
Simplicity Studio 5 Users Guide

1/290

Simplicity Studio 5 Users Guide

Overview
New Features
Known Issues
For Users of Previous Versions

Getting Started
Prerequisites
Install SSv5 and Software
Explore SSv5
Start a Project
Install SDK Extensions
Project Migration

About the Launcher
Welcome and Device Tabs
Debug Adapters
My Products
Menu
Toolbar

About the Simplicity IDE
User Interface Review
Import and Export
Code Editing

Developing for 32-Bit Devices
Overview
Developing with Project Configurator

Project Configurator
Component Editor
Pin Tool
Bluetooth GATT Configurator
Bluetooth Mesh Configurator
Proprietary Radio Configurator
Zigbee Cluster Configurator
Solutions

Developing with AppBuilder
Configuring a Project
Configuring Peripherals

Developing for 8-Bit Devices
About Projects
Using Hardware Configurator

Simplicity Studio 5 Users Guide

2/290

Building and Flashing
Building
Flashing

Testing and Debugging
Overview and Resources
Using the Debugger

Using the Tools
Tools Overview
Bluetooth NCP Commander
Energy Profiler

Starting an Energy Analysis Session
User Interface
Energy Statistics
Play and Record Data Control
Freeze and Record Triggers
Search Capability
Profiling with Code Correlation
Energy Profiler and Network Analyzer

Network Analyzer
Network Analyzer Interface
Capturing Data and Managing Sessions
Viewing Data in Editors
Filtering Captured Data
Multinetwork Considerations
Custom Decoders
Network Analyzer Preferences

Bluetooth Direction Finding Tools
Additional Information

Tips and Tricks
Revision History

Overview

3/290

Overview

Simplicity Studio® 5 User's Guide

Simplicity Studio is the core development environment designed to support the Silicon Labs IoT portfolio of system-on-chips (SoCs)
and modules. It provides access to target device-specific web and SDK resources; software and hardware configuration tools; an
integrated development environment (IDE) featuring industry-standard code editors, compilers and debuggers; and advanced, value-
add tools for network analysis and code-correlated energy profiling.

Simplicity Studio is designed to simplify developer workflow. It intelligently recognizes all evaluation and development kit parts
released by Silicon Labs and, based on the selected development target, presents appropriate software development kits (SDKs) and
other development resources.

Simplicity Studio 5 (SSv5) focuses on developer experience, leveraging feedback from customers, employees and competitive
reviews. Developers of all experience levels will benefit from an optimized workflow that supports them through the development
journey and produces quicker project progression and device configuration.

The Simplicity Studio 5 User's Guide pages are organized into the following groups.

Getting Started describes how to install SSv5 and the relevant development resources, and provides general overviews of using the
SSv5 interface and of developing projects in SSv5. If you are new to SSv5, start here.
About the Launcher is a reference guide to the features and functions available when you first open SSv5. This is a general reference,
although some items may not be applicable to all devices.
About the Simplicity IDE is a reference guide to the features and functions in the Simplicity integrated development environment. This
is a general reference, although some items may not be applicable to all devices.
Developing for 32-Bit Devices provides instructions and reference material for 32-bit device development in the two development
environments: Project Configurator and AppBuilder.
Developing for 8-Bit Devices provides instructions and reference material for 8-bit device development using the Hardware
Configurator.

https://docs.silabs.com/d/ss-5-users-guide-about-the-5/

Overview

4/290

Building and Flashing describes how to compile and flash images to various device types.
Testing and Debugging outlines tools and strategies for testing your applications on Silicon Labs devices.
Using the Tools is a reference guide to the various tools packaged with SSv5. Not all tools are applicable to every development path.
Their specific use is described in the individual Developing for pages.

New Features

5/290

New Features

New Features

Simplicity Studio® 5 version 5.3.0.0

This release includes the following key features:

NCP Commander enhancements
Bluetooth LE Direction Finding tools suite v1.0
Installation of GSDKs published on GitHub
Dynamic GATT Configuration
IDE Dark Theme improvements
Multi-Project Solutions

Simplicity Studio® 5 version 5.2.0.0

This release includes the following key features:

Support for upgrading SLC projects to a newer SDK
NCP Commander updates:

Advertiser improvements including ability to build custom advertisement data packets, fine tune the TX Power, and export to
incorporate settings into firmware.
Devices discovery improvements: ability to favorite devices and new filter by device name, address, RSSI, raw advertising data or
favorite devices.
RF Regulatory Tests: ability to add CTE to DTM packets
Standalone version with access to all system COM ports may be launched through Tools dialog or Compatible Tools tab (see the
Bluetooth NCP Commander page for more information)

Bluetooth Mesh Configurator updates
New warnings if Device Composition Data does not comply with the specification
Various bug fixes and improvements to validate model rules

Upgrade to support integrations with IAR Embedded Workbench v8.50.9
Upgraded default GCC compiler to version Arm GCC v10.2

Simplicity Studio® 5 version 5.1.0.0

This release includes the following key features:

Beta release of GNU Debugger (GDB) support
Simplicity Studio 5.1 includes Beta-level support for a GDB client and SEGGER's GDB server.
GitHub integration for access to software example repositories
Starting in Simplicity Studio 5.1, developers may clone sample projects from within the Gecko SDK or within compatible GitHub repos.
Bluetooth Mesh support
Starting in Simplicity Studio 5.1 and Gecko SDK 3.1, Bluetooth Mesh is supported in the new Project Configurator workflow. Studio 5.1
introduces the all-new Bluetooth Mesh Configurator tool for configuring a Bluetooth Mesh node's Device Composition Data (DCD).
Bluetooth NCP Commander

New Features

6/290

Bluetooth NCP Commander is a new Simplicity Studio 5 interactive console tool for sending BGAPI commands to a Bluetooth NCP
application connected to a development host machine.

Simplicity Studio® 5 version 5.0.0.0

The initial release of SSv5 includes the following key features:

Launcher
Fresh, clean user interface
Automatic detection of connected development boards
Context-aware development board and target device developer resources
SDK download and update manager
Easy programming of pre-built demo apps
Simple cloning of software examples
Quick access to software and hardware documentation with search and filter capabilities

Software creation & management tools
Support for Gecko SDK Suite 3.0 and later
Creation of projects for

The integrated Simplicity Studio IDE
IAR Embedded Workbench
Command-line GNU toolchain (GNU makefiles)

Searchable library of device-relevant software making it easy to add software components to projects
Configure software components in a GUI or text (C source) editor

Configurable peripheral initialization, drivers, middleware, kernels and utilities
Built-in software configuration error-checking
Software dependency manager simplifies porting from

SDK to SDK
Silicon Labs development kits to custom hardware designs

Graphical configuration tools
Pin tool to assign pin and peripheral hardware resources
Proprietary radio configurator tool
Editor for Bluetooth LE Generic Attribute Profile (GATT)

Source/Project management and revision control
Option to copy or link SDK source
No hard-coded paths
Clear separation between SDK and customer source code
Easy transfer of projects (share/import/export of projects)
Source code management and software engineering workflows

Development Tools
Powerful integrated development environment (IDE)

Built on latest Eclipse framework (v4.14 and newer)
C/C++ Development Tooling (CDT, v9.10 and newer)
Eclipse marketplace to enhance and customize

Valuable insights with Silicon Labs analysis tools
Wireless network traffic capture and analysis

Test and analyze the traffic of your wireless devices and networks
Data collected directly from devices under test
Includes signal strength, LQI (Link Quality Indicator) and filtering information (unique to Silicon Labs)

Capture and display energy usage
Monitor single device or multiple nodes on a wireless network
Code-correlated energy data – identify where your embedded application is consuming energy and design power-optimized
applications
Advanced trigger and search functions locate power events

Known Issues

7/290

Known Issues

Known Issues

Simplicity Studio® Version 5.3.1.0

ID Issue Workaround

620727 When Radio Boards are used that contain both
an EFR32 or EFM32 target as well as one of the
Energy Friendly EFP parts, the Launcher
perspective incorrectly shows the EFP as the
target part and so the Preferred SDK is wrong
and there are no software examples for the
board.

Create a new project through File > Silicon Labs Project Wizard so
that the Target, SDK, and Toolchain Selection dialog opens. In the
Target Device drop down, select the other target part on the board. If
it is not already displayed, select the correct Gecko SDK Suite in the
SDK drop down list. from the list. Click Next. Now the correct software
examples will be listed for the board.

639643 When building projects with the IAR ARM
toolchain, local variables are not always
displayed correctly in the Simplicity Studio
debugger.

Use the GDB debugger. Select Preferences > Simplicity Studio >
Debuggers > GNU Debugger (GDB) and click Apply and Close. When a
debug session is started it will use GDB.

648620 Simplicity Studio 5 adapter packs and tools
that use Python do not work correctly on
MacOS Big Sur.

Follow the steps in the procedure at the end of this table.

676681 Drag and Drop of the various windows in the
Simplicity Studio IDE or the Debugger
perspectives does not work with MacOS Big
Sur. This is an issue with the underlying Eclipse
and it will be fixed in a future release.

None

702086 Slower project build times are seen on
Windows compared to Linux.

Use an external 64-bit make.exe such as the one available from
mingw. Once the make.exe is available, use a text editor on the
studio.ini line in the Simplicity Studio installation directory and add a
line like this to the end of the file:

-Dstudio.makeLocation=C:/msys64/usr/bin/ This helps most

noticeably on incremental builds. Note using an external make.exe
may not work with the Keil 8051 toolchain.

701928 Most EFR32xG22 and EFM32xG22 peripheral
registers are not displayed correctly with the
Simplicity Studio debugger.

Use the GDB debugger. Select Preferences > Simplicity Studio >
Debuggers > GNU Debugger (GDB) and click Apply and Close. When a
debug session is started it will use GDB.

726091 Linux: Font for Launch Console and TCP/IP
Adapter preferences is sometimes not
readable.

No known workaround. A suggestion is to copy the text and paste it
into a text editor. The preferences can be edited in the text editor and
then pasted back to the preference window.

735426 A GNU ARM C++ created project (such as an
OpenThread project) may generate build errors
similar to this:

cc1plus.exe: fatal error:

sl_gcc_preinclude.h: No such file or

directory compilation terminated.

Open the Project Configurator (.slcp) file and click Force Generation
from the Overview tab.

751748 Because MacOS Monterey is currently not
supported by Simplicity Studio 5, Project
Configurator projects cannot be created.

For Intel-based Macs, the only known workaround is to run Simplicity
Studio 5 in a VM running Ubuntu 20.04, Windows 10, or MacOS
Catalina. M1-based Macs do not have a workaround.

Known Issues

8/290

758963 Navigation buttons (back, forward, etc.) do not show
on the Simplicity IDE toolbar after restart in the
Simplicity IDE perspective.

Change to a different perspective, such as the Launcher
perspective, and then change back to the Simplicity IDE
perspective.

76584 If a Linux installation does not already have git-lfs
installed, the Gecko SDK 4.0 will not be installed
(cloned) correctly from GitHub.

Install git-lfs outside of Simplicity Studio and then install Gecko
SDK 4.0 again.

773819 If a project's properties are changed, and then the
project is renamed, the Refresh Policy folder name is
not updated and every build is treated as a full
rebuild.

Right-click the project folder and select Properties >C/C++
Build. Go to the Refresh Policy tab and delete the folder name.
Click Add Resource... and add the folder for the renamed
project.

To work around issue 648620, Simplicity Studio 5 adapter packs and tools that use Python do not work correctly on MacOS Big Sur:

1. Download the Python 3.6.8 installer for macOS from https://www.python.org/downloads/release/python-368/ Python 3.6 (64 bit, for
OS X 10.9 and later).

2. Then enter the following from a terminal window:

sudo /usr/local/bin/python3 -m pip install jinja2 pyxb html2text pyyaml

cd "/Applications/Simplicity Studio.app/Contents/Eclipse/developer/adapter_packs/python/bin/"

mv python python.orig

mv python3 python3.orig

mv python3.6 python3.6.orig

ln -s /usr/local/bin/python3 python

ln -s /usr/local/bin/python3

ln -s /usr/local/bin/python3.6

1
2
3
4
5
6
7
8

https://www.python.org/downloads/release/python-368/

For Users of Previous Versions

9/290

For Users of Previous Versions

For Users of Previous Versions

If you are migrating from Simplicity Studio 4 to SSv5, or if you are transitioning from AppBuilder projects to the component-based
architecture, see Project Migration for additional information.

Getting Started

10/290

Getting Started

Getting Started

To get started with Simplicity Studio® 5 (SSv5):

1. Install SSv5 and development software
2. Explore the main features of SSv5
3. Start a project

You do not need hardware to install SSv5 and the relevant software packages or, for 32-bit devices, to explore the project
configuration interface for a particular SDK. However, having your target hardware connected during installation ensures that your
SSv5 installation is configured precisely for your environment.

You should also have an account set up in the Silicon Labs Customer Support Portal. Access to some software packages is
controlled by your customer profile.

See Prerequisites for more information.

If you have features or functions that are provided as an SDK extension, you need to install it separately after you have installed the
main SDK. See Install SDK Extensions for more information.

Prerequisites

11/290

Prerequisites

Prerequisites

To streamline your Simplicity Studio® 5 (SSv5) installation:

Connect development hardware to your PC
Log in to your customer account

SSv5 System Requirements

Operating Systems

Operating System Version

Windows Windows 10 (x64)

macOS 10.24 Mojave or 10.25 Catalina (GNU toolchain)

Linux Ubuntu 20.04 LTS

Hardware

Hardware Component Item

CPU 1 GHZ or better

Memory 1 GB RAM minimum, 8 GB recommended for Wireless Protocol development

Disk Space 600 MB disk space for minimum FFD installation; 7 GB for Wireless Dynamic Protocol support

Hardware

A Silicon Labs development kit is not required to get started with Simplicity Studio. However, if Simplicity Studio detects an official
development kit, it can be used to help select the appropriate software and tools for installation. If you don't have a development kit,
you can explore the available options here.

EFR32 Kits

If you have a Silicon Labs Wireless Starter Kit (WSTK) or Pro Kit, mount a radio board on the mainboard and connect the mainboard
to your PC using the USB cable supplied with the kit.

Note: For best performance in SSv5, be sure that the power switch on the mainboard is in the Advanced Energy Monitoring or “AEM”
position.

https://www.silabs.com/development-tools.p-microcontrollers.p-wireless

Prerequisites

12/290

Customer Account

If you do not already have one, create an account on the Silicon Labs Customer Support portal. Be sure to record your account
username and password as you will use it to log in through SSv5. Your account properties determine not only what software
components you can download, but also what notifications you will receive.

To review or change your notification subscriptions, log in to the portal, click HOME to go to the portal home page and then click the
Manage Notifications tile. Make sure that Software/Security Advisory Notices & Product Change Notices (PCNs) is checked, and
that you are subscribed at minimum for your platform and protocol. Silicon Labs strongly recommends that you receive these
notifications. Click Save to save any changes.

Install SSv5 and Software

13/290

Install SSv5 and Software

Install SSv5 and Software

This section discusses how to install SSv5 and, once SSv5 is installed, how to install software.

NOTE: Depending on your corporate environment, you may encounter installation problems. For example, if you cannot log in to
Simplicity Studio® 5 (SSv5) but know you are entering your Customer Account username and password correctly, or if you get an
error about connecting to the update server and your computer is definitely connected to the Internet, see SDK installation or updates
are not working for possible causes and solutions.

Install SSv5

Instructions for installation on Windows and MacOS and on Linux are provided.

On Windows and MacOS

1. Download the SSv5 installation package from the Silicon Labs website. The Windows package is an '.iso' disk image. After the
package finishes downloading, double-click it to mount the iso image as a drive and then double-click the setup.exe file inside the
drive to launch the installer.

2. When the SSv5 installer first launches, it presents a Simplicity Studio License Agreement dialog. Accept the terms of the agreement
and click Next >.

3. Choose a destination location, click Next >, and then click Install.
4. When SSv5 launches, you are presented with one or more additional license agreements. You can accept them individually or all at

once. Click DONE when finished.

Install SSv5 and Software

14/290

5. Next, you are invited to log in. Log in using your Silicon Labs account username and password. NOTE: Although you can skip log in
here, you must be logged in to access some restricted access software packages.

6. Before login completes, you must agree to Experience Tracking. You can change the status later in SSv5 Preferences >> Simplicity
Studio >> User Experience.

Install SSv5 and Software

15/290

7. If you have hardware connected, depending on your operating system and security settings, you may need to allow SSv5 to make
changes to your system. SSv5 prompts you to install the Device Inspector. Click Yes.

On Linux

Simplicity Studio for Linux® OS is only officially supported on Ubuntu® LTS distributions. Simplicity Studio might work on other
distributions, but it is only tested and verified to work with Ubuntu® LTS.

The base Simplicity Studio platform (not an installer) is delivered in a tar file that should be expanded into the desired installation
directory. The recommended installation directory is the user's root directory (/home/USERNAME/SimplicityStudio_v5). This
directory must be one that can be updated without root permissions.

Before launching Simplicity Studio the first time, execute the following:

See Notices for more information on the setup.sh script.

When the Simplicity Studio executable 'studio' is launched, it starts a first-time installation process to add support either by a
connected debug adapter or by technology type.

Notices

setup.sh will:

1. Attempt to install dev rules for USB device connectivity
2. Install missing packages (libraries) through your system's package manager.

setup.sh will only install required external Linux® packages on Ubuntu® distributions. For other distributions, the setup.sh script
should be examined for a list of possible packages that will need to be installed for Simplicity Studio to work.

The Wayland display protocol server is currently not supported, so make sure that X11 display protocol is being used by the Linux
distribution or else use a script or otherwise set and export the GDK_BACKEND variable to x11 before starting Simplicity Studio. For
example:

sudo apt-get update

sudo apt-get upgrade

cd SimplicityStudio_v5

sudo ./setup.sh

1
2
3
4

Install SSv5 and Software

16/290

JxBrowser: Simplicity Studio uses the third party product JxBrowser to render several windows, including the installation window,
Launcher perspective and Project Configurator windows. By default JxBrowser expands the Chromium browser into the /tmp folder.
If this is not a good option because of file permissions of the /tmp folder, the location can be changed by adding a line to the
studio.ini file specifying a different path such as: -Djxbrowser.chromium.dir=/home/USERNAME/.jxbrowser

Install Software

After SSv5 installation is complete, you are prompted to install software packages, such as the Gecko SDK (GSDK). SSv5 offers two
options:

Install by Connecting Device(s)
Install by Technology Type

You do not need to have a target device connected to install by Technology Type.

Install Software by Connecting Devices

1. Make sure you have a device connected and click Install by Connecting Devices. The connected devices are shown.

export GDK_BACKEND=x11

./studio

1
2

Install SSv5 and Software

17/290

If you do not see a connected device, or if you connect a device after this dialog is presented, click Refresh. If you do not have a device
connected you cannot continue.

2. Select the device(s) to use. If you select more than one device with different software compatibilities, Studio will download any
package that is compatible with any of the devices. Click NEXT.

3. You have two installation options, Auto and Advanced.

Install SSv5 and Software

18/290

Select Auto to have SSv5 automatically download all packages that are compatible with the connected hardware and to which
you have permissions based on your login.
Select Advanced to select which packages you want to install or to specify an installation location for the Gecko SDK.

Depending on your connected device and login/account status, you may be requesting access to software for which you do not have
permissions. If you have not logged in, do so now, as that may resolve access issues. If you are logged in, you can request access
through this dialog.

If you selected Advanced, all 'Required' packages must be installed. NOTE: Do not exclude packages unless you understand the full
effect of the decision. Click Read More to see release notes for each item. Optionally change the default installation location for the
Gecko SDK (GSDK). The GSDK installs as a clone of a GitHub repository. Do not select an existing folder with other content already in
it, as your cloned repository will no longer be clean.

Install SSv5 and Software

19/290

4. Before package installation begins, accept one or more software license agreements.

5. Once you click NEXT, installation begins.

Install SSv5 and Software

20/290

Depending upon your selections, installation may take some time. The progress bar may pause at points where large files are being
installed, but will resume as they complete. If there is a problem during installation, SSv5 displays an error. You must restart SSv5 to
resume.

6. When installation is complete, click CLOSE.

7. Click RESTART to begin working with projects.

Install SSv5 and Software

21/290

Install Software by Technology Type

1. Click Install by Technology Type
2. Select the technology(s) to install and click NEXT. To install the Gecko SDK Suite, select 32-Bit and Wireless MCUs.

3. You have two installation options, Auto and Advanced.

Install SSv5 and Software

22/290

Select Auto to have SSv5 automatically download all packages related to the selected technologies and to which you have
permissions based on your login.
Select Advanced to select which packages you want to install.

Depending on your connected device and login/account status, you may be requesting access to software for which you do not have
permissions. If you have not logged in, do so now, as that may resolve access issues. If you are logged in you can request access
through this dialog

If you selected Advanced, all 'Required' packages must be installed. NOTE: Do not exclude packages unless you understand the full
effect of the decision. Click Read More to see release notes for each item. Optionally change the default installation location for the
Gecko SDK. The GSDK installs as a clone of a GitHub repository. Do not select an existing folder with other content already in it, as
your cloned repository will no longer be clean.

Install SSv5 and Software

23/290

4. Before installation begins, accept one or more software license agreements.

.
5. Once you click NEXT, installation begins.

Install SSv5 and Software

24/290

Depending upon your selections, installation may take some time. The progress bar may pause at points where large files are being
installed, but will resume as they complete. If there is a problem during installation, SSv5 displays an error. You must restart SSv5 to
resume.

6. When installation is complete, click CLOSE.

7. Click RESTART to begin working with projects.

Install SSv5 and Software

25/290

Explore SSv5

26/290

Explore SSv5

Explore SSv5

When Simplicity Studio® 5 (SSv5) opens, the first screen is the Welcome page within the Launcher perspective. A "perspective" is an
Eclipse term for an arrangement of views and an editor area. This page provides an overview of the Launcher perspective's main
parts. A detailed reference to all of the functions accessed through the Launcher perspective can be found in the About the Launcher
reference section.

1 - Editor. The editor begins in Welcome mode. Here you get started by selecting a part, and then find resources and create projects
based on that part. Note that, when you drop down the Learn and Support area, you have access to technical support, the Silicon
Labs Community, and educational resources.

2 - Debug Adapters view: Shows devices physically connected to your computer with a debug adapter, or detected on a local
network. Select a device to begin a project

3 - My Product view: Here you can add devices, boards, or kits and select them just like a connected kit. You can then explore
resources or create and configure projects for the selected (target) device.

4 - Menu and Toolbar: Many of the main functions of interest are provided on the toolbar.

https://docs.silabs.com/d/ss-5-users-guide-about-the-5/

Explore SSv5

27/290

Welcome returns you to the Launcher Welcome page.
Recent shows you a list of recent projects. Select one to go to that project in the Simplicity IDE Project Explorer view.
Tools provides a list of available tools.
Install brings you to a menu where you can install or uninstall software packages and tools, or review available updates.
Preferences is a shortcut to the list of preferences also available through the menu selection Window > Preferences.

Throughout SSv5, the contents of the launcher and other perspectives depends on the device you have selected as your development
target, as well as your software environment. When you first open SSv5, the Launcher perspective does not have a target device
context. When you connect a kit, it appears both in the the Debug Adapters view and in the device selector in the Get Started editor
area.

If you don’t have a Silicon Labs kit to connect, but would like to explore more of SSv5’s functions, click All Products, and enter a part
number for a kit, board, or device. As you type you will be presented with a list. Use the checkboxes to filter the list.

You can also add products to the My Products view, and select a target device there. If you have added a product under Get Started,
once you click Start the selected product is added to the My Products view for easy access in the Welcome page or other Launcher
perspective views.

Once you have connected or selected a target device, click Start to move to the Launcher perspective's OVERVIEW tab, showing the
details about that device.

Explore SSv5

28/290

You'll find several "cards" on the OVERVIEW tab. The first is the General Information card where you can update the debug adapter
firmware of your Silicon Labs kits, change the mode of the debug adapter, manage the security settings of the target device (if
applicable), and change the active/preferred SDK.

​The Recommended Quick Start Guides card highlights some of the getting-started resources available for the selected target device.
Click All Quick-Start Guides to quickly go to the DOCUMENTATION tab, pre-filtered for quick-start guides.
​
Cards are also available
for each board and device of the selected target. The View Documents drop-down list on each hardware card provides a filtered view
of hardware documentation for that item.

You can start a project with the Create New Project control. See Start a Project for an introduction to creating projects.

The EXAMPLE PROJECTS & DEMOS tab shows a list of example projects and demos compatible with the selected device. A demo is
a prebuilt software example that can be loaded into a compatible device and used to show and test application functionality. Every
demo comes with an associated example project. See the Quick Start Guide for your SDK for more information about the examples
and demos provided.

Use the checkboxes and search box to filter the list. Click RUN on any demo to install it on a target device. Click CREATE on any
project to create it. This is equivalent to creating a project from the OVERVIEW tab, except that the project is already selected.

Explore SSv5

29/290

The DOCUMENTATION tab shows all documentation compatible with the selected device. Use the checkboxes or text filter field to
find a resource of interest. The technology filter corresponding to your development environment will show you most software
documents relevant to that environment.

Explore SSv5

30/290

The COMPATIBLE TOOLS tab shows the tools compatible with the selected device. The Tools button on the toolbar shows all tools
unfiltered.

Start a Project

31/290

Start a Project

Start a Project

Simplicity Studio® 5 (SSv5) supports several different project types, which can be created through File > New. These include:

Silicon Labs Project Wizard (creates Project Configurator projects, as described in this section)
Solution...
Project... (opens the New Project Wizards dialog)
Other (combines all of the above selections with other, rarely used options)

Select Files > New > Project to open the New Project Wizards dialog.

Most notably:

Silicon Labs Project Wizard (two instances) and also Silicon Labs MCU Project Wizard: Creates Project Configurator projects, as
described in this section.
Direction Finding Project Wizard: Creates Bluetooth multi-locator direction-finding projects
AppBuilder Project Wizard: Creates an AppBuilder Project

This page focuses on Project Configurator (*.slcp) projects. On this page:

Configurator Project Creation
Target, SDK, and Toolchain Selection
Examples
Configuration

About Project Configurator Projects
Pin Tool
Bluetooth GATT Configurator
Bluetooth Mesh Configurator
Proprietary Radio Configurator

https://docs.silabs.com/d/0.4/ss-5-users-guide-developing-with-appbuilder

Start a Project

32/290

Zigbee Cluster Configurator
About AppBuilder Projects

Project Creation

New Simplicity Studio® 5 (SSv5) projects are created through a sequence of three dialogs:

Target, SDK, and Toolchain
Examples
Configuration

An indicator at the top of the dialog shows you where you are.

You can start a project from three different locations in the Launcher Perspective. Where you start determines which of the three
dialogs you will land on. Click BACK to move to an earlier dialog, if you need to make a change.

From the OVERVIEW tab: Click Create New Project. Starts on the Examples dialog.
From the EXAMPLE PROJECTS tab: Use the filters as needed, select a project, and click CREATE. Starts on the Project Configuration
dialog.
From the file menu: Select New >> Silicon Labs Project Wizard. Starts on the Target, SDK, and Toolchain Selection dialog.

While you are getting started, you can leave the default values in place.

Target, SDK, and Toolchain Selection

If you have connected or selected a target, all information is pre-populated. Otherwise you can select target parts here. Click NEXT.

Start a Project

33/290

Note that if you want to use IAR in SSv5, select it here. If you are developing in the Project Configurator environment, it is difficult to
change compilers once the project is created.

Examples

Use the checkboxes or keywords to find the example of interest, then select it and click NEXT.

Start a Project

34/290

Configuration

Rename your project if you want. The three selections under "With project files" control which sources are copied and which are
linked. If a linked source is modified, the changes apply to any other project linking to that source.

Link to sources: The project links both to the SDK files and to project files such as app.c.
Link SDK and copy project sources (default): Project sources are copied to your workspace. Note that the SDK folder structure is
created but if you drill down you will see that all folders are empty.
Copy contents: Both project files and the SDK files are copied to your workspace.

Click FINISH.

Start a Project

35/290

Once you finish project creation, the Simplicity IDE perspective opens. There may be a slight delay for initial configuration. For details
on all the features and functions available in this perspective, see About the Simplicity IDE.

Start a Project

36/290

1 - Editor area (depends on the project).

2 - Project Explorer view: Lists the projects and solutions available in your workspace.

3 - Debug Adapters view: Lists the kits or SEGGER J-Links connected to your computer via USB or detected on a local network.

4 - Developer views: A set of views of use during the development process.

The editor in the Simplicity IDE perspective depends on the project:

Project Configurator: Used for all Gecko SDK protocols and tools beginning with Gecko SDK 4.0; Project files end in .slcp.
8-bit Hardware Configurator: Used for 8-bit device applications.
AppBuilder: Used for Zigbee EmberZNet and Gecko Bootloader in Gecko SDK 3.2 and lower; Project files end in .isc.

Project Configurator Projects

As well as introducing Project Configurator projects, this page also introduces

The Pin Tool
Bluetooth and Bluetooth Mesh SDK's GATT Configurator
Bluetooth Mesh SDK's Bluetooth Mesh Configurator
Proprietary SDK's Radio Configurator
Zigbee EmberZNet SDK's Zigbee Cluster Configurator

Project Configurator projects are defined in .slcp (Silicon Labs Configurator project) files. Users can modify the project by adding,
removing, and configuring components on the Software Components tab. See Developing with Project Configurator for details.

NOTE: Beginning with Simplicity Studio version 5.3, you can create a project in the Simplicity IDE by importing an .slcp file. See
Import and Export for more information.

The project opens, generally either on a README tab containing an example project description, or on an OVERVIEW tab.

The OVERVIEW tab has three cards with information, some with settings that may be changed:

Start a Project

37/290

Target and SDK selection, where you can change your development target and SDK.
Project Details, where you can rename the project, change the project source import mode and, if necessary, force the generation of
project and source files (in the autogen folder).

Import mode controls which resources are copied and which are linked. If you modify a linked source, your changes apply to any
other project linking to that source.
Force Generation can be used in rare cases when auto-generation is not triggered, usually because of some change made outside
of SSv5 such as editing the .slcp file.

Project Generators allows you to change the IDE or build system project files that SSv5 will automatically generate (and update) as
you configure your project. (Note: The compiler / toolchain used by Simplicity IDE is configurable in Project > Build Configurations.
The default IDE is configurable in Preferences > Simplicity Studio > Preferred IDE.)

To configure the project through the component library, click the SOFTWARE COMPONENTS tab. A number of filters as well as a
keyword search are available to help you explore the various component categories. Note that components for all installed SDKs are
presented.

Start a Project

38/290

Expand a component category\subcategory to see individual components. Components installed in the project are checked (1), and
can be uninstalled. Configurable components are indicated by a gear symbol (2).

Click the gear symbol next to the component name or Configure in the configurable component description to open the Component
Editor. Here you can change parameters or edit the component source directly.

Start a Project

39/290

Changes are autosaved in the Component Editor.

As you make changes in the Project Configurator, for example installing or uninstalling a component, project output files are
autogenerated. Progress is shown in the lower right of the Perspective.

Start a Project

40/290

Speed varies depending on your system. Be sure that generation is complete before building the application image.

Build the application image and flash it to your target device as described in Building and Flashing.

A CONFIGURATION TOOLS tab provides an easy way to open a tool when the tool's tab is not already open. It shows configuration
tools relevant to the project type. For example, a Bluetooth Mesh project shows a number of tools, while an OpenThread project
might only show the Pin Tool. Click Open on the tool's card to open it in a separate tab.

Pin Tool

The Pin Tool lets you modify the target device's pin use and parameters. As well as opening the Pin Tool through the
CONFIGURATION TOOLS tab, you can also double-click the <project>.pintool file in the Project Explorer view.

Start a Project

41/290

Double-click a Software Component to open the Component Editor and configure that function. Pin Tool does not autosave.

Bluetooth GATT Configurator

Bluetooth and Bluetooth Mesh projects are also configured with the Bluetooth GATT Configurator.

The Bluetooth GATT configurator menu allows you to add and remove services and characteristics.

1. Add an item.
2. Duplicate the selected item.
3. Move the selected item up.
4. Move the selected item down.
5. Import a Bluetooth GATT database.
6. Add Predefined.
7. Delete the selected item.

To add a custom service, click Profile (Custom BLE GATT), and then click Add (1). To add a custom characteristic, select a service
and then click Add (1). To add a predefined service/characteristic click Add Predefined (6).

Bluetooth Mesh Configurator

Bluetooth Mesh project Device Composition Data is configured through the Bluetooth Mesh Configurator. The Device Composition
Data is presented in three areas: device information, elements, and models.

Start a Project

42/290

Device information is determined by the company selected in the first field.

Each node has at minimum a primary element. To add more elements click the green + symbol in the bottom right.

The Bluetooth Mesh Configurator has editors for both SIG-adopted models and vendor models. SIG-adopted model components are
provided but cannot be edited. You can, however, delete those models, and then add models to meet your needs. To delete a model,
select it and click the red X symbol. To add a SIG-adopted model, drag the model from the left model pool to the SIG Models table in
the correct element. A list of all the SIG-adopted models is displayed, and you can choose the one you want.

Start a Project

43/290

Vendor models give you more flexibility when developing products not covered by the SIG-adopted models. Vendors can define their
own specification in these vendor models, including states, messages, and the associated behaviors. The vendor model editor is
shown in the following figure.

Proprietary Radio Configurator

The Radio Configurator is provided as part of the Proprietary SDK. Use the Radio Configurator to create standard or custom radio
configurations for your RAIL-based radio applications.

The parameters in the Radio Configurator are arranged in cards, some of which are grouped together. Different radio profiles offer
different views and parameter sets.

Start a Project

44/290

1. In the General Settings card, select a radio profile in the Select radio profile drop-down menu. A radio profile may be any supported
radio link technology. These technologies can be bound by standards (for example the Sigfox or WMBus protocols) or can be fully
customized. The fully customizable profile is called the "Base Profile".

2. Select a radio PHY (radio configuration) in the Select a radio PHY dropdown list. Each profile has "built-in" configurations ready to use.
3. Review and update the profile options. By default, no changes are allowed; fields are grayed out. To enable customization, use the

Customized switch on the General Settings card. This allows access to all the parameters defined by the profile.

Zigbee Cluster Configurator

The Zigbee Cluster Configurator is provided as part of the Zigbee EmberZNet SDK. Use it to manage Zigbee endpoints, clusters, and
commands. The interface is based on adding or modifying endpoints.

Start a Project

45/290

You can add and configure clusters as needed. The cluster configuration interface consists of three tabs:

Attributes
Attribute Reporting
Commands

Start a Project

46/290

Configuration changes made through the Zigbee Cluster Configurator are saved to the zcl_config.zap file. When you save the file, the
Zigbee Cluster Configurator not only saves the .zap file into your project, but also automatically generates all the .c and .h files
required for your Zigbee application.

AppBuilder Projects

AppBuilder Projects are configured by modifying parameters in various tabs, especially the PLUGINS tab. See Developing with
AppBuilder for details.

When you have configured the project, click Generate to create project files. Build the application image and flash it to your target
device as in Building and Flashing.

To modify the target device's pin use and parameters, use the Hardware Configurator available on the HAL tab. Note that, although
the interface is similar to the 8-bit Hardware Configurator, this is a different tool.

Start a Project

47/290

Changes made through the Hardware Configurator are stored in a board-specific .hwconf file.

Install SDK Extensions

48/290

Install SDK Extensions

Install SDK Extensions

An SDK Extension is an entity specific to developing for 32-bit devices using Project Configurator and other Silicon Labs Configurator
(SLC)-based tools. It is a collection of components and other items, such as example files. The SDK extension has dependencies on
the parent SDK, which must be installed first. SDK extensions can be used to control access to certain functions, or to contain
customer-created components and other items to be maintained separately from the Silicon Labs SDK.

NOTE: Silicon Labs' HomeKit SDK is installed as an SDK extension, because it is only available to licensed Apple developers who have
signed the Made For iPhone (MFi) agreement. You must be signed in to your Silicon Labs Customer account to see and download the
HomeKit SDK.

If you have an extension available, install it using the following procedure.

1. Open Preferences > Simplicity Studio > SDKs either from Preferences on the toolbar or by selecting Manage SDKs from the Launcher
perspective OVERVIEW tab. Select the parent SDK and click Add Extensions.

2. In the Add SDK Extensions dialog, browse to the extension directory. If it has a valid SDK extension, SSv5 detects it. Click OK.

Install SDK Extensions

49/290

3. You may be asked to trust the SDK extension. If you do, click Trust.

4. The extension now appears on the list of SDKs, as HomeKit does in this example. Click Apply and Close.

Install SDK Extensions

50/290

Once you have added an SDK extension, SSv5 treats it like any other SDK, such as showing it in the filters for example projects.

Project Migration

51/290

Project Migration

Project Migration

Moving to the Component-Based Architecture

In SSv5 version 5.3, the Gecko Bootloader, Zigbee, and Z-Wave changed to the Silicon Labs Configurator component-based
architecture. For more information on transitioning these projects from earlier versions of SSv5 see:

Zigbee AN1301: Transitioning from Zigbee EmberZNet SDK 6.x to SDK 7.x
Gecko Bootloader AN1326: Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher

Migrate from Simplicity Studio 4 to Simplicity Studio 5

The process to migrate a project from Simplicity Studio® 4 (SSv4) to SSv5 depends on the type of project.

If you are migrating a Bootloader, EFM32, or EFM8 project, use the Migrate Project tool. If you are migrating a Z-Wave,
Bluetooth/Bluetooth Mesh, Proprietary Flex, or Zigbee project, follow the instructions in the specified documents.

Bootloader, EFM32, and EFM8 Projects

Bootloader note: Use this procedure as a first step in migration.

Click the Tools toolbar button to open the Tools dialog. Select Migrate Projects and click OK. Select the project to be migrated and
click Next.

https://www.silabs.com/documents/public/application-notes/an1301-zigbee-v6x-to-v7x-transition-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf

Project Migration

52/290

Verify the information displayed and click Next.

Decide if you want to copy the project (recommended) and click Finish.

Project Migration

53/290

The project is migrated from SSv4 to SSv5.

Z-Wave Projects

(Through Simplicity Studio 5.2) Follow the instructions in the knowledge base article Migrating a Z-Wave project from GSDK 2.7.6 to
GSDK 3.0.0.

Zigbee, Flex, and Bluetooth/Bluetooth Mesh Projects

These projects cannot be migrated using the tool. Instead, refer to the following documents:

Zigbee (Through Simplicity Studio 5.2): QSG106: Getting Started with EmberZNet PRO
Flex: AN1254: Transitioning from the v2.x to the v3.x Proprietary Flex SDK
Bluetooth: AN1255: Transitioning from the v2.x to the v3.x Bluetooth SDK
Bluetooth Mesh: AN1298: Transitioning from the v1.x to the v2.x Bluetooth Mesh SDK

https://www.silabs.com/community/software/simplicity-studio/knowledge-base.entry.html/2020/07/17/migrating_a_z-waveprojectfromgsdk276togsdk-opdc
https://www.silabs.com/documents/public/quick-start-guides/qsg106-efr32-zigbee-pro.pdf
https://www.silabs.com/documents/public/application-notes/an1254-transitioning-from-proprietary-flex-sdk-v2-to-v3.pdf
https://www.silabs.com/documents/public/application-notes/an1255-transitioning-from-bluetooth-sdk-v2-to-v3.pdf
https://www.silabs.com/documents/public/application-notes/an1298-transitioning-from-bluetooth-mesh-1x-to-2x.pdf

Project Migration

54/290

If you try using the tool, in most cases the tool will point you to the documentation for the migration process.

About the Launcher

55/290

About the Launcher

About the Launcher

This section provides a reference to the functionality available in Simplicity Studio® 5 (SSv5) when you first open the application.
This first perspective is called the Launcher perspective. A "perspective" is an Eclipse term for an initial arrangement of views and an
editor area.

1 - Welcome and Device-Specific Tabs: The Welcome page includes a Get Started section to help with target kit, board, or device
selection. The Learn and Support section may be expanded to show some of the reference and support resources available. Once a
device is connected and/or selected, device-specific tabs provide access to example projects, documentation, and so on.

2 - Debug Adapters: Silicon Labs kits and supported debug adapters (for example, SEGGER J-Link products). The icon to the left of
the debug adapter item indicates if it is connected over USB or Ethernet.

3 - My Products: Shows an editable list of products that you may want to use as target devices to set the Launcher's context. Use this
view to select target devices when you don't have a kit available.

4 - A top-level menu provides access to a number of functions, including configuration options and help. A toolbar offers access to
tools and functions on the left and shortcuts to different perspectives on the right.

5 - The Launcher perspective also provides additional functions across the bottom of the perspective:

About the Launcher

56/290

Log in menu. Here you can:
Log in or out
Register a software development kit.
Change users
Clear stored credentials

Garbage collection status and clear function. Click the trash can to run the garbage collector. This releases memory that may not have
been released automatically. You should not need to use this function during normal operation. To turn the display off, go to
Preferences > General and uncheck Show heap status.

6 - A perspectives tool bar in the top right shows open perspectives and allows you to open others.

Click Open Perspective to see a list of available perspectives. The perspectives list is similar to that available through the Window >
Perspective menu selection.

Right-click an open perspective to see the context menu. While you can customize the perspective through the Customize menu
option (see Help > Help Contents > Workbench User Guide for more information), you can also customize a perspective by dragging
views and opening and closing views. These changes are persistent and survive closing and reopening a perspective. Click Reset to
restore the perspective to its default settings.

Not all functions available through the Launcher perspective are relevant to developing for all target devices. The Developing for ...
pages highlight the key pieces for each device category.

Welcome and Device Tabs

57/290

Welcome and Device Tabs

Welcome and Device Tabs

This page describes the functionality available on the Welcome page and the tabbed interface that is displayed once you connect or
selected a devices. Tabs include:

Overview
Example Projects & Demos
Documentation
Compatible Tools

Welcome

Simplicity Studio® 5 (SSv5) opens to a Welcome page.

To return to the Welcome page at any time, click Welcome on the tool bar.

On the Welcome Page you can:

Welcome and Device Tabs

58/290

Select a target device
Start a new project
Access educational and support resources

Select a Target Device

SSv5’s purpose is to provide a development environment directed toward a specific target device. Therefore, one of the first things to
do is to define that target device. Once a target device is selected, a tabbed interface to features specific to that device is available,
starting on the Overview tab. The device can be a physical piece of hardware, or a virtual part.

Physical
If you have one or more devices physically connected, either on a development kit or on customer hardware with a
supported debug adapter, they are displayed in the Debug Adapters view, where you can get started simply by clicking a device to
selected it.

They are also displayed in the Get Started area’s Connected Devices drop down. Clicking a device to select it, then click Start.

Virtual
If you do not have a physical device, but would like to explore some of SSv5’s functions, or get started with developing for a
part you will receive later, select a virtual device either in the My Products view or in the Get Started area.

In the My Products view, start typing a product name and select the product of interest.

Under Get Started, click All Products. Use the checkboxes to limit the search list to kits, boards, or parts. Click in the search products
field and start typing. When you see the target, select it and click Start. The next time you return to the Welcome page, that device
will be shown in the My Products view.

Start a New Project

You can start a new project from the Welcome page, but you must immediately select a target device. See Start a Project for more
information.

https://docs.silabs.com/d/ss-5-users-guide-getting-6/start-a-project

Welcome and Device Tabs

59/290

Learn and Support

Expand the Learn and Support section for access to a variety of resources related to developing for a Silicon Labs target.

Device-Specific Tabs

Device-Specific tabs include:

Overview
Example Projects
Documentation
Compatible Tools

Overview Tab

Once you have selected a target device, the Launcher perspective editor area changes to the OVERVIEW tab specific to that part. For
a physically-connected device you have general device information, as well as details about the hardware components. Each
hardware component is pictured in a card and has a View Documents drop down where you can see related hardware
documentation. Finally, links to recommended quick start guides from compatible protocol SDKs are provided.

Welcome and Device Tabs

60/290

SSv5 displays similar information for virtual devices (selected in the My Products view) and devices connected to a supported debug
adapter (for example, SEGGER J-Link or a Wireless Starter Kit mainboard in debug OUT mode). The settings in the General
Information card vary depending on the target device.

General Device Information

Welcome and Device Tabs

61/290

Configure Connection

Device Connection shows how the device is connected to SSv5. Click Configure to explore or modify connection parameters. If your
device firmware is not up to date, you will be invited to update it.

If you are targeting an EFR32-based Silicon Labs kit, you will almost certainly also see the following question:

The CTUNE value is used to tune the external crystal capacitors to hit the exact frequency they are intended to hit. Because this
varies from board to board, in production Silicon Labs measures it during board tests and programs a unique CTUNE value for each
board into the EEPROM. Each SDK also has a default CTUNE value programmed in a manufacturing token. This message asks if you
want to overwrite the default CTUNE value with the one found in the EEPROM. Because the EEPROM value is more accurate, Silicon
Labs recommends you click Yes. The default CTUNE value will also work, but could under some circumstances, such as temperature
extremes, bring the radio frequency out of spec.

Debug Mode

The Debug Mode controls the interface to the wireless starter kit mainboard onboard debugger. Changing Debug Mode opens the
Adapter Configuration tab of the J-Link Configuration tool. The debug modes are:

Onboard Device (MCU) (default): The debugger built into the development board is connected to the on-board target device.
External Device (OUT): The on-board debugger is configured for connection to an external device such as your custom hardware.
External Debugger (IN): An external debugger is connected to the device on the development board.

See your kit's User’s Guide for more information on the debug modes available.

Welcome and Device Tabs

62/290

Adapter Firmware

This shows the firmware version running on the debug controller of your Silicon Labs development kit and whether or not an update
is available. Silicon Labs strongly recommends that you update adapter firmware to the current version. The Changelog shows the
firmware release notes.

When you update adapter firmware SSv5 will ask you to confirm before proceeding. When firmware is up to date the interface says
Latest.

Welcome and Device Tabs

63/290

Secure Firmware

Series 2 devices contain a Secure Element, a tamper-resistant component used to securely store sensitive data and keys, and to
execute cryptographic functions and secure services. The Secure Element firmware can also be updated. When you have a Series 2
device connected, the General Information card includes a Secure FW line. This shows the firmware version running on the Secure
Element and whether or not an update is available. Silicon Labs strongly recommends that you update firmware to the current
version. The Changelog shows the firmware release notes.

When you update, you are warned that user software, including any factory-installed applications such as RangeTest, will be deleted.

After upgrade, the installed and available versions are the same.

Preferred SDK

Some developers may have more than one GSDK version installed. The preferred SDK shows the currently selected SDK. Click
Manage SDKs to see other options.

Welcome and Device Tabs

64/290

The options shown are those selected in Preferences > Simplicity Studio > SDKs. To add an installed SDK to the list, click Add SDK
and browse to the installed location. SSv5 autodetects SDKs in the location folder. Select the SDK to add, and click OK. Make sure the
new SDK is selected in the list, and click Apply and Close.

You should now be able to select it in the Preferred SDK list.

Example Projects & Demos Tab

The EXAMPLE PROJECTS & DEMOS tab shows a list of example projects and demos compatible with the selected device. A demo is
a prebuilt software example that can be loaded into a compatible device and used to show and test application functionality. Every
demo comes with an associated example project. See the Quick Start Guide for your SDK for more information about the examples
and demos provided.

Click RUN on any demo to install it on a target device. Click CREATE on any project to create it. This is equivalent to creating a project
from the OVERVIEW tab, except that the project is already selected. By default, the tab enables showing both demos and examples.
Demos have a blue tag in the upper left of the card. To see only one type of file, disable the other type.

Welcome and Device Tabs

65/290

Use the switches, checkboxes and search box to filter the list. Note: Solutions are combinations of projects on which certain
operations can be performed at the same time. This is a new feature and support is still being added for it. No example solutions are
provided in this release, but you can create your own. See Solutions for more information.

Checkboxes include:

Technology Type
Provider
Quality

Provider allows you to filter on example sources. Peripheral Examples, provided from the Silicon Labs GitHub repository peripheral-
examples, are specific to your connected or selected board, and allow you to exercise various peripheral functions.

Welcome and Device Tabs

66/290

SSv5 allows you to add other GitHub repositories containing examples. To add a GitHub repository, go to Preferences > Simplicity
Studio > External Repos. Here you can add, edit, and delete repos, and select from repos that are already added. Adding a repo is
done in two steps: cloning and then selecting the branch, tag, or commit to add. The default branch is Master. application_examples
and peripheral_examples are official Silicon Labs repos and may not be edited or deleted.

You must be connected to the Internet to create a project from an example in a remote GitHub repository. Projects created from
GitHub repositories are created in the location specified in the project creation dialog. The cloned project does not have any Git-
related information in it. You cannot sync/checkout/pull code from Git.

If you specify a repository installed locally, SSv5 will not synchronize the repo and all Git-related interface items will not be presented.

Documentation Tab

Welcome and Device Tabs

67/290

The DOCUMENTATION tab shows all documentation compatible with the selected part. Use the checkboxes or text filter field to find
a resource of interest. The technology filter corresponding to your development environment will show you most software
documents relevant to that environment.

Compatible Tools Tab

The COMPATIBLE TOOLS tab shows the tools compatible with the selected product. The Tools button on the toolbar shows all tools
unfiltered.

Welcome and Device Tabs

68/290

Debug Adapters

69/290

Debug Adapters

Debug Adapters

The Simplicity Studio® 5 (SSv5) Debug Adapters view shows connected hardware adapters and displays kits, board, and devices.

The Debug Adapters view menu functions are:

Refresh the list of detected kits and debuggers
Clear and refresh the list of detected kits and debuggers
Create a group to help organize multiple adapters
Rename a group
Delete a group
Device Configuration (equivalent to Configure Connection)
Preferences (provides shortcuts to three of the options available in Preferences from the toolbar or Window > Preferences.

Device Manager (Simplicity Studio > Device Manager)
Discovery (Simplicity Studio > Device Manager > TCP/IP Adapters)
Stack (Network Analyzer > Decoding > Stack Versions)

Toggle properties (shows or hides the adapter properties)

Debug Adapters

70/290

Toggle device label detail

Collapse all
Expand all

Finally, right-clicking on a debug adapter brings up a menu of functions. The availability varies depending on the context.

My Products

71/290

My Products

My Products

The Simplicity Studio® 5 (SSv5) My Products view provides you with a convenient way to save and organize a list of kits, boards, and
devices for quick access. Use the search function to locate and add products to the view. Products selected here set the target
device context and allow you to explore the relevant resources and to start projects.

Start typing a part number or key word to see kits, boards, and parts. Once you select an item, it is added to a folder called 'My
Products 1'.

The My Products view menu provides functions to help manage parts selected in this view.

Make a new folder (rename a folder by right-clicking it)
Add a product (opens a dialog where you can add and remove more than one part at a time)

My Products

72/290

Remove the selected part
Remove all content
Collapse all
Expand all

Menu

73/290

Menu

Menu

The perspective menu is available on all Simplicity Studio® 5 (SSv5) perspectives. The options available under each vary depending
on the context.

Toolbar

74/290

Toolbar

Toolbar

The Simplicity Studio toolbar contains functions that are generally useful throughout Simplicity Studio® 5 (SSv5).

Welcome returns you to the Launcher Welcome configuration.
Recent shows you a list of recent projects. Select one to go to that project in the Simplicity IDE Project Explorer view.
Tools provides a list of available tools. This list may have more selections than are available in the Launcher perspective Tools tab.
Install brings you to a menu where you can install or uninstall software packages and review available updates.
Preferences is a shortcut to the list of preferences also available through the menu selection Window > Preferences.

In addition, the section About Update Frequency describes how to manage the frequency with which Simplicity Studio checks for
updates.

Tools

The Tools button opens a dialog where you can select a tool to open it, and also add and remove tools.

The Add/Remove Tools link opens the Installation Manager. Click Manage Installed Packages and go to the Tools tab, where you can
add and remove tools.

Toolbar

75/290

Install

The Install button (red when updates are available) opens the Installation Manager.

Because available items are often controlled through your Silicon Labs account, it is recommended that you be logged in while using
the Installation Manager. Install by connecting device(s) and Install by technology type are both described in Install SSv5 and
Software. This section describes the Manage installed packages functionality.

Click Manage installed packages to open a tabbed interface where you can install and uninstall a variety of SSv5 components. The
interface opens on the Updates tab. Updates are grouped by type.

Toolbar

76/290

The SDKs tab supports installing and uninstalling SDKs and supporting packages. Summary release notes are provided. Filters
across the top of the dialog allow you to control the items displayed.

Note: The default Version filter is 'Latest'. To see and install earlier versions, change this to 'All'.

If you have access to the item Access Granted is noted in green, and the item has an Install control. If you do not have access, the
item has a Request Access control that opens a web page where you can contact sales. Installed items have an Uninstall control in
red. Some installed items cannot be uninstalled because other items are dependent on them.

Toolbar

77/290

The Early Access tab is used to provide limited access for some customers, usually for beta testing.

The Tools tab shows available and installed tools, regardless of your connected or selected hardware. Summary release notes are
provided.

The Toolchains tab shows available and installed toolchains.

Toolbar

78/290

The Assets tab shows available assets. Assets include items such as documents, photographs, code, and so on. Check the item(s) of
interest and click Install. The default view is filtered by connected product.

Toolbar

79/290

The unfiltered view provides a much larger set of options.

After you install or uninstall items, for example as a result of an update or because you want to manage your SDK installations, SSv5
determines if a restart is required.

About Update Frequency

By default, SSv5 checks for updates when you first open it. You can manage update frequency through Preferences > Install/Update
> Automatic Updates.

Toolbar

80/290

Automatically find new updates and notify me (default: On): When selected, SSv5 automatically searches for update, as defined by the
update schedule.
Update schedule (default: On startup): Look for updates on each startup, or once a day or some day a week, at a predefined time.
Download options (default: Search and Notify): Choose if SSv5 will search for updates and notify you of them once they are available
or automatically download new updates and ask you to install them.
When updates are found (default: Once): Choose to be notified about new updates only once, or to receive reminders until the updates
are installed.

If you have turned automatic updates off, you can check for updates by clicking Install on the toolbar, then Manage Installed
Packages, and then Check for Updates on the Product Updates tab.

Preferences

The Preferences button is a shortcut to the Windows > Preferences dialog (App menu on macOS).

Toolbar

81/290

Frequently used preferences are discussed in context of their use cases. Context-sensitive help is available for most preferences.

The arrow controls in the upper-right enable navigation through previously viewed pages. To return to a page after viewing several
pages, click the drop-down arrow to display a list of recently viewed pages.

If you have made changes in preferences and wish to move them to a different installation, use the Import and Export controls in the
lower left.

About the Simplicity IDE

82/290

About the Simplicity IDE

About the Simplicity IDE

The Simplicity Studio® 5 (SSv5) Simplicity Integrated Development Environment (IDE) perspective is designed to support code
editing, downloading, and debugging for EFR32 devices and modules and EFM32, EFM8, and 8051 devices.

These pages review the Simplicity IDE User Interface, discuss how to import and export projects, and explore the features supporting
code editing.

User Interface Review

83/290

User Interface Review

User Interface Review

The Simplicity IDE perspective is made up of three views areas, the editor area, and a toolbar.

1. Project Explorer View
2. Debug Adapters View
3. Other Views
4. Toolbar
5. Editor area

The Editor area is populated with whatever tool is appropriate for the device and project, such as Project Configurator, AppBuilder, or
the 8-bit device Hardware Configurator.

Project Explorer View

The Project Explorer view shows project files in the current workspace.

User Interface Review

84/290

A workspace is a directory that includes some hidden metadata, and must be created through SSv5. The default Windows workspace
is:

\Users\<username>\SimplicityStudio\v5_workspace\

Maintaining separate workspaces for different GSDK versions or compiler versions may be necessary in some cases or may help
improve SSv5 Performance. See Tips and Tricks for more information.

Each SSv5 session has a single default workspace. To change workspaces or to create a new workspace, use the File > Switch
Workspace function. To create a new workspace click Browse and add a new directory. After you add or switch, SSv5 restarts.

Right-click a project directory for a context menu of project-level functions.

User Interface Review

85/290

The Filter functionality available through the view toolbar can be used to limit the files shown.

User Interface Review

86/290

Debug Adapters View

The debug adapters tab in this view is the same as that in the Launcher perspective.

When the adapter is disconnected, an Upload application option is available. This has the advantage of allowing you to flash both an
application image and a bootloader image at the same time, and also to see the various pre-compiled images available based on the
installed SDKs, along with their compatible hardware.

When you connect to an adapter, the icons turn blue.

User Interface Review

87/290

Once you have connected, Start capture and Start capture with options open the Network Analyzer interface for that device.
For
many devices, Launch console opens up a console in the editor area, where you can interact with the device. This option is not
available with EFM8 / C8051 starter or development kits (STKs or DKs).

Other Views

Other views are available in the pane below the editor area.

User Interface Review

88/290

Problems shows any problems detected in an open file or a process.
Search shows the results of the most recent search. The toolbar allows you to retrieve previous searches.
Call Hierarchy shows the results of Open Call Hierarchy when using the IDE for code development.
Console shows activity such as flashing an image to the device and build results.

Toolbar

The Simplicity IDE toolbar offers debug and other code and file options.

1 Debug builds an image in debug mode, flashes it, and opens the debugger.

2 Profile as opens the Energy Profiler.

3 New opens a menu where you can create a variety of items, including a new project (equivalent to File > New > Project).

4 Save saves a changed file.

5 Save all saves all changed files.

6 Mode allows change between debug and release mode for the applicable toolchain.

7 Build builds the selected project file in the default mode (debug or release).

When working with code files, 8 Next and 9 Previous annotation allow you to select the type of annotation and move to them.

10 Edit last location opens the last file you had selected.

11 Back and 12 Forward to file allow you to move to the previous or next file, or to select a file from a list.

13 Pin editor links the selection in the Project Explorer view to its editor tab.

14 Flash programmer opens the Flash programmer tool, also available through the Tools menu.

Import and Export

89/290

Import and Export

Import and Export

Simplicity Studio® 5 (SSv5) File > Import allows you to import a project from Keil® µVision4®, IAR Embedded Workbench, or the 8-
bit Silicon Labs IDE into Simplicity IDE. You can also import a Silicon Labs Configurator project (.slcp) file to create a project in the
Simplicity IDE, or a Silicon Labs export (.sls) file to import a project or a solution.

File > Export allows you to export a project or solution in a variety of formats.

Import

Place the file to be imported in a folder.

Select File > Import, and locate the folder with the project or solution to be imported.

Select the project and click Next. If anything about the project is unresolved you can resolve it.

Import and Export

90/290

Import and Export

91/290

If you are importing a solution, you can see the projects that are included in the solution.

Import and Export

92/290

Click Next. Name the project or solution and click Finish.

Export

Select File > Export, and select the file(s) and/or solution(s) to be exported.

Import and Export

93/290

The default export format is an .sls file, which can easily be re-imported into SSv5. However, other options are available. Click More
export options... and select a wizard.

Code Editing

94/290

Code Editing

Code Editing

Simplicity Studio® 5 (SSv5)'s Simplicity IDE is a code editing and development environment. The editor includes context highlighting,
reference searching, and standard features found in any modern editor.

Note that the Outline view tab in the Debug Adapters area provides a code outline and a toolbar to control what shows in the Outline
view.

This page includes information on:

Open Declaration
Content Assist
Link with Editor
Symbol Expansion
Task View
Quick-Access Console
Call Hierarchy

Open Declaration

Code Editing

95/290

In addition to the basic features, Simplicity IDE supports many advanced code-editing features. For example, the IDE automatically
indexes all code within the project to support symbol lookup. The code does not have to build completely for the indexer to work,
though certain features may not be available if, for example, the main() routine is not declared.

In this example, the Open Declaration (F3 shortcut) feature quickly finds symbol declarations.

1. Open the file of interest by double-clicking it in the Project Explorer view.
2. Right-click the desired symbol to display the context menu.
3. Click Open Declaration to quickly navigate to the definition of the symbol.
4. SSv5 automatically opens the file and highlights the line containing the declaration of the symbol.

Content Assist

Simplicity Studio also supports code completion, a feature called Content Assist. Content Assist requires that the appropriate header
files be included in the file so that the symbols are available. To use Content Assist, type the first few letters of a symbol or include
file and press Ctrl+Space to display a list of symbols that match. For example, to use [Content Assist] to display a list of symbols
starting with the characters PC:

1. Type PC and press Ctrl-Space to display the Content Assist list.
2. Use the arrow keys or page up and down keys to look through the list of matching symbols.
3. Press Enter to replace the typed characters with the selected symbol.

Code Editing

96/290

Link with Editor

In the Project Explorer view, click Link with Editor in the toolbar. Then, if you have multiple files open, selecting a file in Project
Explorer makes the associated editor tab active.

Symbol Expansion

Hover over a function or macro in the editor to display a hover window with expanded information.

Code Editing

97/290

Task View

The Tasks view automatically picks up any comments with TODO or FIXME in the line. For example:

1. Type TODO in a comment line with the desired text and save the file
2. Select Window > Show View > Other , type Tasks , and press Open.

The TODO or FIXME lines are highlighted by a clipboard icon to the left of the line in the editor. Double-click on a line in the Tasks
view to open the relevant file with that line selected.

Code Editing

98/290

Note: To reset the perspective to its original layout, right-click the perspective button in the toolbar and select Reset.

Quick-Access Console

Press Ctrl+3 to open a quick-access console for locating any menu or view within the IDE. For example, press Ctrl+3 and type
Preferences . This lists all of the Preferences menus available within SSv5. Then, select an option to open the menu.

Code Editing

99/290

Call Hierarchy

The IDE includes a call hierarchy that can help find where functions are called. To find the call hierarchy for a function in development
mode, right-click the function and select Open Call Hierarchy.

Overview

100/290

Overview

Developing For 32-Bit Devices - Overview

These pages describe how to customize projects developed in Simplicity Studio® 5 (SSv5) for 32-bit target devices.

If you have not yet installed SSv5 or are not familiar with its features, Getting Started guides you through installing SSv5 and your
Silicon Labs protocol software development kit (SDK). This section assumes you have installed studio, have your development
hardware connected, and are generally familiar with the SSv5 Launcher Perspective and with the Simplicity IDE.

Each Silicon Labs SDK comes with example projects. The easiest way to start development is to modify the configuration of an
example project. The various paths to creating a project based on an example are described in Start a Project.

The development tools you will use depend on the example chosen as a starting point, as described in Developing with Project
Configurator and Developing with AppBuilder. In general, Project Configurator is used with Gecko Bootloader and all other protocol
projects created with GSDK version 4.0 and higher, as well as Bluetooth, Bluetooth Mesh, OpenThread, Wi-SUN, and Proprietary
applications created with Gecko SDK 3.x. These projects share a common infrastructure, called Silicon Labs Configurator (SLC). As
of SSv5 version 5.3, AppBuilder is only used with Zigbee EmberZNet and Gecko Bootloader projects that were created with GSDKs
version 3.2 and lower.

After you have created your project files, compile an application image and flash it to your device as described in Building and
Flashing.

When you are ready to test your project, whether on Silicon Labs hardware or your own custom device, SSv5 provides a number of
tools to help with testing and debugging. An overview is provided in Testing and Debugging.

Developing with Project Configurator

101/290

Developing with Project Configurator

Developing with Project Configurator

Simplicity Studio® 5 (SSv5) introduced new and improved tools for configuring
project code, designed to work on the project's
component-based architecture.
SSv5 includes project configuration tools that provide an enhanced level of
software component
discoverability, configurability, and dependency management.
These include:

Project Configurator to install and uninstall
components,
Component Editor to change component parameters,
Pin Tool to configure peripherals.

Other tools are protocol-specific:

For Bluetooth and Bluetooth Mesh projects, use the Bluetooth GATT
Configurator to customize the Bluetooth
GATT database.
For Bluetooth Mesh projects, use the Bluetooth Mesh
Configurator to customize a node's Device
Configuration Data (DCD).
For Proprietary RAIL projects, use the Radio
Configurator to define and manage
proprietary radio protocols and channel groups
For Zigbee projects, use the Zigbee Cluster Configurator to manage and configure endpoints.

Once you have finishing customizing your project, build and flash
it, and
then test and debug it.

Beginning with Simplicity Studio 5.3, you can combine projects into solutions. Solutions can be built, debugged, and flashed together.

Project Configurator

102/290

Project Configurator

Project Configurator

When you create a component-based project (.slcp), the Project Configurator automatically opens an OVERVIEW tab in the Editor
area of the Simplicity IDE perspective. A SOFTWARE COMPONENTS tab provides access to a library of software components and
their configuration functions. A CONFIGURATION TOOLS tab allows for quick access to project-specific tools.

Open the Project Configurator for an existing project by double-clicking the <project>.slcp file in the Project Explorer view.

Overview Tab

The OVERVIEW tab has three cards:

Target and SDK selection, where you can change your development target and SDK.
Project Details, where you can change the Import mode and, in rare cases, force generation.
Project Generators, where you can change the files SSv5 generates for your project.

Target and SDK Selection

Click Change Target/SDK to change the device for which the project is developed, or the SDK version to be used in development.
Changes made here do not apply to the project until you save changes.

Project Configurator

103/290

Search for target hardware by part number. If you select a different part, it replaces the part already selected, or you can delete the
part and then add a new one.

If you have more than one Gecko SDK Suite (GSDK) version installed, you can select it here. If you do not see a version that you
expect to see, click Manage SDKs to open the SDK Preferences.

Here you can search for SDKs that might be installed outside of SSv5. Note that, if you have more than one SDK protocol installed in
the same GSDK version, for example Bluetooth and Zigbee, you cannot change between them. You can only choose among GSDK
versions.

Project Configurator

104/290

Project Details

Project details include a description of the example on which the project is based, the category of the example, the versions of SDK
included in the currently selected GSDK version, and the import mode. Here you can edit the project name, and change the import
mode.

The import mode determines what resources are copied into your project and what are linked. If you change the import mode, the
change is autosaved and your project files are regenerated.

Link to sources means all project and SDK resources are linked. Only generated files are saved with the project.
Link SDK and copy project sources (default) means that all the example project sources are copied, but SDK libraries are linked. If you
update the SDK and regenerate the project files, the project will change.
Copy contents means that all resources are copied with the project. You can update SDK or load an updated example project and your
project will not change.

Force Generation is used only in rare cases when autogeneration is not triggered, usually because of some change made outside of
SSv5. It will run all available generators (slcp, radio config, gatt, and so on).

Note for Simplicity Studio 4/AppBuilder users: Because many project configurator files are autogenerated, Project Configurator does
not include a Generate control like the one in AppBuilder. Force Generation is not a replacement for that control.

Project Generators

Click Edit to change the files that are generated by Project Configurator. Changes take effect when the selection is saved. The
options are:

GCC Makefile
IAR Embedded Workbench Project
Simplicity IDE project

The options that are available for selection and the default vary depending on the SDK and toolchain you selected when you created
the project.

Project Configurator

105/290

Note that changing the project generator does not change the project toolchain.

Software Components Tab

Projects are configured by installing and uninstalling components, and configuring installed components. The SOFTWARE
COMPONENTS tab displays categories of components on the left, and details about the selected component on the right.

A number of filters as well as a keyword search are available to help you explore the various component categories. Note that
components for all installed SDKs are presented. Expand a component category\subcategory to see individual components. Select a
component to see its details. Components that were included in the original project or installed by the user are checked (1), and can
be uninstalled. Configurable components are indicated by a gear symbol (2). Configurable components must be installed before their
configuration can be changed.

Project Configurator

106/290

Click View Dependencies to see the components on which this component depends, and components dependent on it.

When you install a component, the installation process will:

1. Copy the corresponding SDK files from the SDK folder into the project folder.
2. Copy all the dependencies of the given component into the project folder.
3. Add new include directories to the project settings.
4. Copy the configurations files into the /config folder.
5. Modify the corresponding auto-generated files (in the autogen folder) to integrate the component into the application.

Additionally, "init" type software components will implement the initialization code for a given component, utilizing their
corresponding configuration file as input. Some software components will fully integrate into the application to perform a specific
task without the need of any additional code, while other components provide an API to be used in the application.

Configuration Tools Tab

This tab provides an easy way to open a tool when the tool's tab is not open. The tab shows configuration tools relevant to the
project type. A Bluetooth Mesh project shows a number of tools, while an OpenThread project might only show the Pin Tool. Click

Project Configurator

107/290

Open on the tool's card to open it in a separate tab.

Component Editor

108/290

Component Editor

Component Editor

Click the gear symbol next to an installed configurable component name, or Configure on the component description to open the
Component Editor.

The Component Editor opens in a new tab. The changes you can make depend on the component.

Changes made here are autosaved in native source format in the associated source files.

Component Editor

109/290

Click View Source to open an editor on the configuration file. If a component has multiple configuration files, the control is View
Source Files

The top component category, Advanced Configurators, shows the same configurators as in the CONFIGURATION TOOLS tab.

Component Editor

110/290

Pin Tool

111/290

Pin Tool

Pin Tool

Simplicity Studio® 5 (SSv5) offers a Pin tool that allows you to easily configure new peripherals or change the properties of existing
ones. In the Project Configurator SOFTWARE COMPONENTS tab, expand the Advanced Configurators group and open the Pin Tool.
Alternatively, double-click the file <project>.pintool in the Project Explorer view. The graphical view differs based on the chip.

For more complex layouts, you can use the zoom controls in the lower left to see detail.

Pin Tool

112/290

Click the Configure icon next to a component name to open the Component editor for the associated component.

The pin, function, and peripheral tabs in the configuration pane provide different modes of access. A search function at the top right
is available to assist in finding an item.

Pin Tool

113/290

Pin Tool

114/290

Modifying Pin Configurations

Use the Pin Tool to modify the pin configuration of the device. For example, you can reassign the pins used for USART
communication to the appropriate layout for a custom board design by selecting the desired pin in the list and then selecting its
functionality from the drop-down list.

After clicking the selected item, the layout will be updated. After saving the file, the configuration source codes will be automatically
generated.

Pin Tool

115/290

Adding Components

The Pin Tool shows the software components in the project currently associated with pins, functions, and peripherals. It also
supports adding a component, by passing search criteria to the Project Configurator and optionally opening the Software
Components tab.

To add a component to a pin in the Pins tab, first assign the pin a function, then click in the Software Components cell and select
Add Component. If one or more compatible software components exist that match the search criteria passed by the Pin Tool, the
active view changes to the Software Components tab with those components showing.

If compatible components exist but do not match the search criteria, the Software Components tab opens with the message "No
matching nodes found."

If no compatible components exist in the project, the user can optionally add one.

Similar functionality is provided in the both the Functions and Peripherals tabs.

Bluetooth GATT Configurator

116/290

Bluetooth GATT Configurator

Bluetooth GATT Configurator

The Simplicity Studio® 5 (SSv5) Bluetooth GATT Configurator is a simple-to-use tool to help build a customized Bluetooth GATT
database for Bluetooth projects. It is accessed through the Advanced Configurators software component group on the Project
Configurator SOFTWARE COMPONENTS tab, or by double-clicking the project file config > btconf > gatt_configuration.btconf.

The Bluetooth GATT Configurator is composed of a Custom GATT editor on the left, showing a list of project
Profiles/Services/Characteristics/Descriptors, and a Settings editor on the right. A SIG selector allows you to add standard elements
to the profile.
An options menu is provided at the top of the Custom GATT editor.

The Custom GATT editor is always visible, and the Settings editor opens by default.

The Bluetooth GATT Configurator menu is:

1. Add an item.
2. Duplicate the selected item.
3. Move the selected item up.
4. Move the selected item down.

Bluetooth GATT Configurator

117/290

5. Import a Bluetooth GATT database.
6. Add Predefined (opens the SIG editor).
7. Delete the selected item.

SIG Selector

Click the Add Predefined menu button (6) to open the SIG selector. The SIG Selector displays a list of predefined Profiles, Services,
Characteristics, and Descriptors. These items can be filtered, using the filter pane. Tabs allow you to switch between different lists.
As shown in the following figure, the pane on the right side of the list displays textual information about the latest selection. To add
an item to the Custom GATT editor, mouse over it and click + on the right. The item can then be edited in the Settings section. The
selected SIG service/characteristic/descriptor will be added under the highlighted profile/service/characteristic. Click < BACK to
return to the Setting Editor. Click View Manual to see more information about Bluetooth GATT database items.

The GATT Configurator does not automatically save changes. An asterisk next to the configuration file name indicates unsaved
changes in the configuration. Database generation happens automatically when the configuration is saved. The generated source
files can be found in the autogen directory:

Bluetooth GATT Configurator

118/290

Custom GATT Editor

The Custom GATT Editor in the right pane of the GATT Configurator displays the items present in the current configuration file. This
includes a Custom GATT Profile, Services, Characteristics, and Descriptors displayed as a hierarchical list. The order of items shown
reflects the order in which they exist in the GATT database. When the Settings Editor is open, you can select an item to see its
properties and configuration.

Note: The Generic Attribute Service is not listed in the Custom GATT database structure. This is a special service that is maintained
by the stack, and can be added by enabling the Generic Attribute Service slider in the settings of the Custom BLE GATT profile. Once
enabled, the service will be part of the database. It still will not appear in the Custom GATT database structure or on iOS devices, as
iOS hides this service, but you may see it on Android devices for example.

Bluetooth GATT Configurator

119/290

Some services are listed in the configurator as "contributed items". This means that their content is defined in other components, and
they cannot be edited from this view.

Settings Editor

The Settings editor allows you to configure the properties of items such as Profiles, Services, Characteristics and Descriptors that
are present in the Custom GATT editor. Selecting an item populates the relevant configuration options such as the name, ID,
properties and capabilities. Any changes made in this section are reflected immediately for the selected item. You can minimize the
Custom GATT editor while working in the Settings editor, as shown in the following figure. All Characteristics for a Service are
included in the same Settings editor pane.

Additional Information

For more information on specific use cases in the GATT Configurator, see UG438: GATT Configurator User's Guide in Bluetooth SDK
3.x.

Bluetooth Mesh Configurator

120/290

Bluetooth Mesh Configurator

Bluetooth Mesh Configurator

The Bluetooth Mesh Configurator provides access to a Bluetooth Mesh node's Device Composition Data (DCD). This contains
information about the elements it includes and the supported models. DCD exposes the node information to a configuration client so
that it knows the potential functionalities the node supports and, based on that, can configure the node.

Configuring DCD through the Bluetooth Mesh Configurator is only one part of configuring a Bluetooth Mesh node. For details see
UG472: Bluetooth® Mesh Node Configurator User's Guide for SDK v2.x.

When you create a Bluetooth Mesh project in Simplicity Studio 5, three tabs open automatically: the GATT Configurator
(gatt_configuration.btconf), .the slcp or Project Configurator (<projectname>.slcp, and the Bluetooth Mesh Configurator
(dcd_config.btmeshconf). If the example has documentation, the project opens on a readme tab.

Click the dcd_config.btmeshconf tab to open the Bluetooth Mesh Configurator. If the tab is closed, you can open it from the Project
Configurator's CONFIGURATION TOOLS tab. The Device Composition Data is presented in three areas: device information, elements,
and models.

Device Information

The device information card contains four fields. Changing the Company changes the next three fields.

Bluetooth Mesh Configurator

121/290

Device configuration information includes:

Company: Selected from a list of company names.
Company ID: 16-bit company identifier assigned by the Bluetooth SIG. A list of companies and their identifiers may be found on the
Bluetooth SIG site.
Product ID: 16-bit vendor-assigned product identifier, vendor-specific.
Version Number: 16-bit vendor-assigned product version identifier, vendor-specific.

Elements

An element is an addressable entity within a node. Each node can have one or more elements, the first called the primary element
and the others called secondary elements. Each element is assigned a unicast address during provisioning so that it can be used to
identify which node is transmitting or receiving a message. The primary element is addressed using the first unicast address
assigned to the node, and the secondary elements are addressed using the subsequent addresses. Both primary and secondary
elements have a dedicated card, such as that shown in the following figure, through which they can be configured. Click the green
plus symbol to add an element or select an element and click the red X symbol to remove it.

Models

https://www.bluetooth.com/specifications/assigned-numbers/company-Identifiers

Bluetooth Mesh Configurator

122/290

A model defines the basic functionality of a node, and a node may include multiple models. A model defines the required states, the
messages that act upon those states, and any associated behaviors.

Models may be defined and adopted by the Bluetooth SIG and may also be defined by vendors. Models defined by the Bluetooth SIG
are known as SIG-adopted models, and models defined by vendors are known as vendor models. SIG-adopted models are identified
by a 16-bit model identifier and vendor models are identified by a 16-bit vendor identifier and a 16-bit model identifier.

Model specifications are designed to be very small and self-contained. At specification definition time, a model can require other
models that must also be instantiated within the same node. This is called extending, which means a model adds functionality on top
of other models.

Models that do not extend other models are referred to as root models. Model specifications are immutable. In other words, it is not
possible to remove or add behavior to a model, whether the desired behavior is optional behavior or mandatory. Models are not
versioned and have no feature bits. If additional behavior is required in a model, then a new extended model is defined that exposes
the required behavior and can be implemented alongside the original model.

Therefore, knowledge of the models supported by an element determines the exact behavior exposed by that element.

The Bluetooth Mesh Configurator supports configuring both SIG-adopted models and vendor models through separate editors.

SIG-Adopted Model Editor

If you are using the provided model components that automatically bring in the source/header files, libraries, and configurations to
the project, and also contribute the model to the DCD, you cannot edit or delete the model from the DCD manually. The model is
greyed out, as shown in the following figure. In this case, all the model implementations will be generated to the project. You can
modify the callbacks to adjust the application to your use case.

The drawback to using components is that you cannot edit the DCD and model information, because the models added by
components are greyed out. If you want to build the DCD from scratch, for example to add a specific model to an element, uninstall
all the model components. Then you can edit the DCD manually.

To delete a model, select it and click the red X symbol. To add a SIG-adopted model, drag the model from the left model pool to the
SIG Models table in the correct element. A list of all the SIG-adopted models is displayed, and you can choose the one you want, as
shown in the following figure. Note that, although all the SIG-adopted models are listed, not all of them are currently supported by the
Bluetooth Mesh SDK. For the information on the supported models, see the SDK release notes.

Bluetooth Mesh Configurator

123/290

Due to the extension mechanism of models mentioned above, attention is needed when adding models to your project. See UG472:
Bluetooth® Mesh Node Configurator User's Guide for SDK v2.x for more information.

Vendor Models Editor

Vendor models give you more flexibility when developing products not covered by the SIG-adopted models. Vendors can define their
own specification in these vendor models, including states, messages, and the associated behaviors. The vendor model editor is
shown in the following figure. The ID field contains the 32-bit vendor identifier and model identifier. The two least significant bytes of
the ID are the vendor ID and the two most significant bytes are the model ID. In the following figure, 0x02FF is the vendor ID for
Silicon Labs, and 0x0021 and 0x0022 is the model ID. Click the plus symbol to add a vendor model, or select a model and click the
red X symbol to remove it.

Proprietary Radio Configurator

124/290

Proprietary Radio Configurator

Proprietary Radio Configurator

The Simplicity Studio® 5 (SSv5) Radio Configurator is provided as part of the Proprietary SDK. Use the Radio Configurator to create
standard or custom radio configurations for your RAIL-based radio applications. The Radio Configurator is accessed through the
Advanced Configurators software component group on the Project Configurator SOFTWARE COMPONENTS tab. (For some
examples, the Radio Configurator might open on project creation). All radio configurator settings are stored in
config/rail/radio_settings.radioconf. Changes made with Radio Configurator are not automatically saved.

Radio configuration information is organized by profile, where a profile is a high-level view of the parameter set valid for and
describing a given radio link. All the parameters in the Radio Configurator are arranged in tiles, some of which are grouped together.
Each card contains entries that logically go together. Different radio profiles (as described under Protocol) offer different views and
parameter sets.

Proprietary Radio Configurator

125/290

A radio configuration has two hierarchical levels: Protocol level and Channel Group level. A radio configuration can contain multiple
protocols and a protocol can have multiple channel groups defined.

Protocol

Protocols are complete radio configurations that can be switched using the RAIL_ConfigChannels() API, or can be used in
Dynamic Multiprotocol applications. For Channel Group definitions see Channel Groups.

To configure a protocol, first select a predefined PHY configuration, then customize it to meet your needs.

1. In the General Settings card, select a radio profile in the Select radio profile drop-down menu. A radio profile may be any supported
radio link technology. These technologies can be bound by standards (for example the Sigfox or WMBus protocols) or can be fully
customized. The fully customizable profile is called the "Base Profile".

2. Select a radio PHY (radio configuration) in the Select a radio PHY dropdown list. Each profile has "built-in" configurations ready to use.
3. Review and update the profile options. By default, no changes are allowed; fields are grayed out. To enable customization, use the

Customized switch on the General Settings card. This allows access to all the parameters defined by the profile.

Proprietary Radio Configurator

126/290

Important notes:

1. If you select a "built-in" PHY, and then switch to "Customized", the Radio Configurator retains the property values of the "built-in" PHY.
You can edit the values, but can also revert to the defaults.

2. If you switch to “Customized” mode, Silicon Labs recommends unchecking all "Advanced" properties, as those are fine-tuned for the
"built-in" PHY, and may not be the optimal choice for the modified PHY. This way those parameters get auto-calculated, and you can
experiment with the fine tuning starting with the calculated values. To keep the improved performance achieved by the original
optimization, only minor changes should be made. For example, <100 MHz change in carrier frequency, or a different frame length
configuration.

3. If you switch customization off, your modifications will revert to the property values of the "built-in" PHY.
4. Each menu item in the Navigation pane (on the left) is represented by a card in the main editor panel (on the right). Cards can be

hidden by clicking the corresponding "eye" icon on the Navigation panel.

Based on the selected radio profile, customizable options may be restricted. For example, if a radio profile is selected that is bound
by a standard, the profile options only allow users to set the base frequency. All other options are preset according to the standard.

Channel Groups

Each protocol configuration includes one or more channel group configurations. Channel groups define one or more (sequential)
channels, with a constant channel spacing between them. Channel groups can differ in the radio configuration both from each other
and from the parent protocol. By default, a channel group configuration includes only the General Settings and Channel Configuration
tiles. Additional parameters defined by the Protocol can be accessed for customization on a channel group basis by sliding the
Customized switch on the corresponding card.

RAIL automatically detects when hopping to a new channel requires hopping between channel groups. The configured property
values defined by the channel group will be applied automatically for the new channel. This enables users to define virtual channels
to the same physical frequency, but with different configuration settings.
The order of the channel groups will be the same in the
RAIL_ChannelConfigEntry_t array as shown in the Radio Configurator. Channel group order can be used to override channels in

channel groups, as RAIL will always load the channel from the first channel group in which it is defined.

For more on Multi-PHY configuration, see the example in AN1253: EFR32 Radio Configurator Guide for Simplicity Studio 5.

Finalizing a Configuration

Proprietary Radio Configurator

127/290

When a parameter is modified from its pre-loaded value, small pictograms show up next to the property field on the card. These
pictograms symbolize the differences against the originally selected PHY configurations. A "C" means a difference from the original
Channel Group property, and a "P" means a difference from the original Protocol Configuration.

Each input field has an Information icon next to it, which opens the embedded version of AN1253: EFR32 Radio Configurator Guide
for Simplicity Studio 5 at the relevant section. You can also reach the documentation by clicking View Manual in the top right corner
of the perspective.

On save the Radio Configurator generates rail_config.c and rail_config.h in the project's autogen directory. These files are also
generated when a project is created.

Zigbee Cluster Configurator

128/290

Zigbee Cluster Configurator

Zigbee Cluster Configurator

When you open Zigbee Cluster Configurator, it launches in a new tab next to the <project>.slcp tab, with the title 'zcl_config.zap'. A
Zigbee application can have multiple endpoints. Each endpoint contains a device configuration made up of Clusters on that end-
point. Click ADD NEW ENDPOINT to add a new endpoint.

In the next dialog, select a device type for the endpoint, and optionally change the endpoint number. Click CREATE to create the
endpoint.

To modify an endpoint, select it in the left panel.

Zigbee Cluster Configurator

129/290

The Show dropdown filters the clusters shown. To see only clusters that are enabled on the endpoint, select 'Enabled Clusters'.

Settings in the Enable column enable either the Client or Server (or both) sides of a cluster. Depending on the changes you make, you
may be notified that components have been added to your project. To remove the cluster entirely from the configuration, select 'Not
Enabled'.

Zigbee Cluster Configurator

130/290

Click the Gear icon next to a cluster to enable or disable attributes, manage how they are stored, manage attribute reporting, and also
manage the handling of commands on that cluster. The cluster configuration interface consists of three tabs:

Attributes
Attribute Reporting
Commands

Configuration changes made through the Zigbee Cluster Configurator are saved to the zcl_config.zap file. The .zap file is the backing
data file for the Zigbee Cluster Configurator configuration for your application. When you save the file, the Zigbee Cluster
Configurator not only saves the .zap file into your project, but also automatically generates all the .c and .h files required by the
Zigbee Application Framework for your Zigbee application. These files show up in two locations in your project. The .zap file is saved
in the project’s config > zcl folder. The files generated by the Zigbee Cluster Configurator for the application are placed in the project's
autogen folder and all start with the 'zap' prefix.

For additional details about cluster configuration and adding a custom cluster, see AN1325: Zigbee Cluster Configurator User's
Guide.

Solutions

131/290

Solutions

Solutions

Solutions are combinations of projects that can be compiled, debugged, and flashed together. This is a new feature, many aspects of
which will be released in the future. At present it is most useful for debugging a bootloader and associated application at the same
time.

Solutions can be created through File > New > Solution or Projects > Manage Solutions > New. The resulting dialog shows available
projects in the current Workspace. Name the solution, select the projects to be included in it, and click Finish. Note: Shared solutions
are not implemented in this release.

Once you have created a solution, Project Explorer view shows the solution as a separate folder, and projects that are not included in
the solution as 'Other Projects'.

Solutions

132/290

Select the solution and click Build to build all projects in the solution, or Debug to build all projects, download all projects, and start a
debug session. Solution debug configurations do not honor automatic breakpoints in this release. You should set breakpoints in both
the bootloader (Silicon Labs recommends setting a breakpoint at the start of the SystemInit2 function in btl_main.c) and the
application.

Optionally, Solutions have a dedicated debug configuration type. Drop-down the Debug control menu and select Debug
Configurations to see the available configuration types.

Right-click Silicon Labs Solution and select New Configuration. On the Main tab, provide a name and select the solution.

Solutions

133/290

Click Apply to save changes.

Right-click the Solution in Project Explorer view, and click Solutions on the context menu to open the Manage Solutions dialog, set
the active Configuration or sync solution configurations.

With Manage Solutions (also available on the Project menu) you can edit and remove solutions.

If the projects have multiple build configurations and the solution also has multiple build configurations, click Sync Solution
Configuration to set the active build configuration of each project to match the solution's active build configuration.

Developing with AppBuilder

134/290

Developing with AppBuilder

Developing with AppBuilder

Simplicity Studio® 5 (SSv5)'s AppBuilder is a graphical tool used to create configurations and build Application Framework files. The
AppBuilder configuration files indicate which features and functions you would like for your compiled binary image. By using
AppBuilder along with an application framework, you can quickly create an application that includes all of the required functionality
for the image's purpose.

AppBuilder must be used in conjunction with one of the Silicon Labs application frameworks, which are shipped as part of the SDK.
All of the code that will be compiled into the binary image is included in the SDK distribution. AppBuilder creates configuration and
build files that tell the application framework which portions of the code to include in, and which to exclude from, the compiled binary
image.

With the exception of a few header (.h) files, AppBuilder does not generate the C source code for the application. All of the source
code that ultimately will be included in the binary image is provided in the Application Framework.

In general, to develop an application using AppBuilder:

1. Create an application based on one of the AppBuilder examples, such as Z3Switch.
2. Customize the application on the various AppBuilder tabs. Functions can be added by enabling and configuring plugins.
3. Click Generate to create application files.
4. Optionally, add your own code to the application.

Once you have finishing customizing your project, build and flash it, and then test and debug it.

Configuring a Project

135/290

Configuring a Project

Configuring a Project

Simplicity Studio® 5 (SSv5)'s AppBuilder provides a tabbed interface. Each tab provides customization options.

General - Configure global values for your application like the Device Name and Generation Directory
ZCL Clusters - Choose the specific combination of clusters to include
Zigbee Stack - Configure stack-specific settings
Printing and CLI - Configure debug printing and CLI options
HAL - Configure bootloader and board header file options, and access the Hardware Configurator tool to manage peripheral
configurations
Plugins - Include or exclude plugins, where a plugin is a specific implementation of a cluster or some other functionality
Callbacks - Select from a set of predefined callbacks
Includes - Include any external files into the generated project
Other Options - Configure PHY support, plugin services, and other options
Bluetooth GATT - For use with dynamic multiprotocol applications, provides a direct interface to the GATT configurator

General

The General tab provides information about the example used as a foundation for the project, and lets you change project level
information, such as the toolchain used.

Configuring a Project

136/290

Generation directory shows where project files will be generated. By default this is a <project name> directory in the default SSv5
workspace.

Click Edit Architecture to change the target device or the toolchain.

ZCL Clusters

The ZCL Clusters tab provides functionality to manage endpoints and their cluster configuration.

Multiple Endpoint Configuration Table

The Multiple Endpoint Configuration Table allows you to configure the endpoints on your device. Click New to add an endpoint.

Endpoint: Change the endpoint on which your device will be hosted by clicking the number in the Endpoint column. The number field
becomes editable. Change the endpoint to any of the valid Zigbee endpoints available.

Configuring a Project

137/290

Configuration: Each endpoint implements a specific configuration. The configuration is not a Zigbee construct. It is a name created
for Simplicity Studio AppBuilder so that multiple endpoints that implement the same application can share the metadata associated
with that application. This conserves the use of flash within the device. By default, each new endpoint will implement the
configuration named "Primary." Change the configuration by selecting the endpoint row and then clicking on the "Configuration"
column. A button appears to the right of the Configuration name. Click the button to launch the configuration dialog. Once you have
created a new configuration, the application for that configuration can be implemented on as many endpoints as you like without
using any more memory on your device for metadata storage. Each endpoint still needs to have its own attribute storage to contain
the endpoint-specific values. AppBuilder and the application framework take care of this for you.

Network: By default, the first endpoint belongs to the network named "Primary." When new endpoints are created, they will belong to
the same network as the first endpoint. On platforms that support multi-network, you may choose the network for a specific
endpoint. New networks can be created and configured in the Zigbee Stack tab.

ZCL Device Type: Select from a set of pre-defined ZCL Device Types. AppBuilder then populates the cluster table with the clusters
appropriate to that device type as defined by the Zigbee Cluster Library specification. In addition to these pre-defined device types,
you also have the option to create a custom device type. With this option, you can choose from any of the available Zigbee clusters
included within the Application Framework.

Cluster Table

The Cluster Table displays which clusters will be included as part of each endpoint type.In the case of a custom device implemented
on any endpoint, you have the option to choose the clusters to include and their client/server role.

Attribute Table

When you click a specific cluster, its attributes display in the Attribute Table. Configure the device's behavior by configuring the
attributes in this table.

External Attribute storage: By default, all attributes are stored in a RAM buffer provided by the application framework. Storing some
attributes may not make sense, however, since they are either already stored somewhere else in the system or are not stored at all
but read from some external piece of hardware. In this case you may indicate that the attribute is externally stored. When the
application framework needs to interact with the attribute it will use the external attribute callbacks. By implementing these callbacks
and marking the attribute as externally stored, the attribute storage is removed from the framework and placed into the domain of
the application. The metadata used to represent the attribute on the network is still stored inside the framework so that the
framework can respond to ZDO requests and so on.

Persistent attribute storage: By default, all attributes are stored in RAM. As a result, attribute data does not survive a reboot of the
device. If you want to maintain state for an attribute across reboots, the attribute must be stored in persistent memory on the device.
To store a specific attribute in persistent memory, check the checkbox in the F column.

Configuring a Project

138/290

Singleton attribute storage: Most attributes are stored as a separate value for each endpoint on which they are implemented. This
does not make sense for some attributes that may exist across endpoints. For instance, it makes little sense to store multiple copies
of the Basic Cluster's ZCL Version since the version pertains to the entire application and not to each individual endpoint. Attribute
values may be shared across endpoints by indicating that the attribute is a "singleton."

Bounding attributes to their Min and Max values: By default, the application framework allows you to write any value (within the
limits of the size of the attribute) into the attribute table. However, you may request that the application framework reject any
attribute value outside the Min and Max defined by the Zigbee specification by checking the checkbox in the B column. The
application framework then stores the min and max values for the chosen attribute in the attribute table and rejects any write
request, whether from the CLI or an external device, that is outside the attribute value range.

Zigbee Stack

Here you can configure networks and add custom clusters.

Printing and CLI

Here you can enable and configure debug printing, and enable/disable CLI functionality.

Configuring a Project

139/290

Debug printing

The application framework can output application and stack debug information over the serial port. To choose the information to
include in the debug output, select from the serial printing checkboxes. If you are not concerned with debug output, and/or would
prefer to conserve the flash and RAM associated with debugging, turn off the serial printing options by deselecting them.

Command Line Interface (CLI) Options

AppBuilder can output either a "Legacy" or "Generated" command line interface.

Use Legacy CLI: If checked, AppBuilder uses the hard coded CLI interface included in the application framework. Otherwise
AppBuilder generates a Command Line Interface along with other generated files based on the CLI interface options selected in the
CLI configuration window.

Add Custom CLI Sub-menu: Adds the ability to include user-defined CLI commands into the Command Line Interface.

Include Command and ...: Includes a description for each command or argument into the Command Line Interface. Turning this on
will increase the size of your application but will make it easier to use the Command Line Interface since all commands will be self-
described when a command is not recognized by the application.

Use Command Set: Makes it possible to turn the command line interface on and off and choose a pre-defined subset of the CLI for
use in your application

CLI Configuration Table: Select exactly what CLI commands are supported in the application. By default, the Full command line
interface command set selects all General commands and all cluster and plugin commands supported by clusters and plugins
included in the application.

HAL

Use the HAL tab to configure hardware-specific options for your device.

Configuring a Project

140/290

For EFR32 devices, most hardware configuration is done through the Hardware Configurator. Under Hardware Configurator Interface
click Open Hardware Configurator.

Bootloader - Select the type of bootloader to use. See UG103.6: Bootloader Fundamentals as a starting point to learn more about
bootloaders.

Plugins

Use the Plugins tab to include, exclude, and configure the functional implementations called plugins.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf

Configuring a Project

141/290

Include/exclude plugins by checking/unchecking them. Select a plugin to see information about it and configurable parameters, if
any.

Some plugins provide access to the Hardware Configurator peripheral settings. These plugins have a Hardware Configurator
Dependent Options pane. You may need to scroll down in that pane to see all options. Enabling/disabling plugins can also enable and
disable Hardware Configurator modules and their dependent peripherals. When a plugin with Hardware Configurator dependencies is
enabled/disabled, a pop-up dialog box shows which Hardware Configurator modules and peripherals are being enabled/disabled.
Also, when a plugin that shares Hardware Configurator modules/peripherals with another plugin is enabled/disabled, a similar
warning shows which peripherals are being affected behind the scenes in the Hardware Configurator. See Configuring Peripherals for
information on using the Hardware Configurator directly. For more details on both plugin and tool access, see AN1115: Configuring
Peripherals for 32-Bit Devices using Hardware Configurator.

Callbacks

Use the Callbacks tab to add or remove callbacks, and to see the callbacks that are required by plugins or other code. Select a
callback to see its code and other information about it.

https://www.silabs.com/documents/public/application-notes/an1115-32-bit-device-peripheral-configuration-in-simplicity-studio.pdf

Configuring a Project

142/290

Enabled callbacks must be implemented in application code, otherwise you will get linker errors.

Callbacks are grouped into logical sections in the callbacks tab for ease of navigation. Callbacks implemented by an included plugin
have the plug symbol. All of the custom application framework callbacks are included in the "Non-cluster related" section. All of the
other callbacks are grouped by cluster. Many of the cluster-specific callbacks are intended for command handling.

When a command comes in, it is passed off to a cluster-specific callback for processing. If the callback returns TRUE then the
internal handler for that command will not be called. Cluster-related callbacks are also only implemented for those client and server
clusters that are included in the application. If a cluster is not included, the application is not expected to parse that cluster's
commands. The application framework returns a default response of UNSUPPORTED_COMMAND.

Callback generation: The first time you generate your application from AppBuilder, it automatically generates a callbacks.c file with
the name <project name>_callbacks.c. When you regenerate files in the future, AppBuilder protects your generated callbacks file from
being overwritten by asking if you want to overwrite it. By default, AppBuilder will not overwrite any previously created callbacks file.
If you choose to overwrite the file, AppBuilder backs up the previous version to the file <project name>_callbacks.bak.

Includes

Use the includes tab to manage information included in the application.

Configuring a Project

143/290

Additional .c and .h files

When you generate a project file from AppBuilder, you often need to modify the project to include your own source files into the
application image. This is a problem if the project file needs to be re-generated, since the newly generated project file will overwrite
the old one, thereby removing any files that have been included.

Any files that you would like to compile along with your application can be included in the file include table. To include a new file, click
New. Navigate to the location of the file you wish to include and click OK. The file will be included inside the generated project file
with an absolute path to the location of the file.

Token Configuration

To implement attributes in tokens, the application framework places its own token file into the generated
APPLICATION_TOKEN_HEADER #define within the generated project file.

The application framework's token header file, located at app/framework/util/tokens.h, includes a spot where you may place a
relative path to your own token header. The token header files are chained off one another with the application framework's token
header at the top of the chain. To include your own token header within your application, provide absolute or relative path inside the
appropriate Token Configuration path field.

Additional Macros

Much of the configuration for the application framework and the stack is done using macros documented within the API. Any
additional macros that you wish to define, either for compile time or for run time, should be provided here.

Compile-time macros should include the "-D" option. These macros will be included in the compiler and linker definition sections in
the generated project file. Any macros which do not include the "-D" option will be included in the generated application header file.

Event Configuration

You can include custom application events into the application framework's event system. These events are run in the same manner
as the application framework's own events as well as all cluster events implemented by the cluster plugins.

Configuring a Project

144/290

To include a custom event, click Add New. Your custom event will be automatically included in the event configuration section of the
generated endpoint_configuration.c file. Stubs for your event function and event control will be generated into the callbacks.c file. You
may also change the name of the generated event control value and function to whatever you desire.

For more information on how events work UG391: Zigbee Application Framework Developer’s Guide .

Other Options

Use the Other Options tab to configure PHY support, stack protection, and to manage plugin-provided services.

Bluetooth GATT

For Dynamic Multiprotocol applications, use the Bluetooth GATT tab to configure the GATT database for the Bluetooth application.

https://www.silabs.com/documents/public/user-guides/ug391-zigbee-app-framework-dev-guide.pdf

Configuring a Project

145/290

For more information about Bluetooth GATT database configuration see UG365: GATT Configurator User's Guide for Bluetooth SDK
v2.x.

https://www.silabs.com/documents/public/user-guides/ug365-gatt-configurator-users-guide.pdf

Configuring Peripherals

146/290

Configuring Peripherals

Configuring Peripherals

Simplicity Studio® 5 (SSv5)'s AppBuilder HAL tab provides access to a Hardware Configurator that you can use to configure pins and
peripherals. Access to specific configuration options is also available through various peripheral plugins.

To open the Hardware Configurator for an open project, double-click the .hwconf file in Project Explorer, click Open Hardware
Configurator on the HAL tab, or select Hardware Configurator from the Tools menu and then select the target project. The Hardware
Configurator has two views, accessed through the two DefaultMode tabs at the bottom of the center pane:

Port I/O: Used to configure the pin locations and port pins
Peripherals: Used to configure modules such as Timers, USARTs, and HAL peripherals. Most configuration changes can be made
through this tab.

Port I/O

The Port I/O tab displays a package drawing for the selected device. This drawing updates to display changed pin assignments.
Hover the cursor over a pin to see its definition. White = unused, blue = assigned, orange = two or more signals going to the pin,
conflict allowed, and red = two or more signals going to the pin, conflict not allowed. While you can make some changes to the
peripheral associated with a given pin, Silicon Labs recommends changing peripheral configuration through the Peripheral tab. Use
this configuration for pin customizations such as renaming the pin.

Configuring Peripherals

147/290

Some changes must be made in both the Port I/O and Peripherals tab. For example:

A route can be selected in Port I/O and an APORT channel can be selected in the peripherals properties.
ACMP output can be selected on the Port IO route selection and ACMP inputs can be configured in the Peripherals section.

A printable report can be generated by right-clicking on the pinout diagram and selecting Pin Configuration Report. This opens a
report as a webpage in a browser that can be saved, printed, or archived. The Module Configuration Report option generates a similar
set of tables organized by module rather than by pin order.

Note: To share information about the hardware configurations for a device Silicon Labs recommends sharing the .hwconf file itself.

Peripherals

The Peripherals tab contains boxes, each of which represents either a hardware peripheral or a software concept that is HAL-related
but not physically on the chip. Peripheral boxes are organized into groups. Collapse or expand a group by clicking the arrow icon on
the upper right of the group. Hover your cursor over a box to see information about the peripheral.

Click on a box to see its properties in the Properties pane. Properties can either have a drop-down menu with the available selections
or a text input box for a numeric or text field. After making a selection for a property, click away from the property or press Enter to
ensure the property value change occurs. If you cannot disable a peripheral it may be owned by another peripheral. Go to the settings
for that peripheral to free up any dependent peripherals.

Note: The defines for the peripheral are only generated if the checkbox on the peripheral box is checked. For example, the interface
for a project based on the Silicon Labs Zigbee Z3LightSoc example has a HAL group with a Button peripheral. Click on that peripheral
to see its properties.

Configuring Peripherals

148/290

Developing for 8-Bit Devices

149/290

Developing for 8-Bit Devices

Developing for 8‑Bit Devices

Hardware Configurator (Configurator) for 8-bit devices is part of Simplicity Studio® 5 (SSv5) and greatly simplifies EFM8 and C8051
MCU peripheral initialization by presenting peripherals and peripheral properties in a graphical user interface.

The 8051 SDK contains an extensive and nearly comprehensive set of examples for 8-bit MCU peripherals for each supported device
family. These examples show simple use cases for each peripheral, and can be used as building blocks for larger systems
incorporating multiple peripherals, or as a starting place for applications requiring each peripheral. Projects based on these examples
are customized by changing code as described in About Projects and by updating peripheral configuration using the 8-bit Hardware
Configurator.

In Hardware Configurator, most of the initialization firmware can be generated by selecting peripherals and property values from
combo boxes or entering register values in text boxes. Some peripherals provide calculators, such as baud rate, timer overflow rate,
and SPI clock rate, that can be used to automatically confirm the necessary reload register value to generate the specified clock rate.
Hardware Configurator also provides real-time property validation to ensure that a configuration is valid before downloading code to
the MCU.

About Projects

150/290

About Projects

About Projects

Create a Simplicity Studio® 5 (SSv5) project for an 8-bit target by selecting a target device, and then selecting an example, as
described in Project Creation. An extensive list of examples is provided for most Silicon Labs EFM8 and C8051 devices. These
examples contain configurations specific to each target device.

The Simplicity IDE perspective opens with the project directory highlighted in Project Explorer view. Expand the directory and double-
click the project source to see or modify the code.

About Projects

151/290

Open Hardware Configurator by double-clicking the .hwconf file in Project Explorer, or by selecting Hardware Configurator from the
Tools menu, and selecting the project.

Use Hardware Configurator to customize the configuration and functionality as desired. Modifications to the device configuration can
be saved to the .hwconf file. Hardware Configurator generates output in the form of generated code in multiple files, as described in
Using Hardware Configurator.

Build and debug the application as described in Building and Using the Debugger.

Using Hardware Configurator

152/290

Using Hardware Configurator

Using Hardware Configurator

Simplicity Studio® 5 (SSv5)'s Hardware Configurator for 8-bit devices uses the Configurator perspective. This perspective is tailored
specifically for use with Hardware Configurator to initialize MCU peripherals. Special views in this perspective allow peripheral
registers to be configured.

The available editors in a Configurator project are as follows:

Peripherals: Used to configure hardware peripherals such as ADCs, Timers, LEUART, PCAs, and so on.
Port I/O: Used to configure the pin locations, crossbar, and port pins. This editor is open by default for a new project.
Mode Transitions: Used to define different MCU peripheral initialization states, such as DefaultMode, RESET, and other optional
modes (example: LowPower mode). This editor can also be used to define transitions between states.

The Hardware Configurator automatically validates register configuration values. Occasionally changes to the configuration can
cause errors or warnings. These clear as soon as the cause is addressed.

Peripherals

Use the Peripherals tab to configure hardware peripherals like the ADC, comparators, or timers. To configure a peripheral, click the
peripheral icon. This selects the peripheral and opens it in the Properties view. Properties can either have a drop-down menu with the
available selections or a text input box for a numeric or text field. Properties that are grayed out are read-only. These properties
typically provide more information about the configuration of a peripheral. After making a selection for a property, click away from
the property or press Enter to ensure the property value change occurs.

Using Hardware Configurator

153/290

For example, click the Timers peripheral to display the timer properties in a tabbed view. The Timer 3 tab has several properties that
can be modified, like Clock Source, Mode, and Target Overflow Frequency. Modifying any of these properties will update the Timer
Reload Overflow Period and Timer Reload Overflow Frequency read-only properties, which display the calculated overflow time
based on the Target Overflow Frequency and the Clock Source settings. These read-only fields and calculators depend on the Mode
and Run Control state. Calculators for reload value are for auto-reload mode.

Note: Peripherals will not have code generation enabled unless the peripheral checkbox is checked.

Using Hardware Configurator

154/290

Port I/O

The Port I/O tab displays a package drawing for the selected device. This drawing updates to display pin assignments as peripherals
are enabled on the crossbar or peripherals with fixed pin assignments are enabled. For fixed pin assignments, the associated
peripheral must be enabled in order for the fixed pin function to appear on the Port I/O tab. Changes are shown in blue until the file is
saved.

For example, on the Peripherals tab make sure the ADC0 module is checked. On the port I/O tab, in the Outline view select ADC0, in
Properties change Enable ADC to Enabled , and select a Positive Input pin (in this example P1.3). This displays the ADC_IN fixed
signal on the selected pin in the drawing.

Using Hardware Configurator

155/290

To enable a peripheral on the crossbar, on the Peripherals tab enable a peripheral for code generation (in this case Clock Control). On
the Port I/O tab, in the Outline view click CROSSBAR0, and in the Port I/O Mapping view check the corresponding signal. This
changes the corresponding property to Enabled .

Using Hardware Configurator

156/290

To configure a pin’s properties, click the pin in the package drawing and select the desired pin property settings. If configuring a
device with a crossbar, a pin can be skipped by right-clicking the pin and selecting Skip in the context menu or changing the Skip
property setting.

Similarly, I/O mode can be selected by right-clicking the pin and selecting IOMode or changing the IOMode property setting.

On all devices, multiple pins can be selected by holding Ctrl or Shift and selecting the desired pins or holding the left mouse button
and dragging over a group of pins. With multiple pins selected, the property changes made in the Properties view or context menu
apply to all pins. To reset a pin to its default state, right-click the pin and select Reset.

Mode Transitions

Modes define different states of peripheral configurations. For example, an application may use two configurations of the ADC and
Timer 2 with different input pins and sampling rates. These two configurations can be treated as separate modes with separate
initialization sequences. The movements between these modes are called transitions. By default, each project contains one
DefaultMode mode. The reset state exists only to indicate the transition from RESET to DefaultMode and is not a full mode.

Using Hardware Configurator

157/290

To add a new mode, right-click either the Mode Transitions tab or the Outline view and select Create Mode from Reset. Right-clicking
an existing mode also enables cloning that mode with the Clone Mode option. To add a transition from one mode to another, hover
over one of the four white handles on a mode until the mouse cursor changes, hold down left mouse button, and drag to the end
mode of the transition. A Peripherals and Port I/O pair of tabs are added for each mode in the project.

After reset, call the mode transition enter_DefaultMode_from_RESET() to apply the DefaultMode settings. In most cases this will
be the first transition in the application code.

Adding a transition generates a corresponding function that application firmware can call to initiate the transition between modes.
For example, with DefaultMode as the originating mode going to Mode2:

enter_Mode2_from_DefaultMode(void)

This function then calls all of the functions that configure the peripherals for the mode.
Hardware Configurator generates only the
transitional code from peripheral to peripheral between modes. For example, if only the timer reload value and ADC input mux
selection differ, then those are the only two properties touched by the transition code. To see the differences between two modes,
right-click the mode transition and select Show Differences. This provides a report of all the different property values between the
modes on a module-by-module basis.

Using Hardware Configurator

158/290

Transitions can be added in both directions using the same method as the original mode transition.

To delete a mode transition, select the arrow and press Delete or right-click the arrow and select Delete transition.

Transition functions will not modify the state of the global interrupt enable (EA) on EFM8 or C8051 devices. Transitions assume that
interrupts are disabled (that is, global interrupt enable bit EA = 0) or that any enabled interrupts will not interact with any changes
made during the transition. Transition functions do not clear interrupt flags, to ensure that no information is lost during
reconfiguration. If having these flags set will cause an issue in firmware operation, firmware must clear these interrupt flags before
calling the transition function.

Transition functions also assume that any peripherals being updated are not active. For example, firmware should stop a timer
before calling a transition function that changes the timer configuration and restart the timer after the transition completes.

It is possible to change the configuration order of a set of peripherals by creating multiple modes with multiple transitions. For
example, to configure Timer 2 before the ADC during a mode transition that would normally put the ADC first, create a mode to
handle the Timer 2 changes and a mode to handle the ADC changes. Firmware can then call the Timer2 mode transition function
first, followed by the ADC transition function.

Errors and Warnings

The Hardware Configurator automatically validates register configuration values and displays any errors, warnings, or information
items in the Problems view. Double-clicking an entry displays the property that raised the problem in the Properties view. Any
peripherals that contain a warning or error are highlighted in yellow (warning) or red (error), and the associated property has a
corresponding warning or error icon.

Using Hardware Configurator

159/290

Once the highlighted property is updated, the associated warning or error will disappear from the Problems view, indicating that the
problem has been solved.

All newly created projects will have a warning regarding the Watchdog Timer, since it’s enabled after a reset and must be handled in
application code or disabled. If a warning or error doesn’t apply to the project, it can be temporarily deleted from the project by right-
clicking the entry in the Problems view and selecting Delete. Closing and reopening the .hwconf file regenerates any deleted
warnings or errors.

Code Generation

To generate code for a peripheral, check the checkbox for that peripheral in the Peripherals tab. Saving the project automatically
generates code for all selected peripherals and port pins. This code generates into the InitDevice.c, InitDevice.h, and Interrupts.c files.

Each hardware register has a section in the InitDevice.c file tagged with the register name and register description. For example, the
P1 register area is as follows:

These tags indicate that everything in between is automatically generated, so any code added manually between these tags will be
deleted on the next Hardware Configurator project save. Code can be added in between these tags, however, and this code will not be
overwritten.

For registers that are modified from their reset value or the value in the previous mode, the tags include comments that update
based on the settings for the register. For example, setting P1.0 to push-pull on an EFM8 or 8-bit MCU generates the following:

// $[P1 - Port 1 Pin Latch]

// [P1 - Port 1 Pin Latch]$

1
2

// $[P1 - Port 1 Pin Latch]

P1 = 0x00; // This code is not safe, and Configurator will overwrite it

// [P1 - Port 1 Pin Latch]$

P1 = 0x00; // This code is safe from Configurator automatic code generation

// $[P1MASK - Port 1 Mask]

// [P1MASK - Port 1 Mask]$

1
2
3
4
5
6
7
8

Using Hardware Configurator

160/290

// $[P1MDOUT - Port 1 Output Mode]

/*

// B0 (Port 1 Bit 0 Output Mode) = PUSH_PULL

// (P1.0 output is push-pull.)

// B1 (Port 1 Bit 1 Output Mode) = OPEN_DRAIN

// (P1.1 output is open-drain.)

// B2 (Port 1 Bit 2 Output Mode) = OPEN_DRAIN

// (P1.2 output is open-drain.)

// B3 (Port 1 Bit 3 Output Mode) = OPEN_DRAIN

// (P1.3 output is open-drain.)

// B4 (Port 1 Bit 4 Output Mode) = OPEN_DRAIN

// (P1.4 output is open-drain.)

// B5 (Port 1 Bit 5 Output Mode) = OPEN_DRAIN

// (P1.5 output is open-drain.)

// B6 (Port 1 Bit 6 Output Mode) = OPEN_DRAIN

// (P1.6 output is open-drain.)

// B7 (Port 1 Bit 7 Output Mode) = OPEN_DRAIN

// (P1.7 output is open-drain.)

*/

P1MDOUT = P1MDOUT_B0 PUSH_PULL | P1MDOUT_B1 OPEN_DRAIN | P1MDOUT_B2 OPEN_DRAIN

 | P1MDOUT_B3 OPEN_DRAIN | P1MDOUT_B4 OPEN_DRAIN | P1MDOUT_B5 OPEN_DRAIN | P1MDOUT_B6 OPEN_DRAIN

Using Hardware Configurator

161/290

Interrupts

The Hardware Configurator creates an interrupts.c file containing interrupt prototypes whenever interrupts are enabled and the
project is saved. Hardware Configurator generates the prototype if it is not present, but does not overwrite existing prototypes. This
protects any application code written in the prototypes from being accidentally modified or deleted. The comments above the
prototypes list any flags in the modules that may need to be cleared by application code after the interrupt triggers.

P1MDOUT_B7 OPEN_DRAIN;// [P1MDOUT - Port 1 Output Mode]$1
2

Building and Flashing

162/290

Building and Flashing

Building and Flashing

These pages describes how to compile or build software into a binary image, and how to load or flash that application image onto a
connected device.

Building

163/290

Building

Building

Simplicity Studio® 5 (SSv5) offers two convenient ways to compile or 'build' projects:

Simple build
Debug build and flash

Projects are built with the toolchain defined when the project was created, and using the active configuration. Project files must be
generated before you can build the project.

For 32-bit device development using AppBuilder, click Generate in the Simplicity IDE.
Files are automatically generated if the project uses Project Configurator.

Progress is shown in the lower right of the Simplicity IDE perspective.

Speed varies depending on your system, number of projects, and other factors. Be sure that generation and indexing complete before
building the application image.

The result of the build is a compiled application known as a firmware image or binary. The binaries are physically located in a
directory named for the compiler used to generate them, and are also shown as a 'binaries' group in project explorer. Right-click a
binary for a context menu from which you can debug, flash, and perform other functions.

The binaries generated depend on both the SDK and the target device. For example, the Keil® 8051 compiler for an 8-bit device
generates:

*.hex (application image)
*.omf (contains additional debug information)

The GNU ARM® compiler for a 32-bit device using the Zigbee EmberZNet SDK generates:

*.axf (image that can be read on a Microsoft Windows device)
*.bin (binary image file, can be flashed to any address)
*.gbl (Gecko Bootloader file, specialized firmware file for use with the Gecko bootloader)
*.hex (application image file)
*.s37 (similar to a binary file but contains the target memory location to flash to - an application image or a bootloader image, but not
both)

Note that if you need a .gbl file but do not see one in the binary directory, you can use Simplicity Commander to create one.
Commands invoked from Simplicity Commander's CLI can be used to:

Generate key files for signing and encryption
Sign application images for Secure Boot

Building

164/290

Create GBL images (encrypted or unencrypted, signed or unsigned)
Parse GBL images

For details about using Simplicity Commander see UG162: Simplicity Commander Reference Guide.

For details about using the Gecko Bootloader, including its enhanced security features, see UG266: Silicon Labs Gecko Bootloader
User's Guide.

See your SDK's quick-start guide for more stack-specific information about building and flashing.

About Toolchains

SSv5 provides a GNU ARM® toolchain to build projects for 32-bit devices and a 30-day evaluation license to the Keil® 8051 toolchain
to build projects for 8-bit devices. You can apply for a free full license when you build an 8-bit project.

You can also add your own toolchain, for example IAR-EWARM. IAR is required for some projects, such as the Zigbee Dynamic
Multiprotocol and Micrium OS examples. However, you must use the version specified in the SDK release notes front page under
compatible tools. See your SDK's quick-start guide for information on how to load a compatible version and obtain a free evaluation
license. SSv5 provides an integration package for IAR, so that you can use that tool within SSv5.

https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug266-gecko-bootloader-user-guide.pdf

Building

165/290

Projects use the toolchain selected at the time of project creation. The selection is available on the first of the three New Project
Wizard dialogs.

The toolchain and build configuration are displayed in Project Explorer view with the project directory. The build configuration
determines whether the image is built for debugging or release. Default is typically equivalent to a debug build.

Building

166/290

If more than one toolchain is available, you can configure which are presented as options when creating a new project. In the
Preferences filter field type toolchain . Uncheck the ones you do not wish to display. You can also completely remove toolchains,
or add new toolchains through this dialog.

Simple Build

Right-click the project directory and in the context menu select Build, or click the Build (hammer) button on the Simplicity IDE
perspective toolbar to build a project with its toolchain and the active build configuration.

Building

167/290

While the Build menu selection always uses the active configuration, the Build button's drop-down menu allows you to select a
different configuration. This also changes the active configuration for the project to the one selected.

If the Build button is not enabled, make sure you have a project directory or file in the directory selected.

Debug Build and Flash

Click the Debug (bug) button in either the Simplicity IDE or Debug perspective to build an application image, flash it to the device, and
open the Debug perspective (if it is not already open).

The Debug button's drop-down menu allows you to select the project in your workspace you want to debug.

If you have a lot of projects use Organize Favorites to select favorites and organize them. These projects then appear at the top of
the selection list with other projects below a demarcation line.

Building

168/290

Select Debug Configurations to open a tabbed set of configuration option dialogs. If you click Debug, the build and flash process will
proceed with the options you selected.

See Using the Debugger for more information.

Flashing

169/290

Flashing

Flashing

Simplicity Studio® 5 (SSv5) offers several ways to load (flash) a firmware image to your device.

With the Debug button (see Debug build and flash)
Through the debug adapter's context menu, Upload Application... selection
Using the Flash Programmer tool

See your SDK's quick start guide for more stack-specific information about building and flashing.

Upload Application

This option is useful if you want to load a bootloader image and an application image in a single step. To use this option, you will
need to know the radio board part number (shown in the Debug Adapters view), and the location and name of the binary image you
wish to load. The default workspace locations are:

Windows 10 workspace: C:\Users\<user>\SimplicityStudio
Mac workspace: /Users/<user>/SimplicityStudio

In the Debug Adapters view, right-click the adapter (top line) and select Upload Application... from the debug adapter context menu.

The Application Image Upload dialog is displayed.

Flashing

170/290

Browse to the project directory, go to the directory corresponding to the compiler toolchain, and select an image file. This example
uses the .GBL file, as it assumes you are also loading a Gecko Bootloader image. (Start with UG103.6: Bootloader Fundamentals if
you are not familiar with bootloaders.) Click Open.

Check Bootloader image, then browse to the folder containing a prebuilt bootloader image. Images are located in the Simplicity
Studio platform bootloader folder under sample apps. In this case open the SPI Flash Single folder, for example:

C:\SiliconLabs\SimplicityStudio\<version>\developer\sdks\gecko_sdk_suite\<version>\platform\bootloader\sample-
apps\bootloader-storage-spiflash-single

Open the folder that corresponds to your board and part number and select the .s37 file, for example:

efr32mg12p332f1024gl125-brd4162a\bootloader-storage-spiflash-single-combined.s37

Click Open.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf

Flashing

171/290

Now that both the application image and the bootloader are selected, check Erase Chip, to make sure that the main flash block is
erased before your new image is uploaded. New users will typically always check this.

The After uploading options are Run (begin executing the code immediately) and Halt (wait for an event, such as a debugger to
connect or manual initiation of a boot sequence). During initial development you will typically leave this set to Run.
The Flash options determine the storage location, and are Internal and External SPI. Leave the option set to Internal.

The completed dialog should resemble the following:

Click OK.

Flash Programmer

The Flash Programmer is a tool that provides a number of options for use when flashing images to a device. Select the Flash
Programmer from the Tools button on the toolbar. Some perspectives have a button specifically for the Flash Programmer.

Flashing

172/290

The Flash Programmer provides basic flash and erase functionality, but also allows you to lock parts of memory and enable or
disable debug access.

Flash Part

The Flash Programmer is configured to facilitate flashing .hex or .bin files.

Flashing

173/290

To flash an image, browse to the image location. Note that the images you see are filtered by the extension drop-down to the right of
the file name field.

Click Open and then click Program to flash the image.

By default, the Erase function erases the main page. Click Advanced Settings to change what is erased.

Finally, if you have more than one device connected, click Change Device to select the target.

Flash Erase/Write Protection

Use these functions to protect or remove protection from a custom range, or default pages.

Debug Lock Tools

Use these functions to unlock or lock debug access.

Testing and Debugging

174/290

Testing and Debugging

Testing and Debugging

This section provides information on testing and debugging application firmware.

Overview and Resources reviews the tools that are available and additional documentation.
Using the Debugger provides details on Simplicity Studio's built-in debuggers.

Overview and Resources

175/290

Overview and Resources

Resources

Simplicity Studio® 5 (SSv5) offers a number of tools that can be used to test and debug application functionality, power
consumption, and network behavior.

Tools include:

The built-in debugger
Network Analyzer
Energy Profiler

In addition, a number of SDKs provide example applications that can be used for testing, such as:

NodeTest (Zigbee EmberZNet SDK) (See AN1019: Using the NodeTest Application) - Deprecated in Zigbee EmberZNet SDK 6.10.0.0
RAILtest (Proprietary Flex SDK) (see UG409: RAILtest User's Guide)

Finally, Silicon Labs provides a number of other documentation resources related to testing such as:

AN1267: Radio Frequency Physical Layer Evaluation in Bluetooth® SDK v3.x
AN1142: Mesh Network Performance Comparison
AN718: Manufacturing Test Overview
UG104: Testing and Debugging Applications for the Silicon Labs EM35x and EFR32MG Platforms (Zigbee)

https://www.silabs.com/documents/public/application-notes/an1019-node-test.pdf
https://www.silabs.com/documents/public/user-guides/ug409-railtest-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1297-custom-direction-finding-solutions-silicon-labs-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1142-mesh-network-performance-comparison.pdf
https://www.silabs.com/documents/public/application-notes/AN718-MfgTestOverview.pdf
https://www.silabs.com/documents/public/user-guides/ug104-test-debug-apps.pdf

Using the Debugger

176/290

Using the Debugger

Using the Debuggers

Simplicity Studio® 5 (SSv5) supplies two debuggers:

The classic Simplicity Studio debugger is a full featured debugger that offers the ability to step through code, set breakpoints, examine
memory, variables and registers. This is the default debugger.
For 32-bit device users, Simplicity Studio 5.1 includes Beta-level support for a GNU Debugger (GDB) client and SEGGER's GDB server.
The GNU Debugger (GDB) enables thread-aware debugging, and offers features such as unlimited flash breakpoints.

To change from the Simplicity Studio debugger, on the toolbar click Preferences and select Simplicity Studio > Debuggers. Select
GNU Debugger (GDB) and click Apply and Close.

Silicon Labs supplies the debug models for each of their devices so that all of the registers can be examined and modified using
either debugger.

The debugger runs in the Debug perspective. The debug perspective can be opened in a variety of ways, but most commonly by
clicking the Debug button in the Simplicity IDE perspective once a project has reached a point where it will build and link correctly.

Using the Debugger

177/290

If a debug session has never been started before, a warning that a debug configuration does not exist might appear. Click the down
arrow next to the debug icon, select Debug as... and then select either Silicon Labs ARM Program for 32-bit parts or Silicon Labs
8051 Program for EFM8 and C8051 parts.

If a single debug adapter is available, SSv5 automatically downloads the code to that device. If more than one debug adapter is
available, SSv5 will prompt to select one.

With the Simplicity Studio debugger you can also save a snapshot of register values on a device, which can be used to compare the
states of two different devices, or the state of the device at two different points in time.

Debug Perspective

The Debug Perspective by default is composed of the editor (A) and three tabbed view panes.

The Debug view (B) shows the call stack and call hierarchy that can help debug and find where functions are called. The Project
Explorer view is available as a tab.

The right pane (C) and the bottom pane (D) contains tabbed views into data and consoles. These vary between the two debuggers.
Depending on your actions, additional views may open in either the right or bottom pane.

Buttons in the Debug perspective toolbar (E) for the Simplicity Studio debugger and the GDB are shown below. The toolbar is similar
for both debuggers.

Using the Debugger

178/290

Number Command Description

1 Debug Starts a new debug session. An active debug session must be disconnected before starting a new
session using the same debug adapter.

2 Reset the
device

Performs a hardware reset.

3 Create
snapshot

(Simplicity Studio Debugger only) Creates a snapshot when clicked (default). Drop down the menu to
select Create when Stopped or Create at Breakpoints. See About Snapshots for more information.

4 Skip Skips all breakpoints.

5 Resume Runs the application after reset or hitting a breakpoint.

6 Suspend Halts the application.

7 Terminate Terminates the session.

8 Disconnect (Simplicity Studio Debugger only, gray for GDB) Terminates the session and disconnects the debug
adapter. SSv5 automatically switches back to the Simplicity IDE perspective.

9 Step into Single steps into the first line of a function.

10 Step over Single steps over a function, executing the entire function.

11 Step return Steps out of a function, executing the rest of the function.

12 Instruction
Stepping
Mode

Toggles assembly single stepping. When enabled, single stepping executes a single assembly instruction
at a time. If clicked, opens a Disassembly view in the right pane that shows the assembly code
corresponding to the source code at the current line of execution.

13 Restart (Simplicity Studio debugger only) Restarts a process or target without terminating and relaunching

14 Open
Element

Opens a dialog where you can see the qualified name and location for an element. Start typing to bring
up a list of matching elements.

15 Toggle Mark
Occurrences

Turns the mark occurrences function on and off.

A debug adapter can only support a single debug session at a time. An active debug session must be disconnected before code can
be recompiled and a new debug session started.

To set a breakpoint, double-click in the blue bar to the left of the code editor or right-click on a line of code and select Add
Breakpoint.

Simplicity Studio Debugger

This section describe the various views in the Simplicity Studio debugger.

Using the Debugger

179/290

The Variables view shows the values of variables.
The Breakpoints view provides functionality to manage breakpoints.
The Registers view displays and allows you to change register contents. Registers with bitfields are split into individual fields with the
enumeration value decoded. Registers that have changed between breakpoints are highlighted in yellow.
The Expressions view allows you to add and change expressions. If possible, SSv5 evaluates the expression and displays its current
value when the application is halted. If an expression is out of scope, SSv5 cannot evaluate the expression until the application is
halted in a section of code where the expression is in scope.
The Disassembly view provides an interleaved display of the original source code with the assembler instructions use to execute the
source code.

The Memory view in the bottom pane displays the contents of the CODE, RAM, and XRAM memory. To experiment, in the Monitors
menu click +. Select Enter memory space and address, select a memory space such as CORE and enter an address to view, such as
0x0000. Click OK. A memory monitor is added to the Memory view that displays the contents of the space starting at the address
you provided.

GDB

This section describe the various views in the GNU Debugger.

Using the Debugger

180/290

The Variables view shows the values of variables.
The Breakpoints view provides functionality to manage breakpoints.
The Registers view displays and allows you to change general register contents. Registers that have changed between breakpoints
are highlighted in yellow. To see other registers, select a peripheral in the Peripherals view.
The Expressions view allows you to add and change expressions. If possible, SSv5 evaluates the expression and displays its current
value when the application is halted. If an expression is out of scope, SSv5 cannot evaluate the expression until the application is
halted in a section of code where the expression is in scope.
The Disassembly view provides an interleaved display of the original source code with the assembler instructions use to execute the
source code.
The Peripherals view, after a short delay, shows peripherals with bitfields that are split into individual fields shown as a hex value.
Their values cannot be modified. When a peripheral is selected, the Memory tab in the bottom pane shows associated registers and
their values.

The Memory view in the bottom pane displays the contents of the CODE, RAM, and XRAM memory. To experiment, in the Monitors
menu click + and enter an address or an expression to monitor. A monitor for that address or expression is added.

The bottom pane also includes a Debugger Console, with output specific to GDB Debug SEGGER J-Link Debugging.

About Snapshots

The Snapshot feature is available in the Simplicity Studio debugger only. A snapshot saves the values of the registers on a device at a
particular point in time. This feature is useful when comparing the states of two systems next to each other or looking at the state of
the hardware at separate points in time.

Once you take a snapshot, the Snapshot Album view opens in the bottom view pane.

Using the Debugger

181/290

In the Debug perspective, if you do not see the Snapshot Album view, select Window > Show View > Other > Snapshot Albums.

To view a snapshot, right-click a snapshot in the list and select Launch Snapshot. This adds a debug session in the Debug window
as it was at the time of the snapshot, with a Snapshot label at the start of the debug configuration. However, it is not an active debug
session on hardware. To switch back to a debug session on hardware, select the Silicon Labs ARM debug configuration in the Debug
window if a hardware debug session was
active or else select Run > Debug if a session is not active.

Tools Overview

182/290

Tools Overview

Using the Tools - Overview

Simplicity Studio® 5 (SSv5) provides a number of tools to assist with development activities. Use the Tools button to see a list of
available tools. The Project COMPATIBLE TOOLS tab provides a list filtered by the project's target device.

Many of these tools are discussed on other pages in this guide, for example:

Simplicity IDE
Application Builder
Migrate Projects
Flash Programmer
Hardware Configurator

These pages discuss:

Bluetooth NCP Commander
Energy Profiler
Network Analyzer
Bluetooth Direction Finding tools suite

More tools will be documented in future releases of the Simplicity Studio 5 User's Guide.

Bluetooth NCP Commander

183/290

Bluetooth NCP Commander

Bluetooth NCP Commander

Bluetooth NCP Commander is a Simplicity Studio® 5 (SSv5) tool for sending BGAPI commands to an NCP target application during
development.

Two versions of the tool are available in SSv5:

Bluetooth NCP Commander Standalone
Bluetooth NCP Commander

For detailed information about using NCP Commander and developing Bluetooth NCP-Host applications, see AN1259: Using the
Silicon Labs v3.x Bluetooth Stack in Network Co-Processor Mode.

Bluetooth NCP Commander Standalone

The Standalone version is provided for customers who need to control an NCP device on custom hardware. The Standalone version
can access the system COM ports that are not exposed in SSv5. Users who wish to work outside of the SSv5 environment can do so
by copying the directory <SSv5-install>/developer/adapter_packs/ncp_commander.

The Standalone version cannot access parts over Ethernet, which the integrated SSv5 version can.

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf

Bluetooth NCP Commander

184/290

Bluetooth NCP Commander

To open Bluetooth NCP Commander, make sure that the correct board is connected. If you are just getting started, build and flash a
project based on Bluetooth - NCP.

In the Project Configurator COMPATIBLE TOOLS tab, click Launch on the Bluetooth NCP Commander card. In the Connection
Manager dialog, select the target device and click CONNECT.

Once the UART connection to the mainboard is established, an Interactive view opens, which you can use to issue BGAPI commands.
Note that the connected device is shown in the lower right. You can change target devices without leaving Bluetooth NCP
Commander by clicking that area. It will show "Disconnected" if not connected to any device. Check the log for the NCP target
response and status messages.

You can also issue commands manually. For example, you can issue the 'system hello' command at any time to verify that
communication between the host and the device is working. The Smart Console provides auto completion and documentation for the
possible commands.

Bluetooth NCP Commander

185/290

NCP Commander provides a simple scripting feature. Create or import an existing script using the controls in the top right corner.
You can use any BGAPI commands in the script, but it has no additional features, such as branching or error handling. Click Export to
save the commands sent through the console to a file that can be imported back as a script.

Advertising

To start advertising, click "+" next to "Advertise – Peripheral" to create an advertiser set.

Select the desired advertising mode, create custom advertising packets if desired, and click Start.

Bluetooth NCP Commander

186/290

When advertising, the NCP target example accepts Bluetooth connections. If you connect to a WSTK or with another central device
(for example with your phone), you can see the events and commands on the log.

GATT Database

NCP commander supports creating a GATT database. To generate a basic GATT database, open the Local GATT view, and click
Create Basic GATT. The following database is generated.

Bluetooth NCP Commander

187/290

Here you can add services and characteristics. You can also read out the local GATT database from the device.

Bluetooth mesh

NCP Commander supports Bluetooth mesh features. You can issue Bluetooth mesh commands manually in the Smart Console, or
use the interactive host provisioner feature to provision and configure mesh nodes and manage mesh networks, instead of using a
Bluetooth mesh mobile application. To start using the host provisioner, select either Provision or Networks and Devices on the left
menu, and click Initialize for Provision.

To provision devices, select Provision on the left menu, and click Start Scan in the right panel. The devices that are transmitting
unprovisioned beacons are shown in the Discovered Devices section. Click Provision next to the device you want to provision.

Bluetooth NCP Commander

188/290

To configure provisioned devices, select Networks and Devices on the left menu. Provisioned devices are shown in the Provisioned
Devices section of the Settings tab. Click Configure to open a Mesh Node tab in which you can configure the device. In the
Configurations section, you can configure Bluetooth mesh features and network settings. In the SIG Models section, click SIG Models
to retrieve DCD from the device, and then you can configure the models.

Before configuring devices, you may need to create application keys and groups. Application keys, groups and other network settings
can be managed in the Settings tab of the Networks and Devices menu item.

Energy Profiler

189/290

Energy Profiler

Energy Profiler

Simplicity Studio® 5 (SSv5)'s Energy Profiler enables you to visualize the energy consumption of individual devices, multiple devices
on one target system, or a network of interacting wireless devices to analyze and improve the power performance of these systems.
Real-time information on current consumption is correlated with the program counter providing advanced energy software
monitoring capabilities. It also provides a basic level of integration with the Network Analyzer network analysis tool.

Energy saving and efficiency are at the top of developers’ priorities for an ever-growing number of embedded systems applications.
These constraints can be due to government regulations (for example, metering applications), a requirement to increase battery life,
or simply a need to lower the electricity bill. In battery-operated systems, energy efficiency often plays the most important role. In
cases where developers are satisfied with their system’s battery life, increasing the energy efficiency means they can switch to a
smaller and cheaper battery, which will lower the overall cost. There are also situations where the operating life must be extended to
the absolute maximum, such as products where the battery cannot be replaced or replacement involves very high costs.

Having a low-power MCU by itself does not mean you will have lower energy consumption. The trick is to optimize your software not
just in terms of functionality, but also with respect to energy efficiency. Having full control of the hardware surrounding the MCU and
optimizing the overall software and peripheral usage are crucial factors for reducing system energy consumption. Software is not
usually seen as an energy drain, yet every clock cycle consumes energy. Minimizing the number of clock cycles becomes a key
challenge to reduce overall system consumption.

The Energy Profiler enables you to visualize the energy consumption of individual devices, multiple devices on one target system, or a
network of interacting wireless devices to analyze and improve the power performance of these systems. Real-time information on
current consumption is correlated with the program counter providing advanced energy software monitoring capabilities. It also
provides a basic level of integration with the Network Analyzer network analysis tool.

In these pages the following terms will be used:

AEM: Advanced Energy Monitor

ISD: The file extension used with Multi-Node Energy Profiler and Network Analyzer files.

PTI: Packet Trace Information

Starting an Energy Analysis Session

190/290

Starting an Energy Analysis Session

Starting an Energy Analysis Session

An energy analysis session can be started from either the Simplicity IDE Perspective or from the Energy Profiler.

From the Simplicity IDE Perspective

Some Silicon Labs SDKs contain examples that are pre-configured to deliver energy profiling data to the Energy Profiler. In the
Simplicity Studio Launcher perspective, you can find example titles such as "Powertest" or "Energy modes" or "Emode" for many
development kits. In the figure below, the selected device is an EFR32 development kit. The Flex SDK has been installed.

Create an example (in this case Flex(RAIL) - Energy Mode). Because this is a RAIL example, the Simplicity IDE perspective opens
with the Radio Configurator open. If this is an AppBuilder project, click Generate.

Right-click the project directory. In the context menu select Profile As > Simplicity Energy Profiler Target.

Starting an Energy Analysis Session

191/290

SSv5 then:

1. Rebuilds the entire project.
2. Flashes the application to compatible hardware.
3. Starts energy capture for that device.
4. Switches to the Energy Profiler perspective.
5. Displays the device data on Single-Node View, Multi-Node View, and Scope View.

In step 2 above, if more than one connected device is compatible with the application being profiled, SSv5 prompts you to select a
device. Select the target of interest and click OK.

After the application is built and the firmware flashed, the Energy Profiler perspective is displayed, with a release notes dialog. Click
OK.

Starting an Energy Analysis Session

192/290

From the Energy Profiler

If application firmware is already running on a device, you can connect to it from the Energy Profiler tool. Open the Energy Profiler
perspective. Click Quick Access to display its menu and select Start Energy Capture.

If more than one connected device is compatible with the application being profiled, SSv5 prompts you to select a device. Select the
target of interest and click OK.

Starting an Energy Analysis Session

193/290

Energy Profiler then:

Starts energy capture for that device.
Depending upon which view is currently active, displays the device’s energy data on Single-Node view, Multi-Node view, or Scope view.

Customer Hardware and Software Design Information

This section discusses design requirements in order for a device to be able to use Energy Profiler features. Among these features is
Code Correlation, which connects power consumption and executed code. Using code correlation is discussed in more detail in
Profiling with Code Correlation

Hardware Design

EFM8 Hardware Interface

To use the Energy Profiler functionality on a board design, the board needs to include a debug interface that can be connected to a
Silicon Labs starter kit (STK) or wireless starter kit (WSTK). For the basic Energy Profiler current measurements, the board must be
powered from the VAEM supply of a Silicon Labs STK or WSTK. Both the current measurement and EFM8 C2 Debug interface can be
obtained by using the Silicon Labs Mini Simplicity 10 pin connector. This connector is detailed in AN958: Debugging and
Programming Interfaces for Custom Designs. The EFM8 C2 interface signals are on SWDIO (Pin 7 C2D) and SWCLK (Pin 8 C2CK)
pins shown in the following figure.

https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf

Starting an Energy Analysis Session

194/290

Code correlation is not possible with the EFM8 parts as they do not include the SWO pin that is used to transmit the program counter
information. As mentioned in AN958: Debugging and Programming Interfaces for Custom Designs, using the Silicon Labs debug
adapter board (BRD8010A) is the easiest way to get the Mini Simplicity pinout from a Silicon Labs STK or WSTK development kit.

EFM32 and EFR32 Hardware Interface

To use the Energy Profiler functionality on a board design, the board needs to include a debug interface that can be connected to a
Silicon Labs STK or WSTK. For the basic Energy Profiler current measurements, the board must be powered from the VAEM supply of
a Silicon Labs STK or WSTK. To also include code correlation, the debug interface must include the SWD interface. Both the current
measurement and the code correlation (SWD) can be obtained by using the Silicon Labs Mini Simplicity 10 pin connector. This
connector is detailed in AN958: Debugging and Programming Interfaces for Custom Designs. The Mini Simplicity 10 pin connector
can be used with all EFM32 and EFR32 parts. The pinout is shown in the following figure.

As mentioned in AN958: Debugging and Programming Interfaces for Custom Designs, using the Silicon Labs debug adapter board
(BRD8010A) is the easiest way to get the Mini Simplicity pinout from a Silicon Labs STK or WSTK development kit. The debug
adapter board is not compatible with the older EFM32 Development Kits (DKs) and some of the older EFM32 starter kits (STK) that
have a different debug connector on them (Gecko, Giant Gecko (EFM32GG-STK3700), Leopard Gecko, Tiny Gecko, Wonder Gecko,
Zero Gecko).

Software Design

To use the current monitoring functionality provided by the AEM interface, no software changes or setup are required. To use the
code correlation functionality, the SWD interface must be configured to output periodic program counter information. Currently, code
correlation is not possible with the EFM8 family. The Multi-Node Energy Profiler can still be used to monitor the overall energy use of
the parts over time / usage scenarios.

Software can be configured in two ways:

Project configurator method (using software components; preferred for SSv5 projects)
Legacy method (by manually adding the necessary source code)

Project Configurator Method

This method of enabling code correlation is preferred in SSv5, as it leverages the software components and thereby reduces the
chance of error.

1. In the Project Configurator, SOFTWARE COMPONENTS tab, find and install the SWO Debug component.
2. Click Configure to open the Component editor.
3. Open its configuration file and turn on Enable interrupt event trace and Enable program counter samples.
4. If the device allows SWO functionality on multiple GPIO pins, in the SL_Debug card's SWV field, select the pin to be used as the SWO

output.

https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf
https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf
https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf

Starting an Energy Analysis Session

195/290

Further initialization of the software component in code is not required provided that the System Init component is installed in the
project.

Legacy Method

This method should be used for Appbuilder project and projects not created in the Project Configurator.

1. The following paths must be included in your project, as they provide access to relevant header files used to enable code correlation.
These header files are readily available for Silicon Labs parts. For custom design boards use bsp_trace.h and traceconfig.h as a
reference instead.

1. <SSv5 install>/developer/sdks/gecko_sdk_suite/<version>/hardware/kit/common/bsp
Grants access to bsp_trace.h

2. (not required for AppBuilder projects) <SSv5 install>/developer/sdks/gecko_sdk_suite/<version>/hardware/kit/kitname/config
Grants access to traceconfig.h
For AppBuilder projects, instead see the next step.

2. (Only for Appbuilder projects) In the Hardware Configurator file (.hwconf) in the "DefaultMode" peripheral tab, enable the GPIO module.
This adds the BSP_TRACE_SWO_ macros to the hal-config.h file.

Starting an Energy Analysis Session

196/290

3. Add bsp_trace.c to the project (from <SSv5install>/developer/sdks/gecko_sdk_suite/<version>/hardware/kit/common/bsp)
4. The code must enable SWO output from the MCU. To enable this output, add #include bsp_trace.h to the appropriate module and

call BSP_TraceSwoSetup() during initialization as indicated in the following sections, based on the SDK being
used.

Stackless project MCU SDK: Place BSP_TraceSwoSetup() after the EMU_DCDCInit() call in main().

Bluetooth LE SDK: Place BSP_TraceProfilerSetup() in main.c after the initApp() call.

Flex SDK: Place BSP_TraceProfilerSetup() in main.c after the BSP_Init() call.

#include "bsp_trace.h"

.

.

.

/* Initialize DCDC. Always start in low-noise mode. */

dcdcInit.dcdcMode = emuDcdcMode_LowNoise;

EMU_DCDCInit(&dcdcInit);

// Setup SWD for code correlation

BSP_TraceSwoSetup();

1
2
3
4
5
6
7
8
9

#include "bsp_trace.h"

.

.

.

// Initialize application

initApp();

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

// Initialize LEDs

BSP_LedsInit();

1
2
3
4
5
6
7
8
9
10
11
12

Starting an Energy Analysis Session

197/290

EmberZNet SDK: Place BSP_TraceProfilerSetup() in af-main-soc.c after the emberInit() call.

The program must be built with debug information enabled so that source code lookup is possible. If you create your project in
Simplicity Studio, this is enabled by default. If you import a project into Simplicity Studio, check compiler options in project context
menu Properties...-> C/C++ Build -> Settings. If you build the program outside of Simplicity Studio, check compiler options of the
build tools.

EFM32 Software Configuration

#include "hal_common.h"

#include "bsp_trace.h"

.

.

.

// Initialize the BSP

BSP_Init(BSP_INIT_BCC);

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

1
2
3
4
5
6
7
8
9
10

 #include "afv2-bookkeeping.h"

 #if defined(CORTEXM3_EFR32_MICRO) || defined (CORTEXM3_EMBER_MICRO)

 #define EXTENDED_RESET_INFO

 #include "hal/micro/cortexm3/ diagnostic.h"

 #endif

 #include "bsp_trace.h"

 .

 .

 .

 int emberAfMain (MAIN_FUNCTION_PARAMETERS)

 {

 EmberStatus status;

 int returnCode;

 if (emberAfMainStartCallback(& returnCode, APP_FRAMEWORK_MAIN_ARGUMENTS)) {

 return returnCode;

 }

 }

 // Initialize the Ember Stack.

 status = emberInit();

 if (status != EMBER_SUCCESS) {

 emberAfCorePrintln("%pemberInit 0x%x", "ERROR: ", status);

 // The app can choose what to do here. If the app is running

 // another device then it could stay running and report the

 // error visually for example. This app asserts.

 assert(false);

 } else {

 emberAfDebugPrintln("init pass");

 }

 // Setup SWD for code correlation

 BSP_TraceProfilerSetup();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Starting an Energy Analysis Session

198/290

1. Add bsp_trace.c to the project. (from <SSv5 install>\developer\sdks\gecko_sdk_suite<version>\hardware\kit\common\bsp)
2. The macros BSP_TRACE_SWO_PIN, BSP_TRACE_SWO_PORT and BSP_TRACE_SWO_LOC must be defined. For EFM32 parts this is

done by default for Silicon Labs development kits in <SSv5 install>\developer\sdks\gecko_sdk_suite\<version>\hardware\kit\
<board>/hal-config-board.h. For a custom board design the Silicon Labs hal-config-board.h can be used as an example for defining the
values. The following is an example for the Pearl Gecko Starter Kit (SLSTK3401A):

3. The code must enable SWO output from the MCU. To enable this output, add #include bsp_trace.h to main.c and call
BSP_TraceProfilerSetup() during initialization after the EMU_DCDCInit() call in main() .

4. The program must be built with debug information enabled so that source code lookup is possible. If you create your project in SSv5,
this is enabled by default. If you import a project into SSv5, check compiler options in project context menu Properties... > C/C++
Build > Settings. If you build your program outside of SSv5, check compiler options of the build tools.

// $[GPIO]

#define PORTIO_GPIO_SWV_PIN (2)

#define PORTIO_GPIO_SWV_PORT (gpioPortF)

#define PORTIO_GPIO_SWV_LOC (0)

#define BSP_TRACE_SWO_PIN (2)

#define BSP_TRACE_SWO_PORT (gpioPortF)

#define BSP_TRACE_SWO_LOC (0)

// [GPIO]$

1
2
3
4
5
6
7
8
9

#include

#include "bsp_trace.h"

.

.

.

/* Initialize DCDC. Always start in low-noise mode. */

dcdcInit.dcdcMode = emuDcdcMode_LowNoise;

EMU_DCDCInit(&dcdcInit);

// Setup SWD for code correlation

BSP_TraceProfilerSetup();

1
2
3
4
5
6
7
8
9
10
11

User Interface

199/290

User Interface

Energy Profiler User Interface

The Energy Profiler perspective is divided into six primary sections. The following figure shows Single-Node view.

Quick Access Menus - The most frequently used menus for Multi-Node Energy Profiler are available on the user interface itself and
also from the Profiler menu at the top menu bar.
View Selector - Three views for Multi-Node Energy Profiler can be selected by clicking the View Selector bar.
Data Control - Controls in this area are used to enable and disable data flow to the user interface and to disk.
Statistics - Energy data for the waveform is shown in the statistics area.
Code Correlation - Function execution related to power consumption is shown in the Code Correlation view.
Editor - Source code for the program is shown here and works in conjunction with the Code Correlation view.

Three views are available for evaluating power performance:

Single-Node View
Multi-Node View
Scope View

Single-Node View

Single-Node view is used to display a single device’s waveform and events. It displays a high-detail waveform and ensures that all
events rows are visible, without the need to scroll the UI. The Energy Profiler perspective combines this Single-Node view, the Code

User Interface

200/290

Correlation view, and the source code Editor view, allowing you to perform in-depth analysis of a single device from many viewpoints.
Any active device may be selected through the Display Nodes menu.

Multi-Node View

Multi-Node view is used to display multiple device waveform and events. It allows you to investigate system behavior and
interactions between devices. Two devices are visible in the main portion of the UI, while others are viewed by scrolling. The Multi-
Node view groups each individual device’s waveform and events together. The Energy Profiler perspective combines this Multi-Node
view, the Code Correlation view, and the source code Editor view, allowing you to perform in-depth analysis of multiple devices from
many viewpoints.

User Interface

201/290

Multi-Node view offers the following capabilities:

Sorting
Node display control

Sorting

Sorting in Multi-Node view allows you to order waveforms based upon several criteria. For example, it may be useful to sort
descending by average power, such that the highest power consumers are easily identified at the top. As shown in the following
figure, devices may be sorted ascending and descending by name, average current, average power, or total energy.

Displaying Nodes

Enabling capture on any device automatically adds it to the Multi-Node view. However, as the number of devices displayed increases,
UI performance may be impacted. Click Display Nodes to select the devices that will be displayed. This selection only affects the
waveform display. If recording is enabled, data for all actively capturing devices is streamed to disk regardless of whether or not they
are displayed.

User Interface

202/290

Scope View

Scope view is used to display multiple device waveforms and events, allowing you to investigate system behavior and interactions
between devices. In Scope view, all waveforms are displayed in one waveform area, so that you can see all waveforms without
needing to scroll the UI. It also enables the user overlay and align traces like an oscilloscope. All event traces are grouped below the
waveform view. The Energy Profiler perspective combines this Scope view, the Code Correlation view, and the source code Editor
view allowing you to perform in-depth analysis of a single device from many viewpoints.

User Interface

203/290

Scope view offers the following capabilities:

Sorting
Node display control
Waveform display control

Sorting

Sorting in Scope view allows you to order events based upon several criteria. For example, it may be useful to sort events descending
by average power, such that the events for the highest power consumers are easily identified at the top.

Displaying Nodes

Enabling capture on any device automatically adds it to scope view. However, as the number of devices displayed increases, UI
performance may be impacted. Click Display Nodes to select which devices will be displayed. This selection only enables or disables
display of waveform and event data in the UI. If recording is enabled, data for all actively capturing devices is streamed to disk
regardless of whether they are displayed.

User Interface

204/290

Displaying Waveforms

One of the Scope view’s key benefits is the ability to view waveforms in a single view at difference scales, enabling you to compare
waveform characteristics that would not be possible for two waveforms on the same scale. The waveform scale/offset controls are
available by default at the upper right corner of the Scope waveform view. The color of the waveform scale/offset control indicates
which waveform will be adjusted when the sliders are moved.

The drop-down menu at the top of the control allows you to select the device to be adjusted by the waveform scale and offset
control. The debug adapter name colors match the colors in the waveform portion of Scope view.

User Interface

205/290

Toggle wave scale/offset control display using the show/hide button above it.

Selecting Ranges

Energy Profiler provides the ability to select a range of data by clicking and dragging across the waveforms or events. This is useful
for determining power statistics for regions of interest. Once a range is selected, a light gray section summarizing the energy
statistics for the selected region is displayed. That section also allows you to re-center the selection in the waveform view if it has
scrolled out of view and includes a button to close/deselect the region.

User Interface

206/290

Energy Statistics

207/290

Energy Statistics

Energy Statistics

Energy Profiler calculates the following device and system statistics:

Average current
Average power
Total energy

Statistics are provided for each individual device in the waveform’s top bar on both Single-Node and Multi-Node views. The sum for
all devices is provided in the top bar of Multi-Node Energy Profiler for all three views. Single-Node and Multi-Node views provide
individual device statistics, while Scope view does not.

This page reviews how to:

Configure energy statistics
Save a snapshot for future reference
Review saved statistics

Energy Statistics Configuration

Energy Profiler allows you to select which of the actively capturing devices are included in the total system energy statistics
calculation displayed in the top bar. Click the Energy Statistics Configuration icon and select the devices to be included in the

Energy Statistics

208/290

calculation. It is important to note that the devices available for selection are those that are actively capturing data, which may be
different from the devices that are selected for display in the UI.

Energy Statistics Snapshot

Energy Profiler allows you to save statistics for future reference and comparison. Click the Save Snapshot icon on any of the energy
statistics panels and be presented with a dialog to provide a name and tag for future reference.

Energy Statistics

209/290

Review Saved Statistics

Once you have saved multiple snapshots, you may want to review them, or to copy them to the clipboard for use in other
applications. This is possible through the Profiler->Session Statistics... menu.

Play and Record Data Control

210/290

Play and Record Data Control

Play and Record Data Control

The following diagram provides a general description of data flow from target devices into SSv5 profiling applications. Data is
sourced from target devices from the debug adapter either through USB or Ethernet connectivity to the host PC. The host debug
adapter software layer provides data to the AEM/PTI data streaming engine, which in turn provides data to analysis applications such
as Multi-Node Energy Profiler or Network Analyzer. The AEM/PTI data streaming engine saves data to disk in temporary files during a
capture session. When the user ends the session, Energy Profiler prompts the user with the option to save the data to file.

Play and record controls in the top bar of the Energy Profiler perspective provide control over data being captured from connected
devices.

Play Control

The Play control determines whether data being captured is displayed in the Multi-Node Energy Profiler UI. The Play control has three
states:

Running (green)
Paused (black)
Frozen (orange)

Play and Record Data Control

211/290

Running: The "Running" state is entered when a capture is first started. When the Play control is green and displays "Running", it
means energy capture data is actively arriving and being displayed on the UI. The visible portion of the waveform and events is the
most recently captured data as it is arriving to Multi-Node Energy Profiler. The time position scroll bar is all the way to the right.
Paused: The "Paused" state is entered by clicking Play while it is in the green "Running" state. The Play control turns black and
displays "Paused", indicating energy capture data is actively arriving but it is not being displayed on the UI. The visible portion of the
waveform and events may be anywhere on the timeline of previously captured data. Pausing the display has no effect on whether data
is saved to disk. Save to disk is determined by the state of the Record control.
Frozen: The "Frozen" state means energy capture data is actively arriving for display, but the visible portion of the waveform and
events in the UI is previously captured data. The time position scroll bar may be anywhere on the timeline of previously captured data.
The "Frozen" state is entered when the UI is in the play state and the time position scroll bar is scrolled or moved to the left. The
"Frozen" state may also be entered as the result of a "Freeze trigger" condition. The "Frozen" Play control state has no effect on
whether data is saved to disk. Save to disk is determined by the state of the Record control.

Record Control

The Record control manages data streaming to disk. There are two states to the Record control:

Recording (red)
Not recording (black)

Recording: When the Record control is red and displays "Recording", it means energy capture data is actively arriving and is being
saved to temporary files to disk. When an energy capture is started, the "Recording" state is entered automatically. The state of the
Record control has no effect on the Play control or the data being displayed in the UI. Clicking the Record control while in the
"Recording" state transitions to the "Not Rec" state (that is, not recording). The "Recording" state may also be entered by use of Record
triggers.
Not Recording: When the Record control is black and displays "Not Rec", it means energy capture data is actively arriving but it is not
being saved to disk. The "Not Rec" state is entered by clicking the Record control when it is in the "Recording" state. The state of the
Record control has no effect on the Play control or the data being displayed in the UI. Clicking the Record control while in the "Not Rec"
state will transition to the "Recording" state. The "Not Rec" state may also be entered by use of record triggers.

Freeze and Record Triggers

212/290

Freeze and Record Triggers

Freeze and Record Triggers

Triggers provide a method to automate freezing the display or recording to disk. Trigger icons are found below the Play and Record
controls. Three triggers are available:

Freeze trigger
Record start trigger
Record stop trigger

Triggers are driven by criteria set by the user. To set the criteria, use the context menu available from each trigger icon. The context
menu also provides the ability to clear all conditions, which also disables the trigger.

Trigger States

The four trigger states are each designated by a color:

Grey - Trigger conditions are not set
Yellow - Trigger conditions are set, trigger is not armed
Red - Trigger conditions are set, trigger is armed

Freeze and Record Triggers

213/290

Green - Trigger has fired

When Energy Profiler first starts up in a new workspace, all trigger icons are grey, indicating trigger conditions have not yet been set.
Clicking a grey trigger icon opens the trigger configuration dialog, allowing you to specify trigger conditions. Once trigger conditions
have been set, the trigger icon turns yellow, indicating the trigger conditions are set but the trigger is not armed. Clicking a yellow
trigger icon arms the trigger as indicated by the trigger icon turning red. Incoming data is now evaluated against the trigger condition.
Once the trigger condition is satisfied, the trigger icon turns green, indicating the armed trigger has fired. The relevant action (freeze,
record start, or record stop) will have been executed. The following diagram shows the trigger state behavior.

Freeze Trigger

The freeze trigger transitions the user interface from play to freeze mode automatically based upon search criteria. The freeze
criteria are set through the Freeze Trigger Conditions dialog. This is invoked either through the Profiler > Freeze Trigger... menu
selection or by right-clicking the Freeze Trigger icon and selecting **Configure Freeze Trigger".

In the following diagram, the play freeze trigger condition has occurred in the incoming data. Freeze mode is automatically entered
for the waveform display and data continues to arrive as indicated by the scroll bar automatically moving to the left as new data
arrives. Notice that the freeze trigger icon is green, indicating the trigger condition has occurred in arriving data.

Freeze and Record Triggers

214/290

Record Start/Stop Triggers

The record start/stop triggers automatically start and stop data record to disk based upon search criteria. This may be beneficial for
capturing rare conditions rather than recording large amounts of data followed by search. The record start criteria are set through the
Record Start/Stop Trigger Conditions dialog, which is invoked through the Profiler > Record Triggers... selection" menu or by right-
clicking the Record Start or Record Stop icon and selecting the Configure option. The record start/stop trigger conditions are set
together in a single dialog as shown in the following figure.

In the following figure, the record start trigger condition has occurred in the incoming data as indicated by the green record start
trigger icon. The record stop trigger condition has not yet occurred and data will be written to disk until it does.

Freeze and Record Triggers

215/290

Search Capability

216/290

Search Capability

Search Capability

One of Energy Profiler's most powerful aspects is the ability to search data. Search is available both during a live capture and with an
offline ISD file. Click Search to open the Search Conditions dialog.

When you click OK, a search is performed on all data currently available, whether from the currently active capture or in offline mode
from an open file. The search results window is displayed on completion. Sections where the data matched the criteria are shown in
red. A summary of the count and % coverage of the matching regions is shown at the upper right. Use the context menu to jump to
the matching in the waveform view from the search results window.

Search Capability

217/290

Profiling with Code Correlation

218/290

Profiling with Code Correlation

Profiling with Code Correlation

Code correlation is one of the most powerful features in Energy Profiler. Energy Profiler captures program execution in conjunction
with the energy data. This allows Energy Profiler to calculate the power consumed by each function executed in the application. This
data may then be sorted to highlight the portions of an application that consume the most power. This enables the application
developer to know where they should concentrate their software development efforts to reduce power consumption. Additionally,
Energy Profiler can color-code sections of the current waveform to represent which functions were executing when a given section of
the current waveform occurred.

This page reviews:

Enabling code correlation
The Code Correlation view
Color coding

Enabling Code Correlation

This section assumes an embedded application is already configured to produce AEM data through a debug adapter (see Customer
Hardware and Software Design Information for details). For code correlation to operate, Energy Profiler needs access to debug
information associated with the embedded application that is currently running. This information is available in the AXF file output
from the build. Code correlation can be enabled when an application is started from the Simplicity IDE perspective through context
menu commands for a given project, or it can be associated with an application already running on an embedded device that is being
profiled in Energy Profiler.

From the Simplicity IDE Perspective

One simple way to enable the code correlation view is to start the energy profiling session by using the context menu on the project
from the Simplicity IDE perspective, as shown below. The associated debug file will be provided to Energy Profiler when the session
is started.

Profiling with Code Correlation

219/290

Once Energy Profiler starts, the following view is displayed. Notice in the Code Correlation view, energy consumed by each function is
updated in real time. Clicking any of the functions opens the associated source code file and jumps to that function in the file.

From Energy Profiler

If you start energy capture with a running embedded application, Energy Profiler does not have the debug information it needs to
associate program execution with source code. In these cases, the Code Correlation view is as shown in the following figure.

Profiling with Code Correlation

220/290

Click the elect an Executable link and the program selection dialog is displayed. Debug files from open projects are provided in the
list. Alternatively, you may browse to select the debug file.

Code Correlation View

The Code Correlation view is shown below the waveform portion of the Multi-Node Energy Profiler Perspective, and works in
conjunction with the Editor view. When multiple devices are displayed in the Multi-Node view, you can click on each adapter to view
the function profile data associated with that device. The function data may be sorted as desired. Clicking on any function opens the
associated source file in the Editor view with the start of scope for that function selected.

Profiling with Code Correlation

221/290

Color Coding and Code Correlation

Energy Profiler provides the ability to color-code the current waveform based on program execution. You can set the color for each
function using the context menus in the Code Correlation view.

The following figure shows the current waveform view with several functions set to different colors.

Profiling with Code Correlation

222/290

Energy Profiler and Network Analyzer

223/290

Energy Profiler and Network Analyzer

Energy Profiler and Network Analyzer Integration

Note: This functionality is only available in offline mode with a previously saved ISD file.

Energy Profiler and Network Analyzer now provide a basic level of integration when trace data from a debug adapter includes both
AEM and PTI data. This integration allows you to easily move between the two applications by selecting an event in either one and
selecting Show in Network Analyzer or Show in Energy Profiler.

An SSv5 preference determines whether moving between applications leaves the Energy Profiler perspective and opens the Network
Analyzer perspective, or stays in the Energy Profiler perspective.

This page reviews:

How to use the integrated tools
Use Cases for Multi-Node Energy Profiler and Network Analyzer
Post analysis using an ISD file

Using the Integrated Tools

To open a previously saved ISD file, either use the top menu Profiler > Open ISD File... menu or the Quick Access > Open ISD File...
menu, as shown in the following figure.

Energy Profiler and Network Analyzer

224/290

Once the file is open, you can examine previously recorded details. In the following figure, notice two devices transmitting and
receiving packets. Select a TX or RX event and display the context menu. One of the options is Show in Network Analyzer.

Select that option and the Network Analyzer view opens either in the Energy Profiler perspective or the Network Analyzer perspective,
based upon the preference setting.

Energy Profiler and Network Analyzer

225/290

Likewise, you can select an event in Network Analyzer and use the context menu to navigate back to Energy Profiler.

Use Cases for Multi-Node Energy Profiler and Network Analyzer

Depending upon your goals for an analysis session, there will be times when you will primarily use Network Analyzer, times when you
will primarily use Energy Profiler, and times when you will find it advantageous to use them together.

Energy Profiler and Network Analyzer

226/290

When you are interested in energy consumption of a single or multiple devices, Energy Profiler is where you will focus your time.
From a network communication perspective, it provides only the start time of a TX or RX packet, and does not provide any decoding
of the packets themselves. Still, this information can be revealing in your application's consumption of power relative to network
activity. For example, by using the search tool, you can set search criteria that identify all points in the data where a packet was
transmitted and the power exceeded a given value. If you have an expected power performance based upon your design, you can
quickly identify when your system is operating outside its specification.

If you are interested in packet contents, node activity, and network interaction in a wireless network, Network Analyzer is where you
will focus your time. Network Analyzer's multiple editor panes provide tiered displays of network activity, letting you drill down from a
high-level map of node interactions to the details of each packet. Customizable filters enable you to specify exactly which network
activities to display, allowing you to sift out information unrelated to a given task. These features allow you to determine when your
network is behaving as expected, but are not available in Energy Profiler.

You will find yourself benefitting from the integration of these applications where these two information spaces intersect. For
example, the Energy Profiler use case mentioned above ended at finding a transmit packet that exceeded expected power
consumption. To investigate further, you could select Show in Network Analyzer to investigate that specific node's network activity
and packet contents, in hopes of determining why the power was higher for that particular network transaction. In contrast, you may
suspect that packets with specific content are the root cause of high power consumption. In Network Analyzer you could search for
that data, and use Show in Energy Profiler to determine if indeed those packet contents are the root cause of high power
consumption.

Post Analysis Using an ISD File

Both Network Analyzer and Energy Profiler capture data in the same format, which are saved in the ISD file format. Both applications
can open an ISD file that has been save by either application. For example, if you have completed an Energy Profiler session and
saved the ISD file, only to realize later that you are interested in the packet trace information, you would open that file from Network
Analyzer to further investigate it. It is important to note, however, that captures started in Energy Profiler include packet trace data by
default, but captures started in Network Analyzer only contain energy data if the preference to include it has been selected, as shown
in the following figure.

Network Analyzer

227/290

Network Analyzer

Network Analyzer

Simplicity Studio® 5 (SSv5)'s Network Analyzer enables debugging of complex wireless systems. This tool captures a trace of
wireless network activity that can be examined in detail live or at a later time.

More than simply a packet sniffer, the Network Analyzer works with the data sniffer interface on the Silicon Labs wireless chips to
provide direct feedback from the baseband radio of each device, allowing any supported radio to report detailed packet transmission
and reception data, such as timestamps, link quality (or LQI), receive sensitivity (or RSSI), and CRC pass/fail results, all without any
software overhead.

With SSv5, any PTI-enabled Silicon Labs platform can record the radio activity regardless of the application firmware that is being
used, so there’s no need to have a dedicated sniffer device installed to catch the traffic. The Network Analyzer also enables capture
from multiple sources simultaneously into the same log file without falsely duplicating packets. This enables the developer to
compare how well different radios in the network heard the same transmission.

In cases when detail is not desired, Network Analyzer makes it easier to understand the workings of a complex wireless protocol.
Related packet events are automatically grouped into a Transactions pane within the capture view, allowing for quicker parsing of
what’s happening during that portion of the traffic log. Quickly access statistics like total duration, number of related packets, number
of point-to-point and end-to-end retries, and unexpected conditions like requests with missing responses or deliveries where
expected acknowledgments are missing.

In addition to capturing packet events, Network Analyzer also captures asserts, debug prints, and many other events.

Network Analyzer

228/290

This guide contains the following sections:

Network Analyzer Interface: Provides a guided tour of all elements of the Network Analyzer Perspective.
Capturing Data and Managing Sessions: Describes how to perform live captures, and save and manage the resulting data.
Viewing Data in Editors: Goes into detail about working with the data presented in both the Stream Editor and the Large File Editor.
Filtering Captured Data: Explains how to focus on exactly what you need from a Network Analyzer session.
Multinetwork Considerations: Discusses how to manage nodes that belong to more than one network.
Custom Decoders: Explains the basics of how to create custom decoders.
Network Analyzer Preferences: Provides a reference for the many ways you can customize Network Analyzer to meet your needs.

Network Analyzer Interface

229/290

Network Analyzer Interface

Network Analyzer Interface

The Network Analyzer Interface is presented as a Network Analyzer perspective.

The Network Analyzer perspective contains the following work areas:

Debug Adapters view (1) - Lists all debug adapters and their connected hardware that are accessible to Network Analyzer. See
Simplicity IDE User Interface Review
Capture sessions (2) - Contain data captured from a node or set of nodes, with each session shown as a tab, and a live session shown
in a *Live tab.
Editor Panes - Display the data of a selected capture session in the editor area with up to five different panes. Network Analyzer
supports two types of capture sessions:

Live sessions - Display data as it is captured; the display is continuously refreshed as new data arrives.
Saved sessions - Contain captured data that has been saved to permanent storage in a named .isd file. You can load a saved
session and play it back at any time.

Toolbar and Menu (3) and Supporting Views (11) - Provide options to control data capture and display.

A filter Bar (4) allows you to enter data filters, as described in Filtering Captured Data.

A Timeline Bar (5) displays the statistics of the traffic over time, as discussed in Viewing Data in editors

The Views area (11) displays additional views in a tabbed interface.

Network Analyzer Interface

230/290

Editor Panes

Editor panes provide different aspects of capture session data. Up to five editor panes can be open at any one time:

Map (6) provides a graphical view of the network, where nodes are displayed with their network identifiers. The map also displays
network activity.
Transactions (7) displays high-level node interactions that might comprise multiple events.
Events (8) displays information about all events transmitted and received during a capture session.
Event Detail (9) displays the decoded contents of the event that is currently selected in the Events pane.
Hex Dump (10) displays the data of the selected event in raw bytes. Network Analyzer highlights bytes that map to the data currently
selected in the Event Detail pane. It shows multiple "layers", so if the packet is decrypted, the "raw" layer shows encrypted data, but the
higher-level layers show this data progressively decrypted.

Using the editor is discussed in more detail in Viewing Data in Editors

Toolbar and Menu

The Network Analyzer Toolbar and Menu provides shortcuts to frequently-used features. Selections and controls are either enabled
or disabled depending on what the user is doing.

On the toolbar, hover over any control to see a short description.

Network Analyzer Interface

231/290

The following describes the controls in order from left to right. Where the function is also available on the Network Analyzer menu, it
is so noted.

Network Analyzer toolbar controls are added to the controls already present in the Simplicity IDE. See About the Simplicity IDE for
more information. This section provides Network Analyzer-specific information, if any, about those controls.

Open File - Opens a file dialog from which the user may select one of the applicable extensions, such as .isd, or .log. Equivalent to
File > Open File (Network Analyzer Trace, Energy Profiler, etc.).

Open Capture Directory - Opens the folder to which an output file has previously been saved. Equivalent to File > Other Network
Analyzer Actions > Open Network Analyzer Capture Directory.

Restart a Process - Simplicity IDE function.

New - Creates a new project or other file. Equivalent to File > Other Network Analyzer Functions > New Live Capture Session.

Save (Ctrl+S) - Saves any changes to the currently opened file to disk. If the file has never been saved before, the user can say where
they want it saved and what extension they want to give it. If the file was previously saved, Network Analyzer saves over the old file.

Save All (Ctrl+Shift+S) - Saves all files that have been edited, including any files open elsewhere in Simplicity Studio. As with Save,
the user has the option to indicate where and how to save any files that have never been saved.

Next Annotation and Previous Annotation - Simplicity IDE function.

Last Edit Location - Simplicity IDE function.

Back and Forward - Simplicity IDE function.

Pin Editor - Simplicity IDE function.

Reopen Editor - Closes and reopens the editor. When you have changed or added new decryption keys to the preferences, it is useful
to be able to reopen the file and run it through the decryptors and decoders again.

Clear Events - Clears the editor of all events. This is useful when you are capturing on a network and are waiting for some set of
events to occur but do not want to keep everything else around.

Live Capture Options - Opens the Capture Options dialog, used to tailor the condition under which events will be captured.

View and Modify Security Keys (Toolbar and Menu) - Opens the Active live capture keys dialog, where you can add security keys to
be used during the current capture in progress. Any keys that are added will also be added to the list of security keys in the Network
Analyzer preferences.

Pause Stream (Toolbar and Menu) - Pauses a capture without stopping it. This is useful to stop capturing for period of time, and then
later continue as if nothing happened. Live events occurring during a pause are not retrievable.

Import - Select files to import and the type of import. Additional fields allow you to specify characteristics of the import. Equivalent to
File > Network Analyzer Import.

Export - Select the exporter to use, and the output file name and location. Other options depend on the exporter. Equivalent to File >
Network Analyzer Export.

Show Short Id (Toolbar and Menu) - Displays a node's shortId on the map, if one is known for the currently selected time.

Show Long Id (Toolbar and Menu) - Displays a node's long Id (64 bit identifier) on the map, if one is known.

Network Analyzer Interface

232/290

Show Pan Id (Toolbar and Menu) - Displays the pan Id on the map, if one is know for the currently selected time.

Show Node Label (Toolbar and Menu) - Displays the node's label. If the node is connected to Network Analyzer over the backchannel,
this value will be the host name of the adapter connected to the node.

Show Signal Strength (Toolbar and Menu)

Show All Connectivity (Toolbar and Menu) - Shows the quality of connections between nodes on the map.

Show all Simultaneous Events on Map (Toolbar and Menu) - During periods of heavy traffic, several simultaneous transactions may
overlap. When enabled, the map shows all traffic. When it is disabled (default), the map shows only the traffic related to the currently
selected transaction.

Show All Transactions on Map (Toolbar and Menu) - When enabled, all transactions that overlap with the currently selected one are
shown on the map.

Filter Nodes (Toolbar and Menu) - Filters out nodes that are not involved with the filtered event.

Map Zoom In and Map Zoom Out (Toolbar and Menu) - Increases and decreases the size of the map in the map page. Zooming in
can be useful if you are looking at a very large network where a large number of nodes are positioned very close together.

Edit Trace File Description (Toolbar and Menu) - Each saved Network Analyzer trace file contains a description. The description can
be used to store information that is important to the trace but may not be included by default. Generally the description is used to
provide context for the trace and any other information that may be of help to the viewer. A checkbox on the dialog determines if the
description is shown when the file is loaded.

Go To Line (Toolbar and Menu) - Moves the event cursor directly to the event number entered. This is only enabled if the Stream
preference "Show event numbers" is selected. To turn this feature on go to: Window > Preferences > Network Analyzer > Capture
Configuration > Show event numbers.

Go to Time (Toolbar and Menu) - Moves the cursor to the transaction and event that match or immediately follow the specified time.

Go To Bookmark (Toolbar and Menu) - Moves the event or transaction cursor to the bookmark selected in the bookmark dialog.
Assign bookmarks to events or transactions by right-clicking the event or transaction and selecting Add Bookmark.

Decrease Font Size and Increase Font Size (Toolbar and Menu) - Decreases and increases the size of the font used in the Event,
Transaction and Detail panes.

Apply Row Coloring (Toolbar and Menu) - Turns coloring on and off in the Transaction and Event panes. Row colors are applied
based on the pre-defined filters included in the Filter Manager.

Lock To Bottom (Toolbar and Menu) - Locks the event cursor to the bottom of the Event pane. During a live capture, this causes the
Map and Details panes to always show the latest event. To remove the lock, select any event or transaction during a live session,
which causes a view to scroll as the events are captured.

Start Replay (Toolbar and Menu) - Begins scrolling forward through events from the current event selected. If no event is selected,
the scrolling will begin from the start of the current trace file. Once replay has started, converts to a Stop Replay function.

Timeline Bar - Toggles the timeline shown at the top of the currently opened Stream Editor.

Toggle Filter Bar - Toggles the Filter Bar at the top of the currently opened Stream Editor.

Show Filter Manager View - Toggles the Filter Manager View.

The following are selections on the Network Analyzer menu that are not on the toolbar:

Show DAG - Shows the connectivity DAG from the captured neighbor DAG events. Applies only in cases when the networking stack is
instrumented with the correct abilities.

Load Background Image and Clear Background Image - Loads and clears a background image on the map pane. Also available on
the Map pane context menu.

Print map - Prints the nodes as currently displayed in the map pane.

Network Analyzer Interface

233/290

Organize map - Organizes the nodes on the map into a Default, Random, Square, or Hexagonal placement. Also available on the Map
pane context menu.

Other Views

Network Analyzer provides access to a wide range of functionality through the use of views. The views are all accessible in the menu
Window > Show View. For a complete listing of all available Views, select Window > Show View > Other....

The following lists some of the most helpful views. The first four are open in the Views area by default.

Radio Info - The Radio Info View shows data captured for each event, as discussed in Radio Info View.

Event Difference - Event Difference view is a helper view that displays the specific differences between two packets, as discussed in
Event Difference View.

Connectivity view - (15.4 captures only) Displays a graph of network connectivity, using the neighbor information from the nodes.

Data capture view

Adapters - (deprecated)

Application Controller view - (deprecated)

Error Log - Decoder, decryption, and other types of errors are displayed in a tabular format in the Error Log View. Each error is shown
in a single row with its summary message, the plugin or component that reported the error, and the date and time the error was
encountered. To view detailed information about the error, double-click it. The error will be displayed in an Event Details dialog that
includes the date, severity, message, and, if available, stack trace. The navigation at the top of the view allows you to perform basic
functions on the Error log itself, including Export, Import, Clear, Delete, Open, and Restore.

Expression Manager - Also known as the Filter Manager, this tool is used to compose and edit custom filtering expressions.

Progress - The Progress View shows the progress of user actions. Actions that take a long time to execute may be managed within
the Progress View. For example, the application upload action can take several seconds. The Progress View provides a user interface
for managing this action. If you wish to stop an action, you may do so in the Progress View.

Sample Application Wizard - (deprecated)

Other views of interest are:

Event Detail - Event details are normally shown in the EventDetail Pane within the Stream Editor. If you want to see the event details
in a separate window, you can open the Event Detail View. This view shows the details for the currently selected Event in the same

Network Analyzer Interface

234/290

format as the Event Detail Pane, but in a view that you can pull outside of Network Analyzer and resize to your liking.

Hex Dump - Similar to event details, the hex dump information is shown the Hex Dump Pane within the Stream Editor. If you want to
see the hex dump in a separate window, you can open the Hex Dump View. This view shows the hex dump of the currently selected
Event in the same format as the Hex Dump Pane, but in a view that you can pull outside of Network Analyzer and resize to your liking.

Search - Search data is displayed in the Search Pane within the Large File Editor. However, as with the Event Details and Hex Dump
Panes, you may wish to see this data in a separate view. The Search View allows you to view search results in a window that you can
pull outside of Network Analyzer and resize to your liking.

Shell - The Shell View provides command line access to the scripting capabilities of Network Analyzer. For a list of all commands
available within the shell, simply enter help at the command line.

Capturing Data and Managing Sessions

235/290

Capturing Data and Managing Sessions

Capturing Data and Managing Sessions

Network Analyzer can display one or more network capture sessions. Each capture session displays the transaction and event data
captured from one or more nodes. The captured data is shown in editor panes. In general, Network Analyzer captures all incoming
and outgoing packet data via the selected adapters, regardless of whether the host nodes have sniffer applications. The captured
data includes failed transmissions, as well as debug messages from node applications that are compiled in debug mode.

This kind of capture is called a perfect trace session. The capture nodes of a perfect trace session are not sniffers but nodes that
might be running your own application that you are trying to debug. The perfect trace session compiles all incoming and outgoing
data from each node in chronological real time, providing a richly-layered display of all activity within a network. A perfect trace
session can be especially useful for debugging a network in development as it allows you to see every packet on the network.

Network Analyzer supports two types of capture sessions:

Live sessions display data as it is captured. The display is continuously refreshed as new data arrives. When a live session starts, it is
unnamed and its data is maintained in temporary storage until you save it to a named file. Network Analyzer can capture live session
data from multiple sets of adapters into the same session. You cannot, however, capture from one adapter into different sessions at
the same time. You can run more than one live session at the same time.
Saved sessions contain captured data that has been saved to permanent storage in a named .isd file. You can load a saved session
and analyze it at any time.

When you start Network Analyzer, it opens a new live session. Network Analyzer displays each session in an editor with its own tab.
The tab of each saved session is labeled with the session's file name; the first live session is labeled Live, the second Live1, the third
Live2, and so on.

You can capture data from the node of any connected Debug Adapter, from one node at a time or multiple nodes simultaneously. You
can also capture all network traffic over the current channel by capturing data from a connected sniffer node.

Note: The types of data captured from a node depend primarily on the software protocol running on the node, and also the
capabilities of the node's radio chip and Debug Adapter.

Starting a Capture

Before starting a capture, open Preferences > Network Analyzer > Decoding > Stack Versions and make sure that the protocol
running on the adapters is selected. If you are working in a multiprotocol environment, select 'Auto-detecting decoder stack'. A
change here will not affect any active capture sessions but will apply to the next capture you start.

To start a capture:

1. Select one or more connected adapters. Multiple adapters are usually on the same network.
2. Right-click the selected adapters.
3. On the context menu, select Start Capture.

Capturing Data and Managing Sessions

236/290

Alternatively, select File > Other Network Analyzer Actions > New Live Capture Session. This creates a new live capture session and
puts it on top of the editor list.

When you start a capture on an adapter, or on multiple adapters at the same time, the live session used for the capture is assigned in
one of the following ways:

If no live sessions are currently active, a new live session is created and used.
If live sessions are active, but they are not on top of the editor stack (for example, another file is opened and currently on top), a new
live session is created and used.
If a live session is active and it is also on top of the editor stack, then this session will be used for capture.

Capturing with Options

You can filter packets out of the stream during a capture. For example, you can choose to see only packets from a certain PAN ID
and drop all other packets.

1. Select one or more connected adapters.
2. Right-click the selected adapters.
3. On the menu, select Start capture with options.
4. Configure options in the resulting dialog, and click OK.

Capturing Data and Managing Sessions

237/290

In the capture options dialog, you can set the following:

Capture only PANs: (15.4 protocols only) This filter, based on PAN ID, allows a comma-separated list of hexadecimal values.
Aggressive mode: Filters out all events that may not be or definitely are not packets.
Enable advanced energy measurement: This enables AEM packet filtering. AEM packets are used with Energy Profiler. If you turn this
option on and later look at the data in Energy Profiler, you will not see any packets.
Enable PC sample data: If selected, captures diagnostic events.
Enable exception sample data: If selected, captures Java framework exceptions, which are used for deep diagnostics of possible
Network Analyzer bugs.
Enable debug channel: If selected, enables capturing all other non-packet events.
Silent capture to file: If selected, performs a lengthy capture as a background task. Traffic will not show in the GUI until the capture is
stopped and the file is opened. The silent capture enables you to run a capture over several days, as it does not consume memory
resources, only disk space.
The start capture options specify the trigger for delayed start of capture.

immediately: No automation, capture starts right away.
after: Capture starts after a certain time or after a certain number of events.
upon: Capture starts upon Node reset, or upon an event containing a specified ASCII or byte pattern.

The triggers for starting and stopping capture on node reset work only if you have DEBUG level NORMAL turned on for the node that
you are capturing from. With the debug level set to Normal, the chip will send debug information, including node resets, over the back
channel to Network Analyzer. Network Analyzer uses these reset and other commands to trigger the start-and-stop capture process. If

Capturing Data and Managing Sessions

238/290

an image does not have debug turned on, it will not send reset information to Network Analyzer, and Network Analyzer has no basis
for triggering start or stop capture.

You can also modify some, but not all, capture options through the Live Capture Options toolbar control.

Capturing from a Sniffer Node

Any adapter's node that connects to Network Analyzer can be designated as a sniffer. A sniffer node is capable of capturing all data
that is transmitted among nodes over the designated channel.

A sniffer node must have a sniffer application loaded. The sniffer application enables the node to capture over-the-air transmissions
between nodes over the designated channel. When you start capturing from a sniffer node, the sniffer node captures all packets that
are exchanged by the nodes on the designated channel.

If no sniffer application is currently loaded, load one in either of the following ways:

In the Debug Adapters view, right-click the adapter and select Sniffer Configurator.
On the Adapters tab, select the adapter.
On the Upload tab, select the target adapter.
On the Apply Configuration tab, apply the appropriate configuration.

In the Debug Adapters view, right-click the adapter and select Make Sniffer. Network Analyzer will first check whether the node has a
Sniffer image on it before attempting to upload the new Sniffer image.

Stopping a Capture

Capturing Data and Managing Sessions

239/290

1. Select one or more connected adapters.
2. Right-click the selected adapter(s).
3. On the context menu, select Stop Capture.

To resume capture, select Start Capture.

Pausing a Capture

Pause a capture at any time by selecting Pause on the Network Analyzer menu or the toolbar. This is a convenient way to stop
capturing from a device or devices without having to start a new capture at a later time. Events that occur during the pause are lost,
and cannot be retrieved.

Clearing Session Events

Click Clear Events on the Network Analyzer menu or toolbar to purge all events and their associated transactions from the current
session. Caution! You cannot retrieve cleared events.

This is mostly used if you are working on a scenario on an embedded node, where you control some activity through command-line
actions. You then simply "Clear" events between each retry, instead of having to do a complete "Start Capture / Stop Capture".

Note: Network Analyzer is designed to stay connected and continue capturing, even when the firmware on the target node is
uploaded and the node resets. That does not stop the capture session.

Saving a Session

When you start a capture, it is initially written to an unnamed live session. At any point during a live session, you can save the data
thus far captured to a file by selecting File > Save or clicking the toolbar Save control. After you save a session file, Network Analyzer
continues to append capture data to it; however, you must save again in order to retain this data in the session file.

Network Analyzer saves session data to an .isd file, which is a compressed file that stores session data and the network state.
Network state includes display settings such as map modifications, which Network Analyzer restores when you reload the session
file.

Network Analyzer closes a saved session from further captures after you explicitly stop the capture, or when you start another live
session. After a saved session is closed, it cannot be reopened to capture more data.

If you modify a saved session file - for example, set bookmarks or reposition icons in the Map pane - Network Analyzer asks whether
to save or discard those changes before you close the session.

Note: For security reasons, Security Keys that you may use to decrypt captured data are not included in saved .isd files by default. If
you wish to share security keys with your files, you should turn on the option "Save decryption keys in Network Analyzer files" on the
Security Keys preference page, which you can access by selecting Window > Preferences > Network Analyzer > Decoding > Security
Keys

Saving Multiple Sessions

If multiple open capture sessions have unsaved data, you can save all of them at once by selecting File > Save All, or using the
toolbar Save All control.

Exporting to Other File Formats

To export a capture session to another file format:

1. Select File > Network Analyzer Export or click the toolbar Network Analyzer Export control.
2. Select the export format

Capturing Data and Managing Sessions

240/290

3. Name the output file.
4. Click Save.

Extracting Individual Events

You can extract specific events from the Transactions pane, Events pane, or Hex Dump pane, and save them into a separate text log
file.

To extract specific events to a text file:

1. Right-click the event in the Transactions, Events, or Hex Dump panes that you want to extract.
2. On the menu, select Extract to.
3. Name the output file with a text extension.
4. Click Save.

Once you specify a file, you can append additional events to it by right-clicking the event that you want to append and selecting
Append to <file>.

Open and Close Options

To open a capture file, select File > Open Recent File (Network Analyzer trace ...) or click the toolbar control.

To close a single capture session, close the session tab.

To close all capture sessions, right-click any session tab and select Close All, or select File > Close All.

To close all but the current capture session, right-click its session tab and select Close Others.

Replaying a Session

(Rarely used) Replay events of the current session, whether live or saved, by selecting Start Replay on the Network Analyzer menu or
the toolbar. Network Analyzer replays the session from the selected event at a constant speed. Replaying events in a live session has
no effect on the capture in progress.

Once replay has started, both the toolbar control and the menu selection convert to a Stop Replay function.

Viewing Data in Editors

241/290

Viewing Data in Editors

Viewing Data in Editors

On the File menu, select Open File (Network Analyzer trace ..) or Open Recent File (Network Analyzer trace ...) to open data in an
editor. If the file is smaller than the size set in Preferences > Network Analyzer > Capture File Storage for a file to be considered large,
Network Analyzer opens it in the Stream Editor. Otherwise, Network Analyzer opens it in the Large File editor.

Stream Editor: The Stream Editor decrypts, decodes, and displays details of individual events.
Large File Editor: The Large File Editor does not offer any detailed decoding and presentation of events. Instead, it provides a high-
level overview of a file and allows users to open their points of interest in the Stream Editor.

The Stream Editor provides details about individual events. However, in the case of really large captures, this may tax system
resources. The Large File Editor shows an overall timeline and node statistics. It allows you to scan very large captures for areas of
interest, which you can then open in Stream Editor.

Stream Editor

The Stream Editor contains five editor panes, each of which provides a different view of the captured session data:

Viewing Data in Editors

242/290

Map pane: Provides a map of the network, with nodes displayed with their network identifiers. The map also displays network activity.
Transactions pane: Displays high-level node interactions that might comprise multiple events.
Events pane: Displays information about all packets transmitted and received during a capture session.
Event Detail pane: Displays the decoded contents of the packet that is currently selected in the Events pane.
Hex Dump pane: Displays the data of the selected event in raw bytes. Network Analyzer highlights bytes that map to the data currently
selected in the Event Detail pane.

All five editor panes may be open at once. Live captured data is continuously updated and displayed in the editor panes.

A Timeline Bar displays the statistics of the traffic over time.

Views are presented in a tabbed interface in the lower left of the default Network Analyzer perspective.

Radio Info View: Shows the information from the radio of all the receivers in the network that have heard the currently selected event.
Event Difference View: Displays the differences between two packets.
Connectivity View: (15.4 captures only) Displays a graph of network connectivity, using the neighbor information from the nodes.

For more information about using the Stream Editor panes, see the Editor navigation tools.

Map Pane

The following information is applicable to 15.4 networks only.

The Map pane shows all interaction between nodes at a high level. As events occur or are replayed, the Map pane refreshes to show
the pattern of network communication. Debug messages issued from a node also display next to the node.

Each node in the map pane is given a different color depending on its capabilities within the network as they are understood by
Network Analyzer based on captured data.

RED: The node is a network coordinator.
BLACK: The node is a router.
GREEN: Default color for network nodes.

The following figure shows the graphical elements that appear in the Map pane to depict network activity. Thick lines depict
transactions, while thin lines depict single packets.

Viewing Data in Editors

243/290

Note: The colors shown vary according to the transaction or event type, and can be configured through the Filter Manager.

The data that is shown for each node is managed through menu/toolbar options:

Show Short ID toggles display of the node's 16-bit address that is unique within the personal area network (PAN).
Show EUI64 toggles display of the node's unique 64-bit IEEE address.
Show PAN ID toggles display of the PAN identifier of the node's network. This label can be useful when the map displays multiple
networks.
Show Node Label displays the custom label that you create for map display only.
Show LQI toggles display of link quality data that pertains to the quality of connection between nodes. This is available with perfect
trace captures, but not with sniffer captures.
Show Connectivity shows the neighbor relationships between nodes in the network.
Simultaneous Events displays on the Map pane all events that occurred at the same time as the transaction or event that is currently
selected. The currently selected event is in color and any other events display in gray.
Zoom Map In and Zoom Map Out enlarge and shrink the space that the map uses to display nodes. Zoom options have no effect on
the size of node icons.

You can move node icons within the Map pane display. This has no effect on network functionality. However, it can help to highlight
certain node interactions and relationships. When you move node icons in a session, Network Analyzer asks whether to save those
changes before you close the session.

Right-click anywhere in the map pane to bring up a context menu.

Organize Map establishes the layout of all nodes on a map. You can also modify individual node positions as needed. The following
layouts are available:

Default Placement aligns nodes in a linear pattern.
Random Placement scatters the nodes across the map randomly.
Square Grid aligns the nodes in a grid.
Hexagonal Grid aligns the nodes in a hexagonal, offset pattern.

Load Background Image and Clear Background Image manage the display of a background image in the Map pane.

Right-click on a node to bring up a context menu.

Assign EUI64 lets you assign a EUI64 to a node (not available if Network Analyzer obtains the EUI64). Network Analyzer obtains a
node's EUI64 only when that node associates with a network. If the node already belongs to a network when a session begins, its
EUI64 is unknown. This option lets you display a known EUI64 for a node; the node's actual EUI64 is unaffected by this label. The

Viewing Data in Editors

244/290

Multinetwork checkbox can be used to indicate that the node is operating on multiple networks. See Multinetwork Considerations for
more information.
Multinetwork toggles the multinetwork property. See Multinetwork Considerations for more information.
Label lets you customize the node's adapter (device) label with any string up to 25 characters long. This string appears in brackets
after the node's device name. (By default, the Map pane labels each node that is undergoing capture with its device name.) You can
also make the labels time-dependent by entering a start time. This lets you supply multiple names for the same node. This can be
useful while debugging applications, by indicating the node's current state.
Icon and More Icons allow you to display the node as an icon.

Transactions Pane

The Transactions Pane displays higher-layer protocol events that consist of multiple packet transmissions. For example, a Zigbee
broadcast is retransmitted by every node in the network. By analyzing packet headers, Network Analyzer determines which packets
belong to the same transaction and groups them accordingly.

Typical 15.4 transactions include:

802.15.4 association: Involves a request-response protocol that consists of at least 6 packet transmissions.
APS unicast: Can contain the following events:

A MAC layer unicast packet and its MAC retries
Acknowledgements for each hop along the route
An end-to-end APS acknowledgement message, which itself consists of multiple MAC unicast packets
Multiple end-to-end APS retries

Zigbee route discovery: Involves a broadcast route request followed by unicast route-reply packets across multiple hops.

In the case of Bluetooth Low Energy (and Bluetooth mesh), a “transaction” refers to an actual Bluetooth Low Energy transaction as
defined in the core specification. This corresponds most of the time to a Bluetooth Low Energy procedure. Equally, the event pane
displays the actual Bluetooth Low Energy events corresponding to the transaction or procedure. For more details, refer to the
Bluetooth Core specification document.

Network Analyzer understands the protocol semantics for many transaction types. Therefore it can group multiple packets in real
time to facilitate high-level analysis.

All transactions are listed in chronological order, using transaction start times. Each selection maps to one or more events in the
Events Pane, which are marked accordingly. Clock icons indicate concurrent transactions with the current selection.

All transactions and their events are uniquely numbered. However, the transaction numbers may not be in sequence, and various
factors will result in number gaps. For example, only top-level transactions and the lowest-level packets are shown. Intermediate
transactions are not shown. Also, number gaps are likely to occur if filters are turned on.

When you click on a transaction, the information shown in the Event Detail Pane and the Hex Dump Pane corresponds to the first
packet in the transaction. However, if filters are turned on, the first transaction might not be shown in the Event Pane. In that case,
the event detail information in the transaction display will not be consistent with the first packet shown in the Event Pane. In fact,

Viewing Data in Editors

245/290

with a filter expression such as show(transaction.summary != null, SELF) only transactions are displayed and the Event Pane
will be blank. In that case, click the transaction to see the first events in the transaction in the Event Detail and Hex Dump Panes.

Events Pane

The Events pane displays information about packets received by the current session. All events are displayed in chronological order.

Events that belong to the currently selected transaction in the Transactions pane are marked by one of the following icons:

Clock icons mark unrelated events that are concurrent with the selected transaction in the Transactions pane.

Event Detail Pane

The Event Detail pane displays the decoded contents of the event that is currently selected in the Events pane. The content of this
pane varies according to the event type. If a transaction is selected on the Transactions pane, the Event Detail pane shows the details
of the first event in the transaction.

Pane options include:

Expand Bitfield: Shows the bitfields in an expanded mode, like Wireshark.
Use Fixed Fonts: Can improve readability as information is presented aligned.

When capturing from multiple devices, Network Analyzer may capture the same packet as heard by several different sources. In order
to reduce confusion, Network Analyzer automatically performs duplicate detection on all packets captured. If the transmission is
captured over the backchannel, only the transmitted packet is kept. Otherwise the first receive packet is kept. All duplicate packets
are dropped after extracting their RadioInfo data. Only the radio info frame for each duplicate packet is kept. The radio info for each
individual instance of a packet captured by Network Analyzer is visible in the Radio Info View

Viewing Data in Editors

246/290

Pinning a field: The Event Detail pane has the ability to "pin" a field into view. When you double-click on a specific field, the Pin icon in
the top left of the pane turns bright red, indicating that it is active. Now, as you move through events, this field is always visible when
it is present in the currently selected packet. This is useful if you are interested in a specific field across multiple events in a trace file.
In the above figure, the Zigbee Application Support Delivery Mode is "pinned" into view. The pin can be deactivated at any time by
either double-clicking on the pinned field, or by clicking the Pin icon itself.

Hex Dump Pane

The Hex Dump pane displays data in raw bytes of a selected event in the Events pane. Clicking on bytes in the Hex Dump pane
selects the corresponding field in the Event Detail pane. Alternatively, selecting a field or a frame in the Event Detail pane highlights
the corresponding bytes in the Hex Dump pane. The pane shows multiple "layers", so if the packet is decrypted, the "raw" layer shows
encrypted data, but the higher-level layers show this data progressively decrypted.

Timeline Bar

The Timeline bar displays the statistics of the traffic over time. The Timeline bar function on the Network Analyzer toolbar toggles
the Timeline Bar on and off.

Available actions are:

Viewing Data in Editors

247/290

Click on the Timeline bar to move the cursor to the event closest to the time selected.
Click and drag on the Timeline bar to filter the display to only the time within the selected area.
Right-click to display a timeline menu.

The Timeline bar shows bookmarks as yellow flags. You can click a bookmark to jump to it in the Transaction and Event panes. It
shows red flags for errors, such as out-of-sequence problems.

Radio Info View

The Radio Info view is a helper view that shows the information from the radio of all the receivers in the network that have heard the
currently selected event. It is available through the tabbed Views interface in the lower left of the default Network Analyzer
perspective. If not, add it through Window > Show View.

The view displays in a tree all the information that has been gathered from the receiver nodes. Displayed information includes LQI
value, CRC value, and the status bits that show several states of the radio.

The event that supplied radio information in the figure above was captured from both the sending and receiving nodes. This is
possible because the trace that contains this event was created by capturing from both the sending and receiving nodes
simultaneously using Network Analyzer's Perfect Trace capability. While the original events were merged into a single event by
Network Analyzer's duplicate detection mechanism, the radio information was retained for each event and is shown in the Radio Info
view with the time that the event was captured by Network Analyzer.

Event Difference View

Event Difference view is a helper view that displays the specific differences between two packets. It is available through the tabbed
Views interface in the lower left of the default Network Analyzer perspective. If not, add it through Window > Show View.

Viewing Data in Editors

248/290

Once the view is shown, it tracks the selected events. The view will by default show the difference between the last two events
selected. If you select event 1, and then click on event 2, the view shows the difference between those two events. If later you select
event 3, the view shows the differences between event 2 and 3.

Packet frames that do not have any differences are shown in green. Frames that contain differences are shown in red. Expand the
frame to see which portions of the frames are different.

The menu at the top of the view supports additional functions.

Show traffic counts: Opens a window showing the statistics for the events between, but not including, the two selected event.
Show byte differences: Enables viewing of individual bytes in the view.
Pin last selected event: Changes the way events are tracked. If this is enabled, then the first event for diffing stays the same, and only
the second event changes. You can use this if you wish to always differentiate events against a certain static event, rather than always
viewing last two selected events.
Include fields that are same: Enables filtering out fields that are same in both events.

Editor Navigation Tools

Some of the Network Analyzer Toolbar functions are specific to working in the Stream Editor.

Viewing Data in Editors

249/290

Edit description of trace file: Opens a simple dialog which allows you to view and edit overall description of the captured data. This is
helpful if you need to pass on some information others for analyzing the contents of the trace file.
Go to Line: Moves the cursor to the event or transaction having the specified event number. This is only enabled if the Stream
preference "Show event numbers" is selected. To turn this feature on go to: Window > Preferences > Network Analyzer > Capture
Configuration > Show event numbers.
Go to Time: Moves the cursor to the transaction and event that match or immediately follow the specified time.
Go to Bookmark: Moves the cursor to the selected bookmark. Assign bookmarks to events or transactions by right-clicking the event
or transaction and selecting Add Bookmark.
Lock to Bottom: Locks the cursor on the latest event during a live session. To remove the lock, select any event or transaction during a
live session, which causes a view to scroll as the events are captured.

Large File Editor

If the file is larger than the size set in Preferences > Network Analyzer > Capture File Storage, Network Analyzer opens it in the Large
File editor. The Large File Editor allows you to find and select a region of interest, which you can then open and analyze with the
Stream Editor.

The Large File Editor consists of three component panes:

Large File Timeline: Shows a high-level view of a large file's traffic over time.
Large File Search pane: Provides a mechanism for searching across very large files.
Large File Network Nodes pane: Shows all of the network devices included in a large file.

Large File Timeline

Viewing Data in Editors

250/290

The Large File Timeline shows a high-level view of a large file's traffic over time. It works similarly to the Stream Editor's timeline. In
fact, the Large File and the Stream Editor timelines use the same widget.

Large File Timeline Segments: The entire set of events shown in the Large File Timeline is broken into segments. By default, each
segment includes up to 5,000 events. Segments boundaries are shown in the Large File Timeline by horizontal grey lines.

Large File Timeline Time Markers: The Large File Timeline shows the actual time during which a file was captured. The capture
start-time appears in the bottom left corner of the Timeline. The capture end-time appears in the bottom right corner.

Moving the cursor to any point on the timeline displays the time for that point.

Large File Intervals: A Large File Interval is a subset of an entire trace. You can create an interval by clicking and dragging. Click on
the Large File Timeline at the desired start-point, and then drag the cursor along the timeline to the desired end-point.

The click and drag operation creates the interval you defined, and zooms the timeline view into that interval. To clear the interval,
click the Clear Selection button in the toolbar under the timeline, or right-click on the timeline and select Clear interval.

Once you have created an interval, you can open that interval in the Stream Editor by clicking the Open Interval button, or right-
clicking in the timeline and selecting Open Interval.

Timeline Flags: Search results and errors are displayed in the Large File Timeline by flags. Search results are displayed as a yellow
flag. Errors are displayed as a red flag. When you move the mouse over the flag, the Timeline displays the Summary of the Event or
Transaction that is associated with the flag.

Large File Search

Use the Large File Search mechanism to search for events across very large files. The entire filter language is supported in the Large
File Search. For more information, see Filter Language.

To run a search in the Large File Editor, enter the filter expression into the Filter Expression text box and click the Start Search
control. The search progress is shown in the Large File Timeline. Options allow you to limit the search within a time interval or to limit
the number of search results. It is useful to limit the number of search results, as the system can become slow if the search
expression matches an extremely large number of events.

Filter results are shown in the Search Results table. Search results are grouped into results trees and labeled with the time and date
that the search was performed.

To view search result details, double-click an individual search result. This opens three segments in a Stream Editor: one before the
selected event, one that contains the event, and one after the event.

Note: The expressions and search results are saved into the Network Analyzer file. Thus they will be seen by other users who open
the same Network Analyzer file.

Controls to the right of the search results allow you to delete, tag, open, and assign decorative icons to the searches and search
results.

Large File Network Nodes

The Large File Network Node pane shows all of the network devices included in a large file. The information provided about each
node in a trace includes:

EUI64 address
Short address
PAN ID
Node type

Since each of these values is subject to change over time, the summary also includes the time at which each value was discovered.

Filtering Captured Data

251/290

Filtering Captured Data

Filtering Captured Data

By default, the Events pane displays all session events. You can build and apply filters that constrain Network Analyzer to show only
events that are of interest. By filtering events, you can analyze results more efficiently.

Each capture session has its own filter settings. A filter can be used either to search for the next matching event or to display only
the events that match the filter. In the latter mode, when you change a session's filters, Network Analyzer immediately refreshes the
display. When you exit Network Analyzer, all session filters are cleared and must be reapplied when you restart. Network Analyzer
provides two ways to edit filters:

Filter Manager: Maintains a set of saved filters that you can review and edit. You can also add new filters. You specify any of the saved
filters for display on the Filters menu, accessed through the n saved filters button on the filter bar, so that they are available for use in
one or more sessions.
Filter Bar: An editor that attaches to a given session, where you can enter one or more filter expressions on the fly. Network Analyzer
discards filter bar expressions for all sessions when it exits.

Quick filters are available when you right-click on events and transactions. They provide an easy way to create common expressions
for the filter bar.

Filter Language is a powerful syntax used to create filters.

Filter Manager

The Filter Manager lets you:

Use filter expressions to customize display of entries in the Events pane.
Specify which filters appear in the Filters menu.

The Filter Manager is available through menu and toolbar selections as well as through Window > Show View (as Expression
Manager).

Filtering Captured Data

252/290

An older feature, the Expression Builder, is deprecated.

Maintaining Filters

To add a filter to the Filters menu, check the Menu checkbox. This makes the filter available to the current sessions.

To restore filters to installation settings, click Reset.

To rename a filter, click on the name field and edit.

You can also create new, delete, export and import filters.

Setting Filter Color Schemes

You can associate a color scheme with each filter. If an event evaluates as true for a given filter expression, Network Analyzer applies
the filter's color scheme to that event. An event can be configured with a color scheme for two display levels:

For the Map pane, the color used by the graphic representing the event type.
For the Events pane, the foreground and background colors used by event type instances.

Note: Setting a color scheme on a filter expression does not specify whether to display events; it only determines how to display
certain event types.

Note: If a filter's foreground color is the same as its background color you will not be able to read the text in the event and it will
effectively disappear from view.

To set a filter color scheme, in the Filter Manager:

1. Next to the filter of interest, check the Color checkbox to enable the controls for Map (Map color), and Fg (Foreground color) and Bg
(background color) for event instances.

2. Click the control you want to set to enable the color selector control.

Filtering Captured Data

253/290

3. Click the color selector control, set the filter's color, and click OK. If you have changed Foreground or Background colors you will see
the change on the Name field.

4. For each filter, set the color scheme's Priority level by assigning a positive or negative integer value. If an event evaluates as true for
multiple filters, Network Analyzer uses the color scheme with the highest precedence. In the case where there is no clear precedence,
Network Analyzer randomly chooses one of the matching color schemes.

5. To refresh the Map pane and Events pane with the new color scheme, click Reapply.

A filter whose menu checkbox is selected is shown in the Filters menu. The order in which the filters are displayed in the Filters menu
is determined by their order in the filter manager table.

Filter Bar

A session's Filter Bar provides the same level of functionality as the Filter Manager for building expressions. Any filter expression that
appears in a session's Filter Bar is combined with the saved filter expressions that are already in effect for that session.

The Filter bar is displayed by default, but can be toggled on and off using the Show Filter Bar menu control.

You can compose a Filter Bar expression in the following ways:

1. Enter the expression directly in the filter edit field, and press Enter.
2. Create a Quick filter.

To apply a Filter Bar filter, enter an expression into the filter edit field and press Enter.

To find an event that matches the filter, click the Find icons on the Filter Bar.

To remove a filter, select it and press Enter.

Note: A history of filter expressions is maintained in the drop-down list.

Quick Filters

Network Analyzer provides several filters that are available from the Transactions pane, Events pane, Event Detail pane, and Hex
Dump pane.

To access a quick filter, right-click an item and choose a quick filter pop-up menu option.

Hide or Show Events/Transactions

Access these filters by right-clicking an event (Events pane) or transaction (Transactions pane) and selecting a pop-up menu option
to hide or show specific information. The filter options that are available depend on the selected transaction or event. You can
specify to hide all events/transactions of the selected type, or to show only that type. In addition if you select an event of type
APITrace, the pop-up menu displays two filter options:

Hide type: APITrace
Show only type: APITrace

Further, if you select an event such as a neighbor exchange that has a source and/or destination address, the pop-up menu also
contains these two filter options:

Show only destination: short-ID
Show only source: short-ID

Filtering Captured Data

254/290

In all cases, Network Analyzer enters the corresponding filter expression in the session's Filter Bar. This can help you to understand
the filter language. For example, if you specify to show only route discovery transactions, this expression is set in the filter bar:
isType(Route)

Frame Byte Pattern Filtering

A frame pattern filter matches a specific byte-array pattern. For example, you could filter for packets in a payload whose frame has
the third byte equal to 0x33. (Many more complex combinations are possible.)

To create a frame pattern filter:

1. Right-click a frame in the Event Detail pane or Hex Dump pane.
2. Select Filter by frame pattern from the pop-up menu.
3. In the Byte Pattern dialog, check the byte pattern match desired and click OK.
The filter is added to the Filter Bar for this session.

Filter Language

Filter language enables you to construct logical expressions, based on decoded fields in events. The following are some examples:

fifteenFour.sequence == 0x52 : Matches events where 15.4 sequence number equals hex 0x52.
fifteenFour.ackRequired == true && fifteenFour.source == 0x035f : Matches events where 15.4 ack required flag is set, and

source shortId is 0x035f.
isPresent(zigbeeSecurity.frameCounter) : Matches events that contain the Zigbee security frame, and the frameCounter field

within it.
event.summary | "string" : Matches events where a string is a substring of the summary.
isType(Packet) : Matches events that are packets.
frameMatch(fifteenFour,"**88**EF/**********") : Matches events where 15.4 frame contains second byte equal to 0x88 and

fourth byte equal to 0xEF.

A good way to learn the filter language is by first using the Add to filter context menu option in the Event Detail Pane. This option will
add a filter expression for the chosen field.

You can use most standard logical operators (&&, ||) and standard comparison operators (==, !=, |, <, >, <=, >=, etc.) in filter
expressions.

Event and Transaction Filter Extensions

In addition to filtering on decoded packet fields, you can filter on several other Event and Transaction values.

Event Extensions:

event.summary: A String value of the summary shown in the Event Pane.
Example: event.summary == "APS Ack"

event.linkStatus: True if the packet is a Link Status packet.
Example: event.linkStatus == true

event.ack: True if the packet is an 802.15.4 ack.

Filtering Captured Data

255/290

Example: event.ack == true
event.time: The time that the event was transmitted (tx) or received (rx).

Example: event.time >= 75.78
event.originator: The adapter that saw and reported the event.

Example: event.originator == "ewb-unit04"
event.status: The event status, listed in the righthand column of the event status window

Example: event.status == "ZCL: ReportEventStatus"
event.type: The type of event, shown in the Type column of the Event and Transaction Panes.

Example: event.type == "Packet"
event.corrupt: The event corruption string, empty if event is not corrupt

Example: event.corrupt < "crypt"

Transaction Extensions:

transaction.summary: Filters on the transaction summary field shown in the Summary column of the Transaction Pane.
Example: transaction.summary == "ZCL: LoadControlEvent"

transaction.packetCount: Filters on the number of packets in the transaction shown in the P# column of the Transaction Pane
Example: transaction.packetCount == 4

transaction.macRetries: Filters on the number of MAC retries in the transaction shown in the M# column in the Transaction Pane.
Example: transaction.macRetries == 2

transaction.endToEndRetries: Filters on the number of end to end retries shown in the E# column in the Transaction Pane.
Example: transaction.endToEndRetries == 3

transaction.status: Filters on the status of the transaction shown in the Status column of the Transaction Pane.
Example: transaction.status == "CRC failed"

transaction.dest: Filters on the network destination of the transaction shown in the NWK Dest column of the Transaction Pane.
Example: transaction.dest == 0x05c7

transaction.source: Filters on the network source of the transaction shown in the NWK Src column of the Transaction Pane.
Example: transaction.source == 0x0000

How Network Analyzer Applies a Filter

When Network Analyzer captures an over-the-air message, it runs the message through a processing stream. The processing stream
is made up primarily of Decoders and Groupers.

Decoders: Decoders are responsible for making sense of the message based on its format so that it may be displayed to the user.
Each over-the-air message captured becomes a single Event of type Packet. This Event is displayed to the user in the Event view.

Groupers: The groupers are responsible for making sense of a series of packets and grouping them into a hierarchy under a single
Transaction. The Transaction is displayed in the Transaction view.

Using show(expression, SELF|PARENT|CHILD|SIBLING)

Events exist within a hierarchical structure where Transactions represent the top of the hierarchy and Events are at the bottom. The
hierarchical nature of trace data creates something of a problem for filtering. In most cases, you wish to see Transactions associated
with filter-matching Events, and vice versa.

For instance, if you use a filter like: "transaction.summary == Association", you probably do not want to see only the transactions in
the Transaction Pane. You probably also want to see the events contained within the Association displayed in the Event Pane.

You can solve this problem by using the optional show(expr, args) syntax in your filters.

The show syntax allows you to explicitly indicate the conditions under which an event or transaction should match your filter. The
arguments for the show syntax are as follows:

SELF - The Event or Transaction matches if it contains data that matches the expression provided.

PARENT - A Transaction should be shown if any one of its child Events matches the filter.

CHILD - An Event should be shown if the Transaction to which it belongs matches the filter.

Filtering Captured Data

256/290

SIBLING - An Event matches if its PARENT transaction contains another Event which itself matches the filter.

Filter display defaults: Filter expressions that do not explicitly contain the optional show(expr, args) syntax are implemented as
though they contain one of two default syntaxes. Which default syntax is used depends on where the filter is executed, in the Stream
Editor or in the Large File Editor.

Stream Editor default: show(expression, SELF|PARENT|CHILD)
By default, filter expressions that do not explicitly contain the show(expr, args) syntax are implemented as though they were wrapped
in the following syntax:
 show(expression, SELF|PARENT|CHILD) The SELF|PARENT|CHILD arguments provide what Silicon Labs
believes a user expects to see when a filter is run in the Stream Editor. The filter display includes the events and transactions that
match the filter itself. If an Event matches the filter, you also see an associated Transaction (PARENT) regardless of whether that
Transaction matches the filter. Likewise, if a Transaction matches the filter, you also see its associated Events (CHILD) regardless of
whether those Events match the filter.
Large File Editor default: show(expression, SELF)
By default, the search mechanism in the Large File Editor returns only those Events and Transactions which themselves match the
filter expression provided. This behavior makes it very easy to run a filter to search for all the Transactions with a given summary
without having the search results bogged down with hits for their associated Events.

Expression Validation

Lexical validation - When you enter a filter expression, the filter engine validates whether the expression is lexically correct. If an
expression is not lexically correct, Network Analyzer gives you an error message with a suggestion about where there may be a
problem in the expression.

Event Key validation - When you enter a lexically correct expression, Network Analyzer also runs an event key validation. It checks
that any identifier provided represents a real entity within an Event or Transaction. If the filter engine is not able to find any
associated data for an event key within the expression, Network Analyzer will warn you that you are using an unverified identifier.

For example, in the expression

fifteenFour.dest == 0xffff

fifteenFour.dest is a verifiable event key in that Network Analyzer knows that it represents real data in an event.

Here are two examples to illustrate the validation of expressions in Network Analyzer. Consider this expression:

foo == bar

The filter mechanism has no way of knowing what foo and bar represent, or that they even represent any type of data within an Event
or Transaction. While this expression is lexically correct, Network Analyzer will warn the user that foo and bar could not be verified,
and that the expression may provide unexpected results. In fact, this expression will not show anything, since foo may very well equal
bar, but the filter engine has no way of knowing that.

Consider also this expression:

foo == foo

This expression also displays a warning. However, when run, it will return ALL events, because while Network Analyzer does not know
what foo is, it knows it definitely equals foo.

Special identifiers - Several special identifiers are not mapped to an event key.

payload.xxx, which evaluates into the payload bytes for a given layer xxx, for example payload.raw or payload.tcp_stream. You can
form expressions like payload.raw == {001122aabbcc} to match payloads
flag.xxx, which evaluates into the value of the event flag for a given event, for example: flag.neighbor_exchange or
flag.fragment .

Multinetwork Considerations

257/290

Multinetwork Considerations

Multinetwork Considerations

If your application uses nodes operating on multiple networks, this information can be reflected when reviewing capture sessions.
Currently, however, Network Analyzer cannot auto-detect multinetwork nodes. At the onset, unless all traditional, conceptual nodes
constituting the multinetwork node are assigned EUI64s, each conceptual node shows up as a separate node in the Map editor pane.
Each such node must be assigned the same EUI64 by right-clicking on the node in the Map editor pane and selecting Assign EUI64…
A dialog pops up that facilitates the assignment, and the Multinetwork EUI64 checkbox must be checked to inform Network Analyzer
that the node is indeed a multinetwork node. This sequence is illustrated in the following figure.

Once all the constituent conceptual nodes have been assigned the same EUI64, Network Analyzer coalesces them into one node in
the Map editor pane. Alternatively, if the all the conceptual nodes know the EUI64 or all have been coalesced but Network Analyzer
has not been informed that the node is multinetwork, the Multinetwork node menu item in the figure above can be toggled. Once a
node is known to Network Analyzer to be multinetwork, it is indicated as such by being colored magenta in the Map editor pane.

Custom Decoders

258/290

Custom Decoders

Custom decoders

Network Analyzer provides functionality to create custom decoders. This section provides a quick guide for using this feature.

Custom decoders can be created in Lua language, which is embedded inside Network Analyzer.

Step 1: Create a Lua File

Create a '*.lua' file that contains the logic of your decoder. Example:

Custom Decoders

259/290

Step 2: Register the Lua Decoder

The workflow inside Network Analyzer to create a Lua custom decoder is as follows:

Go to Window > Preferences > Network Analyzer > Decoding.
Click Add...
Navigate to the *.lua file location, and select it.
Make sure the left-most checkbox that enables the custom decoder is enabled.

At this point, the custom decoder is registered to the decoding system and will be used when appropriate.

local decoder = {}

decoder.name = "Lua Test Decoder 1"

decoder.filterName = "luadecoder1"

decoder.description = "An example of a Lua decoder"

-- Init function is called whenever the decoder is created the first time.

-- It is NOT called for every packet. So only do global initialization here.

function decoder.init()

end

-- Accept is called for EVERY packet. if Accept returns true, then decode is called.

function decoder.accept()

 log("Accept.")

 if payloadByte(0) == 0x13 then

 return false

 else

 return true

 end

end

-- Decode function is called for EVERY packet that is accepted.

function decoder.decode()

 log("Decode.")

 append("firstByte", 1)

 local byte2 = decode("secondByte", 1)

 appendBits("bit0", 1)

 appendBits("bit1", 1)

 appendBits("bit23", 2)

 if byte2 == 0x02 then

 append("theWord", 2)

 else

 appendBytes("array0", 2)

 end

 setSummary("Lua decoded packet")

end

return decoder

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Custom Decoders

260/290

Internals

The custom decoder is Lua code, containing a decoder object, that will be read by the decoding system.

Lua Decoder Object

The Lua object is essentially a table of key/value pairs. This table lists the keys and the types of the values expected for the given
keys, in order for the decoder to be recognized as such.

Name of
element

Type of
element

Purpose

name String Human readable name of the decoder mostly to show in the Preference table.

filterName String Decoding key used in filtering and similar.

description String Description that provides more in-depth description of this object.

init void function Initialization function, called only once when the Lua file is loaded. Intended for global
initializations.

accept boolean
function

Function that returns true/false, depending on whether the passed event is something this
decoder is interested in.

decode void function Decoding function that performs decoding. This function will only be called if accept() function
returns true.

Lua API

Inside the functions that are part of the Lua decoder, you can use some APIs that reach into the Network Analyzer java space.
Following is the list of decoding functions.

Function
Return
value

Arguments Purpose

append void String fieldName, int
length

Appends an integer field with a given fieldName and length to the list of
decoded fields.

appendBits void String fieldName, int
length

Appends length bits as bitmask inside the last decoded integer.

appendBytes void String fieldName, int
length

Appends length bytes as a binary blob to the list of decoded fields.

decode int String fieldName, int
length

Decodes an integer field with a given fieldName and length, and returns the
value for further use.

log void String Logs the message for debugging purpose.

payloadByte int int index Returns a value of the byte at the specified index.

setSummary void String Sets the summary of the packet for display in Network Analyzer UI.

Network Analyzer Preferences

261/290

Network Analyzer Preferences

Network Analyzer Preferences

To access Network Analyzer preferences, select Window > Preferences > Network Analyzer. The preferences you set apply to all
capture sessions. Network Analyzer saves your preferences and uses them each time Network Analyzer restarts. Preference
categories include:

Capture Configuration
Capture File Storage
Connectivity Display
Decoding
Energy Profiler Integration
Node Icons
Optional Dialogs
Stream Visualization (deprecated function)
Timeline
Wireshark

Capture Configuration Preferences

Network Analyzer Preferences

262/290

These preferences offer general, time management, and user interface configuration options. Changes take effect in the next new
capture session. Some options are:

Sorting and duplicate match window: Specifies in microseconds a time span in which duplicate packets can be detected. If identical
packets arrive within the specified time span, Network Analyzer detects the duplication and allows only one to display.
Perform drift correction in network Analyzer: Allows drift for autocorrection.
Drift Threshold: Specifies the amount of time-drift that Network Analyzer will tolerate between the absolute PC clock and the adapter
clocks before it resets its "time-correction" factor. In most situations you should not change this value. In a typical situation, adapter
clocks are more precise than PC clocks, but they do not provide absolute time, just relative time against an arbitrary reference.

Capture File Storage Preferences

Network Analyzer Preferences

263/290

These preferences determine, among other things, what is considered a large file, which in turn determines the default editor used.
Changes take effect in the next new capture session. Some of the options are:

Monitor the timestamp and optionally reload: Monitors whether the file has changed on the disk, and prompts to reload if so.
Monitor files for appending after opening: Enables Network Analyzer to detect new packet data appended by an external program to
an open session file, and read it in for display.
Preserve open files across sessions: Instructs Network Analyzer to automatically reopen files from previous session
Enable large file handling: Enables Network Analyzer to handle large files in the Large File Editor. Files are considered large if they
contain more events than the number entered in "Number of events for a file to be large."

Connectivity Display Preferences

Network Analyzer Preferences

264/290

These preferences customize how device connectivity is displayed.

Decoding Preferences

Network Analyzer Preferences

265/290

The Decoding preferences group affect how decoding is handled. Changes take effect in the next new capture session. On the
Decoding dialog, some options are:

Selected stack: The stack selected for decoding newly captured data. Links allow you to make changes in other preference interfaces.
This setting has no effect on a previously captured trace. The decoding stack for a trace file is stored in the file itself.
Security level: The security level set for the MAC and network layers. Valid values include 1 through 5.

Security Keys

Network Analyzer Preferences

266/290

Specifies the security decryption keys. To enable a key, select the Decryption key checkbox. To edit a key, select its name or key
values. All enabled decryption keys are run against each incoming packet until one is successful. Successful keys are automatically
moved to the top of the key list to improve performance. Decryption keys can also be obtained from network traffic for future use.

Buttons on the right of the dialog provide the following features:

New: Creates a new key for editing.
Import: Opens a dialog from which you can import a key file.
Clone: Creates a copy of the currently selected key.
Delete: Removes the currently selected key.
Invert swaps the order of the key values.
Clear All: Removes all security keys.
Run HMAC: Opens a dialog that allows you to manually calculate the HMAC authenticated key from trust key and IEEE EUI64 address.
ASCII edit...: Converts a human-readable ASCII string into a binary security key.

The checkboxes at the bottom of the keys list provide the following options:

Save decryption keys in ISD files (unchecked by default): Saves the security keys that you have specified into the capture file along
with your traffic. Note: If you are sharing the Network Analyzer file with users who have a right to know your key, this may make the
opening of the file easier for them, as they will not have to separately enter the key. However, by doing this, you create a security risk.
Never enable this option, if your keys must remain secure and known to you only.
Disable keys when not used for n days (checked by default): You can configure the number of days unused keys should be kept.

Stack Versions

Network Analyzer Preferences

267/290

A list of profiles representing Gecko SDK Suite stack versions. Check the stack that is deployed on the network you are using. If you
are working with Dynamic Multiprotocol projects, select 'Auto-detecting decoder stack'.

Transaction Groupers

Network Analyzer Preferences

268/290

A table of all the groupers loaded into Network Analyzer. Transaction groupers are responsible for making transactional sense out of
a trace of network data. Groupers watch for batches of events and record them as a transaction.

Energy Profiler Integration Preferences

Network Analyzer Preferences

269/290

See Energy Profiler and Network Analyzer in the Energy Profiler section for more information about using the two tools together and
the effect of these preferences.

Node Icon Preferences

Network Analyzer Preferences

270/290

Network Analyzer provides several predefined icons. The Node Icons dialog displays all icons that are available for customizing
display of nodes in the map pane. You can also add icons of your own.

Optional Dialog Preferences

Network Analyzer Preferences

271/290

Some dialogs can be turned off if you prefer not to interact with them.

Timeline Preferences

Network Analyzer Preferences

272/290

Among other options, you can choose the colors and fonts for features of the Timeline.

Wireshark Preferences

If you are using the Wireshark open source packet analyzer, these options configure the integration.

Network Analyzer Preferences

273/290

Bluetooth Direction Finding Tools

274/290

Bluetooth Direction Finding Tools

Bluetooth Direction Finding Tool Suite

A Real Time Locating System (RTLS) consists of many locators that pick up the signals of asset tags to locate them in 3D space. To
calculate the positions of the asset tags, you must know each locator’s position, orientation, and configuration (such as antenna
array type, switching pattern, and so on). The Silicon Labs’ Real Time Locating (RTL) library also needs configuration parameters,
such as estimation mode, azimuth, elevation constraints, and so on, to provide the best estimation for a given environment. The
Bluetooth Direction Finding Tool Suite, accessed primarily through the Direction Finding Dashboard, is meant to ease development
with the Silicon Labs’ RTL library. It provides multiple tools to configure the system, and also helps development with analyzer tools
that calculate many output parameters from the observed IQ samples.

Note: The tools were created for demonstration purposes, and not to be used in production. For development purposes, start with
the sample application described in AN1296: Application Development with Silicon Labs RTL Library.

The Bluetooth Direction Finding Dashboard aggregates the tools used to create and configure Direction Finding projects (*.dfp).
These projects are created through Files > New > Project > Simplicity Studio > Direction Finding Project.

The tools available through the Dashboard include:

MultiLocator Builder: Used to create a multi-locator configuration setup using topologies and individual locator’s configurations, and
link them to produce a multi-locator configuration file.
Editor: Used to review and edit a multi-locator configuration and its building blocks, namely the topology and single locator
configurations. The Editor provides a framework that draws on other tools:

The AoA Positioning Tool demonstrates the location estimation of the Real Time Locating (RTL) library. Global RTL settings can also
be configured in the tool, and those settings are saved into the multi-locator configuration file.
AoA Configurator provides an editable 3D representation of a topology and locator devices. Use the tool to add locators, drag them
to the desired position, and rotate them to the best orientation.
AoA Analyzer (also available through the Tools menu) can create a single locator configuration file, and then apply the configuration
for a single locator board and run the RTL library to estimate angles from the incoming data.

Import & Export: Used to migrate configuration files to and from the SDK’s AoA host projects.

For details about the tools and references to other direction-finding documentation, see UG514: Using the Bluetooth® Direction
Finding Tool Suite

https://www.silabs.com/documents/public/application-notes/an1296-application-development-with-rtl-library.pdf
https://www.silabs.com/documents/public/user-guides/ug514-using-bluetooth-direction-finding-tool-suite.pdf

Tips and Tricks

275/290

Tips and Tricks

Tips and Tricks

Many of these tips rely on changes in Preferences. This can be accessed through the Window > Preferences selection, or the
Preferences button on the toolbar.

Useful Windows 10 paths
Useful Mac OS paths
Default Project Locations
Optionally Disable Automatic Updates
Performance Enhancements
SDK installation or updates are not working
Speed up debug session startup
Speed up reading large source files
Speed up the indexer
Restore a perspective layout
Find a Version
Report a Bug
Capture a Simplicity Studio 5 Thread Dump
Convert an Existing Simplicity Studio 5 Project from GCC to IAR
Using custom boards

Useful Windows 10 paths

Default Simplicity Studio Install Path: C:\SiliconLabs\SimplicityStudio

Downloaded location for kit resources:
C:\SiliconLabs\SimplicityStudio\v5\offline\aem\www.silabs.com\documents\public\schematic-files

Command line or direct GUI access to Simplicity Commander:
C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander

Protocol SDK locations for all GSDK SDKs:

GSDK 4.x: C:\Users\<NAME>\SimplicityStudio\SDKs\gecko_sdk\protocol\<protocol>
GSDK 3.x: C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\<GSDK version>\<protocol>

Beginning with GSDK 4.0, content such as documentation or demos that was previously installed with the SDK is now downloaded
after being accessed through Simplicity Studio: C:\SiliconLabs\SimplicityStudio\v5\offline\com.silabs.sdk.stack.super_<version>

Useful Mac OS paths

Default Simplicity Studio Install Path: /Applications/SimplicityStudio.app/Contents/Eclipse (recommend changing to one word
SimplicityStudio.app)

Downloaded location for kit resources:
/Applications/SimplicityStudio.app/Contents/Eclipse/offline/aem/www.silabs.com/documents/public/schematic-files

Command line or direct GUI access to Simplicity Commander:
/Applications/SimplicityStudio.app/Contents/Eclipse/developer/adapter_packs/commander

http://www.silabs.com/documents/public/schematic-files
http://www.silabs.com/documents/public/schematic-files

Tips and Tricks

276/290

Protocol SDK locations for all GSDK SDKs:

GSDK 4.x: /Users/<NAME>/SimplicityStudio/SDKs/gecko_sdk/protocol/<protocol>
GSDK 3.x: /Applications/SimplicityStudio.app/Contents/Eclipse/developer/sdks/gecko_sdk_suite/<GSDK version>/protocol

Beginning with GSDK 4.0, content such as documentation or demos that was previously installed with the SDK is now downloaded
after being accessed through Simplicity Studio:
/Applications/SimplicityStudio.app/Contents/Eclipse/offline/com.silabs.sdk.stack.super_<version>

Default Project Locations

Default project locations in your Windows 10 workspace
C:\Users<user>\SimplicityStudio
Ex: C:\Users\daseymou\SimplicityStudio

Default project locations in your Mac workspace
/Users/<user>/SimplicityStudio
Ex: /Users/mahallam/SimplicityStudio

Optionally Disable Automatic Updates

By default, SSv5 checks for updates when you first open it. You can manage update frequency through Preferences > Install/Update
> Automatic Updates.

Either uncheck Automatically find new updates and notify me or change the Update Schedule selection to use a schedule such as
once a week.

If you have turned automatic updates off, you can check for updates by clicking Install on the toolbar, then Manage Installed
Packages, and then Check for Updates on the Product Updates tab.

See About Update Frequency for details on the selections available.

Tips and Tricks

277/290

Performance Enhancements

To improve SSv5 performance, try one or more of the following suggestions.

Disable SDKs not being used

If you have installed many different versions of different SDKs and GSDKs over time, go to Preferences, type SDK in the filter field,
and uncheck the ones not currently being used.

Disable unused targets or toolchains

If you have installed multiple toolchains but are not using all of them, or are not using all of the targets, disable the unused ones. Go
to Preferences and type toolchain or target in the filter field, and uncheck any unused items.

Tips and Tricks

278/290

Use different workspaces for different GSDK versions or compilers

Overloading a workspace with projects and different versions of SDKs can slow down SSv5 operations. Keep separate workspaces
for specific project and/or SDK versions and/or toolchains. Note that this is necessary if you are using different versions of the IAR
compiler to match different versions of the GSDK.

While you can use File > Switch Workspaces to change workspaces as described in Project Explorer View, if you will be working with
different workspaces, you may wish to have SSv5 prompt you on startup about which workspace to use. Go to Preferences >
General > Startup and Shutdown > Workspaces and check Prompt for workspace on startup.

Tips and Tricks

279/290

Then on startup you can select a workspace or create a new workspace by clicking Browse and adding a directory.

Increase heap size

Close SSv5. Use a text editor to open following file within the Simplicity Studio root path, for example:
C:\SiliconLabs\SimplicityStudio\v5\studio.ini

In the following figure, the line Xmx5g was added to increase the maximum Java heap SSv5 will use to 5 GBytes. Choose larger or
smaller depending on your system resources. Without that line SSv5 defaults to a maximum of one quarter of the system RAM. On a
system with 8 GBytes of RAM that would be 2 GBytes and SSv5 might run out of Java Heap space on memory-intensive operations.

Tips and Tricks

280/290

SDK installation or updates are not working

The cause might be your IT department using proxy servers, and potentially also man-in-the-middle security monitoring. See the
following knowledge base articles for more information on how to work around these situations:

Configuring Simplicity Studio to Work with Proxy Servers

Installing SSL Security Certificates for Simplicity Studio Updates

Speed up debug session startup

Go to Preferences > Run/Debug > Launching, and under General Options uncheck Build (if required) before launching.

This will interfere with your workflow if you are accustomed to making a change and clicking the Debug button to build the project
before launching the project.

Speed up reading large source files

Enable folding of #if/#ifdef's and if/else, do/while, for, and switch statements in source code. Go to Preferences and type folding
in the filter field, and check the three "Enable folding … " options.

https://www.silabs.com/community/software/simplicity-studio/knowledge-base.entry.html/2018/11/12/configuring_simplici-hwpu
https://www.silabs.com/community/software/simplicity-studio/knowledge-base.entry.html/2018/10/12/installing_ssl_secur-UVxo

Tips and Tricks

281/290

Speed up the indexer

If the Indexer is taking a long time to run, close other projects. If still slow, in the Project Explorer view right-click the project directory
and select Index > Rebuild.

Tips and Tricks

282/290

Restore a perspective layout

To reset a perspective to its original layout, right-click the perspective button in the toolbar and select Reset.

Find a Version

Go to Help > About Simplicity Studio for version information. The overall SSv5 version is at the top of the dialog. The Studio Version
tab lists version information for all the components that make up SSv5. The Toolchains and SDKs tab lists version information for
the installed SDKs and toolchains.

Report a Bug

Go to Help > Report bug The default selection generates a log file to the location you specify. This is useful if you need to attach a
log to a case that's already created.

Tips and Tricks

283/290

Select Submit bug at Silabs.com if you are creating a new ticket. This generates the log file and provides instructions on creating a
ticket.

Capture a Simplicity Studio 5 Thread Dump

If Simplicity Studio 5 happens to hang (become unresponsive for several minutes) during an operation, the best way to report this to
Silicon Labs is to use a Java tool called jstack to capture a thread dump while the program is still in the hung state. This thread dump
can be used by the Silicon Labs team to analyze the hang. If Simplicity Studio 5 is shut down and restarted, a thread dump at that
point will not be useful. The jstack tool is included in the Simplicity Studio 5 installed Java Runtime Environment (JRE).

Once you have generated the thread dump file according to one of the following procedures, attach it to a Silicon Labs support case
along with other details of what operation was being performed right before the hang as well as any screenshots taken of what was
shown in the application. A support case can be created from the Silicon Labs Simplicity Studio Community home page or with this
url: https://siliconlabs.force.com/s/contactsupport.

The procedure to use the jstack tool for Windows, MacOS and Linux is described in the following sections.

https://siliconlabs.force.com/s/contactsupport

Tips and Tricks

284/290

Windows

1. Open Windows Task Manager and go to the Details tab to find the PID for Simplicity Studio (studio.exe).
2. Open a command prompt and issue the following command, adjusting it based on the Simplicity Studio installation path:

[SIMPLICITY_STUDIO_INSTALLATION]\features\com.silabs.external.java.windows.x86_64.feature_11.0.5\jre\bin\jstac

k.exe PID > [PATH]\SSv5ThreadDump.txt

For example, with the default installation path:

C:\SiliconLabs\SimplicityStudio\v5\features\com.silabs.external.java.windows.x86_64.feature_11.0.5\jre\bin\jst

ack.exe -l -e 41068 > C:\temp\SSv5ThreadDump.txt

MacOS

1. Open a terminal window.
2. Use the following command to get the PID:

ps aux | grep studio

This is an example of the output with the pid 76698:

USERNAME@mac0010128 ~ % ps aux | grep studio

USERNAME 76698 5.6 9.7 12491892 1633396 ?? S Tue09AM 92:52.70 /Applications/SimplicityStu

Tips and Tricks

285/290

1. Use the PID with the jstack command

[SIMPLICITY_STUDIO_INSTALLATION]/Contents/Eclipse/jre/Contents/Home/bin/jstack -l -e PID >

[PATH]/SSv5ThreadDump.txt

For example

/Applications/Simplicity\ Studio.app/Contents/Eclipse/jre/Contents/Home/bin/jstack -l -e 76698 >

~/Documents/SSv5ThreadDump.txt

Linux

1. Open a terminal window.
2. Use the following command to get the PID:

ps aux | grep studio

This is an example of the output with the pid 10233:

1. Use the PID with the jstack command:

[SIMPLICITY_STUDIO_INSTALLATION]/jre/bin/jstack -l -e PID > [PATH]/SSv5ThreadDump.txt

For example:

~/SimplicityStudio_v5/jre/bin/jstack -l -e 10233 > ~/Documents/SSv5ThreadDump.txt

Convert an Existing Simplicity Studio 5 Project from GCC to IAR

1. Create a new IAR build configuration:
Right-click the project folder and select Build Configurations > Manage.
In the resulting Manage Build Configurations dialog, click New.
Select the IAR ARM build configuration to use (IAR ARM Default recommended) and click OK.

2. Still in the Manage Build Configurations dialog, select the new build configuration and click Set Active.
3. Open the project's .slcp file and, on the OVERVIEW tab, click Edit on the Project Generators card.
4. Select IAR EMBEDDED WORKBENCH PROJECT and click Save.

For Bluetooth projects steps 5 through 7 are also necessary. For Platform and Flex projects proceed to step 8.
5. In the Project Explorer view:

Right-click the project folder and select Properties.
In the resulting Properties dialog, expand C/C++ Build and select Settings.
Under Tool Settings select IAR Linker for ARM > Library and select all of the libraries with GCC or gcc in the name or path and
also the 'gcc', 'c', 'm' and 'nosys' libraries.
Click Delete in the dialog menu.
Click Apply and Close.

6. In the Project Explorer view:
Expand gecko_sdk_n.n.n > platform > Device > SiliconLabs > <target-part> > Source.
Right-click the GCC folder and select Resource Configurations > Exclude from Build...
In the resulting dialog, check the box for the IAR ARM ... build configuration.
Click OK

7. Check if the project contains gecko_sdk_n.n.n > service > udelay > src > sl_udelay_armv6m_gcc.s. If it does, exclude it from the build
with the same command as in the previous step.

.app/Contents/MacOS/studio

USERNAME 194200.00.04268300680 s000 R+3:26PM 0:00.00 grep studio

1
2
3

ThinkPad-W530:~$ ps aux | grep studio

USERNAME 10233 10.1 27.3 110505488 2115904 ? Sl 12:55 10:58 /home/USERNAME/SimplicityStud

1
2

Tips and Tricks

286/290

8. Build the project. It should be successful. If not, check if any other GCC-specific files exist that need to be excluded from the build
configuration.

Using Custom Boards

Connect the board either using an external Segger J-Link Debug Adapter or a Silicon Labs mainboard, with Debug Mode set to OUT.
(In the Debug Adapters view, right-click the device, select Device Configuration, and change the Debug Mode on the Adapter
Configuration tab). Create the project with the chip part number set in the Target, SDK, and Toolchain Selection dialog.

You cannot use Flash Programmer until the debug adapter's device configuration has been configured with the part. Use Simplicity
Commander instead.

Projects based on custom boards can be built and flashed as part of a debug session. Simplicity Studio then displays and allows you
to confirm the target settings to use for the debug session.

You can change the debug adapter's device configuration by right-clicking the device in the Debug Adapters view, selecting Device
Configuration, and making either of these changes:

1. On the Device Hardware tab, enter the target part number.

Tips and Tricks

287/290

1. On the Device Hardware tab, change the Target Interface to SWD. Click Detect Part.

Revision History

288/290

Revision History

Revision History

Revision 5.3.2 released March 9, 2022

Getting Started: Added more information about linking sources in a new project.
About the Launcher: Clarified the interface overview, with new information about the perspectives menu; added instructions on adding
an SDK to the list shown on the General Information card.
NCP Commander: Added information about the scripting feature.
Tips and Tricks: Added a tip about working with custom radio boards.

Revision 5.3.1 released January 26, 2022

Getting Started: Updated Start a Project to reflect other project types available
NCP Commander: Updated to include Bluetooth mesh functionality
Using the tools: New section on the Bluetooth Direction Finding Tool Suite
Various maintenance updates.

Revision 5.3.0 released December 15, 2021

Installation instructions reflect installing the Gecko SDK from GitHub.
Project migration text includes newer migration options.
New SDK Extensions section.
New Solutions section.
Project Configurator now supports Zigbee, Bootloader, and Z-Wave.
New Zigbee Cluster Configurator tool.
NCP Commander enhanced with dynamic GATT database interactions.
Tips and Tricks updated with new installation information.

Revision 5.2.0 released June 16, 2021

Version changed to correlate with Simplicity Studio 5.
Tools: Standalone NCP Commander documented.
Getting Started: Linux installation instructions added.
Energy Profiler: Code correlation software setup instructions updated.
Tips and Tricks: Links added at the top of the page; tip on changing from GCC to IAR compiler added.
Various maintenance updates.

Revision 1.1.0 released December 9, 2020

General updates for Simplicity Studio 5.1.
Launcher perspective (Getting Started, About the Launcher):

Software Examples and Demos tabs combined into a single tab, enhanced filtering options.
Examples from GitHub repositories.

Revision History

289/290

New security firmware update option for Series 2 devices.
Developing for 32-Bit Devices:

Project Configurator now supports Bluetooth Mesh and 32-Bit MCU SDKs.
New Project Configurator Configuration Tools tab.
New Bluetooth Mesh Node Configurator tool.
Pin Tool, new 'Add Component' functionality.

Testing & Debugging:
New Beta quality GNU Debugger.

Tools:
New Bluetooth NCP Commander tool.

Tips & Tricks:
Update protocol locations for Bluetooth Mesh.
New 'Capture a Simplicity Studio 5 Thread Dump' tip.

Revision 1.0.0 released July 29, 2020

Initial release

Revision History

290/290

Copyright © 2022 Silicon Laboratories. All rights reserved.

	Overview
	New Features
	Known Issues
	For Users of Previous Versions

	Getting Started
	Prerequisites
	Install SSv5 and Software
	Explore SSv5
	Start a Project
	Install SDK Extensions
	Project Migration

	About the Launcher
	Welcome and Device Tabs
	Debug Adapters
	My Products
	Menu
	Toolbar

	About the Simplicity IDE
	User Interface Review
	Import and Export
	Code Editing

	Developing for 32-Bit Devices
	Overview
	Developing with Project Configurator
	Project Configurator
	Component Editor
	Pin Tool
	Bluetooth GATT Configurator
	Bluetooth Mesh Configurator
	Proprietary Radio Configurator
	Zigbee Cluster Configurator
	Solutions

	Developing with AppBuilder
	Configuring a Project
	Configuring Peripherals

	Developing for 8-Bit Devices
	About Projects
	Using Hardware Configurator

	Building and Flashing
	Building
	Flashing

	Testing and Debugging
	Overview and Resources
	Using the Debugger

	Using the Tools
	Tools Overview
	Bluetooth NCP Commander
	Energy Profiler
	Starting an Energy Analysis Session
	User Interface
	Energy Statistics
	Play and Record Data Control
	Freeze and Record Triggers
	Search Capability
	Profiling with Code Correlation
	Energy Profiler and Network Analyzer

	Network Analyzer
	Network Analyzer Interface
	Capturing Data and Managing Sessions
	Viewing Data in Editors
	Filtering Captured Data
	Multinetwork Considerations
	Custom Decoders
	Network Analyzer Preferences

	Bluetooth Direction Finding Tools

	Additional Information
	Tips and Tricks
	Revision History

