quartus project, select the Quartus Prime Project File.

3. For Revision, select the correct revision.

4. For CPU name, select the Nios V processor.

5. Select the Operating system as Altera HAL.

6. Click Create to create the BSP file.

Figure 103. Create New BSP window

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

100

Configuring BSP Editor and Generating the BSP Project

1. In the BSP Editor, click BSP Linker Script.

2. In the Linker Section Name perform the following settings:

a. Set .text to the QSPI flash in the Linker Region Name.

b. Set .exceptions to OCRAM/ External RAM or QSPI Flash according to your
design preference.

c. Set the rest of the items to the OCRAM or external RAM.

Figure 104. Linker Region Settings When Exceptions is set to OCRAM/ External RAM

Figure 105. Linker Region Settings When Exceptions is set to QSPI Flash

3. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

4. If exception is set to OCRAM or External RAM, enable the following:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rodata

• enable_alt_load_copy_rwdata

• enable_alt_load_copy_exceptions

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

101

Figure 106. hal.linker Settings for Exception Agent OCRAM or External RAM

5. If exception is set to QSPI flash, enable the following:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rodata

• enable_alt_load_copy_rwdata

Figure 107. hal.linker Settings for QSPI Flash

6. Navigate to the BSP Drivers tab.

7. Disable the Generic Serial Flash Interface driver
(intel_generic_serial_flash_interface_top).

Figure 108. BSP Drivers

8. Return to the BSP Editor tab and click Generate BSP. Make sure the BSP
generation is successful.

9. Close the BSP Editor.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

102

Generating the Application Project File

1. Navigate to the software/app folder and create your Nios V application source
code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the application CMakeLists.txt.

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
 --srcs=software/app/<Nios V application source code>

Building the Application Project

You can choose to build the application project using the RiscFree IDE for Altera FPGAs
or through the command line interface (CLI).

If you prefer using CLI, you can build the application using the following command:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -B \
 software/app/debug -S software/app

 make -C software/app/debug

The application (.elf) file is created in software/app/debug folder.

Generating HEX File

You must generate a .hex file from your application .elf file, so you can create
a .jic file suitable for programming flash devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application execute-in-place (XIP) from configuration QSPI
flash, use the following commands line to convert the ELF to HEX for your
application. The commands create the application (.hex) file.

elf2flash --input software/app/debug/<Nios V application>.elf \
 --output flash.srec --reset <reset offset + base address of GSFI AVL MEM> \
 --base <base address of GSFI AVL MEM> \
 --end <end address of GSFI AVL MEM>

riscv32-unknown-elf-objcopy --input-target srec --output-target ihex \
 flash.srec <Nios V application>.hex

Related Information

Summary of Nios V Processor Vector Configuration and BSP Settings on page 154

4.7.1.3. Programming Files Generation

JTAG Indirect Configuration File (.jic) Generation

1. In the Quartus Prime software, go to File ➤ Convert Programming Files.

2. For Programming file type, select JTAG Indirect Configuration File (.jic)

3. For Mode select Active Serial x4.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

103

Figure 109. Convert Programming File Window

4. Click “…” to enter the Configuration Device tab and select the available options.
The Configuration Device allows for choosing a specific supported device or
alternatively an unsupported device.

Figure 110. Configuration Device Window

5. If you are using a supported device, make your selection, and click OK. Else,
proceed with the following steps:

a. Select <<new device>>.

b. Enter the information about Device name, Device ID, Device I/O voltage,
Device density, Total device die, Dummy clock (Single I/O or Quad
I/O mode) and Programming flow template.

c. Click Apply.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

104

Note: The Programming flow template helps you define a template for
flash operation in Initialization, Program, Erase, Verify/Blank-Check/
Examine and Termination. If the device is not available for selection,
refer to Modifying Programming Flows in Generic Flash Programmer
User Guide to modify the programming flow. For details about memory
parameters like dummy clock cycles, please contact the related vendor.

6. Under the Input files to convert tab,

a. Choose the Flash Loader for the FPGA used by selecting Flash Loader and
click Add Device.

b. Add the .sof file to the SOF Data by selecting SOF Data and click Add File.

c. Click Add Hex Data to add Nios V application (.hex) file. Select the
Absolute addressing and Big-endian button. Browse to the .hex file
location. Click OK.

7. Click Generate to generate the JIC file.

Figure 111. Input files to convert tab

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

105

4.7.1.4. QSPI Flash Programming

Altera FPGA Device QSPI Flash Programming

1. Ensure that the Altera FPGA device’s Active Serial (AS) pin is routed to the QSPI
flash. This routing allows the flash loader to load into the QSPI flash and configure
the board correctly.

2. Ensure the MSEL pin setting on the board is configured for AS programming.

3. Open the Intel Quartus Prime Programmer and make sure JTAG was detected
under the Hardware Setup.

4. Select Auto Detect and choose the FPGA device according to your board.

5. Right-click the selected Altera FPGA device and select Edit ➤ Change File. Next,
select the generated JIC file.

6. Select the Program/ Configure check boxes for the FPGA and QSPI devices.

7. Click Start to start programming.

Note: Power cycle the device to begin Active Serial configuration scheme, and reset the Nios
V processor system upon entering user mode.

4.7.2. Nios V Processor Design, Configuration and Boot Flow (Control
Block-based Device)

Figure 112. Design, Configuration and Booting Flow (Control Block-based Device)

Design
• Create your Nios V processor based project using Platform Designer.
• Ensure that there is OCRAM / External RAM and Generic Serial Flash Interface Intel FPGA IP in the system design.

Generate Platform Designer Design
FPGA Configuration and Compilation
• Set Nios V processor reset agent to QSPI Flash.
• Generate your design in Platform Designer.
• Compile your project in Intel Quartus Prime software.

Nios V Application BSP Project
• Create Nios V application BSP file based on .qsys file created by Platform Designer.
• Edit BSP settings and Linker Script in BSP Editor.
• Generate BSP project.

Nios V Application Project
• Develop Nios V application code.
• Compile Nios V application and generate Nios V application (.hex) file.

Programming Files Conversion, Download & Run
• Generate the .jic file using Convert Programming Files tool with the FPGA design (.sof) file and user application (.hex) file.
• Program the .jic file into the configuration QSPI Flash.
• Power cycle your hardware.
• Reset the Nios V processor system upon entering user mode.

4.7.2.1. Nios V Processor Application Copied from Configuration QSPI Flash to
RAM Using Boot Copier (Bootloader via GSFI)

You can use a boot copier to copy the Nios V processor application from the
configuration QSPI flash to RAM when you require multiple iterations of the application
software development and high system performance.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

106

The boot copier is located at the Nios V processor reset address in flash, and is
immediately followed by the application. For this boot option, the Nios V processor
starts executing the boot copier software upon system reset, which copies the
application from the configuration QSPI to the internal or external RAM. Once copying
is complete, the Nios V processor transfers the program control over to the
application.

Figure 113. Nios V Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (Bootloader via GSFI)

On-Chip RAM

Nios V

FPGA Logic

Control Block-Based
FPGA Device

EMIF
IP

GSFI
IP

Nios V
Software

Nios V
Software

Boot Copier

QSPI Flash

External RAM

Nios V Software
.HEX

Bootloader via GSFI
.SREC

Nios V Hardware
.SOF

.JIC

Nios V
Software

Active
SerialNios V

Hardware

Quartus
Programmer

Related Information

Bootloader via GSFI Example Design on page 117

4.7.2.1.1. Hardware Design Flow

The following sections describe a step-by-step method for building a bootable system
for a Nios V processor application copied from configuration QSPI flash to RAM using
Bootloader via GSFI. The following example is built using Arria 10 SoC Development
Kit.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Add the Generic Serial Flash Interface Altera FPGA IP is into your Platform
Designer system.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

107

Figure 114. Connections for Nios V Processor Project

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

108

Figure 115. Generic Serial Flash Interface Altera FPGA IP Parameter Settings

3. Change the Device Density (Mb) according to the QSPI flash size.

4. Change the addressing mode by modifying bit 8 of the Control Register value in
the Default Settings parameter section. Changing bit 8 to 0x0 enables 3-byte
addressing, or 0x1 enables 4-byte addressing

Note: Refer to Intel Supported Configuration Devices tab ➤ Intel Supported Third
Party Configuration Devices in Device Configuration Support Center to check the
byte addressing mode supported for each flash device in each Altera FPGA device.

For example, Arria 10 devices when used with Micron flash devices support the 4-byte
addressing mode.

Reset Agent Settings for Nios V Processor Boot-copier Method

1. In the Nios V processor parameter editor, set the Reset Agent to QSPI Flash.

Note: Your SOF image size influences your reset offset configuration. The reset
offset is the start of the address of the HEX file in QSPI flash and it must
point to a location after the SOF image. If the SOF image space and the
reset offset location overlap, Quartus Prime software displays and overlap
error. You can determine the minimum reset offset by using the
configuration bitstream size from the device datasheet.

For example, the uncompressed configuration bitstream size for Arria 10 GX
660 is 252,959,072 bits (31,619,884 bytes). If the SOF image starts at
address 0x0, the SOF image can extend up to address 0x1E27FFF
(0x1E27B2C). In this case, the minimum reset offset you can select is
0x2000000.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

109

Figure 116. Nios V Parameter Editor Settings

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

Quartus Prime Software Settings

1. In the Intel Quartus Prime software, click Assignment ➤ Device ➤ Device and
Pin Options ➤ Configuration .

2. Set Configuration scheme to Active Serial x4 (can use Configuration
Device).

3. Set the Active serial clock source to 100 MHz Internal Oscillator.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

110

Figure 117. Device and Pin Options

4. Click OK to exit the Device and Pin Options window.

5. Click OK to exit the Device window.

6. Click Start Compilation to compile your project.

Related Information

• Arria 10 SoC Development Kit

• Arria 10 Device Datasheet

4.7.2.1.2. Software Design Flow

This section provides the software design flow to generate and build the Nios V
processor software project. To ensure a streamline build flow, you are encouraged to
create similar directory tree in your design project. The following software design flow
is based on this directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a folder named software.

2. In the software folder, create two folders named app and bsp.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

111

Figure 118. Software Project Directory Tree

Creating the BSP Project Application

You must edit the BSP editor settings according to the selected Nios V processor boot
options.

To launch the BSP Editor, perform the following steps:

1. In the Platform Designer window, select File ➤ New BSP. The Create New BSP
windows appears.

2. For BSP setting file, navigate to the software/bsp folder and name the BSP as
settings.bsp.

BSP path: <project directory>/software/bsp/settings.bsp

3. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system (.qsys) file.

Note: For Quartus Prime Standard Edition software, generate the BSP file using
SOPCINFO file. Refer to AN 980: Nios V Processor Intel Quartus Prime
Software Support for more information.

4. For Quartus project, select the Quartus Project File.

5. For Revision, select the correct revision.

6. For CPU name, select the Nios V processor.

7. Select the Operating system as Altera HAL.

8. Click Create to create the BSP file.

Figure 119. Create New BSP window

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

112

Configuring BSP Editor and Generating the BSP Project

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

2. Leave all settings unchecked.

Figure 120. hal.linker Settings

3. Click the BSP Linker Script tab in the BSP Editor.

4. Set all the Linker Section Name list to the OCRAM or external RAM.

Figure 121. Linker Region Settings

5. Click Generate BSP. Make sure the BSP generation is successful.

6. Close the BSP Editor.

Generating the Application Project File

1. Navigate to the software/app folder and create your Nios V application source
code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the application CMakeLists.txt.

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
--srcs=software/app/<Nios V application source code>

Building the Application Project

You can choose to build the application project using the RiscFree IDE for Altera FPGAs
or through the command line interface (CLI).

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

113

With the CLI, you can build the user project using the following commands:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug \
-B software/app/debug -S software/app

make -C software/app/debug

The application (.elf) file is created in software/app/debug folder.

Generating HEX File

You must generate a .hex file from your application .elf file, so you can create
a .jic file suitable for programming flash devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application copied from QSPI flash using boot copier, use the
following command line to generate the .hex file for your application.

3. Refer to the table Bootloader via GSFI for Nios V Processor Core in the topic
Bootloader via GSFI for the suitable bootloader via GSFI that you can use in the
elf2flash command.

elf2flash
 --boot <Intel Quartus Prime installation directory>/
 niosv/components/bootloader/<Bootloader via GSFI>
 --input software/app/debug/<Nios V application>.elf \
 --output flash.srec --reset <reset offset + base address of GSFI AVL MEM> \
 --base <base address of GSFI AVL MEM> \
 --end <end address of GSFI AVL MEM>

riscv32-unknown-elf-objcopy --input-target srec --output-target ihex \
 flash.srec <Nios V application>.hex

Related Information

• Summary of Nios V Processor Vector Configuration and BSP Settings on page 154

• Nios V Processor Bootloader via Generic Serial Flash Interface on page 52
Refer to the table Bootloader via GSFI for Nios V Processor Core for more
information about the suitable Bootloader via GSFI that you can use in the
elf2flash command.

4.7.2.1.3. Programming Files Generation

1. In the Quartus Prime software, go to File ➤ Convert Programming Files.

2. For Programming file type, select JTAG Indirect Configuration File (.jic)

3. For Mode select Active Serial x4.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

114

Figure 122. Convert Programming File Window

4. Click … to enter the Configuration Device tab and select the available options.
The Configuration Device allows for choosing a specific supported device or
alternatively an unsupported device.

Figure 123. Configuration Device Window

5. If you are using a supported device, make your selection, and click OK. Else,
proceed with the following steps:

a. Select <<new device>>.

b. Enter the information about Device name, Device ID, Device I/O voltage,
Device density, Total device die, Dummy clock (Single I/O or Quad
I/O mode) and Programming flow template.

c. Click Apply.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

115

Note: The Programming flow template helps you to define a template for
flash operation in Initialization, Program, Erase, Verify/Blank-Check/
Examine and Termination. If the device is not available for selection,
refer to Modifying Programming Flows in Generic Flash Programmer
User Guide to modify the programming flow. Please contact the related
vendor for details about memory parameters, such as dummy clock
cycles.

6. Under the Input files to convert tab,

a. Select the Flash Loader and click Add Device.

b. Add the .sof file to the SOF Data by selecting SOF Data and click Add File.

c. Click Add Hex Data to add Nios V application (.hex) file. Select the
Absolute addressing and Big-endian button. Browse to the .hex file
location. Click OK.

7. Click Generate to generate the JIC file.

Figure 124. Input files to convert tab

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

116

4.7.2.1.4. QSPI Flash Programming

Altera FPGA Device QSPI Flash Programming

1. Ensure that the Active Serial (AS) pin of the Altera FPGA device is routed to the
QSPI flash. This routing allows the flash loader to load into the QSPI flash and
configure the board correctly.

2. Ensure the MSEL pin setting on the board is configured for AS programming.

3. Open the Intel Quartus Prime Programmer and make sure JTAG was detected
under the Hardware Setup.

4. Select Auto Detect and choose the FPGA device according to your board.

5. Right-click the selected FPGA device and select Edit ➤ Change File. Next, select
the generated JIC file.

6. Select the Program/ Configure check boxes for FPGA and QSPI devices. Click
Start to start programming.

Note: Power cycle the device to begin Active Serial configuration scheme, and reset the Nios
V processor system upon entering user mode.

4.7.2.2. Bootloader via GSFI Example Design

Note: For Quartus Prime Standard Edition software, refer to the topic Quartus Prime
Software Support to generate the example design.

You can download the Bootloader via GSFI example design from the Altera FPGA
Design Store. The example design is based on the IArria 10 SoC Development Kit.
Using the provided scripts, the hardware and software design are generated, and
programmed respectively as SRAM Object Files (.sof) and JTAG Indirect
Configuration Files (.jic) into the device.

Follow the steps below to generate the Bootloader via GSFI example design:

1. Go to Altera FPGA Design Store.

2. Search for Arria10 - Bootloader GSFI Design package.

3. Click on the link at the title.

4. Accept the Software License Agreement.

5. Download the package according to the Quartus Prime software version of your
host machine.

6. Double-click to run the top.par file.

7. top_project folder is created by default after running the PAR file.

8. Open the top_project and refer to the readme.txt for how-to guide.

Table 39. Example Design File Description

File Description

hw/ Contains files necessary to run the hardware project.

ready_to_test/ Contains pre-built hardware and software binaries to run the design on the
target hardware. For this package, the target hardware is Arria 10 SoC
development kit.

continued...

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

117

File Description

scripts/ Consists of scripts to build the design.

sw/ Contains software application files.

readme.txt Contains description and steps to apply the pre-bulit binaries or rebuild the
binaries from scratch.

Figure 125. Bootloader via GSFI Example Design

On-Chip RAM

Nios V

FPGA Logic

Intel Arria 10 SOC

EMIF
IP

GSFI
IP

Nios V
Software

Nios V
Software

Boot Copier

QSPI Flash

JTAG Configuration via

Quartus Programmer

External RAM

Nios V Hardware
.SOF

.SOF

Nios V Software
.HEX

Bootloader via GSFI
.SREC

.JIC

Nios V
Software

Quartus
Programmer

Figure 126. JUART Terminal Output

1. In the beginning, the window displays the following message:

2. Reaching the end, the window displays the following message:

Related Information

• Nios V Processor Application Executes-In-Place from Configuration QSPI Flash on
page 95

For more information about booting the Nios V processor-based system from
control-block based FPGA devices.

• Nios V Processor Application Copied from Configuration QSPI Flash to RAM Using
Boot Copier (Bootloader via GSFI) on page 106

For more information about booting the Nios V processor-based system from
control-block based FPGA devices.

• Altera FPGA Design Store

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

118

4.7.3. Nios V Processor Design, Configuration and Boot Flow (SDM-based
Devices)

Figure 127. Design, Configuration and Booting Flow (SDM-based Devices)

Design
• Create your Nios V processor based project using Platform Designer.
• Ensure that there is OCRAM / External RAM and Mailbox Client Intel FPGA IP in the system design.

Generate Platform Designer Design
FPGA Configuration and Compilation
• Set Nios V processor reset agent to Bootloader ROM.
• Generate your design in Platform Designer.
• Compile your project in Intel Quartus Prime software.

Bootloader via SDM Project
• Apply the Bootloader via SDM code from the Bootloader via SDM Example Design.

• Compile and generate the file (.hex) for Bootloader via SDM.

Bootloader via SDM BSP Project
• Create Bootloader via SDM BSP file based on .qsys file created by Platform Designer.
• Edit BSP settings and Linker Script in BSP Editor.
• Generate Bootloader via SDM BSP project.

Nios V Application Project
• Develop Nios V application code.
• Compile Nios V application and generate Nios V application (.hex) file.

Nios V Application BSP Project
• Create Nios V application BSP file based on .qsys file created by Platform Designer.
• Edit BSP settings and Linker Script in BSP Editor.
• Generate Nios V application BSP project.

Programming Files Conversion, Download & Run
• Recompile your project to memory-initialize the Bootloader via SDM (.hex) file.
• Generate the .jic file using Programming File Generator tool with the FPGA design (.sof) file
 and Nios V application (.hex) file.
• Program the .jic file into the configuration QSPI Flash.
• Power cycle your hardware.
• Reset the Nios V processor system upon entering user mode.

4.7.3.1. Nios V Processor Application Copied from Configuration QSPI Flash to
RAM Using Boot Copier (Bootloader via SDM)

You can use a boot copier to copy the Nios V application from configuration QSPI flash
to RAM when multiple iterations of application software development and high system
performance are required. Altera recommends applying the memory organization in
Memory Organization for Bootloader via SDM to use the Bootloader via SDM. The
following section covers the description of each memory and the steps required to
create them.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

119

The boot copier is memory-initialized in the Bootloader ROM. For this boot option, the
Nios V processor starts executing the boot copier upon system reset, which copies the
application from the configuration QSPI to the internal or external RAM. Once this
completes, the Nios V processor transfers the program control over to the application.

Note: In SDM-based FPGA device, Nios V software booting from configuration QSPI Flash is
not supported when the FPGA device is configured using Avalon-ST scheme.

Figure 128. Nios V Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (Bootloader via SDM)

User Application
RAM

Nios V

FPGA Logic

SDM-Based FPGA Device

Mailbox
Client IP

EMIF
IP

Nios V
Software

Nios V
Software

Nios V
Hardware

QSPI Flash

External
RAM

Bootloader
ROM and RAM

Bootloader via SDM
.HEX

.JIC

Nios V Software
.HEX

Nios V Hardware
.SOF

Nios V
Software

Active
Serial

Quartus
Programmer SDM

Memory Organization for Bootloader via SDM

The Nios V processor system should comprise of the following memory spaces to
implement the Bootloader via SDM and Nios V application. The memories are
implemented as such:

• Bootloader ROM and RAM (used by Bootloader via SDM only).

• Nios V processor application RAM (used by user application only).

Table 40. Description of Memory Organization

Memory Memory Type Application Use Linker Section Notes

Bootloader ROM
(Internal ROM)

Read-Only Memory
(ROM)

Bootloader via SDM .text Set as the Nios V processor reset
agent.
Perform memory initialization with
Bootloader via SDM (.hex) file.

Bootloader RAM
(Internal RAM)

Random Access
Memory (RAM)

Bootloader via SDM .rodata,
.rwdata
, .bss, .stack, .
heap,
.exceptions

Initialize Bootloader via SDM
using alt_load().

User Application
RAM (Internal or
External RAM)

Random Access
Memory (RAM)

Nios V Application .text, .rodata,
.rwdata, .bss, .
stack, .heap,
.exceptions

The Nios V processor application
is loaded into RAM from flash by
the Bootloader via SDM.

4.7.3.1.1. Hardware Design Flow

The following sections describe a step-by-step method for building a bootable system
for a Nios V processor application copied from configuration QSPI flash to RAM using
Bootloader via SDM. The example below is built using Stratix 10 SX SoC L-Tile.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

120

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Add the Mailbox Client Altera FPGA IP into your Platform Designer system.

Figure 129. Connections for Nios V Processor Project

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

121

Figure 130. On-Chip Memory (RAM or ROM) Altera FPGA IP Parameter Settings

3. Change the On-Chip Memory (RAM or ROM) Altera FPGA IP Parameter
Settings according to the memory function. Ensure that you have the following
memories in the system.

Memory Memory Type Total Memory Size Memory initialization

Bootloader ROM ROM (Read-only) 6144 bytes or more Enable the following settings:
• Initialize memory content
• Enable non-default

initialization file with
bootcopier_rom.hex

Bootloader RAM RAM (Writable) 6144 bytes or more Leave all settings unchecked.

User Application
RAM

RAM (Writable) Depends on your application (5) Leave all settings unchecked.

(5) Your application size varies according to the usage. Set the memory size according to your
design.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

122

Reset Agent Settings forNios V Processor

1. In the Nios V processor parameter editor, set the Reset Agent to Bootloader
ROM.

Figure 131. Nios V Processor Parameter Editor Settings

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

Quartus Prime Software Settings

1. In the Intel Quartus Prime software, click Assignment ➤ Device ➤ Device and
Pin Options ➤ Configuration.

2. Set Configuration scheme to Active Serial x4 (can use Configuration
Device).

3. Set VID mode of operation according to your board design.

4. Set the Active serial clock source to 100 MHz Internal Oscillator.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

123

Figure 132. Device and Pin Options

5. Click OK to exit the Device and Pin Options window.

6. Click OK to exit the Device window.

7. Click Start Compilation to compile your project.

4.7.3.1.2. Software Design Flow

This section provides the software design flow to generate and build the Nios V
processor software project for the Bootloader via SDM and Nios V application. To
ensure a streamlined build flow, you are encouraged to create a similar directory tree
in your design project. The following software design flow is based on the following
directory tree.

To create the software project directory tree, follow these steps:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

124

1. In your design project folder, create a folder named software.

2. In the software folder, create two folders named mailbox_bootloader and
user_application.

3. In the mailbox_bootloader folder, create two folders named app and bsp.

4. In the user_application folder, create two folders named app and bsp.

Figure 133. Software Project Directory Tree

4.7.3.1.3. Software Design Flow (Bootloader via SDM Project)

This section provides the design flow to generate and build the Bootloader via SDM
project.

Creating the Bootloader via SDM BSP Project

To launch the BSP Editor, follow these steps:

1. In the Platform Designer window, select File ➤ New BSP. The Create New BSP
windows appears.

2. For BSP setting file, navigate to the software/mailbox_bootloader/bsp
folder and name the BSP as settings.bsp.

BSP path: <project directory>/software/mailbox_bootloader/bsp/
settings.bsp

3. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system (.qsys) file.

4. For Quartus project, select the Quartus Project File.

5. For Revision, select the correct revision.

6. For CPU name, select the Nios V processor.

7. Select the Operating system as Altera HAL.

8. Click Create to create the BSP file.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

125

Figure 134. Create New BSP Window

Configuring BSP Editor and Generating the BSP Project

1. Go to BSP Editor ➤ Main ➤ Settings

2. Configure the settings per the following table:

Table 41. Settings for BSP Editor

Settings Action

hal.max_file_descriptors(6) Input as 4

hal.log_port(6) Select as None

hal.enable_exit(6)

hal.enable_clean_exit(6)

hal.c_plus_plus(6)

Unchecked to disable the feature.

hal.sys_clk_timer(6)

hal.timerstamp_timer(6)

hal.stdin(6)

hal.stdout(6)

hal.stderr(6)

Select as None

hal.linker Enable the following settings:
• allow_code_at_reset
• enable_alt_load
• enable_alt_load_copy_rodata
• enable_alt_load_copy_rwdata
• enable_alt_load_copy_exceptions

continued...

(6) Altera recommends you to use these settings to reduce the Bootloader via SDM code
footprint.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

126

Settings Action

hal.make.cflags_user_flags(6) Input as -ffunction-sections -fdata-sections

hal.make.link_flags(6) Input as -Wl,--gc-sections

hal.make.cflags_optimization(6) Input as -Os

:

Figure 135. hal Settings

Figure 136. hal.linker Settings

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

127

Figure 137. hal.toolchain Settings

Figure 138. hal.make Settings

3. Go to BSP Software Package and enable altera_safeclib

Figure 139. BSP Software Package

4. Click the BSP Linker Script tab in the BSP Editor.

5. Set the .text item in the Linker Section Name to the Bootloader ROM in the
Linker Region Name. Set the rest of the items in the Linker Section Name list
to the Bootloader RAM.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

128

Figure 140. Linker Region Settings

6. Navigate to the BSP Driver tab and disable all drivers (except the Nios V
Processor and Mailbox Client Altera FPGA IP).

Figure 141. BSP Driver tab

7. Click Generate BSP. Make sure the BSP generation is successful.

8. Close the BSP Editor.

Create the Bootloader via SDM Application Project

1. In software/mailbox_bootloader/app folder, create a C source code.

2. Name it as mailbox_bootloader.c.

3. In mailbox_bootloader.c, copy and paste the Bootloader via SDM code below.

#include "altera_s10_mailbox_client_flash.h"
#include "sys/alt_irq.h"
#include <unistd.h>

// Constants
#define PROGRAM_RECORD_HEADER_SZ 8
#define PROGRAM_RECORD_LEN_IDX 0
#define PROGRAM_RECORD_ADDR_IDX 1
#define ERASED_FLASH_CONTENTS 0xFFFFFFFF
#define MAX_ATTEMPTS 1000

// Design specific (customize here)
#define MBOX_NAME "/dev/mailbox"
#define PAYLOAD_OFFSET 0x200000

// Global header buffer
alt_u32 g_program_header[2];

// *** Assumptions:
// All addresses & lengths are 32-bit word aligned
// aka 0x0, 0x4, 0x8, 0xC, 0x10, etc

__attribute__((noreturn)) void error() {
 while (1);
}

void read_flash(intel_mailbox_client* mbox_client,

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

129

int offset,
void* dest_addr,
int length) {
 if (mailbox_client_flash_read(mbox_client, offset, dest_addr, length) !=
0)
 error();
}

__attribute__((noreturn)) int main(int argc, char **argv) {
 intel_mailbox_client* mbox_client = mailbox_client_open(MBOX_NAME);
 int record_address_ptr = PAYLOAD_OFFSET;

 // Obtain exclusive flash access
 // Applied delay if Mailbox Client IP is busy
 int attempt = 0;
 while((mailbox_client_flash_open(mbox_client) != 0) &&
(++attempt < MAX_ATTEMPTS)){
 usleep(10000);
 }
 if (attempt == MAX_ATTEMPTS)
 error();

 for (;;) {
 read_flash(mbox_client, record_address_ptr,
(void *)g_program_header, PROGRAM_RECORD_HEADER_SZ);
 record_address_ptr += PROGRAM_RECORD_HEADER_SZ;

 // The address in this case is the jump target
 if (g_program_header[PROGRAM_RECORD_LEN_IDX] == 0)
 break;

 // This is not a legal or sane length.
 // It implies the flash we're reading isn't programmed,
 // and the safest thing to do in this case is error out.
 if (g_program_header[PROGRAM_RECORD_LEN_IDX] ==
ERASED_FLASH_CONTENTS)
 error();

 read_flash(mbox_client, record_address_ptr,
(void *)(g_program_header[PROGRAM_RECORD_ADDR_IDX]),
g_program_header[PROGRAM_RECORD_LEN_IDX]);
 record_address_ptr += g_program_header[PROGRAM_RECORD_LEN_IDX];
 }

 // Release exclusive flash access
 if (mailbox_client_flash_close(mbox_client) != 0)
 error();

 // Disable all interrupts before jumping
 alt_irq_disable_all();

 // Jump to user application
 void *jump_target = (void *)(g_program_header[PROGRAM_RECORD_ADDR_IDX]);
 asm volatile ("jr %[reset_vec]" : : [reset_vec] "r"(jump_target));

 // Code should never get here -- put here to keep the compiler happy
 while (1);
}

4. Redefine the MBOX_NAME according to the name of Mailbox Client IP in system.h.

5. Redefine the PAYLOAD_OFFSET in mailbox_bootloader.c.

Note: The SOF image size influences the PAYLOAD_OFFSET. The
PAYLOAD_OFFSET is the start address of the Nios V application HEX file in
QSPI flash and must point to a location after the SOF image. You can
determine the minimum PAYLOAD_OFFSET by using the configuration
bitstream size from the device datasheet.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

130

For example, the estimated compressed configuration bitstream size for Intel
Stratix 10 SX 2800 is 577 Mbits (72.125 MBytes). The actual size can be equal or
smaller than this bitstream size. If the SOF image starts at address 0x0, the SOF
image should reached until address 0x44C8FFF (0x44C8A48). With that, the
minimum PAYLOAD_OFFSET you can select is 0x4500000.

6. Launch the Nios V Command Shell.

7. Execute the command below to generate the Bootloader via SDM application
CMakeLists.txt.

niosv-app --app-dir=software/mailbox_bootloader/app\
 --bsp-dir=software/mailbox_bootloader/bsp\
 --srcs=software/mailbox_bootloader/app/mailbox_bootloader.c

Building the Bootloader via SDM Project

You can choose to build the Bootloader via SDM project using the RiscFree IDE for
Altera FPGAs or through the command line interface (CLI).

With the CLI , you can build the Bootloader via SDM using the following commands:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -B \
 software/mailbox_bootloader/app/release -S \
 software/mailbox_bootloader/app

make -C software/mailbox_bootloader/app/release

The Bootloader via SDM (.elf) file is created in

software/mailbox_bootloader/app/release folder.

Generating the HEX File and Initializing the Memory

A HEX file must be generated from the ELF file so that the HEX file can be used for
memory initialization.

1. Launch the Nios V Command Shell.

2. For Bootloader via SDM, use the following command line to convert the ELF to
HEX. This command creates the Bootloader via SDM (bootcopier_rom.hex) file.

elf2hex software/mailbox_bootloader/app/release/app.elf \
 -o bootcopier_rom.hex \
 -b <base address of Bootloader ROM> \
 -w <data width of Bootloader ROM in bits> \
 -e <end address of Bootloader ROM> \
 -r <data width of Bootloader ROM in bytes>

Recompile the hardware design to memory-initialize the bootcopier_rom.hex into
the Bootloader ROM.

Related Information

• Summary of Nios V Processor Vector Configuration and BSP Settings on page 154

• Bootloader via SDM Example Design on page 138

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

131

4.7.3.1.4. Software Design Flow (User Application Project)

This section provides the design flow to generate and build the Nios V processor user
application.

Creating the User Application BSP Project

To launch the BSP Editor, follow these steps:

1. In the Platform Designer window, select File ➤ New BSP . The Create New BSP
windows appears.

2. For BSP setting file, navigate to the software/user_application/bsp folder
and name the BSP as settings.bsp.

BSP path: <project directory>/software/user_application/bsp/
settings.bsp

3. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system (.qsys).

4. For Quartus project, select the Quartus Project File.

5. For Revision, select the correct revision.

6. For CPU name, select the Nios V processor.

7. Select the Operating system as Altera HAL.

8. Click Create to create the BSP file.

Figure 142. Create New BSP Window

Configure BSP Editor and Generate the BSP Project

1. Go to Main ➤ Settings ➤ Settings ➤ Advanced ➤ hal.linker.

2. Enable the following settings:

a. enable_alt_load

b. enable_alt_load_copy_exceptions

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

132

Figure 143. hal.linker Settings

3. Click the BSP Linker Script tab in the BSP Editor.

Figure 144. Linker Region Settings

4. Set all the Linker Section Name list to the User Application RAM.

5. Click Generate BSP. Make sure the BSP generation is successful.

6. Close the BSP Editor.

Creating the User Application Project

1. Navigate to the software/user_application/app folder and create your user
application source code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the user application CMakeLists.txt.

niosv-app --app-dir=software/user_application/app \
 --bsp-dir=software/user_application/bsp \
 --srcs=software/user_application/app/<user application>

Building the Application Project

You can choose to build the application project using the RiscFree IDE for Altera FPGAs
or through the command line interface (CLI).

With the CLI, you can build the user application using the following commands:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug \
 -B software/user_application/app/debug -S software/user_application/app

make -C software/user_application/app/debug

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

133

The user application (.elf) file is created in software/user_application/app/
debug folder.

Generating the HEX File

You must generate a .hex file from your application .elf file, so you can create
a .jic file suitable for programming flash devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application copied from QSPI flash using bootloader via SDM,
use the following commands to convert the ELF to HEX for your application. These
commands creates the user application (.hex) file.

elf2flash --input software/user_application/app/debug/<user application>.elf \
 --output flash.srec –epcs –-offset 0x0

riscv32-unknown-elf-objcopy --input-target srec \
--output-target ihex flash.srec \
 <user application>.hex

Related Information

Summary of Nios V Processor Vector Configuration and BSP Settings on page 154

4.7.3.1.5. Programming Files Generation

1. Go to File ➤ Programming File Generator.

2. Select the Configuration mode to be Active Serial x4.

3. In the Output Files tab, select JTAG Indirect Configuration File (.jic).

Figure 145. Programming File Generator (Output Files)

4. In the Input Files tab, perform the following steps:

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

134

a. Add the SOF file by clicking Add Bitstream.

b. Add the user application (.hex) file by clicking Add Raw Data.

c. Select the HEX file and click Properties.

d. Select Bit Swap : On.

Figure 146. Programming File Generator (Input Files)

5. In the Configuration Device tab,

a. Add the flash device by clicking Add Device.

i. If you are using a supported device, you may make your selection, and
click OK. Else, proceed to Apply the Configuration Device window.

b. Add the SOF file by selecting the flash device and click Add Partition.

c. Add the user application (.hex) file by selecting the flash device and click Add
Partition. Select the Address Mode to Start and set the Start address to
the value set for PAYLOAD_OFFSET in mailbox_bootcopier.c.

d. Select the Flash loader according to the Altera FPGA device.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

135

Figure 147. Programming File Generator (Configuration Device)

6. Click Generate to generate the JIC file.

Applying the Configuration Device Window

The Configuration Device allows for choosing a specific supported device or
alternatively an unsupported device.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

136

Figure 148. Configuration Device Window

1. If you are using a supported device, make your selection, and click OK. Else,
proceed with the following steps:

a. Select <<new device>>.

b. Enter the information about Device name, Device ID, Device I/O voltage,
Device density, Total device die, Dummy clock (Single I/O or Quad
I/O mode) and Programming flow template.

c. Click Apply.

Note: The Programming flow template helps you to define a template for
flash operation in Initialization, Program, Erase, Verify/Blank-Check/
Examine and Termination. If the device is not available for selection,
refer to Modifying Programming Flows in Generic Flash Programmer
User Guide to modify the programming flow.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

137

4.7.3.1.6. QSPI Flash Programming SDM

Altera FPGA Device QSPI Flash Programming

1. Ensure that the Altera FPGA device’s Active Serial (AS) pin is routed to the QSPI
flash. This routing allows the flash loader to load into the QSPI flash and configure
the board correctly.

2. Ensure the MSEL pin setting on the board is configured for AS programming.

3. Open the Quartus Prime Programmer and make sure JTAG is detected under the
Hardware Setup.

4. Select Auto Detect and choose the FPGA device according to your board.

5. Right-click the selected Altera FPGA device and select Edit ➤ Change File. Next,
select the generated JIC file.

6. Select the Program/ Configure check boxes for FPGA and QSPI devices.

7. Click Start to start programming.

4.7.3.2. Bootloader via SDM Example Design

You can download the Bootloader via SDM example design from the Intel FPGA Design
Store. The example design is based on the Stratix 10 SX SoC L-Tile development kit.

Using the provided scripts, the hardware and software design are generated and
programmed respectively as SRAM Object Files (.sof) and JTAG Indirect
Configuration Files (.jic) into the device.

Follow the steps below to generate the Bootloader via SDM example design:

1. Go to Altera FPGA Design Store.

2. Search for Stratix10 - Bootloader SDM Design package.

3. Click on the link at the title.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

138

4. Accept the Software License Agreement.

5. Download the package according to the Quartus Prime software version of your
host machine.

6. Refer to the readme.txt for how-to guide.

Table 42. Example Design File Description

File Description

hw/ Contains files necessary to run the hardware project.

ready_to_test/ Contains pre-built hardware and software binaries to run the design on the
target hardware. For this package, the target hardware is Stratix 10 SX 10 SoC
L-tile development kit.

scripts/ Consists of scripts to build the design.

sw/ Contains software application files.

readme.txt Contains description and steps to apply the pre-bulit binaries or rebuild the
binaries from scratch.

Figure 149. Bootloader via SDM Example Design

User Application
RAM

Nios V Processor

FPGA Logic

Intel Stratix 10 SX SOC L-Tile

Mailbox
Client IP

EMIF
IP Nios V Processor

Software

Nios V
Software

QSPI Flash

JTAG

Bootloader
ROM and RAM

Bootloader via SDM
.HEX

Nios V Hardware
.SOF

.SOF

Nios V Software
.HEX

.JIC Quartus
Programmer

SDM

External
RAM

Nios V
Software

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

139

Figure 150. JUART Terminal Output

1. In the beginning, the window displays the following message

2. Reaching the end, the window displays the following message:

Related Information

• Software Design Flow (Bootloader via SDM Project) on page 125

• Altera FPGA Design Store

4.8. Nios V Processor Booting from On-Chip Memory (OCRAM)

This section describes the Nios V processor booting and executing software from On-
Chip Memory (OCRAM) available in all supported Altera FPGA devices.

4.8.1. Nios V Processor Application Executes in-place from OCRAM

The on-chip memory is initialized during FPGA configuration with data from a Nios V
processor application image. This data is built into the FPGA configuration bitstream.
This process eliminates the need for a boot copier, as the Nios V processor application
is already in place at system reset.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

140

Figure 151. Nios V Processor Application Executes In-Place from OCRAM when FPGA
Device Configured from QSPI Flash

QSPI Flash

Nios V Software
.HEX

Nios V Hardware
.SOF

.JIC

Nios V Hardware
FPGA

Configuration

Nios V
Software

Nios V

FPGA Logic

FPGA Device

On-Chip RAM

Nios V
Software

Quartus
Programmer

Figure 152. Design, Configuration and Booting Flow

Design
• Create your Nios V processor based project using Platform Designer.
• Ensure that there is OCRAM in the system design.

Generate Platform Designer Design
FPGA Configuration and Compilation
• Set Nios V processor reset agent to OCRAM.
• Check Initialize memory content option in the OCRAM.
• Generate your design in Platform Designer.
• Compile your project in Intel Quartus Prime software.

User Application Project
• Develop application code.
• Compile and generate user application (.hex) file.

User Application BSP Project
• Create user application BSP file based on .qsys file created by Platform Designer.
• Edit BSP settings and Linker Script in BSP Editor.
• Generate user application BSP project.

Programming Files Conversion, Download & Run
• Generate the programming file using Convert Programming Files or
 Programming File Generator tools with the recompiled SOF file.
• Program the programming into the flash memory.
• Power cycle your hardware.
• Reset the Nios V processor system upon entering user mode.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

141

4.8.1.1. Hardware Design Flow

The following sections describe a step-by-step method for building a bootable system
for a Nios V processor application from OCRAM. The example below is built using Intel
Arria 10 SoC development kit.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

2. Ensure the On-Chip Memory (RAM or ROM) Altera FPGA is added into your
Platform Designer system.

3. Enable Initialize memory content and Enable non-default initialization file
with ram.hex in the on-chip memory.

Figure 153. Connections for Nios V Processor Project

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

142

Figure 154. On-Chip Memory (RAM or ROM) Intel FPGA IP Parameter Settings

Reset Agent Settings for Nios V Processor

1. In the Nios V processor parameter editor, set the Reset Agent to OCRAM

Figure 155. Nios V Processor Parameter Editor Settings

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

143

Quartus Prime Settings

1. In the Intel Quartus Prime software, click Assignment ➤ Device ➤ Device and
Pin Options ➤ Configuration.

2. Set Configuration scheme according to your FPGA configuration scheme

3. Click OK to exit the Device and Pin Options window.

4. Click OK to exit the Device window.

5. Click Start Compilation to compile your project.

Related Information

Arria 10 SoC Development Kit

4.8.1.2. Software Design Flow

This section provides the design flow to generate and build the Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create
similar directory tree in your design project. The following software design flow is
based on this directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called app and bsp.

Figure 156. Software Project Directory Tree

Creating the Application BSP Project

Note: For Quartus Prime Standard Edition software, refer to the topic AN 980: Nios V
Processor Quartus Prime Software Support for the steps to invoke the BSP Editor GUI.

To launch the BSP Editor, follow these steps:

1. In the Platform Designer window, select File ➤ New BSP. The Create New BSP
windows appears.

2. For BSP setting file, navigate to the software/bsp folder and name the BSP as
settings.bsp.

BSP path: <project directory>/software/bsp/settings.bsp

3. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system (.qsys) file.

Note: For Quartus Prime Standard Edition software, generate the BSP file using
SOPCINFO file. Refer to AN 980: Nios V Processor Quartus Prime Software
Support for more information.

4. For Quartus project, select the Quartus Project File.

5. For Revision, select the correct revision.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

144

6. For CPU name, select the Nios V processor.

7. Select the Operating system as Altera HAL.

8. Click Create to create the BSP file.

Figure 157. Create New BSP Window

Configuring the BSP Editor and Generating the BSP Project

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

2. Enable the following settings:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rwdata

Figure 158. hal.linker Settings

3. Click the BSP Linker Script tab in the BSP Editor

4. Set all the Linker Section Name list to the OCRAM.

5. Click Generate BSP. Make sure the BSP generation is successful.

6. Close the BSP Editor

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

145

Generating the Application Project File

1. Navigate to the software/app folder and create your user application source
code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the user application CMakeLists.txt.

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
 --srcs=software/app/<user application>

Building the Application Project

You can choose to build the application project using RiscFree IDE for Altera FPGAs or
through the command line interface (CLI).

If you prefer using CLI, you can build the application using the following command:

cmake -G "Unix Makefiles" -B software/app/build -S software/app

make -C software/app/build

The user application (.elf) file is created in software/app/build folder.

Generating the HEX File

You must generate a .hex file from your application .elf file, so you can create a .jic
file suitable for programming flash devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from OCRAM, use the following command
line to convert the ELF to HEX for your application. This command creates the user
application (ram.hex) file.

elf2hex software/app/build/<user_application>.elf -o ram.hex \
 -b <base address of OCRAM> \
 -w <data width of OCRAM in bits> \
 -e <end address of OCRAM> \
 -r <data width of OCRAM in bytes>

Note: If you enable ECC in OCRAM, use the following command line to convert the
ELF to HEX for your application. The following command line creates the
user application (ram.hex) file with ECC parity bits. This feature is
supported in 32-but OCRAM only.

elf2hex software/app/build/<user_application>.elf -o ram.hex \
-b <base address of OCRAM> \
-w 39 \
-e <end address of OCRAM> \
-r 4

3. Recompile the hardware design to memory-initialize the ram.hex into the OCRAM.

Related Information

• Summary of Nios V Processor Vector Configuration and BSP Settings on page 154

• AN 980: Nios V Processor Quartus Prime Software Support

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

146

4.8.1.3. Programming

The Nios V processor application file is built into the Altera FPGA configuration
bitstream. Based on your Altera FPGA configuration scheme, program your device with
the programming file containing .sof file. The Nios V processor application runs once
the Nios V processor system is reset upon entering user mode.

4.9. Nios V Processor Booting from Tightly Coupled Memory (TCM)

This section describes the Nios V processor booting and executing software from
Tightly Coupled Memory (TCM) available in all supported Altera FPGA devices.

4.9.1. Nios V Processor Application Executes in-place from TCM

The tightly coupled memories are initialized during FPGA configuration with data from
a Nios V processor application image. This data is built into the FPGA configuration
bitstream. This process eliminates the need for a boot copier, as the Nios V processor
application is already in place at system reset.

Figure 159. Nios V Processor Application Executes In-Place from TCM when FPGA Device
Configured from QSPI Flash

QSPI Flash

Nios V Software
.HEX

Nios V Hardware
.SOF

.JIC

Nios V Hardware
FPGA

Configuration

Nios V
Software

Nios V Processor

FPGA Logic

FPGA Device

Instruction TCM

Nios V
Software

Quartus
Programmer

Data TCM

Nios V
Software

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

147

Figure 160. Design, Configuration, and Booting Flow

Design
• Create your Nios V processor based project using Platform Designer.
• Ensure that there is TCM in the system design.

Generate Platform Designer Design
FPGA Configuration and Compilation
• Set Nios V processor reset agent to TCM.
• Check Initialize memory content option in the TCM.
• Generate your design in Platform Designer.
• Compile your project in Intel Quartus Prime software.

User Application Project
• Develop application code.
• Compile and generate user application (.hex) file.

User Application BSP Project
• Create user application BSP file based on .qsys file created by Platform Designer.
• Edit BSP settings and Linker Script in BSP Editor.
• Generate user application BSP project.

Programming Files Conversion, Download & Run
• Generate the programming file using Convert Programming Files or
 Programming File Generator tools with the recompiled SOF file.
• Program the programming into the flash memory.
• Power cycle your hardware.
• Reset the Nios V processor system upon entering user mode.

4.9.1.1. Hardware Design Flow

The following sections describe a step-by-step method for building a bootable system
for a Nios V processor application from TCM. The example below is built using Arria 10
SoC development kit.

IP Component Settings

1. Create your Nios V processor project using Quartus Prime and Platform Designer.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

148

Figure 161. Connections for Nios V Processor Project

Note: Place all external peripheral IPs (e.g. JTAG UART, MSGDMA, PIO, and others) within a
peripheral region. This requirement does not apply to dm_agent and
timer_sw_agent.

TCM Settings for Nios V Processor

1. In the Nios V processor parameter editor, enable the Instruction TCM1 and Data
TCM1.

2. Initialize Instruction TCM1 with itcm.hex.

3. Initialize Data TCM1 with dtcm.hex.

Figure 162. Instruction TCM1 Settings

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

149

Figure 163. Data TCM1 Settings

4. Align the base address of instruction_tcs1 to be the same as Instruction
ITCM1 (0x40000).

Figure 164. Instruction_tcs1 Aligned Base Address

Reset Agent Settings for Nios V Processor

1. In the Nios V processor parameter editor, set the Reset Agent to Instruction
TCM1.

Figure 165. Reset Agent Settings for Nios V Processor

2. Click Generate HDL, the Generation dialog box appears.

3. Specify output file generation options and then click Generate.

Quartus Prime Settings

1. In the Intel Quartus Prime software, click Assignment ➤ Device ➤ Device and
Pin Options ➤ Configuration.

2. Set Configuration scheme according to your FPGA configuration scheme

3. Click OK to exit the Device and Pin Options window.

4. Click OK to exit the Device window.

5. Click Start Compilation to compile your project.

Related Information

Arria 10 SoC Development Kit

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

150

4.9.1.2. Software Design Flow

This section provides the design flow to generate and build the Nios V processor
software project. To ensure a streamlined build flow, you are encouraged to create
similar directory tree in your design project. The following software design flow is
based on this directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called app and bsp.

Figure 166. Software Project Directory Tree

Creating the Application BSP Project

To launch the BSP Editor, follow these steps:

1. In the Platform Designer window, select File ➤ New BSP. The Create New BSP
windows appears.

2. For BSP setting file, navigate to the software/bsp folder and name the BSP as
settings.bsp.

BSP path: <project directory>/software/bsp/settings.bsp

3. For System file (qsys or sopcinfo), select the Nios V/g processor Platform
Designer system (.qsys) file.

Note: For Quartus Prime Standard Edition software, generate the BSP files using
SOPCINFO. Refer to AN 980: Nios V Processor Quartus Prime Software
Support for more information.

4. For Quartus project, select the Quartus Prime Project File.

5. For Revision, select the correct revision.

6. For CPU name, select the Nios V/g processor.

7. Select the Operating system as Altera HAL.

8. Click Create to create the BSP file.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

151

Figure 167. Create New BSP Window

Configuring the BSP Editor and Generating the BSP Project

1. Go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

2. Enable allow_code_at_reset only.

Figure 168. hal.linker Settings

3. Click the BSP Linker Script tab in the BSP Editor

4. In the Linker Section Name perform the following settings:

a. Set .text and .exceptions to Instruction TCM1.

b. Set the remaining Linker Section Name to the Data TCM1.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

152

Figure 169. Linker Region Settings for TCM

5. Click Generate BSP. Make sure the BSP generation is successful.

6. Close the BSP Editor

Generating the Application Project File

1. Navigate to the software/app folder and create your user application source
code.

2. Launch the Nios V Command Shell.

3. Execute the command below to generate the user application CMakeLists.txt.

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
 --srcs=software/app/<user application>

Building the Application Project

You can choose to build the application project using RiscFree IDE for Altera FPGAs or
through the command line interface (CLI).

If you prefer using CLI, you can build the application using the following command:

cmake -G "Unix Makefiles" -B software/app/build -S software/app

make -C software/app/build

The user application (.elf) file is created in software/app/build folder.

Generating the HEX File

You must generate a .hex file from your application .elf file, so you can create a .jic
file suitable for programming flash devices.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from TCM, use the following command line
to convert the ELF to HEX for your application. This command creates the user
application (itcm.hex and dtcm.hex) file.

elf2hex software/app/build/<user_application>.elf -o itcm.hex \
 -b <base address of ITCM> -w 32 \
 -e <end address of ITCM> -r 4

elf2hex software/app/build/<user_application>.elf -o dtcm.hex \
 -b <base address of DTCM> -w 32 \
 -e <end address of DTCM> -r 4

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

153

Note: If you enable ECC in Nios V processor (thus, enabling ECC in TCM), use the
following command line to convert the ELF to HEX for your application. This
command line creates the user application (itcm.hex and dtcm.hex) files
with ECC parity bits.

elf2hex software/app/build/<user_application>.elf -o itcm.hex \
-b <base address of ITCM> -w 39 \
-e <end address of ITCM> -r 4
elf2hex software/app/build/<user_application>.elf -o dtcm.hex \
-b <base address of DTCM> -w 39 \
-e <end address of DTCM> -r 4

3. Recompile the hardware design to memory-initialize both the HEX files into the
Instruction TCM and Data TCM.

Related Information

• Summary of Nios V Processor Vector Configuration and BSP Settings on page 154

• AN 980: Nios V Processor Quartus Prime Software Support

4.9.1.3. Programming

The Nios V processor application file is built into the Altera FPGA configuration
bitstream. Based on your Altera FPGA configuration scheme, program your device with
the programming file containing .sof file. The Nios V processor application runs once
the Nios V processor system is reset upon entering user mode.

4.10. Summary of Nios V Processor Vector Configuration and BSP
Settings

The following table shows a summary of Nios V processor reset and exception agent
configurations, and BSP settings.

Table 43. Summary of Nios V Processor Vector Configurations and BSP Settings

Boot Option Reset Agent BSP Editor Setting: Settings BSP Editor Setting: Linker Script

Nios V processor
application
executes in-place
from boot flash

• On-Chip Flash
• General

Purpose QSPI
flash

• Configuration
QSPI Flash

If the .exceptionn Linker Section is
set to OCRAM/ External RAM, enable
the following settings in
Advanced.hal.linker
• allow_code_at_reset
• enable_alt_load
• enable_alt_load_copy_rodata
• enable_alt_load_copy_rwdata
• enable_alt_load_copy_exceptions
If the .exception Linker Section is
set to boot flash, enable the following
settings in Advanced.hal.linker:

• Set .text Linker Section to boot
flash

• Set .exception Linker Section to
OCRAM/External RAM or boot flash.

• Set other Linker Sections
(.heap, .rwdata,
rodata,.bss, .stack) to
OCRAM / External RAM

continued...

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

154

Boot Option Reset Agent BSP Editor Setting: Settings BSP Editor Setting: Linker Script

• allow_code_at_reset
• enable_alt_load
• enable_alt_load_copy_rodata
• enable_alt_load_copy_rwdata

Nios V processor
application copied
from boot flash to
RAM using
bootloader via
GSFI

• On-Chip Flash
• General

Purpose QSPI
flash

• Configuration
QSPI Flash

Uncheck all settings in
Advanced.hal.linker .

Make sure all Linker Sections are set to
OCRAM / External RAM.

Nios V processor
application copied
from configuration
QSPI flash to RAM
using bootloader
via SDM

Bootloader ROM For bootloader via SDM, enable the
following settings in
Advanced.hal.linker:
• allow_code_at_reset
• enable_alt_load
• enable_alt_load_copy_rodata
• enable_alt_load_copy_rwdata
• enable_alt_load_copy_exceptions

For bootloader via SDM:
• Set .text Linker Section to

Bootloader ROM.
• Set other Linker Sections

(.heap, .rwdata, .rodata, .bss
, .stack, .exception) to
Bootloader RAM.

For user application, enable the
following settings in
Advanced.hal.linker:
• enable_alt_load
• enable_alt_load_copy_exceptions

For user application, make sure all
Linker Sections are set to User
Application RAM.

Nios V processor
application
execute in-place
from On-chip
Memory (OCRAM)

OCRAM Enable allow_code_at_reset in
Advanced.hal.linker and uncheck
other settings.

Make sure all Linker Sections are set to
OCRAM.

Nios V processor
application
execute in-place
from Tightly
Coupled Memory
(TCM)

TCM Enable allow_code_at_reset in
Advanced.hal.linker and uncheck
other settings.

• Set .text and .exception Linker
Section to Instruction TCM.

• Set other Linker Section
(.heap, .rwdata, .rodata, .bss
, .stack to Data TCM.

Related Information

• Software Design Flow on page 99
Nios V Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (Bootloader via GSFI).

• Software Design Flow on page 111
Nios V Processor Application Executes-In-Place from Configuration QSPI Flash.

• Software Design Flow (Bootloader via SDM Project) on page 125
Nios V Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (Bootloader via SDM) - Bootloader via SDM Project

• Software Design Flow (User Application Project) on page 132
Nios V Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (Bootloader via SDM) - User Application Project

• Software Design Flow on page 144
Nios V Processor Application Executes in-place from OCRAM

• Software Design Flow on page 151

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

155

4.11. Reducing Nios V Processor Booting Time

4.11.1. Boot Methods

The Nios V processor supports two booting methods:

Table 44. Boot Methods

Boot Methods Advantages

Execute-in-place • Faster boot time than boot copier. This is because the time taken to copy the code
from boot memory to RAM is longer than running directly (execute-in-place) from
the boot memory.

Boot copier • Altera recommends this method for systems that require higher performance.
Although this configurationhas longer boot time, it delivers higher application
performance than an execute-in-place configuration.

4.11.2. Boot devices

For Nios V application execute-in-place, different boot devices have different boot
times based on their individual memory performance.

Figure 170. Supported Boot Device Performance

Fastest

TCM QSPI Flash

Slowest

On-chip Flash
(UFM)

On-chip Memory
(OCRAM)

4.11.3. Peripheral Initialization

Nios V processor systems initialize all HAL peripherals before main() by default. As a
result, the boot time varies based on the peripherals you choose. Peripherals that are
slow to initialize or have external dependencies increases the boot time and potentially
make it less deterministic. If this occurs, you need to calibrate the external memory,
such as DDR3, for it to work properly.

DDR3 is an example of a peripheral where the initialization time is significant in
comparison to the boot time. The calibration time is long, particularly when compared
to boot times for execute-in-place boot configurations. The calibration time
significantly impacts Nios V processor application that execute-in-place.

To avoid this, in execute-in-place boot configurations, remove the external memory
from the Nios V processor linker region if it is not in use. If size is not an issue, you
can choose to use OCRAM. If you are confident working with Nios V processor
software, another option is to remove the DDR3 initialization routine from the boot
code and initialize the memory later–once the application code has started running.

4.11.4. Caches

You can enhance the boot time of your Nios V processor hardware configuration for
both execute-in-place or boot copier boot methods to improve boot time. Caches
improve the boot time because the data and instruction caches reduce memory
bandwidth limitations during the boot sequence.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

156

4.11.5. System Speed

Using Nios V processor with higher clock speed can improve the boot time.

4. Nios V Processor Configuration and Booting Solutions

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

157

5. Nios V Processor - Using the MicroC/TCP-IP Stack

5.1. Introduction

The Nios V processor tools contains the µC/OS-II RTOS and the µC/TCP-IP software
component, providing designers with the ability to quickly build networked embedded
systems applications for the Nios V processor.

5.2. Software Architecture

The onion diagram shows the architectural layers of a Nios V processor µC/OS-II
software application.

Figure 171. Layered Software Model

Each layer encapsulates the specific implementation details of that layer, abstracting
the data for the next outer layer. The following list describes each layer:

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

• Nios V processor system hardware: The core of the onion diagram represents
the Nios V processor and hardware peripherals implemented in the Altera FPGA.

• Software device drivers: The software device drivers layer contains the
software functions that manipulate the Ethernet and hardware peripherals. These
drivers know the physical details of the peripheral devices, abstracting those
details from the outer layers.

• HAL API: The Hardware Abstraction Layer (HAL) application programming
interface (API) provides a standardized interface to the software device drivers,
presenting a POSIX-like API to the outer layers.

• MicroC/OS-II: The µC/OS-II RTOS layer provides multitasking and inter-task
communication services to the µC/TCP-IP Stack and the Nios V processor.

• MicroC/TCP-IP Stack software component: The µC/TCP-IP Stack software
component layer provides networking services to the application layer and
application-specific system initialization layer through the sockets API.

• Application-specific system initialization: The application-specific system
initialization layer includes the µC/OS-II and µC/TCP-IP Stack software component
initialization functions invoked from main(), as well as creates all application
tasks, and all the semaphores, queue, and event flag RTOS inter-task
communication resources.

• Application: The outermost application layer contains the Nios V µC/TCP-IP Stack
application.

5.3. Support and Licensing

Altera distributes µC/OS-II and µC/TCP-IP in the Quartus Prime Design Suite for
evaluation purposes only. Commercial version of µC/OS-II and µC/TCP-IP is under
Apache 2.0 Open Source Licensing, for more information refer to the Micrium
Licensing Website.

Related Information

Micrium Licensing Website
For more information about Commercial version about µC/OS-II and µC/TCP-IP
under Apache 2.0 Open Source Licensing.

5.4. MicroC/TCP-IP Example Designs

5.4.1. Hardware and Software Requirements

To use a µC/OS-II and µC/TCP-IP program on an Altera FPGA requires the following
hardware and software:

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

159

• Quartus Prime software

— Quartus Prime Pro Edition software version 21.3 or later

— Quartus Prime Standard Edition software version 22.1 or later

• Ashling RiscFree IDE for Altera FPGAs software version 22.2 or later

Note: Altera recommends you to install the same software version for all
softwares.

• One of the supported Intel FPGA devices

— The example designs are implemented on Arria 10 10 SoC development kit

• Intel FPGA Download Cable II

• RJ-45 connected Ethernet cable on the same network as the PC development host

You must connect your development board to a host PC on the Ethernet and USB/JTAG
ports.

Related Information

Arria 10 SoC Development Kit

5.4.2. Overview

Note: For Quartus Prime Standard Edition software, refer to AN 980: Nios V Processor
Quartus Prime Software Support for the steps to generate the example design.

You can download the µC/TCP-IP Example Designs from the Altera FPGA Store. The
example designs are based on the Arria 10 10 SoC development kit. Using the scripts,
the hardware and software design are generated, and programmed as SRAM Object
Files (.sof) into the device. Using the memory-initialized .sof file, the Nios V
processor boots the µC/TCP-IP application from the On-Chip Memory after resetting
the processor during User Mode.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

160

The featured µC/TCP-IP Example Designs are :

• µC/TCP-IP IPerf Example Design

— This example design incorporated the µC/IPerf, an iPerf 2 server or client
developed for the µC/TCP-IP Stack and the µC/OS-II RTOS. iPerf 2 is a
benchmarking tool for measuring performance between two systems, and it
can be used as a server or a client.

— An iPerf server receives iPerf request sent over a TCP/IP connection from any
iPerf clients, and runs the iPerf test according to the provided arguments. Each
test reports the bandwidth, loss and other parameters.

Figure 172. µC/TCP-IP IPerf Data Flow Diagram

uC/TCP-IP Software
Component

uC/TCP-IP software component Interface consisting of socket function calls

TSE driver level interface

String prints

Ethernet packet

uC/TCP-IP
Timer

 Task Task

uC/TCP-IP

TX De-allocation

Task
RX Task

iPerf 2
Terminal

Task

iPerf Test
Results

TCP/IP Ethernet packet with
iPerf client on host PC

uC/TCP-IP
RX Task

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

161

• µC/TCP-IP Simple Socket Server Example Design

— This example design demonstrates communication with a telnet client on a
development host PC. The telnet client offers a convenient way of issuing
commands over a TCP/IP socket to the Ethernet-connected µC/TCP-IP running
on the development board with a simple TCP/IP socket server example.

— The socket server example receives commands sent over a TCP/IP connection
and turns LEDs on and off according to the commands. The example consists
of a socket server task that listens for commands on a TCP/IP port and
dispatches those commands to a set of LED management tasks.

Figure 173. µC/TCP-IP Simple Socket Server Data Flow Diagram

uC/TCP-IP software component Interface consisting of socket function calls

TSE driver level interface

LED write

Ethernet packet

Nios V
Simple Socket

Server Task

OSQPend

SQ 3 2 1

LED

SSSLEDCommandQ

OSQPost

TCP/IP Ethernet packet with telnet client on host

A single MicroC/OS-II software component function call

uC/TCP-IP Software
Component

uC/TCP-IP
Timer
Task

uC/TCP-IP
TX De-allocation

 Task

LED
Management

Task

uC/TCP-IP
RX Task

Note: The Nios V target system does not implement a full telnet server.

Related Information

• µC Product Documentation and Release Notes
For more information about µC/OS-II, µC/TCP-IP and µC/IPerf.

• AN 980: Nios V Processor Quartus Prime Software Support

• AN 980: Nios V Processor Quartus Prime Software Support

5.4.3. Acquiring the Example Design Files

Generating the µC/TCP-IP Example Designs

To generate the µC/TCP-IP Example Designs , perform the following steps:

1. Go to Altera FPGA Design Store.

2. Search for Arria10 - Simple Socket Server or Arria10 - IPerf package.

3. Click on the link at the title.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

162

4. Accept the Software License Agreement.

5. Download the package according to the Quartus Prime software version of your
host machine.

6. Refer to the readme.txt for how-to guide.

Table 45. Example Design File Description

File Description

hw/ Contains files necessary to run the hardware project.

ready_to_test/ Contains pre-built hardware and software binaries to run the design on the target
hardware. For this package, the target hardware is Arria 10 SoC development kit.

scripts/ Consists of scripts to build the design.

sw/ Contains software application files.

readme.txt Contains description and steps to apply the pre-bulit binaries or rebuild the
binaries from scratch.

Running the µC/TCP-IP Example Designs

The µC/TCP-IP Example Designs are provided with scripts to facilitate the build flow.
The scripts are stored in the scripts folder. You may refer to the readme file
(readme.txt) to develop the example designs using the provided scripts, or develop
the design manually using the Nios V processor tools.

For more information about the hardware and software development follow, refer to
Hardware Development Flow and Software Development Flow.

Related Information

Altera FPGA Design Store

5.4.4. Hardware Design Files

Despite the example designs functioned differently, they share similar hardware
design and BSP settings. The only difference lies in their respective Nios V application
source code, one for the Simple Socket Server application, while the other for the iPerf
2 application.

The µC/TCP-IP example designs are developed using the Platform Designer. The
hardware files can be generated using the build_sof.py Python script. The example
design consist of:

• Nios V Processor Altera FPGA IP

• On-Chip Memory II Altera FPGA IP for System Memory and Descriptor Memory

• JTAG UART Altera FPGA IP

• System ID Peripheral Altera FPGA IP

• Parallel I/O Altera FPGA IP (PIO)

• Modular Scatter-Gather DMA Altera FPGA IP (mSGDMA)

• Triple-Speed Ethernet Altera FPGA IP (TSE)

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

163

Figure 174. Hardware Block Diagram

System ID

Client

Apps

Nios V CPU

uC TCP-IP

Stack

Control
Interface

TSE MAC

TX FIFO (2)
MII/SGMII

RX FIFO (2)

TSE

Driver Setup
Descriptors

Process &
Write Back
Status

Process &
Write Back
Status

TX Path

RX Path

JTAG UART

LED PIO

MII/SGMII
RX mSGDMA

Descriptor
Memory (1)

RX
Descriptor (3)

TX mSGDMA

Memory

Note: • (1) The first n bytes are reserved for mSGDMA descriptor buffers, where n is the
number of bytes taken by the configured RX or TX buffers. Applications must not
use this memory region.

• (2) For MAC variations without internal FIFO buffers, the transmit and receive
FIFOs are external to the MAC function.

• (3) Only one buffer type (RX or TX buffers) can reside in the descriptor memory.

5.4.5. Software Design Files

5.4.5.1. MicroC/TCP-IP IPerf Example Design

The µC/TCP-IP IPerf example design software files are readily available in the example
design zip file. They are stored in the sw/app folder.

The following software files constitute the µC/TCP-IP IPerf application:

• uC-IPerf folder: Contains µC/IPerf source code.

• app_iperf.c: Contains the iPerf reporter application.

• app_iperf.h: Contains function prototypes for the reporter application.

• iperf_cfg.h: Describe the µC/IPerf module static parameters and run-time
configuration structure.

• log.h: Contains definitions for logging macros.

• main.c: Defines the global structure of type alt_tse_system_info which
describes the TSE configuration. Defines main(), which initializes µC/OS-II, µC/
TCP-IP and µC/IPerf, processes the MAC and IP addresses, contains the PHY
management tasks, and defines function prototypes.

• uc_tcp_ip_init.c: Contains MAC address and IP address routines to manage
addressing. Routines are used by µC/TCP-IP during initialization, but are
implementation-specific.

• uc_tcp_ip_init.h: Contains definitions and function prototypes for µC/TCP-IP
initialization.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

164

Note: For more information about the original μC/IPerf application, refer to MicroC-IPerf
Github Release.

Related Information

MicroC-IPerf Github Release
For more information about original µC/IPerf application.

5.4.5.2. MicroC/TCP-IP Simple Socket Server Example Design

The µC/TCP-IP Simple Socket Server example design software files are readily
available in the example design zip file. They are stored in the sw/app folder.

The following software files constitute the µC/TCP-IP Simple Socket Server application:

• alt_error_handler.c: Contains three error handlers, one each for the Nios V
Simple Socket Server, µC/TCP-IP, and µC/OS-II.

• alt_error_handler.h: Contains definitions and function prototypes for the three
software component-specific error handlers.

• led.c: Contains the LED management tasks.

• led.h : Contains function prototypes for the LED management tasks.

• log.h: Contains definitions for logging macros.

• main.c: Defines the global structure of type alt_tse_system_info which
describes the TSE configuration. Defines main(), which initializes µC/OS-II and
µC/TCP-IP, processes the MAC and IP addresses, contains the PHY management
tasks, and defines function prototypes.

• simple_socket_server.c: Defines the tasks and functions that use the µC/TCP-IP
sockets interface, and creates all the µC/OS-II resources.

• simple_socket_server.h: Defines the task prototypes, task priorities, and other
µC/OS-II resources used.

• uc_tcp_ip_init.c: Contains MAC address and IP address routines to manage
addressing. Routines are used by µC/TCP-IP during initialization, but are
implementation-specific.

• uc_tcp_ip_init.h: Contains definitions and function prototypes for µC/TCP-IP
initialization.

5.5. Development Flow

5.5.1. Hardware Development Flow

You can create the µC/TCP-IP example designs hardware system using the Platform
Designer.

1. In the Platform Designer, create a new Platform Designer system (sys.qsys).

2. Navigate to View ➤ System Scripting.

3. Under the Project Scripts, add and run sys.tcl.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

165

Figure 175. System Scripting Windows

Alternatively, you can run the sys.tcl using CLI:

qsys-script --script=<QSYS TCL script>.tcl --quartus-project=<Project
name>.qpf

4. The generated Platform Designer system consist of the Nios V processor, TSE IP,
mSGDMA IP and other peripherals. Refer to Hardware Design Files for the
complete system.

5. Click Generate HDL to generate the system HDL.

6. Click Processing ➤ Start Compilation to perform a full hardware compilation
and generate the hardware .sof file.

Note: Currently, the hardware .sof file is not memory-initialized with the µC/TCP-
IP application. Refer to the following section for more information.

Related Information

• Quartus Prime Pro Edition User Guide: Platform Designer
More information about Creating a Board Support Package with BSP Editor.

• Nios V Processor Software Developer Handbook: Board Support Package Editor

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

166

5.5.2. Software Development Flow

Creating a µC/TCP-IP and µC/OS-II software image for the Simple Socket Server or
the iPerf example design consist of the following general steps:

1. Create a board support package (BSP) project, including µC/OS-II and the µC/
TCP-IP software component.

2. Creating a Nios V application project with the provided software design files.

3. Building the application project.

4. Running and debugging the application project.

To ensure a streamlined build flow, you are encouraged to create similar directory tree
in your design project. The following software design flow is based on this directory
tree.

Follow these steps to create the software project directory tree:

1. In your design project folder, create a folder called software.

2. In the software folder, create two folders called app and bsp.

Figure 176. Software Project Directory Tree

5.5.2.1. Creating a BSP project

Follow these steps to create a BSP project:

1. In the Platform Designer window, go to File ➤ New BSP. The Create New BSP
window appears.

2. For BSP setting file, navigate to the software/bsp folder and create a BSP file
(settings.bsp).

3. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system.

Note: For Quartus Prime Standard Edition software, generate the BSP files using
SOPCINFO file. Refer to AN 980: Nios V Processor Intel Quartus Prime
Software Support for more information.

4. For Quartus project, select the example design Quartus Project File.

5. For Revision, select the correct revision.

6. For CPU name, select the Nios V processor.

7. Select the Operating system as Micrium MicroC/OS II.

8. Click Create to create the BSP file.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

167

Figure 177. Create New BSP windows

5.5.2.2. Configuring the BSP

Follow these steps to configure the BSP project:

1. In the BSP Editor, navigate to Main ➤ Settings to configure the BSP Settings as
shown in the following table.

2. Both example designs apply the same BSP settings.

Table 46. BSP Editor Settings

BSP Editor Settings Description

hal.enable_instruction_related_exceptions_api Enable by checking the option box.

hal.log_flags Set value as 0

hal.log_port Set value as sys_jtag_uart

hal.make.cflags_defined_symbols Set value as -DTSE_MY_SYSTEM -DALT_DEBUG

hal.make.cflags_user_flags Set value as -ffunction-sections -fdata-sections -fno-tree-
vectorize

hal.make.cflags_warnings Set value as -Wall -Wextra -Wformat -Wformat-security

hal.make.link_flags Set value as -Wl,--gc-sections

ucosii.miscellaneous.os_max_events Set value as 80

ucosii.os_tmr_en Enable by checking the option box.

3. Go to BSP Software Package tab and enable the uc_tcp_ip software package.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

168

Figure 178. BSP Software Package

4. Go to BSP Driver tab and enable enable_small_driver.

Figure 179. BSP Driver Tab

5.5.2.3. Creating an Application Project

You need to use the niosv-app utility to create the application CMakeLists.txt and
source it to the application source code. Due to different application source code
between the two example designs, the niosv-app commands are sourced different.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

169

1. Copy the Software Design Files to the software/app folder.

2. Launch the Nios V Command Shell.

3. Based on your example design, execute the following command to generate the
user application CMakeLists.txt.

• µC/TCP-IP Simple Socket Server example design

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
 --srcs=software/app/alt_error_handler.c \
 --srcs=software/app/led.c \
 --srcs=software/app/main.c \
 --srcs=software/app/simple_socket_server.c \
 --srcs=software/app/uc_tcp_ip_init.c

• µC/TCP-IP IPerf example design

niosv-app --app-dir=software/app --bsp-dir=software/bsp \
 --srcs=software/app/app_iperf.c \
 --srcs=software/app/main.c \
 --srcs=software/app/uC-IPerf/OS/uCOS-II/iperf_os.c \
 --srcs=software/app/uC-IPerf/Reporter/Terminal/iperf_rep.c \
 --srcs=software/app/uC-IPerf/Source/iperf-c.c \
 --srcs=software/app/uC-IPerf/Source/iperf-s.c \
 --srcs=software/app/uC-IPerf/Source/iperf.c \
 --srcs=software/app/uc_tcp_ip_init.c \
 --incs=software/app/uC-IPerf \
 --incs=software/app

5.5.2.4. Building the Application Project

You can choose to build the application project using RiscFree IDE for Altera FPGAs, or
through the command line interface (CLI).

You can configure the source files such as enabling DHCP or setting MAC and IP
addresses. Refer to Optional Configuration for more details.

If you prefer CLI, you can build the application using the following commands:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release \
 -B software/app/build -S software/app

make -j4 -C software/app/build

The user application (.elf) file is created in software/app/build folder.

5.5.3. Device Programming

To program Nios V processor based system into the FPGA and to run your application,
use Quartus Prime Programmer tool.

1. To create the Nios V processor inside the FPGA device, program the .sof file onto
the board with the following command.

Table 47. Command

Operating System Command

Windows quartus_pgm -c 1 -m JTAG -o p;top.sof@1

continued...

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

170

Operating System Command

Linux quartus_pgm -c 1 -m JTAG -o p\;top.sof@1

Note: • -c 1 is referring to cable number connected to the Host Computer.

• @1 is referring to device index on the JTAG Chain and may differ for
your board.

2. Download the .elf using the niosv-download command.

niosv-download -g -r <elf file>

3. Use the JTAG UART terminal to print the stdout and stderr of the Nios V processor
system.

juart-terminal

5.6. Operating the Example Designs

5.6.1. Operating the MicroC/TCP-IP IPerf

To display the µC/TCP-IP IPerf application messages, the example design utilizes the
JTAG UART Intel FPGA IP. You can begin the display message by using the following
command:

juart-terminal

The JTAG UART terminal displays the booting message logs, followed by the µC/TCP-IP
setup logs from the µC/TCP-IP IPerf example design.

Within the µC/TCP-IP setup logs, there is a message stating the current IP address
adopted by the system (as configured in main.c source code). If DHCP is enabled,
the DHCP server-supplied IP address displays the message that indicates the DHCP
client for the Ethernet interface acquires a DHCP IP address.

The message "TEST ID : <test number>" is displayed along with its IP address
and other information, when the µC/TCP-IP IPerf server is initialized and ready for
connection.

After the iPerf server is ready, you can start an iPerf client on your host computer to
interact with the iPerf server. To start the iPerf client, follow these steps:

1. From your operating system, open a command shell or a terminal.

Note: On Windows, you can also use Run on the Start menu.

2. Type the following command, specifying either the static IP address or the DHCP
server-provided IP address:

iperf -c <IP Address>

If the connection to the development board is successful, the iPerf test result displays
in both the iPerf server and client.

In the following examples, the configured IP address for the iPerf server is
192.168.1.45 at port 5001.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

171

Figure 180. iPerf Server on Intel FPGA device

Figure 181. iPerf Client on Host Computer

Related Information

IPerf Homepage

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

172

5.6.2. Operating the MicroC/TCP-IP Simple Socket Server

To display the µC/TCP-IP Simple Socket Server application messages, the example
design utilizes the JTAG UART Intel FPGA IP. You can begin the display message by
using the following command:

juart-terminal

The JTAG UART terminal displays the booting message logs, followed by the µC/TCP-IP
setup logs from the µC/TCP-IP Simple Socket Server example design.

Within the µC/TCP-IP setup logs, find a message stating the system adopts the
current IP address (as configured in main.c source code). If DHCP is enabled, the
DHCP server-supplied IP address displays the message that indicates the DHCP client
for the Ethernet interface acquires a DHCP IP address.

The message “[sss_task] Simple Socket Server listening on port
<port number>” is displayed when the µC/TCP-IP Stack is ready for connection.

After the µC/TCP-IP Stack is ready, you can start a telnet session to interact with the
stack. To start a telnet session, follow these steps:

1. From your operating system, open a command shell or a terminal.

Note: On Windows, you can also use Run on the Start menu.

2. Type the following command, specifying either the static IP address or the DHCP
server-provided IP address:

telnet <IP Address> <Port>

If the connection to the development board is successful, the menu of available
commands display in a command window.

Telnet Session to Intel FPGA Device Figure shows the Nios V Simple Socket Server
Menu, along with the following entered commands:

• 0 to 3: Toggle board LEDs D0 to D3

• S: Board LED Light Show

• Q: Terminate Session

When you enter commands at the command prompt, Ethernet sends the commands
over the telnet connection to a task waiting on a socket for commands. The task
responds to those commands by sending instructions to another task that manipulates
the LED.

In the following examples, the configured IP address for the Simple Socket Server is
192.168.1.45 at port 80.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

173

Figure 182. Display Message from Altera FPGA device (Disable DHCP)

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

174

Figure 183. Display Message from Altera FPGA device (Enable DHCP)

Figure 184. Telnet Session to Intel FPGA Device

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

175

5.7. Optional Configuration

The default configuration of the two µC/TCP-IP example designs is open for
modifications. The configuration is only meant to fulfill the basic requirements to build
a working µC/TCP-IP Simple Socket Server and iPerf design. This section introduces
some of the common configuration that you can apply on your own designs.

5.7.1. Configuring Hardware Name

The global structure of type "alt_tse_system_info" (named "tse_mac_device")
reflects the IP names according to the system.h file. If you change the default IP
names or not using the default hardware project, you must update the following
names in main.c source code. You can find the source code in the software/apps
folder.

The latest IP names can be found in the system.h file after the hardware compilation
in Quartus Prime software. The header file is located in the BSP folder.

The following table lists the example design and the default IP names.

Table 48. Default IP Names

Example Design IP Name

TSE SYS_TSE

TX MSGDMA SYS_TSE_MSGDMA_TX

RX MSGDMA SYS_TSE_MSGDMA_RX

Descriptor Memory SYS_DESC_MEM

Figure 185. Example Design Platform Designer System

Example 2. Default Hardware Names in main.c

alt_tse_system_info tse_mac_device[MAXNETS] = {
 TSE_SYSTEM_EXT_MEM_NO_SHARED_FIFO(
 SYS_TSE, // tse_name
 0, // offset
 SYS_TSE_MSGDMA_TX, // msgdma_tx_name
 SYS_TSE_MSGDMA_RX, // msgdma_rx_name
 TSE_PHY_AUTO_ADDRESS, // phy_addr
 NULL, // phy_cfg_fp
 SYS_DESC_MEM // desc_mem_name
)
};

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

176

5.7.2. Configuring MAC and IP Addresses

You can configure the MAC and IP addresses of the µC/TCP-IP module by editing the
struct network_conf conf in software/app/main.c source code.

If a DHCP server is available on your network, enable the DHCP feature by modifying
the use_dhcp field to true (DEF_TRUE). If the DHCP feature is enabled, the provided
IP addresses, network mask, and gateway are left unused. It is not required to clear
their contents.

If the development board is connected directly to your PC with a crossover Ethernet
cable, or no DHCP server is available, disable the DHCP feature (!DEF_TRUE) and
specify the IP addresses, network mask, and gateway.

Example 3. Default “struct network_conf conf” in main.c

struct network_conf conf = {
 .tse_sys_info = tse_sys_info,
 .mac_addr = "00:07:ed:ff:8c:05",
 .use_dhcp = !DEF_TRUE,
 .ipv4_addr_str = "192.168.1.45",
 .ipv4_mask_str = "255.255.255.0",
 .ipv4_gateway_str = "192.168.1.1"
};

Note: • Choose your default IP and gateway addresses carefully. Some secure router
configurations block DHCP request packets on local subnetworks such as the
192.168.X.X subnetwork. If you encounter problems, try using 0.0.0.0 as your
default IP and gateway addresses.

• You can configure the DHCP waiting time (DHCP_WAIT_MS) in the
uc_tcp_ip_init.c source code. The DHCP waiting time is the amount of time
delayed before verifying that a valid IP address is acquired by the TSE IP.

5.7.3. Configuring MicroC/TCP-IP Initialization

You can configure the µC/TCP-IP application specific settings according to your
preference. These settings are configurable in software/app/uc_tcp_ip_init.c
source code.

5.7.3.1. Network Task Configuration

In this example design, the µC/TCP-IP stack has three configurable tasks, the Receive
task, the Transmit De-allocation task and the Timer task. Each task is configured with
its own task priority and task stack size.

In order to place a task at higher priority, you have to register it with a lower value,
and vice versa. The third-party vendor recommends configuring the task priorities as
listed below for optimum performance.

• Network Transmit (TX) De-allocation task (Highest priority)

• Network timer task

• Network Receive (RX) task (Lowest Priority)

As for the task stack size, it is dependent on the processor architecture and compiler
used. Configuring the stack size to 4,096 bytes is deemed sufficient for most
applications.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

177

Table 49. Network task configuration

Settings Description Default Value

TX_TASK_PRIO Network TX De-allocation Task Priority 1u

RX_TASK_PRIO Network RX Task Priority 3u

TMR_TASK_PRIO Network Timer Task Priority 5u

TX_TASK_SIZE Network TX De-allocation Task Stack
Size

4096u

RX_TASK_SIZE Network RX Task Stack Size 4096u

TMR_TASK_SIZE Network Timer Task Stack Size 4096u

Example 4. Default network task configuration in uc_tcp_ip_init.c

#define TX_TASK_SIZE (4096u)
#define RX_TASK_SIZE (4096u)
#define TMR_TASK_SIZE (4096u)

static const unsigned TX_TASK_PRIO = 1u;
static const unsigned RX_TASK_PRIO = 3u;
static const unsigned TMR_TASK_PRIO = 5u;

5.7.3.2. Network Interface Configuration

µC/TCP-IP stores received and transmitted data in network buffers (also referred as
receive buffers and transmit buffers). The size of these network buffers should fulfill
the minimum and maximum packet frame sizes of the network interfaces.

Based on the µC/TCP-IP application requirements, configure the network buffers to
better suit your needs in software/app/uc_tcp_ip_init.c source code. The
following are the configurable network buffers:

• Receive Large Buffer

• Transmit Large Buffer

• Transmit Small Buffer

While it is best to leave the size of large buffers at maximum frame size, you can
lower the size of the small buffers to reduce the system's RAM usage, further
improving the system performance. Additionally, you can configure the number of
receive and transmit buffers allocated to the device. Keep in mind that you need to
have at least one buffer given for each network.

After configuring the network buffers, register them to a valid memory locations,
either the main system memory or a dedicated descriptor memory. If you are using a
dedicated descriptor memory, define the starting address and memory span of the
descriptor memory in the source code.

Refer to Network Buffers Configuration Table for the µC/TCP-IP example designs
default configuration. A dedicated descriptor memory is provided in the hardware
system, and registered to the receive buffers. Transmit buffers are routed to the main
memory.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

178

Note: Altera recommends receive buffers to hold up to the maximum frame size because the
size of data received is unknown to the device. Alternatively, the size of data
transmitted is known to the device, making it possible to use small transmit buffers
when the transmitted data is smaller than the maximum frame size. Thus, allowing
receive buffers to use large buffers only, while transmit buffers use both large and
small buffers.

Table 50. Network Buffers Configuration

Settings Description Default Value

.RxBufPoolType Memory location for the receive data buffers. (7)(8) NET_IF_MEM_TYPE_DEDICATED

.RxBufLargeNbr Number of receive buffers allocated to the device. NUM_RX_BUFFERS(9)

.TxBufPoolType Memory location for the transmit data buffers. (7)(8) NET_IF_MEM_TYPE_MAIN

.TxBufLargeNbr Number of transmit buffers allocated to the device. 5u

.TxBufSmallSize Size of the small transmit buffers. 60u

.TxBufSmallNbr Number of small transmit buffers allocated to the device. 5u

.MemAddr Starting address of the dedicated descriptor memory.(10) SYS_DESC_MEM_BASE

.MemSize Size of the dedicated descriptor memory (in bytes). SYS_DESC_MEM_SPAN

Example 5. Default network interface configuration in uc_tcp_ip_init.c

static const CPU_INT08U NUM_RX_LISTS = 2;
static const NET_BUF_QTY NUM_RX_BUFFERS =
 2 * NUM_RX_LISTS * ALTERA_TSE_MSGDMA_RX_DESC_CHAIN_SIZE;

static NET_DEV_CFG_ETHER NetDev_Cfg_Ether_TSE = {

 .RxBufPoolType = NET_IF_MEM_TYPE_DEDICATED,
 .RxBufLargeSize = 1536u,
 .RxBufLargeNbr = NUM_RX_BUFFERS,
 .RxBufAlignOctets = 4u,
 .RxBufIxOffset = 2u,

 .TxBufPoolType = NET_IF_MEM_TYPE_MAIN,
 .TxBufLargeSize = 1518u,
 .TxBufLargeNbr = 5u,
 .TxBufSmallSize = 60u,
 .TxBufSmallNbr = 5u,
 .TxBufAlignOctets = 4u,
 .TxBufIxOffset = 0u,

 .MemAddr = SYS_DESC_MEM_BASE,
 .MemSize = SYS_DESC_MEM_SPAN,

 .Flags = NET_DEV_CFG_FLAG_NONE,

(7) This field must be set to either NET_IF_MEM_TYPE_MAIN for main memory or
NET_IF_MEM_TYPE_DEDICATED for dedicated descriptor memory.

(8) Only one buffer type (receive or transmit buffers) can be set to
NET_IF_MEM_TYPE_DEDICATED.

(9) This field is derived based on NUM_RX_LISTS and
ALTERA_TSE_MSGDMA_RX_DESC_CHAIN_SIZE.

(10) If there is no dedicated descriptor memory in the system, this field should be set to NULL

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

179

 .RxDescNbr = 8u, // NOTE: Not configurable.
 .TxDescNbr = 1u, // NOTE: Not configurable.

 .BaseAddr = 0,
 .DataBusSizeNbrBits = 0,

 .HW_AddrStr = "",
};

5.7.4. Configuring iPerf Server Auto-Initialization

Note: This configuration is only available for µC/TCP-IP IPerf Example Design.

The example design is capable of initializing the iPerf server using pre-determined
arguments upon running the Nios V applications. This is developed for ease of use
purpose, and it can be disabled if other iPerf utility is required.

To disable this feature, you need to provide the 0 argument to the
App_IPerf_TaskTerminal(), and the iPerf terminal begins acquiring the custom
iperf commands after iPerf is successfully initialized. The iperf command must end
with an ENTER key to complete the acquisition process.

Figure 186. iPerf Terminal

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

180

Example 6. iPerf server auto-initialization feature in main.c

//To enable auto-initialization
App_IPerf_TaskTerminal(1);

//To disable auto-initialization
App_IPerf_TaskTerminal(0);

5.8. MicroC/TCP-IP Simple Socket Server Concepts

5.8.1. MicroC/OS-II Resources

This section describes the tasks, queue, event flag, and semaphores that implement
the µC/TCP-IP Simple Socket Server application.

Tasks

The following table lists the µC/OS-II tasks that implements the µC/TCP-IP Simple
Socket Server application.

Table 51. µC/OS-II tasks for the µC/TCP-IP Simple Socket Server

Tasks Description

SSSCreateOSDataStructs() Creates an instance of all the µC/OS-II resources.

SSSCreateTasks() Initializes tasks that do not use the networking services.

SSSSimpleSocketServerTask() Manages the socket server connection, and calls relevant subroutines to manage
the socket connection.

LEDManagementTask() Manages the LEDs, driven by commands received from a µC/OS-II queue, named
SSSLEDCommandQ.

LEDLightshowTask() Manages the LED light show, once enabled by the LEDManagementTask().

Inter-Task Communication Resources

The following global handles (or pointers) create and manipulate your µC/OS-II inter-
task communication resources. All the resources begin with Simple Socket Server,
indicating a public resource provided by the Nios V Simple Socket Server that is
shared between software modules.

The SSSCreateOSDataStructs() function declares and creates these resources in
simple_socket_server.c.

• SSSLEDCommandQ: A µC/OS-II queue that sends commands from the simple
socket server task, SSSSimpleSocketServerTask() to the development board
LED control task, LEDManagementTask().

• SSSLEDLightshowSem: A µC/OS-II semaphore that is referred by the
LEDLightshowTask() before the LEDs update.

• SSSLEDEventFlag: A µC/OS-II flag that corresponds to one of the LEDs.

Note: The µC/TCP-IP Simple Socket Server uses capitalized acronym prefixes to identify
public resources for each software module, and lowercase letters with underscores to
indicate a private resource or function used internally to a software module.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

181

The following are the software module acronym identifiers:

• SSS: µC/TCP-IP Simple Socket Server software module

• LED: LED management software module

• OS: µC/OS-II RTOS software component

5.8.2. Error Handling

A suite of error-handling functions defined in alt_error_handler() check error handling
of the µC/TCP-IP Simple Socket Server application, µC/TCP-IP Stack, and µC/OS-II
system call error-codes. All system, socket, and application calls check for error
conditions whenever an error exist.

5.8.3. MicroC/TCP-IP Stack Default Configuration

The µC/TCP-IP Stack creates one or more system level tasks during system
initialization, when you call the network_init() function. Users have complete control
over these system level tasks through a global configuration file named net_cfg.h,
located in the directory structure for the BSP project, in the uC-TCP-IP/uC-Conf
folder.

You can edit the #define statements in net_cfg.h to configure the following options
for the µC/TCP-IP Stack:

• Module Inclusion: Identifies which built-in µC/TCP-IP modules should be started.

• Module Configuration: Configure how built-in µC/TCP-IP modules should be
started.

Related Information

µC/TCP-IP Documentation
For more information about the µC/TCP-IP Stack configuration.

5. Nios V Processor - Using the MicroC/TCP-IP Stack

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

182

6. Nios V Processor Debugging, Verifying, and Simulating
Debugging and verifying an embedded system involves hardware and software
components. To successfully debug an embedded system requires expertise in both
hardware and software. This chapter helps you understand several tools and
techniques that are useful in debugging, verifying, and bring up the embedded
system.

6.1. Debugging Nios V/c Processor

Nios V/c processor implements the compact architecture to achieve a smaller logic
size by applying the following trait:

• Non-pipelined datapath

• No debug module

• No processor CSR

• No interrupts and exceptions

• No internal timer module

The Nios V/c processor core is limited to hardware debugging without the debug
module. Software debugging is not applicable for the Nios V/c processor core.

6.1.1. Pilot System with Non-pipelined Nios V/m Processor

Altera recommends to use the non-pipelined Nios V/m processor to allow full
debugging capabilities. The architecture performance of a non-pipelined Nios V/m
processor is similar to the Nios V/c processor, at the expense of bigger logic size.

Table 52. Nios V/c and Nios V/m Processor Core

Feature Nios V/c Processor Non-pipelined Nios V/m Processor

Debug Module — Supported

Processor CSR — Supported

Interrupt and Exceptions — Supported

Logic Size (ALM)(11) x1 x1.5

DMIPS/Mhz Performance(11) x1 x1

CoreMark/MHz Performance(11) x1 x1

Internal Timer — Supported

You can utilize Nios V/m processor as a pilot system to debug Nios V/c processor:

(11) Relative to the Nios V/c processor.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

1. Start the processor system using non-pipelined Nios V/m processor.

a. Turn on Enable Debug

b. Turn off Enable Pipelining in CPU

2. Develop the Nios V processor software application in baremetal (Altera HAL).

3. Ensure there is no interrupt or exception in the Nios V/m processor system. Do
not connect to the Interrupt Receiver on the processor.

Note: To implement a JTAG UART Altera FPGA IP without interrupt, you can enable
the small JTAG UART driver in the BSP Editor to apply polled operation.
Ensure that the compile definition (ALTERA_AVALON_JTAG_UART_SMALL)
is found in the toolchain.cmake.

Figure 187. Nios V/m Processor System with No Interrupt

Figure 188. Enable Small JTAG UART Driver in BSP Editor

4. Develop the Nios V processor software application in baremetal (Altera HAL).

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

184

5. Program the design SOF file onto the Altera FPGA device.

6. Download the application ELF file into the Nios V processor system.

7. Perform design verification and debugging with the Nios V/m processor core.

8. Verify that the Nios V/m processor is working successfully, then replace the Nios
V/m processor with Nios V/c processor.

a. Right-click the Nios V/m processor, click Replace ➤ Nios V/c Processor
Intel FPGA IP.

b. Reconfigure the same assignment in the IP Parameter Editor.

c. Address any possible errors.

d. Click Sync System Infos.

Figure 189. Nios V/c Processor Replacement

9. Implement booting Nios V/c processor from On-Chip Memory.

10. Recreate the application BSP, APP, and ELF.

11. Program the memory-initialized design SOF file onto the Altera FPGA device.

12. Power cycle the Altera FPGA device.

Related Information

Nios® V Processor Software Developer Handbook: Use Small Variant Device Drivers

6.1.2. printf() Debugging

An alternative to the debug module is debugging using a printf() statement. You
can augment the targeted application with extra debug log messages printed through
printf().

You can develop the debug log messages up to your preference. The key objective is
to print as much information as possible.

Examples of the debug log message:

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

185

• What is the running process, its inputs, and outputs?

• When was the exact time the process ran?

• Where is the information stored and acquired?

• How is the software progressing?

You can instantiate a JTAG UART or regular UART in a Nios V/c processor system to
output character streams and read in character streams.

6.2. Debugging Nios V Processor Hardware Designs

6.2.1. JTAG Server

A JTAG Server communicates with the hardware and allows multiple programs to use
JTAG resources concurrently. You can display the connected devices' JTAG scan chain
to validate the Nios V processor's presence in the Altera FPGA.

From the Nios V Command Shell, the jtagconfig -d command identifies available
JTAG devices and the number of CPUs in the subsystem connected to each JTAG
device. The example below shows the system response to a jtagconfig -d
command.

Example 7. System Response to JTAG Server

$ jtagconfig -d
1) AGF FPGA Development Kit on Intel® FPGA Download Cable [USB-0]
 (JTAG Server Version 22.1.0 Build 174 03/30/2022 SC Pro Edition)
 C341A0DD AGFB014R24A(.|R1|R2)/.. (IR=10)
 Design hash 74DFB795DF11A555CEDF
 + Node 00486E00 Source/Probe #0
 + Node 08986E00 Nios V #0
 + Node 0C006E00 JTAG UART #0
 031830DD 10M16S(A|C|L) (IR=10)

 Captured DR after reset = (30D068376063061BB020D10DD) [98]
 Captured IR after reset = (006AAD55) [32]
 Captured Bypass after reset = (0A) [5]
 Captured Bypass chain = (00) [5]
 JTAG clock speed auto-adjustment is enabled. To disable, set
JtagClockAutoAdjust parameter to 0
 JTAG clock speed 24 MHz

The response in the example lists one FPGA connected to the running JTAG server
through Altera FPGA Download Cable. The cable attached to the USB-0 port is
connected to a JTAG node in a Platform Designer subsystem with a single Nios V
processor core.

The node numbers represent JTAG nodes inside the FPGA.

• The appearance of node number 0x08986Exx confirms that the FPGA
implementation has a Nios V processor with a JTAG debug module. The CPU
instances are identified by the least significant byte of the nodes after 0x08986E.

• The appearance of node number 0x0C006Exx confirms that the FPGA
implementation has a JTAG UART component. The JTAG UART instances are
identified by the least significant byte of the nodes after 0x0C006E.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

186

All instance IDs begin with 0. Only the CPUs that have debug enabled appear in the
listing. Use this listing to confirm that you have debug enabled for the Nios V
processors you intended.

6.2.2. System Console

You can use the System Console to perform low–level debugging of a Platform
Designer system. Use the command line mode to access the System Console
functionality. You can either work interactively or run a Tcl script. The System Console
prints responses to your commands in the terminal window.

You can include the JTAG to Avalon Host Bridge Core to debug with the System
Console. It allows the System Console to send and receive data from the running
Platform Designer system through the System Level Debug (SLD) hub. Refer to Debug
Tools - Analyzing and Debugging Designs with System Console for more information

Figure 190. Connections to System Console

Embedded

Peripheral IP #1

JTAG to
Avalon®

Host

SLD
Hub

Intel® FPGA

PC Running
System Console

JTAG
UART

Nios® V
Processor

Custom Logic
Component

On-Chip
Memory

Embedded

Peripheral IP #2

Related Information

Quartus® Prime Pro Edition User Guide: Debug Tools
Refer to the topic Analyzing and Debugging Designs with System Console for more
information.

6.2.2.1. JTAG to Avalon Host Bridge Core

The JTAG to Avalon Host Bridge cores provide a connection between System Console
and Platform Designer systems via the JTAG interfaces. System Console can initiate
Avalon Memory-Mapped (Avalon-MM) transactions by sending encoded streams of
bytes via the core. The core support reads and writes, but not burst transactions.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

187

The debugging process is as follows:

1. Starting System Console

2. Locating available services

3. Opening a service

4. Applying Tcl commands

5. Closing a service

The example below demonstrates a Tcl script to access the device registers of Generic
Serial Flash Interface Altera FPGA IP using System Console.

Example 8. Sample .tcl script

#set GSFI IP CSR base address according to Platform Designer system
set base 0x8000000

#set GSFI IP register map
set control_register [expr {$base + 0x0}]
set spi_clock_baud_rate_register [expr {$base + 0x4}]
set cs_delay_setting_register [expr {$base + 0x8}]
set read_capturing_register [expr {$base + 0xc}]
set operating_protocols_setting [expr {$base + 0x10}]
set read_instr [expr {$base + 0x14}]
set write_instr [expr {$base + 0x18}]
set flash_cmd_setting [expr {$base + 0x1c}]
set flash_cmd_ctrl [expr {$base + 0x20}]
set flash_cmd_addr_register [expr {$base + 0x24}]
set flash_cmd_write_data_0 [expr {$base + 0x28}]
set flash_cmd_write_data_1 [expr {$base + 0x2c}]
set flash_cmd_read_data_0 [expr {$base + 0x30}]
set flash_cmd_read_data_1 [expr {$base + 0x34}]

#locate and open JTAG to Avalon Master Bridge service
set mp [claim_service master [lindex [get_service_paths master] 0] top]

#print the value of Control Register
set reg [master_read_32 $mp $control_register 0x1]
puts "Control Register : $reg"

#modify the value of Control Register’s Enable bit field
#to disable the GSFI IP
set reg2 [expr {$reg & 0xfffffffe}]
master_write_32 $mp $control_register $reg2

#close JTAG to Avalon Master Bridge service
close_service master $mp

Related Information

• Debug Tools - Analyzing and Debugging Designs with System Console: Starting
System Console

• Debug Tools - Analyzing and Debugging Designs with System Console: Locating
Available Services

• Debug Tools - Analyzing and Debugging Designs with System Console: Opening
and Closing Services

• System Console and Toolkit Tcl Command Reference Manual

• Generic Serial Flash Interface Altera FPGA IP User Guide

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

188

6.2.3. Signal Tap Logic Analyzer

The Signal Tap logic analyzer, available in the Quartus Prime software, captures and
displays the real-time signal behaviour in an Altera FPGA design. Use the Signal Tap
logic analyzer to probe and debug the behaviour of internal signals during normal
device operation, without requiring extra I/O pins or external lab equipment.

The Signal Tap logic analyzer can aid the Nios V processor debugging by catching
software-related problems, such as an interrupt service routine that does not clear the
interrupt signal properly.

The Signal Tap logic analyzer enables user to trigger on and capture instruction trace
data that the Nios V processor core executes. You can specify an instruction-trace
trigger, which triggers the Signal Tap logic analyzer when the processor reaches a
specific address, specific instruction word, or specify your own Signal Tap trigger
conditions.

Related Information

• Design Debugging with the Signal Tap Logic Analyzer
For more information about the Signal Tap logic analyzer.

• Design Debugging with the Signal Tap Logic Analyzer

6.2.3.1. Hardware and Software Requirements

Use the following hardware and software to begin debugging the Nios V processor
system with Signal Tap logic analyzer:

• Hardware requirements:

— Any Altera FPGA development kit

— Power Adaptor

— Altera FPGA Download Cable II

• Software requirements:

— Quartus Prime Pro Edition software version 21.3 or later

— Quartus Prime Standard Edition software version 22.1 or later

— Ashling RiscFree IDE for Altera FPGAs

You must be familiar with the basic use of Signal Tap logic analyzer, Quartus Prime
software, Platform Designer development, and Ashling RiscFree IDE for Altera FPGAs.
You can implement this debugging approach on your existing design or acquire an
example design from the FPGA Design Store.

Related Information

• Altera FPGA Design Store

• AN 985: Nios® V Processor Tutorial
For more information about acquiring a working example design.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

189

6.2.3.2. Setting Up Signal Tap Logic Analyzer

6.2.3.2.1. Enabling Signal Tap Logic Analyzer

You must create and configure a Signal Tap File (.stp) in your Nios V processor
system.

Follow these steps to add the .stp file to the system:

1. In the Quartus Prime File menu, click New.

2. In the New dialog box, select Signal Tap Logic Analyzer File.

3. Click OK.

4. Proceed with the Default template.

5. Click Create.

Figure 191. New Dialog Box

Related Information

Add the Signal Tap Logic Analyzer to the Project

6.2.3.2.2. Adding Signals for Monitoring and Debugging

You can add any signals or interfaces within the processor system for monitoring and
debugging. The Nios V processor's interested signals are the nodes within it, allowing
the Signal Tap Logic analyzer to capture the opcodes executed by the processor.

Follow these steps to add the signals to the Signal Tap Node list for monitoring:

1. Compile the design by clicking Processing ➤ Start Compilation.

2. In the Signal Tap logic analyzer, perform Double-click to add nodes.

3. The Node Finder appears, allowing you to find and add the signals in your
design.

4. Select Post-Compilation to find signal names present after design compilation.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

190

Figure 192. Node Finder

5. Search for the Nios V processor nodes in the following table. Then click the >
button.

Table 53. Nios V Processor Nodes

Nodes Pipeline Stage Description Representation

*D_instr_pc[31..0] Instruction Decode (D) Program Counter Memory address of the instruction being fetched.

*D_instr_word[31..0] Instruction Word Fetched 32-bits instruction word.

*D_instr_valid Instruction Valid Valid instruction to continue E stage.

*E_instr_pc[31..0] Instruction Execute (E) Program Counter Memory address of the instruction being
decoded.

*E_instr_word[6..0] Instruction Word 7-bits opcode from 32-bits instruction word.

*E_instr_valid Instruction Valid Valid instruction to continue M stage.

*M0_instr_pc[31..0] Memory (M) Program Counter Memory address of the instruction being
executed.

*M0_instr_valid Instruction Valid Valid instruction to continue Write Back stage.

6. Click Insert. The nodes are added to the Setup tab signal list in the Signal Tap
logic analyzer GUI.

7. Specify how the logic analyzer uses the signal by enabling or disabling the Data
Enable and Trigger Enable option for the signal:

• Data Enable—disabling this option stops the capture of data.

• Trigger Enable—disabling this option exclude the signal from the triggering
conditions.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

191

Figure 193. Signal Tap Setup tab

6.2.3.2.3. Specifying Trigger Conditions

Standard Signal Tap logic analyzer trigger conditions are described as hardware or
logic events while the Nios V processor system’s trigger conditions are described as
instruction addresses (Program Counter). The Signal Tap logic analyzer triggers when
the Nios V processor reaches the specified instruction address during program
execution.

Basic Trigger Conditions
In basic triggering mode, the Signal Tap logic analyzer uses a processor-visible system
address as the trigger to begin trace capture. To set the trigger, navigate to the
Trigger Conditions column and select any added signal as the trigger.

You can specify the trigger pattern for a single wire as Don’t Care, Low, High, Falling
Edge, Rising Edge, or Either Edge.

Examples of single wires are:

• D_instr_valid

• E_instr_valid

• M0_instr_valid

For buses, you can select Insert Value to enter the pattern in any preferred number
formats. Example of buses are:

• D_instr_pc[31..0]

• D_instr_word[31..0]

• E_instr_pc[6..0]

• E_instr_word[31..0]

• M0_instr_pc[31..0]

1. Pick any pipeline stage as the trigger stage and leave other stages with disabled
Trigger Enable.

2. Specify the trigger pattern of its Instruction Valid as High.

3. Specify a trigger value on the Program Counter by referring to the application
objdump file. Refer to Correlating Trace Data to Software ELF on instruction trace
and objdump file.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

192

The following example selects the M-stage as the triggering stage.

Note: Instructions during the D and E-stages are subject to pipeline flush if a software
exception or branching occurs during the M-stage. Altera recommends that the M-
stage be applied as the triggering stage.

Figure 194. M-Stage as Triggering Stage

Example 9. Setting Up Triggering Stage based on objdump File

<Address>: <Opcode> <Assembly Mnemonic>
 314 : ff010113 addi sp,sp,-16

• *_instr_pc[31..0] to 0x314

• *_instr_word[31..0] to 0xff010113

Power-Up Trigger Conditions
The Signal Tap logic analyzer supports a power-up trigger feature. You can use it for
monitoring systems in which the Nios V processor operates in self-booting mode,
immediately after configuring the FPGA.

In self-booting mode, the Nios V processor begins software execution immediately
from system memory without a debugger to start, stop, and load the processor's run-
time memory. Manually starting the Signal Tap logic analyzer can result in a slower
reaction speed and potentially miss the specified triggering Program Counter. The
Signal Tap logic analyzer can begin data acquisition with the power-up trigger before
the processor is out of reset.

Follow these steps to begin capturing processor execution starting from the reset
vector:

1. Select the processor system reset as the power-up trigger.

2. The power-up trigger appears as a child instance under the parent Signal Tap
instances, and all trigger patterns are repopulated with Don’t Care.

3. Specify the same trigger patterns again.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

193

Figure 195. Power-Up Triggers

Related Information

• Nios V Processor Configuration and Booting Solutions on page 47

• Power-Up Triggers
For more information about power-up triggers.

Other Trigger Conditions

The Signal Tap logic analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions.

Besides Basic and Power-Up trigger conditions, the Signal Tap logic analyzer also
support the following trigger conditions:

• Nested Trigger Conditions

• Comparison Trigger Conditions

• Advanced Trigger Conditions

• Custom Trigger HDL Object

• External Triggers

• Sequential Triggering

• State-based Triggering

Related Information

Defining Trigger Conditions

No Trigger Conditions

When disabling Trigger Enable for all signals, the Signal Tap logic analyzer does not
configure any trigger conditions. It is synonymous with specifying all trigger conditions
as Don’t Care.

Upon starting the Signal Tap logic analyzer, data acquisition runs indefinitely until data
acquisition is stopped or the buffer is full. This approach is applied to determine the
current Program Counter of the processor, such as in the event of a processor hang.
While there are multiple causes for processor hang, having the Program Counter value
at the event of processor hang is crucial in debugging the issue.

Subsequently, you can apply the same Program Counter value as a basic triggering
condition for precise capturing.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

194

6.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer
Acquisition Mode

You must specify a clock signal to control the acquisition of samples. Specify the clock
signal in the Signal Configuration pane of the Signal Tap window. Altera
recommends that you select the clock signal that the Nios V processor uses as the
Signal Tap acquisition clock. Using the Nios V processor clock ensures that the
captured instruction trace data accurately corresponds to the instruction execution of
the Nios V processor.

You must configure the capture session's sample depth, memory type, and buffer
acquisition mode. These configuration options are accessible through the Signal
Configuration pane. Exercise care when selecting the Sample Depth size. Capturing
many signals for every sample taken can quickly deplete available memory resources.
Use the Signal Tap built-in resource estimator to understand better how adjusting the
sample depth parameter impacts your design.

Related Information

• Specifying the Clock, Sample Depth, and RAM Type

• Specifying the Buffer Acquisition Mode
For more information on acquisition clock, sample depth, memory type and
buffer acquisition mode.

6.2.3.2.5. Compiling the Design and Programming the Target Device

You must perform a full compilation of the Quartus Prime project after enabling the
Signal Tap logic analyzer. After compilation, you can program the FPGA target device
with the SRAM Object File (.sof) from the Signal Tap window

Related Information

Compile the Design and Signal Tap Instances

6.2.3.3. Running the Capture Session

You can begin data acquisition with the Signal Tap logic analyzer.

First, program the FPGA with the .sof that the Quartus Prime software generates.
Next, run Signal Tap analysis, either manually through the Signal Tap Instance
Manager or automatically when the FPGA is programmed and power-up triggering is
selected. If the system meets the trigger conditions, the Signal Tap logic analyzer
displays the acquired data in the Signal Tap results window.

You can use the Signal Tap logic analyzer in two different types of data capture
sessions, one with the Ashling RiscFree IDE for Altera FPGAs and the other in stand-
alone mode.

6.2.3.3.1. Performing Data Capture with Ashling RiscFree IDE for Altera FPGAs

To use the Signal Tap logic analyzer with the Ashling RiscFree IDE for Altera FPGAs,
you must manually download a Nios V processor software image and control the
operation of the processor through the debugger. You can perform this type of capture
session when you are developing and debugging a Nios V processor software
application.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

195

Follow these steps to run a Signal Tap capture session with the Nios V processor
controlled by theAshling RiscFree IDE for Altera FPGAs:

1. In the Signal Tap window, program the FPGA target device with the .sof
generated:

• On the Hardware menu, select the programming cable that is connected to
the FPGA development board.

• In the SOF Manager field, click browse.

• In the Select Programming File dialog box, select the .sof generated.

• Click Open. The Program Device button is now available.

• Click the Program Device button to download the .sof to the FPGA.

2. In the Signal Tap window, in the Instance Manager pane, click the Run Analysis
button to start the logic analyzer capture session.

3. In the Ashling RiscFree IDE for Altera FPGAs, right-click the name of the software
project you want to run on the Nios V processor and click Debug As ➤ Debug
Configuration ➤ Ashling RISC-V Hardware Debugging.

4. Set the necessary debug configuration. This action starts the debugger, downloads
the .elf into system memory, and halts the processor on the entry point to
main().

5. On the Debug tab, click the Resume button to start the Nios V processor
execution

The Signal Tap logic analyzer continues running until the trigger condition specified is
reached. While the Signal Tap logic analyzer is running, you can use the Ashling
RiscFree IDE for Altera FPGAs debugger at the same time safely (for example, you can
set breakpoints and stop the processor).

To change the startup breakpoint, follow these steps in the Ashling RiscFree IDE for
Altera FPGAs:

1. On the Run menu, click Debug Configurations.

2. The Debug Configurations window appears.

3. In the Debug Configurations window, click the Startup tab.

4. Specify a new startup breakpoint at Set breakpoint at.

5. Click Apply.

Alternatively, instead of using the Debug As option, you can use the Run As option.
Using the Run As option causes the Ashling RiscFree IDE for Altera FPGAs to
download and run the software image from system memory without starting the
debugger feature.

6.2.3.3.2. Performing Data Capture Without Software Download

The Signal Tap logic analyzer begins running automatically when the FPGA is
programmed. In this case, the Signal Tap logic analyzer already have captured data
available. To retrieve the captured data, click Run Analysis in the Signal Tap instance
manager.

The Nios V processor system is:

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

196

• Configured to be self-booting

• Without the need for an external software download

• Selected the Signal Tap power-up trigger feature

Related Information

Nios V Processor Configuration and Booting Solutions on page 47

6.2.3.4. Analyzing Results

The Signal Tap logic analyzer allows you to view the captured Nios V processor trace
data. This section describes several of the post-capture features. The following figure
shows an example of data acquisition of Signal Tap logic analyser with M-stage as the
triggering stage.

Figure 196. Data Acquisition

The example shows the pipeline behavior of the processor with M-stage Program
Counter and M-stage Instruction Valid as trigger conditions. With every passing clock
cycle, the instruction from address 314h enters the D-stage, E-stage, and M-stage.

6.2.3.4.1. Viewing Data

Captured Signal Tap data appears in the Data tab of the Signal Tap window. Every
sample captured displays the following information:

Table 54. Samples Captured Based on Nodes

Nodes Pipeline Stage Description Representation

*D_instr_pc[31..0] Instruction Decode (D) Program Counter Memory address of the instruction being fetched.

*D_instr_word[31..0] Instruction Word Fetched 32-bits instruction word.

*D_instr_valid Instruction Valid Valid instruction to continue E stage.

*E_instr_pc[31..0] Instruction Execute (E) Program Counter Memory address of the instruction being
decoded.

*E_instr_word[6..0] Instruction Word 7-bits opcode from 32-bits instruction word.

*E_instr_valid Instruction Valid Valid instruction to continue M stage.

*M0_instr_pc[31..0] Memory (M) Program Counter Memory address of the instruction being
executed.

*M0_instr_valid Instruction Valid Valid instruction to continue Write Back stage.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

197

Using the Signal Tap tab controls, you can scroll through the program execution of the
Nios V processor. If the specified acquisition clock corresponds to the Nios V processor
clock, every rising clock edge corresponds to a new instruction cycle.

You may notice one or more empty instruction entries in the trace data gathered by
the Signal Tap logic analyzer. These entries indicate that no instruction was executed
by the Nios V processor during that clock cycle. This behavior is typical, and can occur
for the following reasons:

• Cache Miss — The requested instruction address location generates a miss in the
instruction cache, and additional clock cycles are required to fill the cache line and
return the instruction.

• Memory Contention or Speed — The instruction address location is in memory that
requires multiple clock cycles to access, or in memory that is currently controlled
by another peripheral or processor.

You can also view the trace data in the Signal Tap list file format. In this tabular
format, the trace samples are displayed chronologically in rows. The list file format is
useful because it is like the objdump file, simplifying the analysis process. Click File ➤
Create/Update ➤ Create Signal Tap List File to create the Signal Tap list file.

6.2.3.4.2. Correlating Trace Data to Software ELF

By examining the contents of the objdump file, you can compare the captured
instruction trace to the software image executed by the Nios V processor. The
objdump file is a copy of the processor's .elf file in a human-readable format that
contains C/C++ code fragments, symbolic function names, assembly instructions, and
address locations. It is generated automatically after a successful software
compilation.

Although the objdump file contains vast amounts of information decoded from
the.elf, the Nios V processor's instructions appear one per line in this file, in the
following format:

<Address>: <Opcode> <Assembly Mnemonic>

For example, the instructions from Figure Analyzing results are:

314: ff010113 addi sp,sp,-16
318: 00112623 sw ra,12(sp)
31c: 00812423 sw s0,8(sp)
320: 01010413 addi s0,sp,16

6.2.3.4.3. Saving and Converting Captured Data

You can save any data captured using Signal Tap data log feature. To enable data
logging, turn on the Data Log option in the Signal Tap window. To export captured
data, on the File menu, click Export and specify the File Name, the Export Format,
and the Clock Period.

6.2.4. In-System Sources and Probes

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run time.
The Signal Tap Logic Analyzer and In-System Sources and Probes allow you to read or
tap internal logic signals during run time to debug your logic design.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

198

You can make the debugging cycle more efficient when you can drive any internal
signal manually within your design, which allows you to perform the following actions:

• Force the occurrence of trigger conditions set up in the Signal Tap Logic Analyzer.

• Create simple test vectors to exercise your design without using external test
equipment.

• Dynamically control run time control signals(e.g. system reset) with the JTAG
chain.

Related Information

Quartus Prime Pro Edition User Guide: Debug Tools
Refer to the topic Design Debugging Using In-System Sources and Probes for more
information.

6.3. Debugging Nios V Processor Software Designs

6.3.1. Ashling RiscFree IDE for Altera FPGAs

The Ashling RiscFree IDE for Altera FPGAs is Ashling’s Eclipse* C/C++ Development
Toolkit (CDT) based integrated development environment (IDE) for Altera FPGAs
Arm*-based HPS and RISC-V based Nios V processors. The Ashling RiscFree IDE for
Altera FPGAs is free of charge, and it provides a complete, seamless environment for C
and C++ software development and has the following features:

• Eclipse* CDT-based IDE with full source and project creation, editing, build, and
debug support using the RISC-V GNU compiler collection (GCC) toolchain.

• Project Manager and Build Manager, including Make and CMake support with rapid
import, build, and debug of application frameworks created using the Quartus
Prime software.

• RISC-V GNU GCC toolchain with support for newlib or picolibc run-time libraries
using the Nios V Hardware Abstraction Layer (HAL) API for hardware access.

• Integrated support for Altera FPGA Download Cable II JTAG debug probe.

• ROM or RAM based debugging support, for example, hardware breakpoints for
flash-based support.

• High-level Register Viewer based on industry-standard System View Description
(SVD) files.

• Integrated serial terminal

Related Information

Ashling RiscFree Integrated Development Environment (IDE) for Altera FPGAs User
Guide

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

199

6.3.2. Ashling Visual Studio Code Extension for Altera FPGAs

Ashling Visual Studio Code Extension is a set of code that runs in Visual Studio Code
and provides new or improved features for Altera FPGAs Arm*-based HPS and RISC-V
based Nios V processors. Ashling Visual Studio Code Extension provides a complete,
seamless Visual Studio Code based C and C++ software development and has the
following features:

• GUI-based debug configurations for Altera FPGA Arm HPS and Nios V soft cores
such as probe selection, device selection, core selection etc.

• Auto-detect feature displaying all the devices and cores in the FPGA, allowing user
to select the required core for the debug session.

• CMake based project management support, allowing for the direct import and
build of Nios V HAL and BSP projects.

• FreeRTOS and Zephyr RTOS aware debug support including tasks and event views.

• Nios V GCC compiler toolchain fully integrated with support for newlib or picolibc
run-time libraries using the Nios V Hardware Abstraction Layer (HAL) API for
hardware access.

• Integrated support for Intel USB Blaster II JTAG debug probe.

• Custom instruction support and extensions for the Nios V processor.

• Assembly level instruction stepping support.

• ROM or RAM based debugging support (e.g., hardware breakpoints for flash-based
support).

6.3.3. OpenOCD

The Open On-Chip Debugger (OpenOCD) is an open-source gdb server that provides
debugging, in-system programming, and boundary-scan testing for embedded target
devices accessible via a hardware debugger's JTAG connection.

Related Information

Open On-Chip Debugger
For more information about how to use OpenOCD to debug Nios V processor
application.

6.3.4. Objdump File

The Nios V processor build process always generate an object dump text file
(.objdump) from your application .elf file. The .objdump file contains information
about the memory sections and their layout, the addresses of functions, and the
original C source code interleaved with the assembly code. The .objdump file
generates in the <project_directory>/software/app/build folder .

6.3.5. Show Make Commands

The individual Makefile commands appear in the display as they run. To enable a
verbose mode for the make command, execute the following build command in the
Nios V Command Shell when building the application:

make VERBOSE=1

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

200

6.4. Debugging Tools

The Quartus Prime software allows you to use the debugging tools to exercise and
analyze the logic under test and maximize closure. Below are the list of debugging
tools in the Quartus Prime software:

• Signal Tap Logic Analyzer

• Logic Analyzer Interface

• Signal Probe

• In-system Sources and Probes

• Virtual JTAG Interface

• System Console

• In-System Memory Content Editor

Related Information

Quartus Prime Pro Edition User Guide: Debug Tools

6.5. Additional Embedded Design Considerations

Consider the following topics as you design your system:

• JTAG signal integrity

• Additional memory space for prototyping

6.5.1. JTAG Signal Integrity

The JTAG signal integrity on your system is very important. Poor signal integrity on
the JTAG interface can prevent you from debugging over the JTAG connection or cause
inconsistent debugger behavior.

Related Information

Quartus Prime Timing Analyzer Cookbook
For more information about JTAG Signals.

6.5.2. Additional Memory Space for System Prototyping

Even if your final product includes no off-chip memory, Altera recommends that your
prototype board include a connection to some region of off-chip memory. This
component in your system provides additional memory capacity that enables you to
focus on refining code functionality without worrying about code size. Later in the
design process, you can substitute a smaller memory device to store your software.

6.6. Simulating Nios V Processor Designs

This section describes the following tasks:

• Generating an RTL simulation environment with Nios V processor example designs
and Platform Designer.

• Running the RTL simulation in the Questa* Intel® FPGA Edition simulator.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

201

The increasing pressure to deliver robust products to market timely has amplified the
importance of comprehensively verifying embedded processor designs. Therefore,
consider the verification solution supplied with the processor when choosing an
embedded processor. Nios V embedded processor designs support a broad range of
verification solutions, including the following:

• Board Level Verification—Intel offers several development boards that provide a
versatile platform for verifying both the hardware and software of a Nios V
embedded processor system. You can further debug the hardware components
that interact with the processor with the Signal Tap embedded logic analyzer.

• Register Transfer Level (RTL) Simulation—RTL simulation is a powerful means of
debugging the interaction between a processor and its peripheral set. When
debugging a target board, it is often difficult to view signals buried deep in the
system. RTL simulation alleviates this problem by enabling you to probe every
register and signal in the design. You can easily simulate Nios V based systems in
the Questa Intel FPGA Edition simulator with an automatically generated
simulation environment, that is Platform Designer.

Note: Due to a limitation with embedded memory blocks, the simulation model of Nios V
processor does not support ECC on Arria 10 devices.

Related Information

Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-PORT)
User Guide

6.6.1. Prerequisites

You must have experience using Platform Designer and are familiar with the
QuestaSim simulator. To simulate the Nios V processor design using the instructions in
this handbook, you must install the following softwares:

• Quartus Prime

• QuestaSim Simulator

6.6.2. Setting Up and Generating Your Simulation Environment in
Platform Designer

To generate simulation files, perform the following steps:

1. Start the Intel Quartus Prime software and open the Platform Designer from
the Tools menu.

2. Open the <your project design>.qsys file.

Note: Ensure that you have completed building your Platform Designer system
before generating the simulation models

3. In Platform Designer, navigate to Generate ➤ Generate Testbench System.

4. On the Generation window, set the following parameters to these values:

a. Create testbench Platform Designer system— Standard, BFMs for standard
Platform Designer interfaces.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

202

Note: If your system has exported ports other than the clock and reset,
choose Standard, BFMs for standard Avalon interfaces.

b. Create testbench simulation model—Verilog

c. Select Use multiple processors for faster IP generation (when
available).

5. Click Generate, and Save, if prompted.

Figure 197. Testbench Generation

6.6.2.1. Using IP and Platform Designer Simulation Setup Scripts

Intel IP cores and Platform Designer systems generate simulation setup scripts. Modify
these scripts to set up supported simulators. The script, msim_setup.tcl is located
in the path: <project_directory>/sys_tb/sim/mentor.

6.6.3. Creating Nios V Processor Software

6.6.3.1. Generating the Board Support Package

Generate the BSP file using the following steps:

1. Launch the Nios V Command Shell

2. Based on your Quartus Prime version, execute the following command to generate
the BSP file. Select the type as hal or ucosii.

• The command for Quartus Prime Pro Edition:

niosv-bsp -c --quartus-project=top.qpf --qsys=sys.qsys \
--type=<hal, ucosii, or freertos> software/bsp/settings.bsp

• The command for Quartus Prime Standard Edition:

niosv-bsp -c --quartus-project=hw/top.qpf --sopcinfo=hw/sys.sopcinfo \
--type=<hal, ucosii, or freertos> software/bsp/settings.bsp

6.6.3.2. Generating the Application Project File

Generate the application file using the following steps:

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

203

1. Launch the Nios V Command Shell.

2. Execute the command below to generate an application CMakeLists.txt.

niosv-app --bsp-dir=software/bsp --app-dir=software/app \
--srcs=software/app/<source code 1> \
--srcs=software/app/<source code 2>

6.6.3.3. Building the Application Project

You can choose to build the application project using the RiscFree IDE for Altera
FPGAs, or through the command line interface (CLI).

If you prefer using CLI, you can build the application using the following command:

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -B \
software/app/build -S software/app

make -C software/app/build

The application (.elf) file is created in software/app/build folder.

6.6.4. Generating Memory Initialization File

To generate application image .hex file using the elf2hex command:

elf2hex <elf input file> -b <On-chip memory start address> -w <On-chip memory
data width in bits> -e < On-chip memory end address> -r 4 <hex output file>

e.g. elf2hex software/app/build/hello.elf -b 0x0 -w 32 -e 0x4FFFF -r 4 -o
ram.hex

6.6.5. Generating System Simulation Files

At this point in the design flow, you have generated your system and created all the
files necessary for simulation listed in the table below. These are the necessary files
required to run the simulation.

Table 55. Files Generated for Nios V Processor Simulation

File Description

<Project directory>/sys_tb/ Platform Designer generates a testbench system when you
enable the Create testbench Platform Designer system
option. Platform Designer connects the corresponding
Avalon Bus Functional Models to all exported interfaces of
your system. For more information about Platform Designer,
refer to the Intel Quartus Prime Pro Edition User Guide:
Platform Designer.

<Project directory>/sys_tb/sys_tb/sim/mentor/
msim_setup.tcl

Sets up a QuestaSim simulation environment and creates
alias commands to compile the required device libraries and
system design files in the correct order and loads the
toplevel design for simulation.

<Project directory>/<Memory Initialization
Files>.hex

Memory Initialization Files (.hex) is required to initialize
memory components in your system. Use elf2hex utility to
create Nios V processor program to populate the .hex file.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

204

Related Information

Quartus Prime Pro Edition User Guide: Platform Designer

6.6.6. Running Simulation in the QuestaSim Simulator Using Command
Line

You can launch the QuestaSim simulator using command vsim, in the Nios V
Command Shell. The msim_setup.tcl script in the package generated creates alias
commands for each step. For the list of commands, refer to the following table:

Macros Description

dev_com Compile device library files.

com Compiles the design files in correct order.

elab Elaborates the top-level design.

elab_debug Elaborates the top-level design with the novopt option.

ld Compiles all the design files and elaborates the top-level design.

ld_debug Compiles all the design files and elaborates the top-level design with the vopt option.

Note: The vopt option is to run optimization before elaborating the top-level design in the
simulator.

You can run the simulation in the QuestaSim simulator by performing the following
steps.

1. In the transcript window, change your working directory to mentor by using the
following command.

cd <Project directory>/sys_tb/sys_tb/sim/mentor

2. Copy the memory initialization file generated into the current path (Mentor folder)

file copy -force <Project directory>/ram.hex ./

3. Run the msim_setup.tcl by using the following command.

do msim_setup.tcl

4. Compiles all the design files and elaborates the top-level design with vopt option
by using the following command

ld_debug

5. Type run 2ms to start the simulation for 2 milliseconds.

At the end of the simulation, “Hello world, this is the Nios V/m cpu checking in …”
message prints in the Transcript window. You can observe the simulation results from
the waveform viewer as well. The following figure shows the simulation result.

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

205

Figure 198. Simulation Result

6. Nios V Processor Debugging, Verifying, and Simulating

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

206

7. Nios V Processor — Remote System Update

7.1. Overview

Altera FPGA devices support Remote System Update (RSU) feature to allow you to
update the FPGA image and reconfigure the device remotely. RSU has the following
advantages:

• Provides a mechanism to deliver feature enhancements and bug fixes without
recalling your products

• Reduces time-to-market

• Extends product life

In control block-based devices(12), you need the Remote Update Altera FPGA IP to
implement the RSU. Refer to Remote Update Altera FPGA IP User Guide for more
information.

In SDM-based devices(12), you can write configuration bitstreams to the configuration
flash device using RSU and Mailbox Client Altera FPGA IP. A single configuration device
can store multiple application images and a single factory image. After that, you can
perform FPGA reconfiguration from the RSU image through a host. The RSU can
implement JTAG-to-Avalon Master Bridge IP, Nios V processor, or Hard Processor
System (HPS) as the RSU host.

Figure 199. Typical Remote System Update Process

Development
Location

System

Remote Location

Network

RSU Setup

Active FPGA
Configuration

RSU Setup

Passive FPGA
Configuration

Board

Intel FPGA

Host

Memory

System

Board

Quad
Flash

Data
Remote Connection

Remote Connection

Data

Data

Intel FPGA

(12) Refer to AN 980: Nios V Processor Quartus Prime Software Support for the device list.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

Related Information

• Stratix 10 Configuration User Guide: Remote System Update
Functional description on RSU and implementing RSU feature with JTAG-to-
Avalon Master Bridge IP in Stratix 10 devices

• Agilex 7 Configuration User Guide: Remote System Update
Functional description on RSU and implementing RSU feature with JTAG-to-
Avalon Master Bridge IP in Agilex 7 devices.

• Mailbox Client Altera FPGA IP User Guide
More information about the LibRSU HAL API that performs RSU operations in
SDM-based devices (Stratix 10 and Agilex 7 devices).

• Stratix 10 Hard Processor System Remote System Update User Guide
More information about using the HPS to drive RSU in Stratix 10 SoC devices.

• Agilex 7 Hard Processor System Remote System Update User Guide
More information on using the HPS to drive RSU in Agilex 7 SoC devices.

• Remote Update Altera FPGA IP User Guide
Functional description on implementing Remote Update Altera FPGA IP in
control block-based devices (Cyclone® 10 GX and Arria 10 devices).

• AN 980: Nios V Processor Quartus Prime Software Support

7.2. Quartus Prime Pro Edition Software and Tool Support

7.2.1. Quartus Prime Pro Edition Software

You must use the Quartus Prime Pro Edition software to compile the hardware projects
for remote system update in SDM-based devices.

7.2.1.1. Setting Max Retry Parameter

The max retry parameter specifies how many times the application and factory
images are tried when configuration failures occur.

• The default value is one, which means each image is tried only once.

• The maximum possible value is three, which means each image can be tried up to
three times.

The max retry parameter is stored in the decision firmware data area. The decision
firmware data can also be updated by a decision firmware update image, or by a
combined application image.

The max retry parameter is specified for the hardware project used to create the
factory image, from the Quartus Prime GUI by navigating to Assignments ➤ Device
➤ Device and Pin Options ➤ Configuration and selecting the value for the Remote
System Update MAX_RETRY count field.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

208

Figure 200. Configuration Window

You can also specify the parameter directly by editing the project Quartus Prime
settings file (.qsf) and adding the following line or changing the value if it is already
there:

set_global_assignment -name RSU_MAX_RETRY_COUNT 3

7.2.1.2. Selecting Factory Load Pin

Quartus Prime software offers the option to select the pin to use to force the factory
application to load on a reset.

1. Navigate to Assignments ➤ Device ➤ Device and Pin Options ➤
Configuration ➤ Configuration Pin Options.

2. Check the Direct to Factory Image check box.

3. Select the desired pin from the drop box.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

209

Figure 201. Configuration PIN GUI

7.2.2. Programming File Generator

Quartus Prime Programming File Generator, is part of Quartus Prime Pro Edition
software. The tool creates programming files for all RSU scenarios as follows:

• Initial flash images

• Application images

• Factory update images

• Decision firmware update images

• Combined application images

Related Information

• Quartus Prime Pro Edition User Guide: Programmer

• Quartus Prime Standard Edition User Guide: Platform Designer

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

210

7.2.2.1. Programming File Generator File Types

The following table lists the most important file types created by the Programming File
Generator for RSU:

Table 56. File Extension

File Extension File Type Description

.jic JTAG Indirect
Configuration File

These files are intended to be written to the flash by using the Quartus
Prime Programmer tool. They contain the actual flash data, and also a
flash loader, which is a small FPGA design used by the Quartus Prime
Programmer to write the data.

.rpd Raw Programming Data
File

These files contain actual binary content for the flash and no additional
metadata. They can contain the full content of the flash, similar with
the .jic file—this is typically used in the case where an external tool
is used to program the initial flash image. They can also contain an
application image, or a factory update image.

.map Memory Map File These files contain details about where the input data was placed in the
output file. This file is human readable.

.rbf Raw Binary File These files are binary files which can be used typically to configure the
FPGA fabric for HPS first use cases. They can also be used for passively
configuring the FPGA device through Avalon streaming interface, but
that is not supported with RSU.

7.2.2.2. Bitswap Option

The Quartus Prime Programmer assumes by default that the binary files have the bits
in the reversed order for each byte. Because of this, you need to enable the
bitswap=on option as follows:

• For each input binary file (.bin and .hex files are supported).

• For each output RPD file:

— Full flash images

— Application images

— Factory update images

— Decision firmware update images

— Combined application images

You can use the bitswap option following the examples presented in this document.

7.2.2.3. Quartus Prime Programmer

Use the Quartus Prime Programmer to program the initial flash image.

7.2.2.4. Supported QSPI Flash Devices

For a list of supported QSPI Flash Devices, refer to the Intel® Supported Configuration
Devices.

Related Information

Device Configuration - Support Center

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

211

7.3. Nios V Processor RSU Quick Start Guide in SDM-based Devices

You can perform the remote system update in the SDM-based devices using the Nios V
processor system. The example demonstrates the following operations:

Table 57. Remote System Update Example using Nios V Processor System

Operation Supported Image

Creating the flash images • Initial RSU image (containing bitstreams for factory and
application image)

• Application update image
• Factory update image

Reconfiguring the FPGA device • Factory image
• Application image

Updating the RSU flash image • Factory update image
• Application update image

The block diagram below shows the processor system along with the configuration
QSPI flash layout. Altera builds the system using the Stratix 10 SX SoC L-Tile
development kit. The Nios V processor boots the processor software from the
memory-initialized on-chip memory.

Figure 202. Remote System Update Example Design

.JIC (RSU Image)

.RPD

Factory Image.SOF

Quartus
Programmer Factory

Image

App
Image

Active
Serial

App Update Image.SOF

.RPD

Factory Update Image.SOF

App Image.SOF

SDM-based
FPGA Device

QSPI Flash

System
Console

System
Console

Nios V
Processor

System

App
Update
Image

Factory
Update
Image

In a normal RSU use case, each image can be unique and performs different
functions. The initial RSU JIC image contains the factory image and application image,
while the update images are generated as .rpd file.

The Nios V processor system is incapable of performing the device reconfiguration
directly with both update images because they are not registered within the initial RSU
image. To perform the RSU image update, the processor reads and writes the update
images into the initial RSU image and then initiates the device reconfiguration.

Note: Besides storing the updated images in a non-volatile flash, they can be transferred to
the processor system through a network.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

212

7.3.1. Individual Factory, Application, and Update Images

The example requires four images to demonstrate the RSU feature. You can modify a
Nios V processor project and create four different systems with distinctive functions.
However, you need to perform multiple compilation to achieve that.

To simplify the build flow, this example implements two processor systems (factory
and application system) and makes three copies of the latter .SOF file and named
them respectively as below:

• factory.sof (Factory Image .SOF)

• application-0.sof (App Image .SOF)

• application-1.sof (App Update Image .SOF)

• application-2.sof (Factory Update Image .SOF)

Even if the application images contain the same bitstreams, you can identify the
images using the RSU status log.

Table 58. Nios V Processor System Details

System Factory Application

Platform Designer
System

To create a Platform Designer system, follow
the steps in section Hardware Design Flow
with OCRAM size of 6 Mbytes.

To create a Platform Designer system, follow the
steps in section Hardware Design Flow with OCRAM
size of 1 Mbytes.

Board Support
Package

Apply the BSP settings using the steps in section Software Design Flow.

Nios V Processor
Source Code

Uses factory.c that features basic RSU
operations from Example source code for Nios
V Processor LibRSU application. Refer to the
link in Related Information.

Uses application.c that features a simplified
RSU operations from Example source code for Nios
V Processor LibRSU application. Refer to the link in
Related Information.

Processor Boot
Method

Software boots from OCRAM.

Image • Factory Image .SOF • App Image .SOF
• App Update Image .SOF
• Factory Update Image .SOF

Related Information

• Example source code for Nios V Processor LibRSU application

• Hardware Design Flow on page 213

• Software Design Flow on page 216

7.3.2. Hardware Design Flow

7.3.2.1. Create a Platform Designer System

1. Add the Nios V processor and the following peripherals into the Platform Designer
system:

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

213

• Nios V/m Processor Altera FPGA IP

• On-Chip Memory (RAM) Altera FPGA IP

• JTAG UART Altera FPGA IP

• Mailbox Client Altera FPGA IP

• JTAG to Avalon Master Bridge Altera FPGA IP

Figure 203. Connections in Platform Designer System

2. In the Nios V processor Parameters tab

• Enable the Enable Debug feature.

• Set the Reset Agent to OCRAM.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

214

Figure 204. Nios V Processor Altera FPGA IP Parameter Editor

3. In the On-Chip Memory (RAM or ROM) Intel FPGA Parameters tab Total memory
size box, specify the memory size as below:

• 1 Mbytes for application system

• 6 Mbytes for factory system.

4. Enable Initialize memory content and Enable non-default initialization file
with app.hex in the OCRAM.

Figure 205. On-Chip Memory Intel FPGA IP Parameter Editor

5. Click Generate HDL, the Generation dialog box appears.

6. Specify output file generation options and then click Generate.

7.3.2.2. Quartus Prime Software Settings

1. In the Intel Quartus Prime software, click Assignment ➤ Device ➤ Device and
Pin Options ➤ Configuration.

2. Set Configuration scheme to Active Serial x4 (can use Configuration
Device).

3. Set VID mode of operation according to your board design.

4. Set the Active serial clock source to 100 MHz Internal Oscillator

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

215

Figure 206. Device and Pin Options

5. Click OK to exit the Device and Pin Options window.

6. Click OK to exit the Device window.

7. Click Start Compilation to compile your project.

7.3.3. Software Design Flow

Creating a Nios V processor software image for RSU consists of the following general
steps:

1. Generate the ZLIB libraries.

2. Create a board support package (BSP) project.

3. Creating a Nios V processor application project.

4. Building the application project using the provided source codes.

5. Running and debugging the application project.

To ensure a streamline build flow, Altera encourages you to create a similar directory
tree in your design project. The following software design flow is based on this
directory tree.

To create the software project directory tree, follow these steps:

1. In your design project folder, create a new folder named software.

2. In the software folder, create another two folders named app and bsp.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

216

7.3.3.1. Generating the ZLIB libraries

The LibRSU HAL API requires the ZLIB libraries. Follow these steps to generate the
ZLIB libraries:

1. Acquire the latest version number of ZLIB libraries from the ZLIB home page.

2. Navigate to the design project folder.

3. Copy the following code and replace <version> with the latest version number:

wget http://zlib.net/zlib-<version>.tar.gz
tar xf zlib-<version>.tar.gz
mv zlib-<version> zlib

4. Run the command.

5. The zlib folder is ready with the ZLIB libraries.

Note: One of the LibRSU software component, librsu_ll_qspi.c includes the
ZLIB libraries under a specific path. If the project directory tree is different
than the following figure, modify the ZLIB libraries path in
librsu_ll_qspi.c.

Figure 207. Software Project Directory Tree

app

bsp

software zlib

7.3.3.2. Creating a Board Support Package Project

Follow these steps to create a BSP project:

1. In the Platform Designer window,, go to File ➤ New BSP . The Create New BSP
window appears.

2. For BSP setting file, navigate to the software/bsp folder and create a BSP file
(settings.bsp).

3. For System file (qsys or sopcinfo), select the Nios V processor Platform
Designer system.

4. For Quartus project, select the example design Quartus Project File.

5. For Revision, select the correct revision.

6. For CPU name, select the Nios V processor.

7. Select the Operating system as Altera HAL.

8. Click Create to create the BSP file.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

217

Figure 208. Create New BSP Window

7.3.3.3. Configuring and Generating the BSP Project

1. In the BSP Editor, go to Main ➤ Settings ➤ Advanced ➤ hal.linker.

2. Enable the following settings:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_rwdata

Figure 209. hal.linker Settings

3. Navigate to the BSP Linker Script tab in the BSP Editor.

4. Set all the Linker Section Name list to the OCRAM.

5. In the BSP Drivers, enable the device driver for Mailbox Client Altera FPGA IP.

6. Go to Settings ➤ altera_s10_mailbox_client. You may set rsu_log_level as 0
for minimum logging information.

7. Apply rsu_protected_slot as -1 for no slot protection.

8. Enable the following settings:

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

218

• rsu.enable_spt_checksum

• rsu.enable_rsu

• fpga_device.Stratix10

Note: Select other options for fpga_device when you are not using the
Stratix 10 device.

Figure 210. BSP Drivers Tab

9. Click Generate BSP. Make sure the BSP generation is successful.

10. Close the BSP Editor.

7.3.3.4. Creating Multiple Application Projects

1. Download the example source code using the link below.

2. Navigate to the software/app folder and copy the example source codes.

3. Change the default name of Mailbox Client Intel FPGA IP (MAILBOX_NAME) based
on the system.h file, in the following locations:

a. The example source codes

• Example Source Codes (application.c and factory.c)

int main(void)
{
 …
 fd = mailbox_client_open(MAILBOX_NAME);
 …
}

b. bsp/drivers/src/altera_s10_mailbox_client_flash_rsu.c

• int plat_qspi_init(struct qspi_ll_intf **qspi_intf)
{
…
#ifdef MAILBOX_NAME
 /* retrieve data from flash */
 fd = mailbox_client_open(MAILBOX_NAME);
#endif
…
}

c. bsp/drivers/src/altera_s10_mailbox_client_rsu.c

• int plat_mbox_init(struct mbox_ll_intf **mbox_intf)
{
…

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

219

#ifdef MAILBOX_NAME
 fd = mailbox_client_open(MAILBOX_NAME);
#endif
…
}

4. Launch the Nios V Command Shell.

5. Execute the command below to generate the user application CMakeLists.txt.

//For Application Image
niosv-app --app-dir=software/app --bsp-dir=software/bsp \
--srcs=software/app/application.c,zlib/crc32.c \
--incs=zlib

//For Factory Image
niosv-app --app-dir=software/app --bsp-dir=software/bsp \
--srcs=software/app/factory.c,zlib/crc32.c \
--incs=zlib

Related Information

Example source code for Nios V Processor LibRSU application

7.3.3.5. Building the Application Projects

You can choose to build the application project using Ashling RiscFree IDE for Altera
FPGAs or through the command line interface (CLI).

If you prefer using CLI, you can build the applications using the following command:

cmake -G "Unix Makefiles" -B software/app/build \
-S software/app
make -C software/app/build

The user application .elf files (app.elf) is created in the build folder.

7.3.3.6. Generating HEX Files

You must generate a .hex file from the user application .elf files, to memory-initialize
the OCRAM in the Nios V processor system.

1. Launch the Nios V Command Shell.

2. For Nios V processor application boot from OCRAM, use the following command
line to convert the ELF to HEX for your application.

elf2hex software/app/build/app.elf -o app.hex \
 -b <base address of OCRAM> -w <data width of OCRAM> \
 -e <end address of OCRAM>

3. Recompile the Nios V processor hardware system to memory-initialize the on-chip
memory.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

220

7.3.4. Individual Images Generation

Refer to the following steps to generate the four individual images:

1. Repeat the steps in the topics Hardware Design Flow and Software Design Flow to
generate the factory system.

2. Rename the factory image as factory.sof.

3. Create three copies of application image and renamed them as

• application-0.sof

• application-1.sof

• application-2.sof

Related Information

• Hardware Design Flow on page 213

• Software Design Flow on page 216

7.3.5. Remote System Update Image Files Generation

To generate the RSU image files in SDM-based devices, you need the Quartus Prime
Programming File Generator tool. For generic applications, you can generate the initial
image using the .sof file. For security application, you need to generate the initial
RSU image from the signed or encrypted .rbf file.

The next topic describes an example of applying the initial RSU image generation
using .sof file. For more information on security application, refer to the following
collaterals.

Related Information

• Stratix 10 Configuration User Guide: Generating the Initial RSU Image

• Agilex 7 Configuration User Guide: Generating the Initial RSU Image

7.3.5.1. Generating Initial RSU Image Using SOF file

1. On the File menu, click Programming File Generator.

2. Select Active Serial x4 from the Configuration mode drop-down list. The
current Quartus Prime software only supports remote system update feature in
Active Serial x4.

3. On the Output Files tab, assign the output directory and file name.

4. Select the output file type as JTAG Indirect Configuration File (.jic) with

a. Memory Map File (.map)

b. Raw Programming File (.rpd)

By default, the .rpd file type is little-endian. Set the Bit swap to On to generate
the .rpd file in big endian format.

Note: If you are using a third-party programmer that does not support the little-
endian format, set the Bit swap to On.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

221

Figure 211. Programming File Generator (Output Files)

5. On the Input Files tab, click Add Bitstream, select the factory.sof file and click
Open. Repeat this step for the application-0.sof.

Figure 212. Programming File Generator (Input Files)

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

222

6. On the Configuration Device tab, click Add Device, select your flash memory
and click OK. The Programming File Generator tool automatically populates the
flash partitions.

7. Select the FACTORY_IMAGE partition and click Edit.

8. In the Edit Partition dialog box, select the factory.sof file in the Input Files
drop-down list and click OK.

Note: You must assign Page 0 to Factory Image. Altera recommends that you let
the Quartus Prime software assign the Start address of the
FACTORY_IMAGE automatically by retaining the default value for Address
Mode which is Auto.

Figure 213. Programming File Generator (Edit Partition)

9. Select the flash memory and click Add Partition.

10. In the Add Partition dialog box, perform the following steps:

• Define Name as App-0

• Select the application-0.sof file from the Input file drop-down list

• Assign Page 1

• Assign Address Mode as Start with starting address at 0x01000000.

11. If you are generating .jic files, click Select at the Flash loader, select your
device family and device name, and click OK.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

223

Figure 214. Programming File Generator (Configuration Device)

12. Click Generate to generate the remote system update programming files. After
generating the programming file, proceed to program the flash memory with the
initial RSU image.

7.3.5.2. Generating an Application Update Image

1. On the File menu, click Programming File Generator.

2. Select Active Serial x4 from the Configuration mode drop-down list. The
current Quartus Prime software only supports remote system update feature in
Active Serial x4.

3. On the Output Files tab, assign the output directory and file name.

4. Select the output file type as Raw Programming File (.rpd).

5. By default, the .rpd file type is little-endian. Set the Bit swap to On.

Note: If you are using a third-party programmer that does not support the little-
endian format, set the Bit swap to On to generate the .rpd file in big
endian format.

6. On the Input Files tab, click Add Bitstream. Then, select application update
image .sof file (application-1.sof) file and click Open.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

224

Figure 215. Programming File Generator (Input Files)

7. Click Generate to generate the remote system update programming files. You can
now add or update the application image into the initial RSU image.

Example 10. Command to generate application image

quartus_pfg -c application-1.sof app_image.rpd -o mode=ASX4 -o bitswap=ON

7.3.5.3. Generating a Factory Update Flash Image

1. On the File menu, click Programming File Generator.

2. Select Active Serial x4 from the Configuration mode drop-down list. The
current Quartus Prime software only supports remote system update feature in
Active Serial x4.

3. On the Output Files tab, assign the output directory and file name.

4. Select the output file type as Raw Programming File (.rpd).

5. By default, the .rpd file type is little-endian. Set the Bit swap to On.

Note: If you are using a third-party programmer that does not support the little-
endian format, set the Bit swap to On to generate the .rpd file in big
endian format.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

225

Figure 216. Programming File Generator (Output Files)

6. On the Input Files tab, click Add Bitstream. Change the Files of type to SRAM
Object File (*.sof). Then, select factory update image .sof file
(application-2.sof) and click Open.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

226

Figure 217. Programming File Generator (Input Files)

7. Select the application-2.sof and then click Properties. Turn on Generate
RSU factory update image.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

227

Figure 218. Generate RSU Factory Update Image

8. Click Generate to generate the RSU programming files. You can now update the
decision firmware, decision firmware data, and the factory image into the initial
RSU image.

Example 11. Command to generate factory update image

quartus_pfg -c application-2.sof factory_update.rpd -o mode=ASX4 -o bitswap=ON -
o rsu_upgrade=ON

7.3.6. QSPI Flash Programming

7.3.6.1. Programming the Initial RSU Image

1. Ensure that the Altera FPGA device’s Active Serial (AS) pin is routed to the QSPI
flash. This routing allows the flash loader to load into the QSPI flash and configure
the board correctly.

2. Ensure the MSEL pin setting on the board is configured for AS programming.

3. Open the Intel Quartus Prime Programmer and make sure JTAG is detected
under the Hardware Setup.

4. Select Auto Detect and choose the FPGA device according to your board.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

228

5. Right-click the selected Altera FPGA device and select Edit ➤ Change File. Next,
select the initial RSU image JIC file.

6. Select the Program/ Configure check boxes for FPGA and QSPI devices.

7. Click Start to start programming.

7.3.6.2. Programming the Update Images

1. Ensure that the Altera FPGA device’s Active Serial (AS) pin is routed to the QSPI
flash. This routing allows the flash loader to load into the QSPI flash and configure
the board correctly.

2. Ensure the MSEL pin setting on the board is configured for AS programming.

3. Open the Intel Quartus Prime Configuration Debugger and make sure JTAG is
detected under the Hardware Setup.

4. Click Load Device and select the Altera FPGA device.

5. Navigate to the Flash tab.

6. Click Auto-detect to auto-detect the QSPI Flash that is attached to the device.

7. Navigate to the Program function. Assign Image Start Address and RPD file
path.

• For app_image.rpd, the Image Start Address is 0x3000000.

• For factory_update.rpd, the Image Start Address is 0x3800000.

8. Click Program RPD to begin.

Figure 219. Configuration Debugger - Flash

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

229

Figure 220. Quad SPI Flash Address Map

Factory Update RPD Image

factory_update

application_1

application_0

CPB1

CPB0

SPT1

SPT0

factory_image

boot_info
0x00000000

0x03000000

0x03800000

Initial RSU JIC Image

Application Update RPD Image

Example 12. Memory Map File of Initial RSU JIC Image

BLOCK START ADDRESS END ADDRESS

BOOT_INFO 0x00000000 0x0010FFFF
FACTORY_IMAGE 0x00110000 0x0084FFFF (0x0080CFFF)
SPT0 0x00850000 0x00857FFF
SPT1 0x00858000 0x0085FFFF
CPB0 0x00860000 0x00867FFF
CPB1 0x00868000 0x0086FFFF
App-0 0x01000000 0x01432FFF

Configuration device: 1SX280LU2
Configuration mode: Active Serial x4

Related Information

AN 955: Programmer’s Configuration Debugger Tool

7.3.7. Operating the RSU Client API

The RSU Client API performs the following operations:

• Trigger Intel FPGA device reconfiguration with selected image

• Update the application image

• Update the factory image

To display the Nios V processor application messages, the example design utilizes the
JTAG UART Intel FPGA IP. You can begin the display message by using the following
command:

juart-terminal

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

230

The JTAG UART terminal displays the RSU message logs, followed by the RSU Menu.
While the factory image provides the full list of operations, the application images can
support status log acquisition and reconfiguration operations only. The RSU Menu
offers the following options:

1. Acquire RSU status log

2. Acquire Decision Firmware Status Log

3. Trigger reconfiguration with Factory Image

4. Trigger reconfiguration with Application Images

a. Application-0 Image

b. Application-1 Image

5. Add Application-1 Image

6. Update the Factory Image

7. Erase Decision Firmware

Note: For application image, the Menu options are only Options 1 to 4.

7.3.7.1. Trigger Reconfiguration Menu with Selected Image

The Trigger reconfiguration menu, Option 3 and 4 performs device reconfiguration with
the factory and application images respectively. The following table shows the RSU
status log after the device reconfiguration is successful.

Table 59. Trigger Device Reconfiguration

Options RSU Status Log

Trigger reconfiguration with Factory Image Current Image : 0x00110000
Last Fail Image : 0x00000000
State : 0x00000000
Version : 0x00000202
Error location : 0x00000000
Error details : 0x00000000
Retry counter : 0x00000000
Running factory image: yes

Trigger reconfiguration with Application-0 Image Current Image : 0x01000000
Last Fail Image : 0x00000000
State : 0x00000000
Version : 0x00000202
Error location : 0x00000000
Error details : 0x00000000
Retry counter : 0x00000000
Running factory image: no

Trigger reconfiguration with Application-1 Image
(After performing Option 5.)

Current Image : 0x01800000
Last Fail Image : 0x00000000
State : 0x00000000
Version : 0x00000202
Error location : 0x00000000
Error details : 0x00000000
Retry counter : 0x00000000
Running factory image: no

7.3.7.2. Updating an Application Image

The Add Application-1 Image, Option 5 performs RSU Image update by adding
Application-1 image into RSU slot 1, called App-1. It reads the Application-1 RPD
image from the QSPI flash, starting from address 0x3000000. After the RPD image is

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

231

read successfully, the software proceeds to add and verify the configuration bitstream
into App-1 slot. Once the verification completes, you can proceed to trigger
reconfiguration with Application-1 Image in the table Trigger Device Reconfiguration.

Example 13. Application Image Update Log

Reading the Application-1 image based on RPD memory map....
Read Successfully.
Slot App-1 created at 0x1800000 with size = 0x460000 bytes.
Slot 1 is erased.
 NAME: App-1
 OFFSET: 0x0000000001800000
 SIZE: 0x00460000
 PRIORITY: [disabled]
Slot 1 was programmed with size=4587520.
Slot 1 was verified with size=4587520.
Add and Verify the image successfully in Slot 1

Please proceed with Option 4 - Trigger reconfiguration to Application Images.
And select Application-1 Image.

7.3.7.3. Updating the Factory Image

The Update the Factory Image menu, Option 6 performs RSU Image update by
updating to a new factory image and decision firmware version. Before initiating
Option 6, you are recommended to run Option 7 to erase the current decision
firmware to show that a new decision firmware is updated along with the factory
image.

The operation begin by reading the Factory Update RPD image from the QSPI flash,
starting from address 0x3800000. After the RPD image is read successfully, the
software proceeds to add and verify the configuration bitstream into a temporary
FactoryUpdate slot. Once it is completed, power cycle the device.

Note: After the factory image is updated completely, the device automatically reconfigure to
the application image with the highest priority.

Table 60. Decision Firmware Status Log

Erase Decision Firmware Power Cycle

Before After Before After

DCMF0: OK

DCMF1: OK

DCMF2: OK

DCMF3: OK

DCMF0: OK

DCMF1: Corrupted

DCMF2: Corrupted

DCMF3: Corrupted

DCMF0: OK

DCMF1: Corrupted

DCMF2: Corrupted

DCMF3: Corrupted

DCMF0: OK

DCMF1: OK

DCMF2: OK

DCMF3: OK

Example 14. Factory Image Update Log

Reading the Factory Update image based on RPD memory map....
Read Successfully.
Slot FactoryUpdate created at 0x2000000 with size = 0x460000 bytes.
Slot 2 is erased.
 NAME: FactoryUpdate
 OFFSET: 0x0000000002000000
 SIZE: 0x00460000
 PRIORITY: [disabled]
Slot 2 was programmed with size=4587520.
Slot 2 was verified with size=4587520.
Add and Verify the image successfully in Slot 2

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

232

Please power cycle the device to update the factory image.

7. Nios V Processor — Remote System Update

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

233

8. Nios V Processor — Using Custom Instruction

8.1. Introduction

The Nios V/g processor supports custom instruction feature. This feature allows you to
connect the processor to a custom processing engine (custom logic blocks). You can
develop the processing engine to support the following functions:

• Enable unimplemented instruction in the Nios V Processor Instruction Set
Architecture (ISA).

• Perform hardware acceleration on software algorithms.

Altera recommends you to understand custom instruction feature in Nios V processor
by reading AN 977: Nios V Processor Custom Instruction before proceeding with the
example design.

Related Information

AN 977: Nios V Processor Custom Instruction
For more information about custom instructions that allow you to customize the
Nios® V processor to meet the needs of a particular application.

8.2. Unimplemented Instruction Example Design

You can refer to Custom Instruction Design on Nios V/g Processor in the Altera FPGA
Design Store as a reference.

Related Information

Agilex 7 FPGA - Custom Instruction Design on Nios® V/g Processor

8.2.1. Hardware and Software Requirements

You need the following hardware and software in order to apply a custom instruction
on a Nios V/g processor.

• Quartus Prime Pro Edition software version 23.1 or later

• Ashling RiscFree for Altera FPGAs software version 23.1 or later

Note: Altera recommends you install the same software version for all softwares.

• One of the supported Intel FPGA devices

— The example design implemented on Agilex 7 F-Series FPGA development kit
(DK-DEV-AGF014EA).

• Altera FPGA Download Cable II

You must connect your development board to a host PC on the USB/JTAG ports.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

Related Information

Agilex 7 FPGA F-Series Development Kits

8.2.2. Overview

You can download the Agilex 7 FPGA -Custom Instruction Design on Nios V/g
Processor in the Altera FPGA Design Store. The example designs are based on the
Agilex 7 F-Series FPGA Development Kit. Using the scripts, the hardware and software
design are generated, and programmed as SRAM Object Files (.sof) and Executable
and Linking Format (.elf) into the device. The example design connects two similar
processing engines to a Nios V processor system. The processing engines contain
custom bit manipulation operations. These operations are not natively supported in
the Nios V processor ISA.

8.2.3. Acquiring the Example Design File

To generate the example design, perform the following steps:

1. Go to Altera FPGA Design Store.

2. Search for Agilex 7 FPGA - Custom Instruction Design on Nios® V/g Processor.

3. Click on the link at the title.

4. Accept the Software License Agreement.

5. Download the package according to the Quartus Prime software version of your
host PC.

6. Refer to the readme.txt for the how-to guide.

Table 61. Example Design File Description

File Description

custom_logic/ Contains the custom logic processing engines, which holds eight different
operations.

hw/ Contains file necessary to run the hardware project.

ready_to_test/ Contains pre-built hardware and software binaries to run the design on the
target hardware. This design is targeted on Agilex 7 F-Series FPGA
Development Kit DK-DEV-AGF014EA.

scripts/ Consists of scripts to build the design.

sw/ Contains software application files.

readme.txt Contains description and steps to apply the pre-built binaries or rebuild the
binaries from scratch.

Related Information

Altera FPGA Design Store

8.2.4. Hardware Design Files

The Agilex 7 FPGA -Custom Instruction Design on Nios V/g Processor is developed
using the Platform Designer. You can generate the hardware files using the
build_sof.py Python script.

The example design consists of:

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

235

• Nios V Processor Altera FPGA IP

• On-Chip Memory II Altera FPGA IP

• JTAG UART Altera FPGA IP

• Processing Engine 1 (PE1) – Declares funct3 as user-defined intermediate
(3’bxxx). All custom operations share a single software C-macro. You can select
them using funct3 input argument.

• Processing Engine 2 (PE2) – Defines funct3 as extension index (3’b000 to
3’b111). Each operations have its own C-macros. You can call their respective C-
macros.

The processing engine comprises of the following operations, which are selected based
on the 3-bits funct3 field.

• Operation 0: 1’s complement of Data0

• Operation 1: 2’s complement of Data0

• Operation 2: Multiply Data0 with Data1

• Operation 3: Bit reversal of Data0

• Operation 4: Byte reversal of Data0

• Operation 5: Word reversal of Data0

• Operation 6: Lower word merge of Data0 and Data1

• Operation 7: Higher word merge of Data0 and Data1

Figure 221. Example Design Block Diagram

General
Purpose

Registers

NIOS V/g Processor Core

Load-Store
Unit

AXI4

Data

Manager

Instruction

Cache

Multiply

and

Divide

Unit

Intel FPGA

AXI4

Instruction

Manager

Procesing Engine 2

Custom

Instruction

Subordinate

Procesing Engine 1

Custom

Instruction

Subordinate

Avalon

Memory-Mapped

Agent

On-Chip Memory IP

USB

Blaster II

Avalon

Memory-Mapped

Agent

JTAG UART IP

Custom

Instruction

Manager

Custom

Instruction

Manager

Interconnect

Host

PC

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

236

8.2.5. Software Design Files

You can find the application file(custom_instr_app.c) in the example design zip
file. The software file is available in the sw/app folder. The source code begins the
application by interfacing with PE1, followed by PE2. Within each processing engine,
the source code calls all operations, and display the result through the JTAG UART IP
into the host PC. The source code provides the same inputs (data0 and data1) into the
processing engines. Thus, both PE1 and PE2 return the same responses.

Related Information

Overview on page 235
For more information about the example design.

8.2.6. Development Flow

8.2.6.1. Hardware Development Flow

You can create the example designs hardware system using the build_sof.py
Python script. The scripts are stored in the scripts folder. You can refer to the
readme file (readme.txt) to develop the example designs using the provided scripts,
or develop the design manually using the Platform Designer and Nios V processor
tools.

After launching the Nios V Command Shell, run the script using the following
command :

$ quartus_py scripts/build_sof.py

8.2.6.2. Software Development Flow

Creating the example design software image for the custom instruction example
design consist of the following general steps:

1. Creating a board support package (BSP) project with niosv-bsp.

2. Creating a Nios V processor application project with the provided software design
files with niosv-app.

3. Building the application project with CMake and Make.

After launching the Nios V Command Shell, run the following commands.

$ niosv-bsp -c --quartus-project=hw/<Project Name>.qpf \
--qsys=hw/<System Name>.qsys --type=hal sw/bsp/settings.bsp
$ niosv-app --bsp-dir=sw/bsp --app-dir=sw/app \
--srcs=sw/app/custom_instr_app.c
$ cmake -S ./sw/app -G "Unix Makefiles" -B sw/app/build
$ make -C sw/app/build

8.2.6.3. Device Programming

To program Nios V processor based system into the FPGA and to run your application,
use Quartus Prime Programmer tool.

1. To create the Nios V processor inside the FPGA device, program the .sof file onto
the board with the following command.

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

237

Table 62. Command

Operating System Command

Windows quartus_pgm -c 1 -m JTAG -o p;<SOF File>@1

Linux quartus_pgm -c 1 -m JTAG -o p\;<SOF File>@1

Note: • -c 1 is referring to cable number connected to the Host Computer.

• @1 is referring to device index on the JTAG Chain and may differ for
your board.

2. Download the .elf using the niosv-download command.

niosv-download -g <elf file>

3. Use the JTAG UART terminal to print the stdout and stderr of the Nios V processor
system.

juart-terminal

8.2.7. Operating the Example Design

To display the application messages, the example design utilizes the JTAG UART Intel
FPGA IP. You can begin the display message by using the following command:

juart-terminal

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

238

Figure 222. Output Result from PE1

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

239

Figure 223. Output Result from PE2

8.3. Hardware Acceleration Example Design

You can refer to CRC Custom Instruction Design on Nios V/g processor in Altera FPGA
Design Store as a reference.

Related Information

Agilex 7 FPGA - CRC Custom Instruction Design on Nios® V/g processor

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

240

8.3.1. Hardware and Software Requirements

You need the following hardware and software to apply a custom instruction on a Nios
V/g processor.

• Quartus Prime Pro Edition software version 23.1 or later.

• Ashling RiscFree for Altera FPGAs software version 23.1 or later.

Note: Altera recommends you install the same software version for all softwares.

• One of the supported Altera FPGA devices:

— The example design implemented on Agilex 7 F-Series FPGA development kit
(DK-DEV-AGF014EA).

— Altera FPGA Download Cable II

You must connect your development board to a host PC on the USB/JTAG ports.

Related Information

Agilex 7 FPGA F-Series Development Kits

8.3.2. Overview

You can download the CRC Custom Instruction Design on Nios V/g processor in the
Altera FPGA Design Store. The example designs are based on the Agilex 7 F-Series
FPGA Development Kit. Use the scripts to generate and program the hardware and
software design as SRAM Object Files (.sof) and Executable and Linking Format
(.elf) into the device.

The example design connects a custom logic CRC processing engine to a Nios V
processor system. In the Nios V software application, the processor feeds the same
checksum data into three CRC decoders (custom logic CRC processing engine, CRC
software algorithm, and optimized CRC software algorithm). All three CRC decoders
return the same CRC results, and the latency is compared among themselves.

8.3.3. Acquiring the Example Design File

To generate the example design, perform the following steps:

1. Go to Intel® FPGA Design Store.

2. Search for CRC Custom Instruction Design on Nios® V/g processor.

3. Click on the link at the title.

4. Accept the Software License Agreement.

5. Download the package according to the Quartus Prime software version of your
host PC.

6. Refer to the readme.txt for the how-to guide.

Table 63. Example Design File Description

File Description

custom_logic/ Contains the custom logic CRC processing engine.

hw/ Contains file necessary to run the hardware project.

continued...

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

241

File Description

ready_to_test/ Contains pre-built hardware and software binaries to run the design on the target hardware. For this
package, the target hardware is Intel Agilex® 7 F-Series FPGA Development Kit DK-DEV-AGF014EA.

scripts/ Consists of scripts to build the design.

sw/ Contains software application files.

readme.txt Contains description and steps to apply the pre-built binaries or rebuild the binaries from scratch.

8.3.4. Hardware Design Files

The CRC Custom Instruction Design on Nios® V/g processor is developed using the
Platform Designer. You can generate the hardware files using the build_sof.py
Python script.

The example design consists of:

• Nios V Processor Altera FPGA IP

• On-Chip Memory II Altera FPGA IP

• JTAG UART Altera FPGA IP

• CRC Processing Engine

Figure 224. Example Design Block Diagram

JTAG UART IP
Nios V/g Processor

Intel FPGA

Display

Module
Data

Manager

Instruction
Manager

CRC Processing Engine

Custom
Instruction

Subordinate

Interconnect

Host

PC

USB

Blaster II

Instruction
Manager

Custom

On-Chip Memory IP

Instruction
and Data RAM

8.3.5. Software Design Files

You can find the following application files in the example design zip file. These
software files are available in the sw/app_crc/srcs folder.

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

242

Table 64. Software Design Files

File Description

ci_crc.c Defines a macro to access the CRC processing engine.

ci_crc.h Contains the function prototype for the macro.

crc.c Defines macros for both software CRC and optimized software CRC algorithms.

crc.h Contains the function prototypes for the software CRC application.

crc_main.c Compute the checksum value using all CRC decoder.

The source code begins the application by computing the checksum value using all
three CRC decoder and validating the CRC results. Once the CRC results are matched,
the application reports the processing performance of the CRC decoder respectively.

8.3.6. Development Flow

8.3.6.1. Hardware Development Flow

You can create the example designs hardware system using the build_sof.py
Python script. The scripts are stored in the scripts folder. You can refer to the
readme file (readme.txt) to develop the example designs using the provided scripts,
or develop the design manually using the Platform Designer and Nios V processor
tools.

After launching the Nios V Command Shell, run the script using the following
command :

$ quartus_py scripts/build_sof.py

8.3.6.2. Software Development Flow

Creating the example design software image for the custom instruction example
design consist of the following general steps:

1. Creating a board support package (BSP) project with niosv-bsp.

2. Creating a Nios V processor application project with the provided software design
files with niosv-app.

3. Building the application project with CMake and Make.

After launching the Nios V Command Shell, run the following commands.

$ niosv-bsp -c --quartus-project=hw/<Project Name>.qpf \
--qsys=hw/<System Name>.qsys --type=hal sw/bsp/settings.bsp
$ niosv-app --bsp-dir=sw/bsp_crc --app-dir=sw/app_crc \
--srcs=sw/app_crc/srcs/
$ cmake -S ./sw/app_crc -G "Unix Makefiles" -B sw/app_crc/build
$ make -C sw/app_crc/build

8.3.6.3. Device Programming

To program Nios V processor based system into the FPGA and to run your application,
use Quartus Prime Programmer tool.

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

243

1. To create the Nios V processor inside the FPGA device, program the .sof file onto
the board with the following command.

Table 65. Command

Operating System Command

Windows quartus_pgm -c 1 -m JTAG -o p;<SOF File>@1

Linux quartus_pgm -c 1 -m JTAG -o p\;<SOF File>@1

Note: • -c 1 is referring to cable number connected to the Host Computer.

• @1 is referring to device index on the JTAG Chain and may differ for
your board.

2. Download the .elf using the niosv-download command.

niosv-download -g <elf file>

3. Use the JTAG UART terminal to print the stdout and stderr of the Nios V processor
system.

juart-terminal

8.3.7. Operating the Example Design

To display the application messages, the example design utilizes the JTAG UART Altera
FPGA IP. You can begin the display message by using the following command:

juart-terminal

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

244

Figure 225. Output Result from CRC Decoders

8. Nios V Processor — Using Custom Instruction

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

245

9. Nios V Embedded Processor Design Handbook Archives
For the latest and previous versions of this user guide, refer to Nios® V Embedded
Processor Design Handbook. If an IP or software version is not listed, the user guide
for the previous IP or software version applies.

IP versions are the same as the Quartus Prime Design Suite software versions up to
v19.1. From Quartus Prime Design Suite software version 19.2 or later, IP cores have
a new IP versioning scheme.

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

10. Document Revision History for the Nios V Embedded
Processor Design Handbook

Document Version Quartus Prime
Version

Changes

2025.07.16 25.1 Corrected a typo in Hardware Design Files topic.

2025.05.22 25.1 • Updated the Nios V/m processor and Nios V/g processor figures to the
latest version.

• Updated topic Traps, Exceptions, and Interrupts Tab to reflect the
Enable Core Level Interrupt Controller feature.

• Reorganized and added the following topics to Volatile Memory:
— On-Chip Memory Configuration – RAM or ROM
— Caches
— Peripheral Regions
— Tightly Coupled Memory
— External Memory Interface

• Added the following topics:
— Optimizing Platform Designer System Performance
— Ashling Visual Studio Code Extension for Altera FPGAs

• Revised the steps in Create the Bootloader via SDM Application Project
in topic Processor Application Copied from Configuration QSPI Flash to
RAM Using Boot Copier (Bootloader via SDM).

• Updated the following topics:
— Debugging Nios V/c Processor
— Pilot System with Non-pipelined Nios V/m Processor

• printf() Debugging

2025.01.27 24.3.1 • Updated table Configuration Options Across Core Variants to add Traps,
Exceptions, and Interrupts for Nios V/m and Nios V/g processors.

• Updated the following topcis for Nios V/g processor parameters:
— Renamed topic Vector Tab to Traps, Exceptions, and Interrupts Tab.
— Memory Configurations Tab
— Custom Instruction Tab
— CPU Architecture

• Updated the following figures to the latest user interface:
— Nios V/m General Purpose Processor Intel FPGA IP - Part 1
— Nios V/g General Purpose Processor Intel FPGA IP - Part 1

• Added new Supported Boot Memories to the table Supported Flash
Memories with Respective Boot Options.

• Added flash controllers to the topic Nios V Processor Application
Execute-In-Place from Boot Flash.

• Added the following new topics:
— Nios V Processor Booting from On-Chip Flash (UFM).
— Nios V Processor Booting from General Purpose QSPI Flash.
— Reducing Nios V Processor Booting Time.

continued...

726952 | 2025.07.16

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera reserves the right to make changes to any products and services at any time without notice.
Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

Document Version Quartus Prime
Version

Changes

2024.11.25 24.3 • Updated table Configuration Options Across Core Variants to show CPU
Architecture enabled for Nios V/c processor and Lockstep feature for
Nios V/g processor

• Update the following figures with latest screenshot
— Nios V/c Compact Microcontroller Intel FPGA IP
— Nios V/g General Purpose Processor Intel FPGA IP - Part 1
— Nios V/g General Purpose Processor Intel FPGA IP - Part 2
— Nios V/g General Purpose Processor Intel FPGA IP - Part 3

• Added CPU Architecture to the topic Instantiating Nios V/c Compact
Microcontroller.

• Updated table CPU Architecture Tab Parameters with Avalon Interface
feature for Nios V/m and Nios V/g processors.

• Updated table ECC Tab for Nios V/g processor.
• Added new topic: Lockstep Tab for Nios V/g processor

2024.07.08 24.2 • Removed the mention of Eclipse CDT for Embedded C/C++ Developers
throughout the document.

• Replaced the mention of SDM Bootloader to Bootloader via SDM.
• Replaced the mention of GSFI Bootloader to Bootloader via GSFI.
• Added subtopics to the topic Signal Tap Logic Analyzer.

2024.05.13 24.1 • Removed the topic Nios V Processor Quick Start Guide. Added a link to
AN 985: Nios V Processor Tutorial..

• Updated the topics in Instantiating Nios V/m Microcontroller
— Updated the figures in Instantiating Nios V/m Microcontroller Intel

FPGA IP.
— Updated the table CPU Architecture with mhartid CSR value.

• Updated the topics in Instantiating Nios V/g Microcontroller
— Updated the figures in Instantiating Nios V/g Microcontroller Intel

FPGA IP.
— Updated the table CPU Architecture with mhartid CSR value.
— Added new topics:

• Caches
• Tightly Coupled Memory
• System Clock
• Reset Release IP
• Assigning a UART Agent for Printing
• Preventing Stalls by the JTAG UART
• JTAG Signals

• Updated the section Nios V Processor Application Executes-in-place
from TCM
— Updated the figures and steps in Hardware Design Flow
— Added new steps in Software Design Flow.

• Updated the topics in Debugging Nios V/c Processor:
— Pilot System with Non-pipelined Nios V/m Processor
— printf() Debugging
— Added

• Debugging Nios® V Processor Hardware Designs
• JTAG Server
• System Console
• JTAG to Avalon Host Bridge Core
• Signal Tap Logic Analyzer
• In-System Sources and Probes
• Ashling* RiscFree* IDE for Intel FPGA

• Updated the topics in Nios V Processor — Remote System Update
— Updated the steps in Configuring and Generating the BSP Project.
— Updated the steps in Creating Multiple Applications.

continued...

10. Document Revision History for the Nios V Embedded Processor Design Handbook

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

248

Document Version Quartus Prime
Version

Changes

2023.12.04 23.4 • Updated the note to refer to AN 980: Nios V Processor Intel Quartus
Prime Software Support throughout the document.

• Updated the titles and figures in Instantiating Nios V Processor Intel
FPGA IP for the following Nios V processor cores:
— Nios V/c Compact Microcontroller Processor Altera FPGA IP
— Nios V/m Microcontroller Altera FPGA IP
— Nios V/g General Purpose Processor Altera FPGA IP

• Updated the table: CPU Architecture to remove atomic extensions.
• Added the command for Quartus Prime Standard Edition version in the

following topics:
— Table: GUI Tools and Command-line Tools Tasks Summary.
— Topic: Generating the Board Support Package in Creating Nios V

Processor Software.
• Edited the title for Example Design on Unimplemented Instruction

(Custom Instruction Design on Nios® V/g processor) to Unimplemented
Instruction Example Design.

• Added topic Hardware Acceleration Example Designs.

2023.10.02 23.3 • Added new topics based on new addition Nios V/c processor:
— Nios V Processor Licensing
— Instantiating Nios V Processor IP Core
— Instantiating Nios V/c Processor Altera FPGA IP
— Instantiating Nios V/m Processor Altera FPGA IP
— Instantiating Nios V/g Processor Altera FPGA IP
— Debugging Nios V/c Processor
— Steps to Debug Nios V/c Processor

• Updated Nios V Processor Configuration and Booting Solutions with TCM
related in the following topics:
— Nios V Processor Booting Methods
— Added Nios V Processor Application Execute-In-Place from TCM
— Added Nios V Processor Booting from Tightly Coupled Memory

(TCM)
— Summary of Nios V Processor Vector Configuration and BSP Settings

• Updated the mention of Nios V/m to Nios V in related topics with the
release of Nios V/g and Nios V/c processors.

continued...

10. Document Revision History for the Nios V Embedded Processor Design Handbook

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

249

Document Version Quartus Prime
Version

Changes

2023.09.01 23.2 • Updated Software Design Flow in Processor Application Executes-In-
Place from Configuration QSPI Flash:
— Updated figures:

• Linker Region Settings When Exceptions is set to OCRAM /
External RAM.

• Linker Region Settings When Exceptions is set to QSPI Flash .
— Added steps to disable gsfi driver.

• Added new section: Nios V Processor RSU Quick Start Guide in SDM-
based Devices.

• Updated figure Nios V Processor System Design Flow in the topic
Embedded System Design.

2023.05.26 23.1 • Added links to AN 980: Nios V Processor Quartus Prime Software
Support.

• Added a new section: Nios V Processor — Using Custom Instruction.

2023.04.10 23.1 • Added new topics:
— Caches and Peripheral Regions Tab
— Custom Instruction Tab

• Added table GSFI Bootloader for Nios V Processor Core in the topic
GSFI Bootloader.

• Added a new step in the topic Generating HEX File from the section
Processor Application Copied from Configuration QSPI Flash to RAM
Using Boot Copier (GSFI Bootloader).

• Updated product family name to "Intel Agilex® 7".

10. Document Revision History for the Nios V Embedded Processor Design Handbook

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

250

Document Version Quartus Prime
Version

IP Version Changes

2023.02.14 22.4 22.4.0 • Edited topic Intel Quartus Prime Software Support.
• Edited topic Nios V/m Processor Example Design.
• Added a note in the following topics to refer to the

topic Intel Quartus Prime Software Support
— Generating the Board Support Package using

the BSP Editor GUI
— Nios V Board Support Package Editor
— Software Design Flow
— Creating a BSP project

• Updated the following topics to align with the
design store migration steps:
— Generating the Application Project File
— GSFI Bootloader Example Design
— SDM Bootloader Example Design
— MicroC/TCP-IP Example Designs: Overview
— Acquiring the Example Design Files
— Creating an Application Project
— Device Programming
— Optional Configuration

• Removed the following topics:
— Generating the Example Design Through

Graphical User Interface
— Generating the Nios V/m Processor Example

Design Using the Command Line Interface
— Generate Nios V processor example design from

Platform Designer
— HEX File Generation

2022.10.31 22.1std 1.0.0 • Updated references from Intel Quartus Prime Pro
Edition to Intel Quartus Prime to indicate support
for both Pro and Standard Edition.

• Added new topic: Intel Quartus Prime Software
Support.

2022.10.25 22.3 22.3.0 • Added new section: Nios V Processor — Remote
System Update.

2022.09.26 22.3 22.3.0 • Updated Configure Nios V Processor Parameters
— Edited Debug Tab
— Added Use Reset Request Tab
— Edited Vectors Tab. Removed Exception Agent

and Exception Offset
• Updated the following figures:

— Nios V/m Processor IP instance in Platform
Designer

— Example connection of Nios V processor with
other peripherals in Platform Designer

— hal.linker Settings for QSPI Flash
— Connections for Nios V Processor Project
— hal.linker Settings
— Linker Region Settings
— hal.make Settings
— BSP Driver tab

• Added Enable Reset from Debug Module to the
following figures:
— Parameter Editor Settings
— Nios V Parameter Editor Settings

continued...

10. Document Revision History for the Nios V Embedded Processor Design Handbook

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

251

Document Version Quartus Prime
Version

IP Version Changes

• Removed the mention of exception vector,
exception RAM, exception agent, and .exception in
the following topics:
— Defining System Component Design
— Nios V Processor Design, Configuration and Boot

Flow (Control Block-based Device)
— Reset Agent Settings for Nios V Processor

Execute-In-Place Method
— Reset Agent Settings for Nios V Processor Boot-

copier Method
— Nios V Processor Design, Configuration and Boot

Flow (SDM-based Devices)
— Nios V Processor Application Copied from

Configuration QSPI Flash to RAM Using Boot
Copier (SDM Bootloader)

— Table: Description of Memory Organization
— Design, Configuration and Booting Flow in Nios

V Processor Application Executes in-place from
OCRAM

— Table: Summary of Nios V Processor Vector
Configurations and BSP Settings

• Edited Configuring BSP Editor and Generating the
BSP Project in Nios V Processor Design,
Configuration and Boot Flow (Control Block-based
Device).

• Added Table: Settings for BSP Editor in Software
Design Flow (SDM Bootloader Project).

2022.08.12 22.2 21.3.0 • Edited the steps in Programming Nios V/m into the
FPGA Device.

• Edited Table: Debug Tab Parameter to add the
description for dbg_reset.

• Edited topic On-Chip Memory Configuration - RAM
or ROM topic. Added a link to Nios V Processor
Application Execute-In-Place from OCRAM.

continued...

10. Document Revision History for the Nios V Embedded Processor Design Handbook

726952 | 2025.07.16

Nios® V Embedded Processor Design Handbook Send Feedback

252

Document Version Quartus Prime
Version

IP Version Changes

• Changed the topic title from Clocks and Resets to
Clocks and Resets Best Practices.

• Added the following new topics:
— Reset Request Interface
— Typical Use Cases
— Assigning a Default Agent

• Added a note about configuring the RISC-V
toolchain prefix in the topic Eclipse CDT for
Embedded C/C++ Developer.

2022.06.21 22.2 21.3.0 • Added the support for RiscFree IDE for Intel FPGAs.
• Removed the following topics:

— Setting Up Open-Source Tools
— Building the Application Project using Eclipse

Embedded CDT
— Building the Application Project using the

Command-Line Interface
— Creating a Software Project using Platform

Designer & Eclipse Embedded CDT
— Creating a Software Project Using Command

Line
• Edited the Figure : Software Design Flow to include

RiscFree IDE for Intel FPGAs
• Added the following topics:

— Nios V Software Development Flow
— Board Support Package Project
— Application Project
— Intel FPGA Embedded Development Tools
— Nios V Board Support Package Editor
— RiscFree* IDE for Intel FPGA
— Eclipse* CDT for Embedded C/C++ Developer
— Nios V Utilities Tools
— File Format Conversion Tools
— Other Utilities Tools
— Generating the Board Support Package
— Generating the Application Project File
— Building the Application Project

2022.04.04 22.1 21.2.0 Initial release.

10. Document Revision History for the Nios V Embedded Processor Design Handbook

726952 | 2025.07.16

Send Feedback Nios® V Embedded Processor Design Handbook

253

	Nios V Embedded Processor Design Handbook
	Contents
	1. About the Nios® V Embedded Processor
	1.1. Altera® FPGA and Embedded Processors Overview
	1.2. Quartus® Prime Software Support
	1.3. Nios V Processor Licensing
	1.4. Embedded System Design

	2. Nios V Processor Hardware System Design with Quartus Prime Software and Platform Designer
	2.1. Creating Nios V Processor System Design with Platform Designer
	2.1.1. Instantiating Nios V Processor Altera FPGA IP
	2.1.1.1. Instantiating Nios V/c Compact Microcontroller Altera FPGA IP
	2.1.1.1.1. CPU Architecture Tab
	2.1.1.1.2. Use Reset Request Tab
	2.1.1.1.3. Traps, Exceptions, and Interrupts Tab
	2.1.1.1.4. ECC Tab

	2.1.1.2. Instantiating Nios V/m Microcontroller Altera FPGA IP
	2.1.1.2.1. Debug Tab
	2.1.1.2.2. Use Reset Request Tab
	2.1.1.2.3. Traps, Exceptions, and Interrupts Tab
	2.1.1.2.4. CPU Architecture
	2.1.1.2.5. ECC Tab

	2.1.1.3. Instantiating Nios V/g General Purpose Processor Altera FPGA IP
	2.1.1.3.1. CPU Architecture
	2.1.1.3.2. Debug Tab
	2.1.1.3.3. Lockstep Tab
	2.1.1.3.4. Use Reset Request Tab
	2.1.1.3.5. Traps, Exceptions, and Interrupts Tab
	2.1.1.3.6. Memory Configurations Tab
	2.1.1.3.7. ECC Tab
	2.1.1.3.8. Custom Instruction Tab

	2.1.2. Defining System Component Design
	2.1.3. Specifying Base Addresses and Interrupt Request Priorities

	2.2. Integrating Platform Designer System into the Quartus Prime Project
	2.2.1. Instantiating the Nios V Processor System Module in the Quartus Prime Project
	2.2.2. Connecting Signals and Assigning Physical Pin Locations
	2.2.3. Constraining the Altera FPGA Design

	2.3. Designing a Nios V Processor Memory System
	2.3.1. Volatile Memory
	2.3.1.1. On-Chip Memory Configuration – RAM or ROM
	2.3.1.2. Caches
	2.3.1.2.1. Peripheral region

	2.3.1.3. Tightly Coupled Memory
	2.3.1.4. External Memory Interface (EMIF)
	2.3.1.4.1. Address Span Extender IP
	2.3.1.4.2. Using Address Span Extender IP with Nios V Processor
	2.3.1.4.3. Defining Address Span Extender Linker Memory Device

	2.3.2. Non-Volatile Memory

	2.4. Clocks and Resets Best Practices
	2.4.1. System JTAG Clock
	2.4.2. Reset Request Interface
	2.4.2.1. Typical Use Cases

	2.4.3. Reset Release IP

	2.5. Assigning a Default Agent
	2.6. Assigning a UART Agent for Printing
	2.6.1. Preventing Stalls by the JTAG UART

	2.7. JTAG Signals
	2.8. Optimizing Platform Designer System Performance

	3. Nios V Processor Software System Design
	3.1. Nios V Processor Software Development Flow
	3.1.1. Board Support Package Project
	3.1.2. Application Project

	3.2. Altera FPGA Embedded Development Tools
	3.2.1. Nios V Processor Board Support Package Editor
	3.2.2. RiscFree IDE for Altera FPGAs
	3.2.3. Nios V Utilities Tools
	3.2.4. File Format Conversion Tools
	3.2.5. Other Utilities Tools

	4. Nios V Processor Configuration and Booting Solutions
	4.1. Introduction
	4.2. Linking Applications
	4.2.1. Linking Behavior
	4.2.1.1. Default BSP Linking
	4.2.1.2. Configurable BSP Linking

	4.3. Nios V Processor Booting Methods
	4.4. Introduction to Nios V Processor Booting Methods
	4.4.1. Nios V Processor Application Execute-In-Place from Boot Flash
	4.4.1.1. alt_load()

	4.4.2. Nios V Processor Application Copied from Boot Flash to RAM Using Boot Copier
	4.4.2.1. Nios V Processor Bootloader via Generic Serial Flash Interface
	4.4.2.2. Nios V Processor Bootloader via Secure Device Manager

	4.4.3. Nios V Processor Application Execute-In-Place from OCRAM
	4.4.4. Nios V Processor Application Execute-In-Place from TCM

	4.5. Nios V Processor Booting from On-Chip Flash (UFM)
	4.5.1. MAX 10 FPGA On-Chip Flash Description
	4.5.2. Nios V Processor Application Execute-In-Place from UFM
	4.5.2.1. Hardware Design Flow
	4.5.2.2. Software Design Flow
	4.5.2.3. Programming

	4.5.3. Nios V Processor Application Copied from UFM to RAM using Boot Copier
	4.5.3.1. Hardware Design Flow
	4.5.3.2. Software Design Flow
	4.5.3.3. Programming

	4.6. Nios V Processor Booting from General Purpose QSPI Flash
	4.6.1. Nios V Processor Application Executes-In-Place from General Purpose QSPI Flash
	4.6.1.1. Hardware Design Flow
	4.6.1.2. Software Design Flow
	4.6.1.3. Programming Files Generation
	4.6.1.4. QSPI Flash Programming

	4.6.2. Nios V Processor Application Copied from General Purpose QSPI Flash to RAM Using Boot Copier (Bootloader via GSFI)
	4.6.2.1. Hardware Design Flow
	4.6.2.2. Software Design Flow
	4.6.2.3. Programming Files Generation
	4.6.2.4. QSPI Flash Programming

	4.7. Nios V Processor Booting from Configuration QSPI Flash
	4.7.1. Nios V Processor Application Executes-In-Place from Configuration QSPI Flash
	4.7.1.1. Hardware Design Flow
	4.7.1.2. Software Design Flow
	4.7.1.3. Programming Files Generation
	4.7.1.4. QSPI Flash Programming

	4.7.2. Nios V Processor Design, Configuration and Boot Flow (Control Block-based Device)
	4.7.2.1. Nios V Processor Application Copied from Configuration QSPI Flash to RAM Using Boot Copier (Bootloader via GSFI)
	4.7.2.1.1. Hardware Design Flow
	4.7.2.1.2. Software Design Flow
	4.7.2.1.3. Programming Files Generation
	4.7.2.1.4. QSPI Flash Programming

	4.7.2.2. Bootloader via GSFI Example Design

	4.7.3. Nios V Processor Design, Configuration and Boot Flow (SDM-based Devices)
	4.7.3.1. Nios V Processor Application Copied from Configuration QSPI Flash to RAM Using Boot Copier (Bootloader via SDM)
	4.7.3.1.1. Hardware Design Flow
	4.7.3.1.2. Software Design Flow
	4.7.3.1.3. Software Design Flow (Bootloader via SDM Project)
	4.7.3.1.4. Software Design Flow (User Application Project)
	4.7.3.1.5. Programming Files Generation
	4.7.3.1.6. QSPI Flash Programming SDM

	4.7.3.2. Bootloader via SDM Example Design

	4.8. Nios V Processor Booting from On-Chip Memory (OCRAM)
	4.8.1. Nios V Processor Application Executes in-place from OCRAM
	4.8.1.1. Hardware Design Flow
	4.8.1.2. Software Design Flow
	4.8.1.3. Programming

	4.9. Nios V Processor Booting from Tightly Coupled Memory (TCM)
	4.9.1. Nios V Processor Application Executes in-place from TCM
	4.9.1.1. Hardware Design Flow
	4.9.1.2. Software Design Flow
	4.9.1.3. Programming

	4.10. Summary of Nios V Processor Vector Configuration and BSP Settings
	4.11. Reducing Nios V Processor Booting Time
	4.11.1. Boot Methods
	4.11.2. Boot devices
	4.11.3. Peripheral Initialization
	4.11.4. Caches
	4.11.5. System Speed

	5. Nios V Processor - Using the MicroC/TCP-IP Stack
	5.1. Introduction
	5.2. Software Architecture
	5.3. Support and Licensing
	5.4. MicroC/TCP-IP Example Designs
	5.4.1. Hardware and Software Requirements
	5.4.2. Overview
	5.4.3. Acquiring the Example Design Files
	5.4.4. Hardware Design Files
	5.4.5. Software Design Files
	5.4.5.1. MicroC/TCP-IP IPerf Example Design
	5.4.5.2. MicroC/TCP-IP Simple Socket Server Example Design

	5.5. Development Flow
	5.5.1. Hardware Development Flow
	5.5.2. Software Development Flow
	5.5.2.1. Creating a BSP project
	5.5.2.2. Configuring the BSP
	5.5.2.3. Creating an Application Project
	5.5.2.4. Building the Application Project

	5.5.3. Device Programming

	5.6. Operating the Example Designs
	5.6.1. Operating the MicroC/TCP-IP IPerf
	5.6.2. Operating the MicroC/TCP-IP Simple Socket Server

	5.7. Optional Configuration
	5.7.1. Configuring Hardware Name
	5.7.2. Configuring MAC and IP Addresses
	5.7.3. Configuring MicroC/TCP-IP Initialization
	5.7.3.1. Network Task Configuration
	5.7.3.2. Network Interface Configuration

	5.7.4. Configuring iPerf Server Auto-Initialization

	5.8. MicroC/TCP-IP Simple Socket Server Concepts
	5.8.1. MicroC/OS-II Resources
	5.8.2. Error Handling
	5.8.3. MicroC/TCP-IP Stack Default Configuration

	6. Nios V Processor Debugging, Verifying, and Simulating
	6.1. Debugging Nios V/c Processor
	6.1.1. Pilot System with Non-pipelined Nios V/m Processor
	6.1.2. printf() Debugging

	6.2. Debugging Nios V Processor Hardware Designs
	6.2.1. JTAG Server
	6.2.2. System Console
	6.2.2.1. JTAG to Avalon Host Bridge Core

	6.2.3. Signal Tap Logic Analyzer
	6.2.3.1. Hardware and Software Requirements
	6.2.3.2. Setting Up Signal Tap Logic Analyzer
	6.2.3.2.1. Enabling Signal Tap Logic Analyzer
	6.2.3.2.2. Adding Signals for Monitoring and Debugging
	6.2.3.2.3. Specifying Trigger Conditions
	Basic Trigger Conditions
	Power-Up Trigger Conditions
	Other Trigger Conditions
	No Trigger Conditions

	6.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer Acquisition Mode
	6.2.3.2.5. Compiling the Design and Programming the Target Device

	6.2.3.3. Running the Capture Session
	6.2.3.3.1. Performing Data Capture with Ashling RiscFree IDE for Altera FPGAs
	6.2.3.3.2. Performing Data Capture Without Software Download

	6.2.3.4. Analyzing Results
	6.2.3.4.1. Viewing Data
	6.2.3.4.2. Correlating Trace Data to Software ELF
	6.2.3.4.3. Saving and Converting Captured Data

	6.2.4. In-System Sources and Probes

	6.3. Debugging Nios V Processor Software Designs
	6.3.1. Ashling RiscFree IDE for Altera FPGAs
	6.3.2. Ashling Visual Studio Code Extension for Altera FPGAs
	6.3.3. OpenOCD
	6.3.4. Objdump File
	6.3.5. Show Make Commands

	6.4. Debugging Tools
	6.5. Additional Embedded Design Considerations
	6.5.1. JTAG Signal Integrity
	6.5.2. Additional Memory Space for System Prototyping

	6.6. Simulating Nios V Processor Designs
	6.6.1. Prerequisites
	6.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer
	6.6.2.1. Using IP and Platform Designer Simulation Setup Scripts

	6.6.3. Creating Nios V Processor Software
	6.6.3.1. Generating the Board Support Package
	6.6.3.2. Generating the Application Project File
	6.6.3.3. Building the Application Project

	6.6.4. Generating Memory Initialization File
	6.6.5. Generating System Simulation Files
	6.6.6. Running Simulation in the QuestaSim Simulator Using Command Line

	7. Nios V Processor — Remote System Update
	7.1. Overview
	7.2. Quartus Prime Pro Edition Software and Tool Support
	7.2.1. Quartus Prime Pro Edition Software
	7.2.1.1. Setting Max Retry Parameter
	7.2.1.2. Selecting Factory Load Pin

	7.2.2. Programming File Generator
	7.2.2.1. Programming File Generator File Types
	7.2.2.2. Bitswap Option
	7.2.2.3. Quartus Prime Programmer
	7.2.2.4. Supported QSPI Flash Devices

	7.3. Nios V Processor RSU Quick Start Guide in SDM-based Devices
	7.3.1. Individual Factory, Application, and Update Images
	7.3.2. Hardware Design Flow
	7.3.2.1. Create a Platform Designer System
	7.3.2.2. Quartus Prime Software Settings

	7.3.3. Software Design Flow
	7.3.3.1. Generating the ZLIB libraries
	7.3.3.2. Creating a Board Support Package Project
	7.3.3.3. Configuring and Generating the BSP Project
	7.3.3.4. Creating Multiple Application Projects
	7.3.3.5. Building the Application Projects
	7.3.3.6. Generating HEX Files

	7.3.4. Individual Images Generation
	7.3.5. Remote System Update Image Files Generation
	7.3.5.1. Generating Initial RSU Image Using SOF file
	7.3.5.2. Generating an Application Update Image
	7.3.5.3. Generating a Factory Update Flash Image

	7.3.6. QSPI Flash Programming
	7.3.6.1. Programming the Initial RSU Image
	7.3.6.2. Programming the Update Images

	7.3.7. Operating the RSU Client API
	7.3.7.1. Trigger Reconfiguration Menu with Selected Image
	7.3.7.2. Updating an Application Image
	7.3.7.3. Updating the Factory Image

	8. Nios V Processor — Using Custom Instruction
	8.1. Introduction
	8.2. Unimplemented Instruction Example Design
	8.2.1. Hardware and Software Requirements
	8.2.2. Overview
	8.2.3. Acquiring the Example Design File
	8.2.4. Hardware Design Files
	8.2.5. Software Design Files
	8.2.6. Development Flow
	8.2.6.1. Hardware Development Flow
	8.2.6.2. Software Development Flow
	8.2.6.3. Device Programming

	8.2.7. Operating the Example Design

	8.3. Hardware Acceleration Example Design
	8.3.1. Hardware and Software Requirements
	8.3.2. Overview
	8.3.3. Acquiring the Example Design File
	8.3.4. Hardware Design Files
	8.3.5. Software Design Files
	8.3.6. Development Flow
	8.3.6.1. Hardware Development Flow
	8.3.6.2. Software Development Flow
	8.3.6.3. Device Programming

	8.3.7. Operating the Example Design

	9. Nios V Embedded Processor Design Handbook Archives
	10. Document Revision History for the Nios V Embedded Processor Design Handbook

