Bringing Bluetooth 6.0 Channel Sounding to Market

Victor Lee, Sr. FAE

BLUETOOTH

Agenda

Technology Overview

Channel Sounding Applications

Silicon Labs Offerings

Algorithm Performance Data

Developer Tools

Q&A

Why Bluetooth® Channel Sounding?

THE CHALLENGE:

IOT applications need 'spatial' awareness to be more secure, reliable, and responsive

Earlier Bluetooth LE versions lack native support for precise ranging

RSSI-based ranging is noisy and unreliable in real-world use

Direction Finding needs complex antennas, adding cost & complexity

UWB is accurate but often too costly, and bulky for IoT

THE OPPORTUNITY:

Channel Sounding for Bluetooth

Standardized approach for accurate, secure ranging in Bluetooth 6.0

Enables sub-meter accuracy with robust performance, even in NLOS

Works with single or dual antenna setups - flexible for different form factors

More cost efficient than UWB; requires minimal external components

Built on existing Bluetooth infrastructure, simplifying adoption and ecosystem integration

Bluetooth® Channel Sounding Overview

- Measure distance between two devices using
 - Phase-based Ranging (PBR)
 - Round Trip Time (RTT)
- RTT and PBR operates across 2.4 GHz band
 - Standard specifies up to 72 channels
 - Random channel hopping pattern
- Connection-Oriented 2-way ranging with two roles
 - Initiator: device that wishes to calculate distance from itself to another device
 - · Reflector: device responding to initiator
- Supports up to 4 antenna paths between devices
 - 8 possible antenna combinations
- Multiple security features included in the standard
- Can be combined with Angle of Arrival / Departure (AoA/AoD)
 - Enables position estimation with single locator/tag pair

Additional Resources

- Webpage Learn more about Silicon Labs offerings and demos
- <u>Tech Talk</u> Explore Bluetooth Channel Sounding
- Workswith 2024 Enable Accurate Distance Estimation Using Channel Sounding
- <u>Blog:</u> Learn more about Antenna Switching with Silicon Labs Channel Sounding
- API Spec: Getting Started with Silicon Labs Bluetooth Channel Sounding

Bluetooth® Channel Sounding Comparison

	RSSI	UWB	Angle of Arrival	Channel Sounding
Localization metric	Resolve distance estimation from transmitter signal strength	Resolve distance between two points using high-resolution time-of-flight (ToF)	Resolve direction vector between two points	Resolve distance between two points using time of flight and phase-based ranging
Antenna requirements	Single antenna	Often complex hardware	Multi-antenna required by spec	Single or dual antenna
Connectivity	Connection-oriented and connectionless	Connectionless	Connection-oriented and connectionless	Connection-oriented
Performance metrics	+/- 5 m, high susceptibility to multipath interference	High accuracy (~10–30 cm)	+- 3 degrees accuracy – azimuth +- 5 degrees accuracy – elevation	+3 m < 5m with PBR +- 0.5 m > 5m with PBR
Solution advantages	Ubiquitous support for RSSI measurements in existing Bluetooth LE products	High PrecisionLow Latency	 Scalable solution for real time position tracking Supports 5-10 year battery life 	 Small form factor with flexible antenna design Feature-add for security by proximity
Solution disadvantages	Highly susceptible to RF noise and multipath	Expensive and complex integration	Needs complex antenna setup and calibration	Scalability

Bluetooth® Channel Sounding - Target Markets & Use Cases

PROXIMITY AWARENESS

Door locks

Keyless entry

Building access systems

Geofencing - security alerts

LOCALIZATION

Indoor asset management hospitals, warehouses
Pet tracking
Item finding - wallet, keys

AUTOMAPPING

Solar Trackers
Luminaires, Access Points
Accurate Mapping for Battery
Storage

BG24: Optimized for Battery Powered, Channel Sounding-enabled IoT Devices

- 5x5 QFN40 (26 GPIO), AEC-Q100
- 6x6 QFN48 (32 GPIO), AEC-Q100
- 3.1x3.0 WLCSP42

DIFFERENTIATED FEATURES

- Ultra small form-factor
 - 3.1 x 3.0 WLCSP package
- +20 dBm output power
 - Eliminates need for external power amplify
- Al/ML accelerator
 - Accelerates inferencing while reducing power consumption
- Secure Vault High
 - Protects data and device from local and remote attacks
- 20-bit ADC
 - · 16-bit ENOB for advance sensing
- Improved Coexistence
 - Ideal for gateways and hubs
- PLFRCO
 - Eliminates need for 32 KHz xtal

DEVICE SPECIFICATIONS

- High Performance Radio
 - Up to +19.5 dBm TX
 - -97.6 dBm RX @ BLE 1 Mbps
- Efficient ARM® Cortex®-M33
 - Up to 78 MHz
 - 1536kB Flash, 256kB RAM
- Low Power
 - 49.1 µA/MHz (CoreMark)
 - 5.0 mA TX @ 0 dBm
 - 5.1 mA RX (802.15.4)
 - 4.4 mA RX (BLE 1 Mbps)
 - 1.3 µA EM2 sleep
- Multiple protocol support
 - Bluetooth 6.0 (1M/2M/LR), Bluetooth mesh, Proprietary 2.4 GHz

BG24L: Channel Sounding Optimized, High-Performance & Low-Cost Al/ML Wireless

Bluetooth°

• 5x5 QFN40 (26 GPIO)

DIFFERENTIATED FEATURES

Supports Bluetooth 6.0

- Channel Sounding optimized BLE SoC
- Single-connection two-way ranging
- Ideal Solution for Channel Sounding tags

Lowest Power RF

· Increases battery life

PLFRCO

 Eliminates need for 32 KHz XTAL and lowers overall system cost

16-bit ADC

Up to 14-bit ENOB for better analog sensing

AI/ML accelerator

Accelerates inferencing while reducing power consumption

Secure Vault Mid

Protects data and device from local and remote attacks

Improved Coexistence

· Ideal for gateways and hubs

DEVICE SPECIFICATIONS

High Performance Radio

- Up to +10 dBm TX
- -97.6 dBm RX @ BLE 1 Mbps

Efficient ARM® Cortex®-M33

- Up to 78 MHz
- 768kB Flash, 96kB RAM

Low Power

- 49.1 µA/MHz (CoreMark)
- 5.0 mA TX @ 0 dBm
- 5.1 mA RX (802.15.4)
- 4.4 mA RX (BLE 1 Mbps)
- 1.3 μA EM2 (16kB RAM retention)

Wide Operating Range

- 1.71 to 3.8 volts
- +125°C operating temperature

Multiple protocol support

 Bluetooth 6.0 (1M/2M/LR), Bluetooth mesh, Proprietary 2.4 GHz

Bluetooth® Channel Sounding Dual Antenna Development Kit

xG24 Channel Sounding Development Kit

- Available since March 2025
- Development Kit with two PCB antennas
 - Antenna diversity offers increased robustness and accuracy
- Intra-event antenna switching for optimal non-line of sight performance
- Includes IMU sensor to detect movement & wake-up the tag
- Small form factor
 - Ideal for size-constrained applications like key fobs
- AEC-Q100 Compliant
- SoC/NCP Sample Apps
 - Initiator and Reflector examples supported
- Ranging Library
 - Process IQ samples, post-filtering, and compute distance using configurable algorithm

Antenna Diversity – What does it bring?

Silicon Labs Channel Sounding Algorithm

Algorithm Features

- Supports Multiple Channel Sounding Ranging Modes
 - ▶ PBR, RTT, PBR with RTT as sub mode
- Antenna Switching
 - Built-in support for antenna diversity
 - Supports 1, 2 and 4 antenna paths
- Supported Algorithm modes
 - Static mode Delivers the highest accuracy with high measurement latency; optimized for ranging between stationary devices
 - Real Time Basic Provides high accuracy with increased computational and measurement latency; supports tracking at speeds up to 1 m/s
 - Real Time Fast Balances moderate accuracy and range with low latency; supports tracking at speeds up to 2.1 m/s, additionally produces velocity metric
- Configurable Channel Selection (72, 37, or 20 Channels)
 - Selectable based on accuracy needs and power constraints

Key Benefits

- Licensing cost free
 - Eliminates third-party royalties, simplifying BOM cost structure
- Optimized HW-SW Co-Design
 - ▶ Tight coupling between silicon & firmware ensures seamless performance & efficiency
- Single-Vendor Lifecycle Support
 - Unified hardware & software ownership streamlines debugging, validation, and updates

Algorithm Performance Test Setup

Node Pairs	Distance (in m)	Obstacles	
H & 1	20	Line-of-Sight	
H & 4	7.9	Walls, Kitchen	
1 & 4	14.84	Cubicles, Luminaires	
1 & 5	33.9	Walls, Glass door	

Algorithm Performance Data¹

Algorithm Mode	LOS 90 th Pct. Absolute Error (in m)	LOS 95 th Pct. Absolute Error (in m)	NLOS 90 th Pct. Absolute Error (in m)	NLOS 95 th Pct. Absolute Error (in m)	Computation time (in ms)
STATIC_HIGH_ACCURACY	0.5	0.6	1.7	2.7	20000 ²
REAL_TIME_BASIC	0.5	0.6	1.9	4.2	188
REAL_TIME_FAST	0.4	0.5	4.0	5.3	20

- CS mode PBR, CS channels 72, number of antenna paths 4
- ~100 CS Procedures used to produce single distance estimate

Energy Consumption Profile – Reflector

Reference Board	Number of Antenna Paths (NAP)	Number of Channels	Mean Current Consumption (mA)	Mean Energy Consumption (nAh)
	4	72	~2.2	~191.0
		37	~1.2	~111.0
		20	~0.9	~75.4
	2	72	~1.7	~146.0
BRD2606A		37	~1.0	~91.0
		20	~0.8	~65.0
	1	72	~1.5	~122.8
		37	~1.0	~79.0
		20	~0.7	~58.0

Antenna Diversity Increases Total Energy Per Measurement

Algorithm Performance

Algorithm Performance

Visualizer Tool

Visualizer Tool displays real-time CS data

- CS configuration
 - Channel map selection
 - Antenna path configuration
 - Algorithm mode selection
- CS data visualization
 - RSSI based distance for comparison
 - Raw distance estimate and likeliness
 - Filtered distance estimate
 - IQ data visualization
- Interfaces with CS enabled EVKs

Silicon Labs Bluetooth ® Channel Sounding Offering

Application API RTL Library **GATT** GAP SM ATT Bluetooth Link Layer

ICS & DEVELOPMENT KITS

Channel Sounding Supported by **B/MG24** Kits:

xG24-RB4198A single antenna kit xG24-DK2606A dual antenna kit

BLUETOOTH 6.0 STACK

In-house developed stack, supported and maintained stack

Bluetooth 6.0 qualified

PBR & RTT Modes

RTL LIBRARY

Computes distance from raw I/Q data Developed and supported by Silicon Labs New features added based on market needs

No 3rd party license fees

SDK & TOOLS

Initiator & Reflector examples

Real-time visualization tool for Bluetooth **Channel Sounding**

Energy Profiler etc.

Thank you

AUSTIN

SHENZHEN

BANGALORE

VIRTUAL

