
Introduction
This document describes how to prepare STM32U585xx microcontrollers to make a secure system solution compliant with
SESIP Profile for PSA Level 3 using the STM32Cube_FW_U585_Security_certification_V1.0.0 software package included in the
STM32CubeU5 MCU Package.

The B-U585I-IOT02A board integrating the STM32U585AI microcontroller is used as the hardware vehicle to implement and test
a non‑secure application using secure services but it does not bring any additional security mechanism.

The security guidance described in this document applies to any boards based on STM32U585xx microcontrollers.

STM32U585xx security guidance for PSA Certified™ Level 3 with SESIP Profile

UM2852

User manual

UM2852 - Rev 1 - June 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/stm32cubeu5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2852
https://www.st.com/en/product/b-u585i-iot02a?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2852
https://www.st.com/en/product/stm32u585ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2852

1 General information

The STM32CubeU5 TFM application runs on STM32U585xx 32-bit microcontrollers based on the Arm®

Cortex®‑M processor.

Note: Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM2852
General information

UM2852 - Rev 1 page 2/27

https://www.st.com/en/product/stm32cubeu5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2852

The following table presents the definition of acronyms that are relevant for a better understanding of this
document.

Table 1. List of acronyms

Acronym Description

AEAD Authenticated encryption with associated data

CLI Command‑line interface

EAT Entity attestation token

GUI Graphic user interface

HDP Secure hide protection

HUK Hardware unique key

HW Hardware

IAT Initial attestation

IPC Interprocess communication

ITS Internal storage service. Internal storage service provided by TF-M.

NSPE Non‑secure processing environment PSA term. In TF-M this means a non‑secure domain typically running an
operating system using services provided by TF-M.

MPU Memory protection unit

PSA Platform security architecture. Framework for securing devices.

RDP Readout protection

RoT Root of Trust

SBSFU Secure boot and secure firmware update. In the STM32CubeL5 this is the name of the TF-M based application,
with secure boot and secure firmware update functionalities only.

SESIP Security evaluation standard for IoT platforms

SFN Secure function. An entry function to a secure service. Multiple SFN per SS are permitted.

SP Secure partition. A logical container for a single‑secure service.

SPE Secure processing environment PSA term. In TF-M this means the secure domain is protected by TF-M.

SPM Secure partition manager. The TF-M component is responsible for the enumeration, management, and isolation of
multiple secure partitions within the TEE.

SS Secure service. A component within the TEE that is atomic from a security or trust point of view, meaning which is
viewed as a single entity from a TF-M point of view.

SST Secure storage service. Secure storage service provided by TF-M.

SW Software

TBSA-M Trusted base system architecture for Arm® Cortex®-M

TFM In the STM32CubeU5 this is the name of the TF‑M‑based application with complete functionalities.

TF-M Trusted firmware for M-class Arm. TF‑M provides a reference implementation of secure world software for
Armv8‑M.

TOE Target of evaluation

WRP Write protection

UM2852
General information

UM2852 - Rev 1 page 3/27

2 Reference documents

Name Title/description

RM0456 Reference manual STM32U575/585 Arm®-based 32-bit MCUs (RM0456) – Revision 1

AN4992 Application note STM32 MCUs secure firmware install (SFI) overview (AN4992) – Revision 10

UM2237 User manual STM32CubeProgrammer software description (UM2237) – Revision 15

UM2851 User manual Getting started with STM32CubeU5 TF‑M applications (UM2851) – Revision 1

[Security Target] Security Target for STM32U585 family of device compliant with SESIP profile for PSA Certified
Level 3 – V1.0

[PSA_ST_API] PSA Storage API – 1.0.0

[PSA_CRYPTO_API] PSA Cryptography API – 1.0.0

[PSA_ATTESTATION_API] PSA Attestation API – 1.0.0

[IEE1149] EEE 1149.1 – 2013

[ADI5] Arm Debug Interface Architecture Specification ADIv5.0 to ADIv5.2

UM2852
Reference documents

UM2852 - Rev 1 page 4/27

https://www.st.com/resource/en/reference_manual/dm00477635.pdf
https://www.st.com/resource/en/application_note/dm00355688.pdf
https://www.st.com/resource/en/user_manual/dm00403500.pdf
https://www.st.com/resource/en/user_manual/dm00778528.pdf

3 Preparative procedures

This chapter describes the procedures to prepare the environment and the product before starting to use the
product or before testing the product:
• Secure acceptance: procedures to check the product to be tested
• Secure preparation of the operational environment: procedures to set up the environment needed to manage

and test the product.
• Secure installation: procedure to program and configure the product to be tested
• Tera Term connection preparation procedure: procedure to configure the Tera Term tool before starting to

test the product.

3.1 Secure acceptance
Secure acceptance is the process in which the user securely receives the TOE and verifies the integrity and
authenticity of all its components.
The TOE is distributed as an MCU with a source code package.
The integrator receives the MCU directly from ST via a secure courier.
To ensure that MCU is not manipulated during TOE delivery, the integrator must verify that the user Flash is virgin
(reading 0xFF everywhere with STM32CubeProgrammer) or must do an RDP regression (Level 1 -> level 0) that
erases the user Flash.
The software package can be obtained through the standard ST support channels.
Note that it is the responsibility of the integrator to choose the correct STM32CubeU5 MCU Package version.
• How to accept the STM32U585xx microcontroller: by reading, with STM32CubeProgrammer (for more

details, refer to UM2237), the DBGMCU_IDCODE register value (0x2001 6482) at the 0xE004 4000
base address (for more details, refer to RM0456), and the bits 0, 2, 5, and 7 of byte at the 0x0BFA 0501
base address in system memory that are all set:
– DBGMCU identity code register (DBGMCU_IDCODE)

◦ Base address: 0xE004 4000
◦ Address offset: 0x00
◦ Reset value: 0x2001 6482

• Bits [31:16] REV_ID[15:0]: revision 0x2001: revision X
• Bits [15:12] Reserved
• Bits [11:0] DEV_ID[11:0]: device identification
• 0x482: STM32U575/585

– System memory byte at 0x0BFA 0501 base address
◦ Bit 7 (DPA enable): 0b1
◦ Bit 5 (OTFDEC enable): 0b1
◦ Bit 2 (PKA enable): 0b1
◦ Bit 0 (AES enable): 0b1

• How to accept STM32Cube_FW_U585_Security_certification_V1.0.0 software package: By comparing the
SHA256 value of the STM32Cube_FW_U585_Security_certification_V1.0.0.exe file obtained with
the sha256sum.exe tool, to those in the [Security Target] document.

UM2852
Preparative procedures

UM2852 - Rev 1 page 5/27

• How to check the complete TOE once implemented on the STM32U585xx chip: By comparing values in the
[Security Target] document to the those that TOE provides through the PSA Initial Attestation services (psa_
initial_attest_get_token function):
– Hardware version: It contains the decimal format of REV_ID and DEV_ID fields of the

DBGMCU_IDCODE register that allows identifying the STM32U585xx hardware (04080202000001).
– Implementation ID: It contains the SHA256 value computed on the immutable software code

part of the TOE (TFM_SBSFU_Boot code binary data). Once TOE is configured, this value is
fixed as it corresponds to the immutable part of the TOE (excluding TOE personalization data).
This value changes in case the integrator changes the Flash memory layout of the regions
managed by the TOE or in case the integrator changes the TOE software configuration. Refer
to Section 4.2.1 User‑accessible functions and privileges (AGD_OPE.1.1C) to get details on the
software configuration.

– SPE measurement value: It contains the SHA256 value computed on the up-datable software code
part of the TOE (secure image code). This value is related to the TOE and can be verified only if the
secure application code is not changed (customized by the integrator at first installation or updated
through the secure update procedure). Any code changes in the code running in the security or
privilege domain (included in the TOE scope) and any code changes in the code running in the secured
or unprivileged domain (not included in the TOE scope) changes the value.

– NSPE measurement value: It contains the SHA256 value computed on the non-secure image code.
This value is not related to the TOE and is changed as soon as the non-secure image code is changed
(customized by the integrator at first installation or updated through the secure update procedure).

• These TOE values can be obtained with this procedure:
1. Run TFM User Application menu, then press #2 (Test TFM), then #7 (TFM - Test EAT).
2. Copy the token response in Middlewares\Third_Party\trustedfirmware\tools\iat-verif

ier\st_tools\eat.txt.
3. Decode token response, from Middlewares\Third_Party\trustedfirmware\tools\iat-ver

ifier\st_tools:
◦ python build.py cbor ./eat.txt ./eat.cbor
◦ check_iat -k ../../../../../../Projects/B-U585I-IOT02A/Applications/TFM/TFM_SBSFU_Boot/Src/

tfm_initial_attestation_key.pem ./eat.cbor -p
The measurement is decoded from the EAT token response obtained, and displayed.

3.2 Secure installation and secure preparation of the operational environment
(AGD_PRE.1.2C)
Installation of the TOE corresponds to generating the binary image and loading it into the MCU memory. In the
case of the B-U585I-IOT02A development board, this can be performed using the STM32CubeProgrammer via
USB and connecting to the target. Before this installation is possible, the integrator must implement some drivers
that are required by the TOE. In the case of the B-U585I-IOT02A development board, this implementation is
already provided in the software package.
This section describes the hardware and software setup procedures.

3.2.1 Hardware setup
To set up the hardware environment, the B-U585I-IOT02A development board must be connected to a personal
computer via a USB cable. This connection with the PC allows the user:
• Flashing the board
• Interacting with the board via a UART console
• Debugging when the protections are disabled

The ST-LINK firmware programmed on the development board must be the V3J8M3 version.

UM2852
Secure installation and secure preparation of the operational environment (AGD_PRE.1.2C)

UM2852 - Rev 1 page 6/27

3.2.2 Software setup
This section lists the minimum requirements for the developer to set up the SDK on
a Windows® 10 host, run the sample scenario and customize applications delivered in
STM32Cube_FW_U585_Security_certification_V1.0.0 software package.

STM32Cube_FW_U585_Security_certification_V1.0.0 software package

Copy STM32Cube_FW_U585_Security_certification_V1.0.0 software package on the Windows® host hard disk,
for example at C:\data, or any other path that is short enough and without any space.

Development toolchains and compilers

In the context of the security certification, the TFM tests are performed using IAR Systems® projects delivered in
the STM32Cube_FW_U585_Security_certification_V1.0.0 software package, so IAR Embedded Workbench® tool
(version 8.50.6) must be installed on the host, together with the IAR Embedded Workbench® patch to support
STM32U585xx devices (EWARMv8_STM32U57x-58x_V0.10.zip located in the software package in the Utili
ties\PC_Software\IDEs_Patches\EWARM directory).

Software tools for programming STM32 microcontrollers

STM32CubeProgrammer (STM32CubeProg) is an all-in-one multi-OS software tool for programming STM32
microcontrollers. It provides an easy-to-use and efficient environment for reading, writing, and verifying device
memory through both the debug interface (JTAG and SWD) and the bootloader interface (UART and USB).
STM32CubeProgrammer offers a wide range of features to program STM32 microcontroller internal memories
(such as Flash, RAM, and OTP) as well as external memories. STM32CubeProgrammer also allows option
programming and upload, programming content verification, and microcontroller programming automation through
scripting.
STM32CubeProgrammer is delivered in GUI (graphical user interface) and CLI (command-line interface) versions.
The STM32CubeProgrammer tool version to use for the TFM tests in the context of the security certification is
v2.8.0 (v2.8.0-A01 preliminary version).
For more details about STM32CubeProgrammer, refer to UM2237.

Terminal emulator

A terminal emulator software is needed to run the non-secure application. It allows displaying some debug
information to understand operations done by the embedded applications and it allows to interact with the
non‑secure application to trig some operations.
The example in this document is based on Tera Term, an open‑source free software terminal emulator that can
be downloaded from the https://osdn.net/projects/ttssh2/ webpage. Any other similar tool can be used instead
(Ymodem protocol support is required).

3.3 Secure installation
The STM32U585xx product preparation is done in 4 steps, to get a complete installation with security fully
activated, the 4 steps must be done as security protections are only configured at the very last step:
• Step 1: STM32U585xx chip initialization
• Step 2: Software compilation
• Step 3: Software programming into the STM32U585xx chip internal Flash memory
• Step 4: STM32U585xx static security protection configuration

Refer to UM2851, for the description of the four steps of the secure installation procedure.
In the context of security certification, the TFM_SBSFU_Boot project must be compiled in production mode.

UM2852
Secure installation

UM2852 - Rev 1 page 7/27

The certified configuration is the following:
• RDP level 2 with password capability
• Two firmware images
• Two slots per firmware image
• Image upgrade in overwrite mode
• Hardware‑accelerated cryptography enabled
• RSA 2048 asymmetric crypto scheme
• Image encryption in AES-CTR 128 mode enabled
• Internal Anti-tamper
• Standalone external loader capability
• Application RoT partition disabled

The option bytes configuration for the certified configuration is the following:
• RDP level 2
• SECBOOTADD0 = 0x180080 (0x0c004000 address)
• NSBOOTADD0 = SECBOOTADD0
• NSBOOTADD1 = SECBOOTADD0
• BOOT_LOCK set
• SECWM1 enabled, with SECWM1_PSTRT = 0 (0x08000000 address) and SECWM1_PEND = 0x28

(0x08050000 address)
• HDP1 enabled, with HDP1_PEND = 0xa (0x0c015fff address)
• WRP1A enabled, with WRP1A_PSTRT = 0x1 (0x08002000 address) and WRP1A_END = 0xb

(0x08016000 address), and WRP1A locked (UNLOCK_1A unchecked)
• SECWM2 disabled
• HDP2 disabled
• WRP2A enabled with WRP2A_PSTRT = 0x1 (0x08002000 address) and WRP1A_END = 0xb

(0x08016000 address)

The Flash memory layout for the certified configuration is shown in Figure 1.

Figure 1. Flash memory layout for certified configuration

UM2852
Secure installation

UM2852 - Rev 1 page 8/27

4 Operational user guidance

4.1 User roles
The following user roles are distinguished for this TOE:
• Integrator

The integrator is the one to receive the TOE, perform the preparative procedures as described in
Section 3 Preparative procedures, and integrate the TOE into a full IoT solution. The user operational guidance
is described in Section 4.2 Operational guidance for the integrator role.
The integrator is responsible for personalizing the product data and for configuring the security of their product
following the guidelines provided by STMicroelectronics.
The integrator has full access to the source code delivered in the software package, has full access to the
STM32U585xx chip security features (The STM32U585xx chip is delivered as a virgin state without any security
features activated) that will be integrated on its board and has full access to the tools needed to program the
TOE.

4.2 Operational guidance for the integrator role

4.2.1 User‑accessible functions and privileges (AGD_OPE.1.1C)
The main task of the integrator is to integrate the TOE into a full IoT solution. To this end, the system integrator
has access to interfaces that are unavailable for other users, as described in Section 4.2.2 Available interfaces
and methods of use (AGD_OPE.1.2C and AGD_OPE.1.3C). The integrator can also change some parts outside
or inside the TOE, nevertheless, some changes may impact the certified configuration of the TOE. The TOE
scope evaluated covers all parts located in the secure domain except the part located in the secure unprivileged
domain that is isolated from the secure privilege domain:

Figure 2. TOE scope

Follow procedures described in Section 3.1 Secure acceptance to check if the TOE in the certified configuration
is used. The certified configuration of the TOE may be impacted when changing some parts of the TOE but may
also be impacted when changing some parts located outside the TOE scope. This section describes changes that
the integrator can do and clarify what is covered in the scope of the evaluation and what may impact the certified
configuration of the TOE.
The integrator must follow the guidelines described in that section, as a failure to do so means that the TOE is not
used in the certified configuration.

UM2852
Operational user guidance

UM2852 - Rev 1 page 9/27

RDP Level

The TOE is certified in RDP level 2 with an OEM2 password. The OEM2 password gives the flexibility in a
first step to perform RDP regression from level 2 to level 1, then to perform RDP regression from level 1 to
level 0 (provoking a Flash memory mass erasure) in a second step. It must be noticed that at the RDP level
1 intermediate state, the TOE is not anymore in the certified configuration whereas the security assets are still
present in Flash memory (personalized data area). The integrator has the privilege and responsibility to provide
its OEM2 password (64 bits) when the RDP level is still 0. The OEM2 password can be provisioned using
the STM32CubeProgrammer CLI command. To provision 0xFACEB00C 0xDEADBABE OEM2 password example
value, the STM32CubeProgrammer CLI command is:

 ./STM32_Programmer_CLI -c port=SWD mode=UR --hardRst -lockRDP2 0xFACEB00C 0xDEADBABE

In case the OEM2 password is not defined, then RDP level 2 is a final state, it is not possible to perform any RDP
regression. To use the certified configuration, the integrator must set the RDP to Level 2. The usage or not of the
OEM2 password is also part of the certified configuration.

Number of images

The TOE is certified in 2 images configuration. In this configuration, there are two distinct firmware images
for the secure and non‑secure applications, so that the firmware images are smaller, and the secure
and non‑secure images can be managed by two distinct entities. This configuration is achieved thanks to
MCUBOOT_IMAGE_NUMBER defined in Linker\flash_layout.h file.

#define MCUBOOT_IMAGE_NUMBER 2 /* 1: S and NS application binaries are assembled in one
single image.
 2: Two separated images for S and NS application binaries.
*/

It is possible to configure the number of images to one single image where the secure and non‑secure
applications are assembled so that the boot time is reduced. The laboratory has assessed the security of
both single and separate images. However, to use the certified configuration, SPE and NSPE images must be
separated.

Slot mode

The TOE is certified in primary and secondary slots configuration. In this configuration, for each image, there is a
primary slot for firmware image execution and a secondary slot for firmware image download in the Flash memory
layout. This configuration allows performing over‑the‑air firmware image updates, as the download of an image in
a secondary slot can be performed by firmware image executing in the primary slot. To get this configuration, the
define MCUBOOT_PRIMARY_ONLY line must be commented in Linker\flash_layout.h file.

/* #define MCUBOOT_PRIMARY_ONLY */ /* Defined: No secondary (download) slot(s), only primary
slot(s) for each image.
 Undefined: Primary and secondary slot(s) for each
image. */

It is possible to configure the slot mode to a primary only slot, for which the slot area size can be maximized,
but over‑the‑air firmware update is not possible, as it is impossible to download the image in a slot where the
application is executing. The laboratory has assessed the security of primary‑only slot configuration and primary
and secondary slots configuration. However, to use the certified configuration, the integrator must use both
primary and secondary slots configuration.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 10/27

Image upgrade strategy

The TOE is certified in overwrite mode as an image upgrade strategy (Image upgrade strategy is applicable only
in the case of primary and secondary slots mode). In this configuration, the new image in a secondary slot is
copied into the primary slot by overwriting the previous image, during the firmware upgrade process. There is
no possibility to revert to the previous image version, once the new version is successfully installed. To get this
configuration, the define MCUBOOT_OVERWRITE_ONLY line must be activated in Linker\flash_layout.h
file.

#define MCUBOOT_OVERWRITE_ONLY /* Defined: the FW installation uses overwrite method.
 Undefined: The FW installation uses swap mode. */

It is possible to configure the image upgrade strategy to swap mode. In this configuration, the new image in the
secondary slot is swapped with the previous image in the primary slot during the image upgrade process. After
the swap, a new image in the primary slot must be auto‑validated by the newly installed image at first execution,
otherwise, at the next boot, the images are swapped back. The flexibility for an integrator to change the image
upgrade strategy to swap mode without compromising the TOE security does not fall within the scope of this
evaluation and it is not the certified configuration.

Hardware‑accelerated cryptography

The TOE is certified with hardware‑accelerated cryptography enabled for secure boot and secure firmware
update process, and TFM cryptography secure services at run time. The hardware‑accelerated cryptography
improves performances and is resistant to side‑channel attacks. The activation of the cryptography hardware
accelerators for secure boot and secure firmware update process is achieved by enabling the define
BL2_HW_ACCEL_ENABLE in TFM_SBSFU_Boot\Inc\config-boot.h file.

/* HW accelerators activation in BL2 */
#define BL2_HW_ACCEL_ENABLE

The activation of the cryptography hardware accelerators for TFM secure cryptography services at run time is
achieved by activating the define TFM_HW_ACCEL_ENABLE in the TFM_Appli\Inc\tfm_mbedcrypto_conf
ig.h file.

/* HW accelerators activation in TFM */
#define TFM_HW_ACCEL_ENABLE

It is possible to disable hardware‑accelerated cryptography so that cryptography operations are purely performed
in software. The flexibility for an integrator to disable the hardware accelerators in the bootloader or TFM
cryptographic secure services without compromising the TOE security does not fall within the scope of this
evaluation and it is not the certified configuration.

Crypto scheme

The TOE is certified in RSA 2048 asymmetric crypto‑scheme configuration. In this configuration, the firmware
images are signed using the RSA‑2048 algorithm. This crypto‑scheme provides a good trade‑off between boot
time performance and security level. This configuration is achieved thanks to the define CRYPTO_SCHEME line
in the TFM_SBSFU_Boot\Inc\mcuboot_config\mcuboot_config.h file.

#define CRYPTO_SCHEME_RSA2048 0x0 /* RSA-2048 signature,
 AES-CTR-128 encryption with key RSA-OAEP encrypted */
#define CRYPTO_SCHEME_RSA3072 0x1 /* RSA-3072 signature,
 AES-CTR-128 encryption with key RSA-OAEP encrypted */
#define CRYPTO_SCHEME_EC256 0x2 /* ECDSA-256 signature,
 AES-CTR-128 encryption with key ECIES-P256 encrypted */
#define CRYPTO_SCHEME CRYPTO_SCHEME_RSA2048 /* Select one of the available crypto schemes */

It is possible to select another asymmetric crypto‑scheme: RSA‑3072 or ECDSA‑256. The laboratory has
assessed the security of the following crypto schemes: RSA‑2048, RSA‑3072, and ECDSA‑256. However, to use
the certified configuration, the integrator must set the platform to use the RSA‑2048 asymmetric crypto‑scheme
for image verification.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 11/27

Image encryption

The TOE is certified with image encryption capability enabled and with the use of encrypted firmware images.
In a configuration with image encrypted capability enabled, the firmware image can be provided either in clear
format or in AES‑CTR‑128 encrypted format. The encrypted format ensures the confidentiality of image data. The
flexibility for an integrator to use a clear image without compromising the TOE security does not fall within the
scope of this evaluation, and it is not the certified configuration. The image encryption capability configuration is
achieved by define MCUBOOT_ENC_IMAGES in TFM_SBSFU_Boot\Inc\mcuboot_config\mcuboot_confi
g.h file.

#define MCUBOOT_ENC_IMAGES /* Defined: Image encryption enabled. */

It is possible to disable image encryption support to reduce the memory footprint of the TFM_SBSFU_Boot
application. The flexibility for an integrator to disable the image encryption support without compromising the TOE
security does not fall within the scope of this evaluation, and it is not the certified configuration.

Anti-tamper

The TOE is certified with internal tampers detection configuration. In this configuration, the anti‑tamper protection
is monitoring backup domain voltage threshold and cryptograpic IPs fault (SAES or AES or PKA or TRNG). This
configuration is achieved thanks to define TFM_TAMPER_ENABLE set to INTERNAL_TAMPER_ONLY in the TFM
_SBSFU_Boot\Inc\boot_hal_cfg.h file.

#define NO_TAMPER (0) /*!< No tamper activated */
#define INTERNAL_TAMPER_ONLY (1) /*!< Only Internal tamper activated */
#define ALL_TAMPER (2) /*!< Internal and External tamper
activated */
#define TFM_TAMPER_ENABLE INTERNAL_TAMPER_ONLY /*!< TAMPER configuration flag */

It is possible to enable more tamper detection (enable also external tamper detection, or enable additional internal
tamper detection).
The flexibility for an integrator to enable more tamper detection without compromising the TOE security falls within
the scope of this evaluation, but it is not the certified configuration (Implementation ID value is changed, refer to
Section 3.1 Secure acceptance).
It is also possible to disable internal tamper detection. The flexibility for an integrator to disable internal tamper
detection without compromising the TOE security does not fall within the scope of this evaluation, and it is not the
certified configuration.

Standalone external loader capability

The TOE is certified with standalone external loader capability enabled. In this configuration, in case there is no
valid image installed in primary slot and no new valid image candidate in the secondary slot, or in case of user
button pressed during reset on the B-U585I-IOT02A board (GPIO port C, pin 13 state set), then the TOE is hiding
the security assets before jumping to the non-secure standalone external loader application. Then the standalone
external loader allows downloading a new firmware image.
This configuration is achieved by define MCUBOOT_EXT_LOADER in Linker\flash_layout.h file.

#define MCUBOOT_EXT_LOADER /* Defined: Add external local loader application.
 To enter it, press the user button at reset.
 Undefined: No external local loader application. */

The integrator can change the external loader implementation such as using another communication channel than
UART or using another protocol than YModem. The laboratory has assessed the security of using or not the
standalone loader application. Even though the standalone loader application is outside the TOE and has very
limited permissions (immutable trusted code located in the non-secure domain), to use the certified configuration,
the integrator has to use a standalone loader application without any modifications. If despite everything the
integrator wishes to replace the standalone loader with his loader, he will have to integrate this code into his
certification scheme.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 12/27

TOE specific information personalization

The integrator has also the privilege and responsibility of configuring cryptographic keys used by the TOE
to authenticate Secure Image and non-secure image and of configuring information (cryptographic keys and
instance ID) used by the TOE to compute the token value for the platform attestation. All information must be
kept confidential until it is provisioned inside the STM32U585xx chip and until STM32U585xx IC security is fully
activated. Once the STM32U585xx IC security is fully activated, the confidentiality of product security assets is
ensured by STM32U585xx IC security protections. However, if the customer cannot rely on a trusted environment
(such as trusted manufacturing) to provision the data and to activate the STM32U585xx IC security protection,
then the secure firmware installation service (refer to document AN4992) embedded inside STM32U585xx may
be used. Any failure in this responsibility can result in the creation of malicious firmware or can result in computing
wrong information to attest the Identification of platform type and the Identification of individual platform, which
violate the assumptions made in the security target. The integrator must therefore implement appropriate security
measures for the environment to protect the keys involved in the signature of the IoT application binary and the
information involved in the Entity attestation token computation.
To personalize that information, the integrator must build the Integrator Perso data binary data and program it
in the region Integrator Perso data area as defined in Section 3.3 Secure installation. For details on how to
personalize the Integrator Perso data area, refer to UM2851.
The personalization of the Integrator Perso data is in the scope of the certified configuration.

Integrator specific secure functions integration

The integrator can choose to enable the application RoT partition and add his secure functions specific to its
product inside the secure domain in the unprivileged part (isolated execution domain configured by the TOE).
The integrator must use the PSA API to access the TOE and must comply with TOE rules to export those new
secured services to the non-secure application. The integrator must adapt the memory layout in case the size of
the secure application is bigger than the secure image primary slot size.
The TOE is certified without any secured functions inside the application RoT. To get this configuration, the
compilation option TFM_PARTITION_APP_ROT must be de-activated in the Linker\flash_layout.h file.

/* #define TFM_PARTITION_APP_ROT */ /* comment to remove APP_ROT partition */

The flexibility for an integrator to add his secured services in the isolated secure or unprivileged domain managed
by the TOE without compromising the TOE security falls within the scope of this evaluation but it is not the
certified configuration (SHA256 value of the secure application is changed, refer to Section 3.1 Secure
acceptance).

Secure Storage size change

The integrator can also choose to change the size of secure storage areas located in the TOE (size of the
protected storage area used by the Protected Storage API of the TOE or size of the internal trusted storage area
used by the Internal Trusted Storage API). The laboratory has assessed the security of modifying the size of the
secure storage area. However, to use the certified configuration, the integrator cannot modify the secure storage
size.

Non-secure application change

The integrator can also choose to change the non-secure application by his non-secure application without
changing the Flash memory layout as defined in UM2851. The certified configuration allows the installation of any
non‑secure application.

Non-secure application size change

The integrator can also choose to change the size of the non-secure application, meaning change the global
internal Flash or SRAM layout defined in UM2851.
The laboratory has assessed the security of modifying the non‑secure image slot size. However, to use the
certified configuration, it is not allowed to modify the size of non‑secure image slots.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 13/27

External memories use

The integrator can also choose to use external Flash or SRAM memories for its non-secure application. To use
the certified configuration, it is not allowed to use external memories for non-secure applications.

TOE functions changes

Finally, the integrator can choose to modify functions implemented in software in the TOE (such as replacing
some cryptographic functionality with a different implementation or such as removing some functions of the TOE
that are not used by the application to save memory). Any changes in the software code of the TOE cannot and
do not fall within the scope of this evaluation and it is not the certified configuration.

4.2.2 Available interfaces and methods of use (AGD_OPE.1.2C and AGD_OPE.1.3C)
The integrator can access different interfaces to develop its product:
• Physical chip interface
• Secure image secondary slot interface
• Non‑secure image secondary slot interface
• PSA API interface
• JTAG interface
• GPIO port C pin 13, corresponding to the user button on the B-U585I-IOT02A development board

There are no particular instructions regarding effective use or security parameters under the control of the user, as
these are functional interfaces not directly related to security functionality. TOE implements several mechanisms
to validate inputs received to ensure that secured or privileged data or code are well protected. However,
the integrator is warned that extending the security services in the secure or unprivileged domain (so-called
Application RoT services) may compromise any other security services or any hardware resources configured
in a secure or unprivileged domain as there is no isolation between each secure service inside the secure or
unprivileged domain. Therefore:
• Any input received from an IoT application, bounds checking, for example, must be validated within the

Application RoT services API.
• The integrator must be aware of what data is sent to the IoT application and must ensure that there is no

unintentional leak of sensitive information.
• Properly handle errors - always check a result or status code returned by a function.
• Always initialize or clear allocated memory – do not rely on uninitialized data, prevent leakage of residual

information.
• The API extension must not modify any global system variables. It is permitted to use only local private

variables and memory allocated or mapped by the API extension itself and care must be taken not to reveal
sensitive system variable values (ie keys).

• The source code of the API extension must be reviewed and thoroughly tested.
• Static analysis tools must be used to avoid common bugs such as null pointer dereference, memory leaks,

and buffer overflows or overruns.
• A secure coding standard such as MITRE, CWE, or CERT, must be utilized to avoid common pitfalls and to

improve code readability and maintainability.
• As the TOE is delivered in the shape of source code, as opposed to a compiled binary image, the integrator

may choose to use other interfaces than the ones described above. Using other interfaces does not fall
within the certified configuration and would constitute a failure to implement the TRUSTED_INTEGRATOR
environment objective.

Physical chip interface

After each product power-on or reset (refer to RM0456 to get details about power-on and reset procedure), TOE
starts to execute the TFM immutable TFM_SBSFU_Boot application (corresponding to the code located at the fix
secure entry point defined for the TOE) that manages the secure initialization of the platform.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 14/27

Method of use:
• Power-on the system as defined in RM0456.
• Reset the STM32U585xx as defined in RM0456.
• “Running” non‑secure application generates a reset (ArmV8 reset instruction or operation).

Parameters:
• Not applicable

Actions:
• Execute code located at the fixed secure entry point (SECBOOTADD0 address) defined for the TOE as

described in UM2851. TOE is configured to locate the immutable TFM_SBSFU_Boot application at the
secure fix entry point. The TFM_SBSFU_Boot application executes first the Secure Boot function and then
the Secure Firmware Update function. The Secure Boot function manages the secure initialization of the
platform and the Secure Firmware Update checks in the secure image secondary and non‑secure image
secondary slots if there are any candidate images to be analyzed.

Errors:
• STM32U585xx option bytes values violation: In case STM32U585xx option bytes values are not correctly

configured to ensure TOE security, the TOE secure boot procedure detects the problem and blocks the TOE
secure boot procedure execution (Reset is generated, except for the case of RDP option bytes value for
which infinite loop is executed in the secure domain).

Secure image secondary slot interface

The Secure image secondary slot is used to implement the remote firmware update functionality of the secure
image by triggering the bootloader image upgrade process. It is a memory area where a new candidate of the
secure image is placed by writing into it, using the non‑secure application either via a physical interface or either
via a wireless interface or using the standalone external loader application via a physical interface. After any
product reset, if magic 16 bytes are present at slot area end location, the TOE attempts to interpret the data as a
candidate image and applies it to the secure image primary slot in case it is correctly verified. If a candidate image
is analyzed as not valid (authenticity and integrity) then image data are deleted from the secure image secondary
slot.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 15/27

Method of use:
• The secure image secondary slot region is located at address FLASH_AREA_2_OFFSET (defined in TFM\

Linker\flash_layout.h file), as described in Figure 3. To use the secure image secondary slot, data
must be written in the correct image format in the secure Image secondary slot area and the Magic 16 bytes
must be written in the slot area end location as described in Figure 4.

Figure 3. Flash layout

Figure 4. Image format

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 16/27

Parameters:
• The candidate image is written in the secure image secondary slot.

Actions:
• At each product reset TOE (TFM_SBSFU_Boot application) checks if a new image is pre-loaded by a

non‑secure application or the standalone external loader application in the secure image secondary slot.
The new secure image must be programmed at the beginning of the secure Image secondary slot and
must comply with the image format (image header, image payload, and image TLV) as defined by the TF
M_SBSFU_Boot application. When compiling TFM_Appli secure project delivered in the software package,
the TFM_Appli secure signed binary with the right format is automatically generated (TFM_Appli\Binar
y\tfm_s_enc_sign.bin for encrypted image). When a new image is detected, the TFM_SBSFU_Boot
application launches the update procedure of the secure Image (that verifies the data before updating the
firmware).

Errors:
• The candidate image is not installed in the secure image primary slot in the case of the following errors:

– Version dependency failure: The version of the secure image is non‑consistent with the version of the
non‑secure image.

• The candidate image is not installed in the secure Image primary slot and is erased from the secure Image
secondary slot in the case of the following errors:
– Image size not consistent
– Flash reading errors (double ECC errors)
– Version check failure: The image version is lower than the previous valid image installed.
– Image signature failure: image not authentic

• The candidate image is not installed in the secure image primary slot and TOE is resetting:
– Flash writing or erasing error may be reported by the Flash driver used by the application to write data

in the secure Image primary slot area.

Non‑secure image secondary slot interface

The non‑secure image secondary slot is used to implement the remote firmware update functionality of the
non‑secure image by triggering the bootloader image upgrade process. It is a memory area where a new
candidate of the non‑secure image is placed by writing into it, using the non‑secure application either via a
physical interface or either via a wireless interface or using the standalone external loader application via a
physical interface. After any product reset, if magic 16 bytes are present at the slot area end location, the TOE
attempts to interpret the data as a candidate image and applies it to the non‑secure image primary slot in case it
is correctly verified. If a candidate image is analyzed as not valid (authenticity and integrity) then image data are
deleted from the non‑secure image secondary slot.
Method of use:
• The non‑secure Image secondary slot region is located at the address FLASH_AREA_3_OFFSET in the de

fined in TFM\Linker\flash_layout.h file, as described in Figure 3. To use the non‑secure Image
secondary slot, data must be written in the correct image format in the non‑secure image secondary slot
area and the Magic 16 bytes must be written in the slot area end location, as described in Figure 4.

Parameters:
• The candidate image is written in the non‑secure image secondary slot.

Actions:
• At each product reset TOE (TFM_SBSFU_Boot application) checks if a new image is pre‑loaded by a

non‑secure application or the standalone external loader application in the secure image secondary slot.
The new non‑secure image must be programmed at the beginning of the non‑secure image secondary slot
and must comply with the image format (image header, image payload, and image TLV) as defined by the
TFM_SBSFU_Boot application. When compiling TFM_Appli non‑secure project delivered in the software
package, the TFM_Appli non‑secure signed binary with the right format is automatically generated (TF
M_Appli\Binary\tfm_ns_enc_sign.bin for encrypted image). When a new image is detected, the
TFM_SBSFU_Boot application launches the update procedure of the non‑secure image that verifies the data
before updating the firmware.

Errors:

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 17/27

The candidate image is not installed in the non‑secure image primary slot in the case of the following errors:
• Version dependency failure: The version of the non‑secure image is non‑consistent with the version of the

secure image.

The candidate image is not installed in the non‑secure image primary slot and is erased from the non‑secure
image secondary slot in the case of the following errors:
• Image size not consistent
• Flash reading errors (double ECC errors)
• Version check failure: The image version is lower than the previous valid image installed.
• Image signature failure: The image is not authentic.

The candidate image is not installed in the non‑secure image primary slot and TOE is resetting:
• A Flash writing or erasing error may be reported by the Flash driver used by the application to write data in

the non‑secure image primary slot area.

PSA API interface

The PSA API interfaces the secure services hosted in the secure application ROT. These API are used (or
called) by the Non‑secure world, but can also be called by the secure application ROT(secure services running
in secure domain with unprivileged rights), it provides a programmatic interface to trigger secure functionalities
running in secure domain with privileged rights. The integrator calls these C APIs and builds a completely
secure application by compiling the TOE source code with application RoT code. The detailed parameters,
actions, and error messages are described in the PSA developer APIs [PSA_ST_API], [PSA_CRYPTO_API], and
[PSA_ATTESTATION_API].
The non‑secure application interacts with the secure application via the standard PSA APIs as described in the
Open Source documents [PSA_ST_API], [PSA_CRYPTO_API], and [PSA_ATTESTATION_API] which describe
each PSA API. As an example, psa_cipher_decrypt API is illustrated hereafter:
Method of use:
• Call the following function.

Parameters:

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 18/27

Actions:

Errors:

JTAG interface

Standard JTAG with SWD interface allows debugging of the TOE and integrator application. It is used according
to IEE1149 and ADI5. When RDP is Level 2 and OEM2 password is provisioned, all debug features are disabled.
JTAG/SWD remains enabled under reset only to inject OEM2 password to request RDP regression to level 1.
Method of use:
• When RDP is Level 2, inject the OEM2 password through JTAG/SWD. This can be done using

STM32CubeProgrammer CLI command:

./STM32_Programmer_CLI -c port=SWD mode=UR --hardRst -unlockRDP2 <OEM2 password>
• OEM2 password must first be provisioned when RDP is level 0. This can be done using

STM32CubeProgrammer CLI command:

./STM32_Programmer_CLI -c port=SWD mode=UR --hardRst -lockRDP2 <OEM2 password>

Parameters:
• OEM2 password (64 bits). Example value: <OEM2 password>: 0xFACEB00C 0xDEADBABE
Actions:
• When RDP is level 2, and OEM2 password is injected through JTAG/SWD, then RDP is changed from level

2 to level 1.

Errors:
• RDP level remains set to level 2, in case of wrong provided OEM2 password.
• RDP level remains set to level 2, in case the OEM2 password is not previously provisioned.

GPIO port C, pin 13 (corresponding to the user button on the B-U585I-IOT02A development board)

After each product reset, TOE is checking the state of GPIO port C pin 13. Depending on the pin state, the TOE
can start a standalone external loader application instead of starting the secure or non‑secure firmware images.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 19/27

Method of use:
• Reset the STM32U585xx as defined in RM0456.
• Set the GPIO port C pin 13 (Press the user button on the B-U585I-IOT02A development board) when the

TFM_SBSFU_Boot application is starting to execute.

Parameters:
• None

Actions:
• After having checked the static protections and configured the dynamic protections, the TOE starts

standalone external loader.
• The standalone external loader application allows the user to download a new firmware image.

Errors:
• The standalone local loader execution is failing in the case of corrupted Flash content where the loader

application is located.

4.2.3 Security-relevant events (AGD_OPE.1.4C)
Once configured, TOE detects any unauthorized access and any unexpected configuration as described
hereafter:
• Secure peripheral access violation from any non-secure domain masters (CPU or other masters) is detected

and generates a reset.
• Secure Memories access violation from non-secure domain generates a reset: non‑secure domain (CPU or

other Masters) accessing secure memories (Flash or SRAM) without going through the secure domain entry
point, which means calling the secure callable functions exported to the non-secure domain.

• Secure memory or peripheral access privilege violation resets the product: secure unprivileged domain
(CPU) accessing Secure privilege domain (memory or peripheral) without going through privilege domain
entry point, which means calling the SVC call function.

• Secure DMA privilege access violation:
– Secure DMA privilege access violation on privilege peripherals from the secure unprivileged domain is

transparent (a silent‑fail mechanism):
◦ Any read operations return 0
◦ Any write operations are ignored

– Secure DMA privilege access violation on privilege memories from the secure unprivileged domain is
transparent (a silent‑fail mechanism), so DMA can be used in the secure unprivileged domain with the
current implementation of the TOE.

• Root of Trust Access violation during application execution: Once Root of Trust (immutable
TFM_SBSFU_Boot application managing the secure boot and secure firmware update functions) execution
is finished, it is no more possible to access this area:
– Any access violation from Non-Secure generates a reset as there is no secure callable entry point

exported to enter this secure region.
– Any access violation from Secure privilege or unprivileged domains has no effects:

◦ Any read operations return 0
◦ Any write operations are ignored
◦ Any execution operations are ignored (0X00 Amrv8 operation corresponding to a NOP)

• Images authenticity or integrity violation: in case of corrupted image authenticity or integrity (one of the
images or the 2 images), it is detected during the TOE secure boot procedure launched after any product
reset and the TOE does not start to execute the corrupted images but starts to execute the non‑secure
immutable standalone external loader in a non‑secure area. Using this standalone external loader, new valid
image(s) can be downloaded in the image(s) secondary slots. Once downloaded, these new images are
verified and installed. In case images are corrupted during the application execution, then the problem is
detected at the next product reset.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 20/27

• STM32U585xx option bytes values violation: in case STM32U585xx option bytes values are not correctly
configured to ensure the TOE security, the TOE secure boot procedure after reset detects the problem and
blocks the TOE secure boot procedure execution: Reset is generated, except for the case of RDP option
bytes value for which infinite loop is executed in the secure domain. To unlock the product, STM32U585xx
option bytes must be correctly programmed and the product must be reset.

• PSA APIs violation: Any calls to PSA APIs go through a secure or privilege fix entry point managed by the
TOE. The TOE secure or privileged entry point controls the access to each TF-M Secure Partition, from the
non-secure application or the secure or non-privileged services, by checking the validity of parameters of
any operation requested. Any PSA APIs access violations (secure or privilege) result in an infinite loop in the
secure domain.

• JTAG access violation: Once TOE security is fully configured, the product cannot be debugged via the JTAG
interface anymore:
– With RDP set to Level 2, JTAG connection is only possible to inject OEM2 password and to obtain

device identification, which means any other usage like debug is not possible.
• Tampering attempt: STM32U585xx anti‑tamper mechanisms are activated in the TOE for internal tamper

events on backup voltage domain and cryptographic IP faults. The product is reset in case of any tampering
attempt detected by the TOE.

• RDP regression:
– With the RDP set to level 2 and OEM2 password provisioned, it is possible to do an RDP regression

to level 1 by injecting the OEM2 password on JTAG/SWD interface. Once RDP level 1 is achieved, the
TOE is blocking the boot process and enters an infinite loop in the secure domain, as the verification
of the static protection RDP level is not matching expected RDP level 2 anymore. It is then possible
to perform RDP regression to level 0 which erases all Flash and protected memories (SRAM2 and
back-up registers) and all peripheral registers.

– Any wrong OEM2 password injection on JTAG/SWD interface when RDP is set to level 2 raises an
intrusion signal, blocking access to all protected memories (Flash, protected SRAMs, and back-up
registers).

• Protection against debugging:
– In RDP level 2 with OEM2 password, debug via JTAG is not possible. Nevertheless, with RDP Level

2 with OEM2 password provisioned, it is still possible to go back to RDP level 1 by injecting OEM2
password via JTAG interface, then to RDP level 0. (all memories erased first)

– Intrusion signal raised as soon we connect JTAG, blocking access to all protected memories (Flash,
protected SRAMs, and back-up registers).

4.2.4 Security measures (AGD_OPE.1.6C)
To achieve the TRUSTED_INTEGRATOR, the following measures must be taken:
• Follow all guidelines described and referenced in Section 3.2 Secure installation and secure preparation of

the operational environment (AGD_PRE.1.2C).
• Follow all guidelines described in Section 4.2.1 User‑accessible functions and privileges (AGD_OPE.1.1C)

and Section 4.2.2 Available interfaces and methods of use (AGD_OPE.1.2C and AGD_OPE.1.3C)
regarding the implementation of the required user drivers.

• Once the integrator finishes its IoT device development and wants to start to validate the complete product
with the security fully activated, he must compile the TOE in production mode (that is TFM_DEV_MODE
compilation switch disabled) as stated in Section 3.3 Secure installation to validate the IoT device in the
final security configuration.

• Once the integrator finishes its IoT device development and wants to start the production, the integrator
must securely provision the TOE immutable data specific to the integrator or specific to the product as
stated in section TOE specific information personalization of Section 4.2.1 User‑accessible functions and
privileges (AGD_OPE.1.1C).

• Once the integrator finishes production of a final IoT device, he must set the STM32U585xx hardware static
protections as stated in Section 3.3 Secure installation to disable JTAG interface debug capability (RDP
level2 with OEM2 password) and to lock the STM32U585xx hardware static protections (with RDP Level 2
all option bytes are locked by STM32U585xx hardware).

To achieve TOE_SECRETS, the following measures must be taken:
• The integrator must protect the integrity and confidentiality of the private cryptographic keys used to build

new authentic firmware images.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 21/27

• The integrator must protect the integrity of the immutable part of the TOE (TFM_SBSFU_Boot application)
until it is programmed and well protected inside the TOE of each device.

• The persons responsible for the application of the procedures described in Section 3 Preparative
procedures, and the persons involved in the delivery and protection of the product must have the required
skills and must be aware of the security issues.

• In the case that any part of the preparative procedures of the TOE or any part of the preparative procedures
of the integrated IoT solution is executed by a party other than the integrator, the integrator must guarantee
that sufficient guidance is provided to this party.

To achieve TOE_PERSONALIZATION, the following measures must be taken:
• As described in section TOE specific information personalization of Section 4.2.1 User‑accessible functions

and privileges (AGD_OPE.1.1C), some TOE immutable data are unique per product (EAT public key, EAT
private key). It is recommended that the integrator puts in place a system (a database for instance) ensuring
new unique data generation. HUK is hidden in hardware and is unique per chip, there is no need for the
integrator to provision it.

• The integrator must protect the integrity of all the TOE personalization data until they are provisioned and
well protected inside the TOE of each device. Moreover, the integrator must protect the confidentiality of the
private cryptographic keys that are included in the TOE personalization data.

• Once TOE immutable data are generated for a new product, the integrator must program them in the
right format at the location and must protect them (write protection and security protection) as described in
Section 3.3 Secure installation.

4.2.5 Modes of operation (AGD_OPE.1.5C)
The TOE operates after product reset by executing the TOE immutable TFM_SBSFU_Boot application, the only
interfaces are the Flash memory slots where new images can be downloaded (non‑secure application and the
non‑secure image secondary slots). In case a new image to install is available then TOE verifies it and installs
it. In case there is no new image to be installed, TOE verifies the installed images from a former secure or
non‑secure application. If the installed images are valid then the TOE immutable TFM_SBSFU_Boot application
starts the secure application of the TOE. Once the secure application is correctly initialized, the secure application
starts the non-secure application. The non-secure application uses the PSA APIs exported by the TOE to securely
enter the TOE to execute secure services.
In case there are no valid images, which means a valid secure image or a valid non-secure image installed and
no new images in the secure image secondary slot or the non‑secure image secondary slot to be installed, the
TOE jumps to the standalone external loader application. This standalone external loader application can be used
to download new images in the non‑secure image secondary slot or the secure image secondary slot.
In case STM32U585xx option bytes values are not correctly configured to ensure the TOE security, the TOE
secure boot procedure after reset detects the problem blocks the TOE secure boot procedure execution and
generates a reset. To unlock the product, STM32U585xx option bytes must be programmed to the expected
configuration in case the RDP Level is still 0. They must be completely re-programmed (after doing an RDP
regression to level 1 by injecting OEM2 password, then RDP regression to level 0, that fully erases the
STM32U585xx Flash memories) in case RDP Level is 2 for the TOE, follow the preparation procedure as
described in Section 3.3 Secure installation.
In case TOE detects any violation, as described in Section 4.2.3 Security-relevant events (AGD_OPE.1.4C), the
TOE generates a reset.

UM2852
Operational guidance for the integrator role

UM2852 - Rev 1 page 22/27

Revision history

Table 2. Document revision history

Date Revision Changes

30-Jun-2021 1 Initial release.

UM2852

UM2852 - Rev 1 page 23/27

Contents

1 General information .2

2 Reference documents .4

3 Preparative procedures .5

3.1 Secure acceptance . 5

3.2 Secure installation and secure preparation of the operational environment (AGD_PRE.1.2C)
. 6

3.2.1 Hardware setup. 6

3.2.2 Software setup . 7

3.3 Secure installation. 7

4 Operational user guidance .9

4.1 User roles. 9

4.2 Operational guidance for the integrator role. 9

4.2.1 User‑accessible functions and privileges (AGD_OPE.1.1C) . 9

4.2.2 Available interfaces and methods of use (AGD_OPE.1.2C and AGD_OPE.1.3C). 14

4.2.3 Security-relevant events (AGD_OPE.1.4C). 20

4.2.4 Security measures (AGD_OPE.1.6C) . 21

4.2.5 Modes of operation (AGD_OPE.1.5C) . 22

Revision history .23

Contents .24

List of tables .25

List of figures. .26

UM2852
Contents

UM2852 - Rev 1 page 24/27

List of tables
Table 1. List of acronyms . 3
Table 2. Document revision history . 23

UM2852
List of tables

UM2852 - Rev 1 page 25/27

List of figures
Figure 1. Flash memory layout for certified configuration . 8
Figure 2. TOE scope. 9
Figure 3. Flash layout . 16
Figure 4. Image format . 16

UM2852
List of figures

UM2852 - Rev 1 page 26/27

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

UM2852

UM2852 - Rev 1 page 27/27

http://www.st.com/trademarks

	Introduction
	1 General information
	2 Reference documents
	3 Preparative procedures
	3.1 Secure acceptance
	3.2 Secure installation and secure preparation of the operational environment (AGD_PRE.1.2C)
	3.2.1 Hardware setup
	3.2.2 Software setup

	3.3 Secure installation

	4 Operational user guidance
	4.1 User roles
	4.2 Operational guidance for the integrator role
	4.2.1 User‑accessible functions and privileges (AGD_OPE.1.1C)
	4.2.2 Available interfaces and methods of use (AGD_OPE.1.2C and AGD_OPE.1.3C)
	4.2.3 Security-relevant events (AGD_OPE.1.4C)
	4.2.4 Security measures (AGD_OPE.1.6C)
	4.2.5 Modes of operation (AGD_OPE.1.5C)

	Revision history
	Contents
	List of tables
	List of figures

