User manual. UM2891 - Rev 1 - June 2021. For further information contact your local STMicroelectronics sales office. www.st.com ...
User manual UM2891 - Rev 1 - June 2021 For further information contact your local STMicroelectronics sales office. www.st.com. X-NUCLEO-DRP1M1. TCPP03-M20. X-NUCLEO-DRP1M1. ST715PU33R . STM32 Nucleo. X-NUCLEO-DRP1M1. X-CUBE-TCPP. NUCLEO …
File Info : application/pdf, 27 Pages, 7.63MB
DocumentDocumentUM2891 User manual Getting started with the X-NUCLEO-DRP1M1 USB Type-CTM Power Delivery dual role port expansion board based on TCPP03-M20 for STM32 Nucleo Introduction The X-NUCLEO-DRP1M1 expansion board allows evaluating the features of TCPP03-M20 and the USB Type-CTM features and protections required for VBUS and CC lines suitable for dual role power (DRP) applications. The expansion board can be stacked on top of any STM32 Nucleo-64 with Power Delivery (UCPD) peripheral embedded in their microcontrollers. The X-NUCLEO-DRP1M1 effectively demonstrates the dead battery and Sink operation, thanks to the integrated ST715PU33R LDO linear regulator that supplies the connected STM32 Nucleo development board. It also demonstrates USB Type-CTM Source operation when a compatible external Source is connected to the board. Moreover, the expansion board allows Dual Role Data functionalities for sourcing devices. The X-NUCLEO-DRP1M1 is compliant with the USB Type-CTM and Power Delivery specifications 3.1 standard power range (SPR) and is USB-IF certified as a 100 W DRP solution supporting programmable power supply (PPS). The companion software package (X-CUBE-TCPP) contains the application examples for development boards embedding UCPD-based microcontrollers (NUCLEO-G071RB, NUCLEO-G474RE and NUCLEO-G0B1RE). Figure 1. X-NUCLEO-DRP1M1 expansion board UM2891 - Rev 1 - June 2021 For further information contact your local STMicroelectronics sales office. www.st.com UM2891 Getting started 1 Getting started 1.1 Overview The X-NUCLEO-DRP1M1 expansion board features: · Support for all USB Type-CTM Power Delivery SPR profiles up to 100 W · Management of Dual Role Data/Power configuration · USB 2.0 Dual Role Data compliant according to STM32 USB data capability · 8/20 s surge, overvoltage, overcurrent protection and discharge for VBUS · Short to VBUS protection for CC1 and CC2 configuration channel pins · ESD protection (IEC61000-4-2 level 4 ± 8 kV contact discharge) for CC1, CC2, D+ and D- · Overvoltage, overcurrent protection and discharge for VCONN · Common mode filter on D+/D- data lines · Three power modes to optimize current consumption · Compliant with Programmable Power Supplies (PPS) · Free comprehensive development firmware library · Compliant with STM32 Nucleo-64 boards featuring an STM32 with UCPD The X-NUCLEO-DRP1M1 interfaces three main blocks for USB Type-CTM Power Delivery dual role port (DRP): · Type-CTM connector · the power delivery controller embedded into the STM32 (UCPD) on the STM32 Nucleo development board and · the power management It also provides USB 2.0 data line interface connection to the STM32 on the STM32 Nucleo development board. The bill of materials has been optimized without compromising the protection: · VBUS line: overvoltage, overcurrent and surge protections · CC lines: overvoltage, overcurrent and ESD protections · Data lines: ESD protection and EMI filtering The embedded TCPP03-M20 features comply with the Power Delivery protocol: · CC lines switch matrix for VCONN · VBUS discharge · VCONN discharge Fault mode report and three optimized power modes are also available. All these features are managed through I²C communication. VBUS current analog readout is also possible with STM32 ADC connected to the TCPP03-M20 differential amplifier output. UM2891 - Rev 1 page 2/27 UM2891 Hardware architecture Figure 2. X-NUCLEO-DRP1M1 board on top of STM32 Nucleo development board block diagram (full lines identify Type-CTM connector connections/dotted lines identify internal connections) Provider path Consumer path STM32 ADC UCPD N-MOSFET SOURCE N-MOSFET SINK TCPP03-M20 X-NUCLEO-DRP1M1 board Power bus VBUS USB Type-CTM connector Configuration channels CC1/CC2 lines Firmware I2C USB 2.0 Data lines D+/D- lines NUCLEO board Protections 1.2 Hardware architecture The X-NUCLEO-DRP1M1 expansion board can be used with any STM32 Nucleo-64 development board embedding the UCPD peripheral (mainly NUCLEO-G071RB, NUCLEO-G474RE and NUCLEO-G0B1RE). The expansion board must be plugged on the matching pins of the development board CN7 and CN10 ST morpho connectors. When plugged onto an STM32 Nucleo development board, the expansion board can be supplied in two different ways: · through the STM32 Nucleo ST-LINK supply using the development board internal LDO · by the VBUS provided when a Source is plugged into the CN1 USB Type-CTM connector and thanks to the integrated ST715PU33R LDO linear regulator (U2) that supplies the entire system, which supports Dead Battery operation mode and source powered mode. UM2891 - Rev 1 page 3/27 UM2891 Hardware architecture Figure 3. X-NUCLEO-DRP1M1 main functional blocks (top view) 1-2. Morpho connectors 3-6. Arduino connectors 7. Type-CTM connector 8. Provider path screw connector plus LED 9. Consumer path screw connector plus LED 10. 3.3 V LED 11. Jumpers for self-powering (LDO out plus NRST) 12. TCPP03-M20 - USB-C DRP protection 13. ECMF02-2AMX6 - common mode filter plus ESD protection 14. ESDA25P35-1U1M - TVS diode 1 2 3 11 5 4 8 10 6 12 14 13 9 7 UM2891 - Rev 1 page 4/27 UM2891 Type-CTM connector Figure 4. X-NUCLEO-DRP1M1 main functional blocks (bottom view) 1. Morpho connector 2. Morpho connector 3. OVP threshold solder bridges (R0, SH2, SH3, SH4, SH5) 4. ST715PU33R high input voltage LDO linear regulator (U2) 5. STL40DN3LLH5 dual N-channel 30 V, 0.016 Ohm, 11 A STripFET H5 Power MOSFET (Q1 and Q2) 6. Current sense shunt resistor 1 2 3 4 65 1.3 Type-CTM connector The USB Type-CTM receptacle (CN1) gathers the VBUS path and the main connections, such as CC lines and USB 2.0 data lines (DP, DM), before dispatching data to the main functional blocks. UM2891 - Rev 1 page 5/27 UM2891 USB 2.0 data path and configuration settings Figure 5. Type-CTM receptacle (CN1) and ESDA25P35-1U1M TVS diode (D1) VBUS TP1 TP3 TP4 CC2c C2 330pF 50V GND TP2 ConUSB31_632723300011_recept CN1 GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1 GND1 GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1 GND1 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 GND6 SSRXp1 SSRXn1 VBUS4 SBU2 Dn2 Dp2 CC2 VBUS3 SSTXn2 SSTXp2 GND4 GND3 SSTXp1 SSTXn1 VBUS1 CC1 Dp1 Dn1 SBU1 VBUS2 SSRXn2 SSRXp2 GND5 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 CC1c TP5 C1 330pF 50V GND C13 2.2uF 50V D1 ESDA25P35-1U1M GND An ESDA25P35-1U1M TVS diode (D1) has been integrated to protect the VBUS power line and, consequently, the entire system against electrical over-stress (EOS) when a Source/Sink is connected through the USB-C cable. 330 pF C1 and C2 capacitors and 2.2 µF C13 capacitor are required by the USB Power Delivery standard. C13 capacitor also ensures a good system robustness. 1.4 USB 2.0 data path and configuration settings The X-NUCLEO-DRP1M1 expansion board allows STM32 Nucleo development boards that feature a USB2.0 peripheral to expose the D+/D- lines on the Type-CTM receptacle (CN1). Most STM32 Nucleo-64 development boards feature this functionality on the ST morpho connector CN10-12 and CN10-14 pins, whereas NUCLEO-L412RB-P, NUCLEO-L433RC-P, NUCLEO-L452RE-P and NUCLEO-L476RG boards map USB2.0 data pins on CN10-33 and CN10-17 pins. Two couples of resistances has been implemented and connected to the ECMF02-2AMX6 (U3) USB2.0 data lines protection to extend the use of this peripheral to all STM32 Nucleo-64 development boards. UM2891 - Rev 1 page 6/27 1.5 UM2891 ST morpho and Arduino V3 connectors Figure 6. USB2.0 data lines protection ECMF02-2AMX6 (U3) and resistor setup ZDiff 90 ohms R19 0 SH11 D+ D- U3 1 D+ ESD 2 D- ESD 3 GND ZDiff 90 ohms 6 D+1 D+ecmf ESD 5 D-1 D-ecmf R20 0 ESD 4 NC SH13 ECMF02-2AMX6 DP DP_other DM CC1_G4 GND By default, the X-NUCLEO-DRP1M1 mounts R19 and R20 resistors fitted to guarantee USB2.0 compatibility to all the main microcontroller families, but, for the L4 family (NUCLEO-L412RB-P, NUCLEO-L433RC-P, NUCLEOL452RE-P and NUCLEO-L476RG) only, they must be removed and replaced by SH11 and SH13 solder bridges. ST morpho and Arduino V3 connectors The figure below shows the X-NUCLEO-DRP1M1 expansion board ST morpho and Arduino UNO V3 connectors, detailing the main connections, functions, and configuration settings. CN7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ESQ-119-14-T-D Figure 7. ST morpho and Arduino V3 connectors 3.3V 5 V R31 0 CN6 1 2 3 4 5 6 7 8 SSQ-108-03-F-S GND NRST ADC_Vbusc ADC_Prov ADC_Cons ADC_Isense CN8 1 2 3 4 5 6 SSQ-106-03-G-S CC1_G4 CC1 CN5 10 9 8 7 6 5 4 3 2 1 SSQ-110-03-F-S I2C1_SCL I2C1_SDA R24 0 R25 0 CC1_G0 DP_other FLGN CN9 8 7 6 5 4 3 2 1 SSQ-108-03-F-S GND CN10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ESQ-119-14-T-D ENABLE DP DM R26 0 CC2_G0 R27 0 CC2_G4 GND CC2 CC lines are connected to the UCPD connection of the ST morpho connectors (CN7, CN10). Two configurations are possible according to the ST morpho connectors on the STM32 Nucleo development board. To limit pin count on the STM32, unused lines can be disconnected by removing R26/R25 or R24/R27. TCPP03-M20 (U1) FLGN pin corresponds to an STM32 wake-up pin to optimize power consumption when no Type-CTM cable is connected. TCPP03-M20 OFF/hibernate/low power modes can be used with STM32 sleeping modes. STM32 is then woken up when a voltage is present on VBUS thanks to the FLGN pin. TCPP03-M20 ENABLE pin is managed by an STM32 GPIO. Consumption is almost null in hibernate mode (only the I2C interface dynamic current consumption occurs when using the I2C bus). UM2891 - Rev 1 page 7/27 UM2891 I2C bus 1.6 I2C bus An I2C communication is implemented between the STM32 Nucleo development board master port and the TCPP03-M20 (U1) slave port through SCL and SDA pins. TCPP03-M20 I2C default address is 0x68. It can be changed to 0x6A by closing SH16 solder bridge and unsoldering R28; level high is then connected to TCPP03-M20 I2C_ADD pin. I2C pull-up 1 k resistors (R11 and R12) are present on the X-NUCLEO-DRP1M1. 1.7 Voltage/current analog sense connection to STM32 ADC The X-NUCLEO-DRP1M1 features three voltage senses connected to the STM32 ADC: · ADC_VBUSc: measures voltage on VBUS; it is mandatory to ensure system operation (as example, for vSafe0V measurement) · ADC_Prov: for information on the provider path voltage · ADC_Cons: for information on the consumer path voltage Voltage dividers (ratio 6) are compatible with 24 V DC voltages. Figure 8. VBUS voltage sense for STM32 ADC R8 200k R9 40.2k ADC_VBUSc C12 NM The X-NUCLEO-DRP1M1 implements the analog current sense output of TCPP03-M20 (U1, IANA pin) and connects it to the STM32 ADC (ADC_Isense). The TCPP03-M20 has an internal differential amplifier (42 V/V) which measures the current flowing though R5 (7 m). As the current measurement is bi-directional, it is functional for both Source and Sink. Capacitor footprints (C9, C10, C11 and C12) have been added for potential filtering on analog senses. 1.8 Consumer and provider path Consumer and provider path can be connected to VBUS thanks to two dual STL40DN3LLH5 N-MOSFETs (Q1 and Q2) controlled by TCPP03-M20 gate drivers (U1- GDCs, GDCg, GDPs and GDPg pins). UM2891 - Rev 1 page 8/27 Note: UM2891 Consumer and provider path 7D C7 NM Figure 9. Consumer and provider path STL40DN3LLH5 Q1A Q1B S1 G 2 3S D5 G 4 STL40DN3LLH5 R1 200k R2 40.2k D9 NM GND SINK CN2 1 2 GND 1725656 ADC_Cons C10 NM STL40DN3LLH5 Q2A Q2B GND 7D S1 G 2 10 9 11 14 CC1c 15 CC2c 13 18 17 U1 ISENSE VBUSc VSENSE CBIAS CC1c CC2c SCL SDA exp pad GND GND GDCs GDCg 8 7 GDPs GDPg 6 5 FLGn VCC / VCONN 19 2 CC1 CC2 IANA ENABLE I2C_ADD TCPP03-M20 3S D5 G 4 STL40DN3CL8LH5 NM FLGN R10 47K 3.3V R3 200k D10 NM GND R4 40.2k GND SOURCE CN3 1 2 GND 1725656 ADC_Prov C9 NM 21 12 When TCPP03-M20 is OFF and, by default, at turn-on, the consumer path is closed in order to power the system when the battery is fully depleted. TCPP03-M20 does not allow Q1 and Q2 closed at the same time to avoid any provider and consumer connection. Voltage presence on the provider and consumer path is indicated by a LED (D7 blue on the provider path and D6 red on the consumer path). These LEDs does not indicate the N-MOSFET state. For example, Source LED D5 can be ON indicating voltage presence on the provider path but Q2 can be OFF without connection of the provider path on VBUS. You can access the consumer path and provider path thanks to CN2 and CN3 screw connectors. Additional protections (transient or free wheel diode) can be added on D9 and D10 footprints compatible with ESDAP series (from ESDA7P120-1U1M to ESDA25P35-1U1M). Inrush current is managed by TCPP03-M20 gate driver charge pump output current associated to STL40DN3LLH5 drain to gate MOSFET capacitance (also called Miller capacitance or reverse transfer capacitance). This association avoids any potential parasitic OCP triggering due to inrush current generated by cSnkBulk (between 1 µF and 10 µF) as defined by USB Power Delivery standard. When another MOSFET reference is used, C7 and C8 external capacitors can be associated to other MOS references to avoid OCP trigger due to inrush current, if drain to gate capacitance is too low. The effective drain to gate capacitance including C7 and C8 must be higher than 20 pF. When a higher cSnkBulk capacitance is used, Q1 or Q2 must be closed slower and C7 or C8 capacitor must be mounted and selected with 100 pF to every additional 10 µF on cSnkBulk terminal. UM2891 - Rev 1 page 9/27 1.9 1.10 UM2891 VBUS and CC lines over-current protection VBUS and CC lines over-current protection R5 terminal voltage (voltage between TCPP03-M20 and ISENSE) is used for TCPP03-M20 overcurrent protection on VBUS. When this voltage is higher than 0.042 V, OCP turns on and the consumer and provider paths are opened. Table 1. VBUS currents according to shunt resistor Max. nominal current 0.5 A 1.5 A 3.0 A 5.0 A OCP threshold 0.9 A 1.9 A 4.2 A 6.0 A Shunt resistor R5 47 m 22 m 10 m 7 m (default value) TCPP03-M20 protects CC1 and CC2 lines against overcurrent (OCP on CC turn-on at 47 mA), in case of overcurrent when VCONN is used. When overcurrent fault is detected: · FLGN falls · Register 2 is updated · Recovery word is mandatory to get back to operational system. Recovery words are: 0x18 written on I2C register 0 to return to normal mode 0x28 written on I2C register 0 to return to low power mode 0x08 written on I2C register 0 to return to hibernate mode The recovery word erases the error register (register 2) but does not connect consumer or the provider path to VBUS nor VCONN: the corresponding bits must be written to close switch(es) on an additional step. VBUS and CC lines overvoltage protection TCPP03-M20 VBUS overvoltage protection (OVP) threshold is set by a resistive bridge connected to the TCPP03M20 (U1) VSENSE pin. When the voltage on VSENSE pin is above 1.16 V, VBUS, OVP turns on, the consumer and provider paths are opened and register 2 is updated. On the X-NUCLEO-DRP1M1 expansion board, the resistor connected to VBUS (R6) is set to 10 k. OVP threshold can be adjusted thanks to the resistor connected to GND. R13 to R17 resistors can be selected with R0, SH2, SH3, SH4 and SH5. R0, selected by default, sets the OVP threshold to 22 V. To select another threshold value, R0 must be removed and the solder bridge that corresponds to the selected voltage must be filled. When a defective power source plugged onto the Type-CTM connector produces a voltage higher than the selected OVP threshold, the TCPP03-M20 OVP mechanism controls the external MOSFET and opens the VBUS line. UM2891 - Rev 1 page 10/27 1.11 UM2891 LDO Figure 10. VBUS OVP setting resistors Vsense Vbus Max 22 V 17 V 13 V 10 V 6 V P Max 100 W 45 W 36 W 27 W 15 W R0 0 SH2 SH3 SH4 SH5 R13 560 R14 732 R15 976 R16 1.3k R17 2.4k GND TCPP03-M20 protects CC1 and CC2 lines against overvoltage (OVP on CC turn-on at 5.75 V). When a defective cable is unplugged from the Type-CTM connector with a voltage higher than 5 V can produce a VBUS short to CC lines (adjacent lines) and apply a voltage higher than the one specified by STM32 ARM on CC line (FT IO). The TCPP03-M20 OVP on CC lines protects the STM32 as well. LDO ST715PU33R (U2) is a 3.3 V high input voltage LDO. It is supplied by two input voltages: provider path and consumer path. BAT54KFILM diodes (D4 and D5) select the highest available voltage and block the other voltage. To supply the system through LDO output, JP1 must be closed with: · jumper between 1 2 to connect 3.3 V output voltage to the system 3.3 V · jumper between 3 4 to force STM32 NRST pin to 3.3 V (otherwise it would be HZ with potential parasitic reset) D8 LED signals the 3.3 V presence on X-NUCLEO-DRP1M1. UM2891 - Rev 1 page 11/27 UM2891 TCPP03-M20 1.12 SINK R21 4k D4 BAT54KFILM Figure 11. LDO configuration High input voltage 85 mA LDO linear regulator SOURCE D6 LED red Consumer GND D5 R22 4k BAT54KFILM C5 2 100n 25V 1 9 ST715PU33R U2 1 IN OUT 8 2 3 4 NC1 NC2 GND NC3 NC4 FB 7 6 5 Exp Pad GND 2 C6 1 470n 5V NRST D7 LED blue Provider GND 3.3V JP1 1 2 3 4 TSW-102-07-F-D R23 1k D8 LED green 3. 3 V GND GND TCPP03-M20 3.3 V is connected to TCPP03-M20 VCC/VCONN pin. It supplies the IC and provides the input voltage for VCONN. According to the USB-PD standard, VCONN voltage can be between 3.0 and 5.5 V. VCC/VCONN is compatible with this voltage range. All TCPP03-M20 I/Os connected to the STM32 are 3.3 V and 1.8 V compliant (FLGn, ENABLE, IANA, SDA, SLC), except CC1 and CC2 I/O in which they are in accordance with USB-PD standard voltages. I2C_ADD is also 3.3 V and 1.8 V compliant. TCPP03-M20 ENABLE pin is connected to the STM32 GPIO but it can also be connected directly to 3.3 V through R29 resistor. CBIAS pin (C3) is the TCPP03-M20 ESD capacitor. Its value must be 100 nF or higher and 50 V rated to limit voltage de-rating. Figure 12. TCPP03-M20 Vsense R6 10k C3 100n 50V 10 9 11 14 CC1c 15 CC2c 13 18 17 U1 ISENSE VBUSc VSENSE CBIAS CC1c CC2c SCL SDA GND 21 12 exp pad GND GND GDCs GDCg 8 7 GDPs GDPg 6 5 FLGn VCC / VCONN 19 2 CC1 CC2 1 3 IANA ENABLE I2C_ADD 4 20 16 TCPP03-M20 FLGN R10 47K 3.3V R29 CC1 NM CC2 I2C_ADD ENABLE 3.3V 3.3V GND R11 R12 1K 1K I2C1_SCL I2C1_SDA UM2891 - Rev 1 page 12/27 UM2891 STM32 resources 2 STM32 resources STM32 resources provided to TCPP03-M20 are 1.8 V and 3.3 V compatible. This allows using 1.8 V STM32 by a slight change on the voltage divider bridge connected to ADC (R2, R4 and R9 resistors decreased to 20 k, obtaining a divider ratio of 11). Some resources are needed on the STM32 to start a USB Power Delivery dual role port (DRP): · UCPD peripheral to manage USB Power Delivery protocol · I2C bus that can be shared with other slaves · ADC to get the VBUS voltage image To optimize power consumption on battery powered systems, two additional GPIO can be used: · when attaching the cable, TCPP03-M20 needs to be switched from hibernate mode (Sink only) or low power mode (Sink to Source toggling) to normal mode. Wake-up GPIO connected to TCPP03-M20 FLGn pin triggers STM32 to activate useful resources, fully enabling TCPP03-M20. If not used, leave FLGn pin unconnected · TCPP03-M20 ENABLE pin supplies the I2C interface. It consumes current for I2C requests not addressed to TCPP03-M20 (dynamic current consumption). In hibernate mode, this current consumption can be disabled by setting the ENABLE pin to 0. If not used, leave the ENABLE pin connected to 3.3 V or 1.8 V. Other resources are: · USB 2.0 peripheral · ADC to get consumer and provider path voltages as well as current on VBUS images Table 2. X-NUCLEO-DRP1M1 - STM32 resources STM32 resource USB-PD minimal resources UCPD CC1 X UCPD CC2 X I2C SCL X I2C SDA X GPIO Flgn ADC Vbusc X ADC Provider ADC Consumer ADC Isense GPIO ENABLE USB D+ USB D- USB-PD low power resources X X Additional features X X X X X X-NUCLEO-DRP1M1 associated connection USB-PD CC USB-PD CC I2C bus clock I2C bus data STM32 wake up GPIO VBUS voltage info Provider path voltage info Consumer path voltage info Current on VBUS for PPS VDD via GPIO for low power USB 2.0 data line USB 2.0 data line UM2891 - Rev 1 page 13/27 UM2891 Demo application setup 3 Demo application setup The X-NUCLEO-DRP1M1 expansion board flexibility allows demonstrating the TCPP03-M20 protection features and capabilities with a wide range of STM32 Nucleo development boards with UCPD peripheral on the STM32 MCU. The X-CUBE-TCPP companion software package contains dedicated application examples for the STM32 Nucleo featuring USB Type-CTM and Power Delivery management (NUCLEO-G071RB, NUCLEO-G474RE and NUCLEOG0B1RE). 3.1 STM32G474RE application example overview This application example shows how to start battery-powered DRP applications with TCPP03-M20 and STM32G474RE using X-NUCLEO-DRP1M1 expansion board stacked on a NUCLEO-G474RE development board. There are two modes: 1. Programming mode: STM32G474RE is powered by ST-LINK STM32G474RE power supply is always present as ST-LINK power line is connected 2. System validation: STM32G474RE is powered by: the battery (5 V voltage power supply) or the Type-CTM connector (USB Type-CTM wall charger) When the battery is empty and no source is attached to the Type-CTM connector, the STM32G474RE is not powered: STM32G474RE cannot be programmed as ST-LINK does not supply the system STM32CubeMonUCPD is still working when the ST-LINK is connected These two modes cannot be merged as the STM32 NRST pin is managed by 3.3 V coming from ST-LINK. If ST-LINK is not powered, STM32 NRST pin becomes HZ and might generate parasitic resets. Figure 13. Power path of X-NUCLE-DRP1M1 stacked on top NUCLEO-G474RE Power path: · Consumer (yellow dotted lines) · Provider (green dotted lines) · STM32G474RE powered by ST-LINK (light grey line) · STM32G474RE powered by the system (pink line) UM2891 - Rev 1 page 14/27 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 UM2891 Programming/debugging example for STM32G474RE Programming/debugging example for STM32G474RE Hardware configuration Step 1. Add no jumper on the X-NUCLEO-DRP1M1 expansion board. Step 2. On the NUCLEO-G474RE, add: 5V_STLINK jumper on JP5 to select 5 V from ST-LINK USB as power source for STM32G474RE 1-2 jumper on JP8 to select 5 V as reference voltage initiator Step 3. Connect a USB type A to micro-USB cable to the NUCLEO-G474RE development board. Software programming/monitoring Step 1. Drag and drop G4_DRP1M1_DRP.bin to the NUCLEO-G474RE node (or use an IDE for programming). Step 2. Monitor with STM32CubeMonUCPD. Applicative use cases 1. Battery working (5 V source connected on the Source connector) and Sink device connected to the TypeCTM connector: Sink device can be a smartphone, USB key, hardware drive, accessory, etc. Sink device is being supplied and STM32CubeMonUCPD indicates 5 V and the associated current 3.3 V LED on, Source LED on 2. Battery working (5 V source connected on the Source connector) and Source device connected to the Type-CTM connector: Source device (for example, a wall adapter) presents its highest voltage available on the Source indicated by STM32CubeMonUCPD 3.3 V LED on, Source LED on, Sink LED on 3. Battery empty (no source connected to the Source connector) and no Source device is connected to the Type-CTM connector: ST-LINK used to program STM32G474RE powers the MCU continuously 3.3 V LED on, while it should be off 4. Battery empty (no source connected on the Source connector) and a Source device is connected to the Type-CTM connector: Source device (for example, a wall adapter) presents its highest voltage available on the Source indicated by STM32CubeMonUCPD 3.3 V LED on, Source LED off, Sink LED on STM33G474RE system validation Hardware configuration Step 1. On the X-NUCLEO-DRP1M1, add two jumpers on JP1: LDO OUT 3.3 V and NRS 3.3 V to power STM32G474RE with 3.3 V LDO output. Step 2. On the NUCLEO-G474RE add: no jumper on JP5 2-3 jumper to JP8 to select 3.3 V as reference voltage initiator Step 3. Connect a USB type A to micro-USB cable to the NUCLEO-G474RE development board. Software configuration Step 1. Monitor with STM32CubeMonUCPD. UM2891 - Rev 1 page 15/27 3.3.3 UM2891 STM33G474RE system validation Applicative use cases 1. Battery working (5 V source connected on the Source connector) and Sink device connected to the Type- CTM connector: Sink device can be a smartphone, USB key, hardware drive, accessory, etc. Sink device is being supplied and STM32CubeMonUCPD indicates 5 V and the associated current 3.3 V LED on, Source LED on 2. Battery working (5 V source connected on the Source connector) and Source device connected to the Type-CTM connector: Source device (for example, a wall adapter) presents its highest voltage available on the Source indicated by STM32CubeMonUCPD 3.3 V LED on, Source LED on, Sink LED on 3. Battery empty (no source connected to the Source connector) and no Source device is connected to the Type-CTM connector: all LEDs are off 4. Battery empty (no source connected on the Source connector) and a Source device is connected to the Type-CTM connector: Source device (for example, a wall adapter) presents its highest voltage available on the Source indicated by STM32CubeMonUCPD 3.3 V LED on, Sink LED on UM2891 - Rev 1 page 16/27 UM2891 - Rev 1 4 Schematic diagrams VBUS TP1 TP3 TP4 CC2c C2 330pF 50V GND ZDiff 90 ohms Figure 14. X-NUCLEO-DRP1M1 schematic diagram (1 of 3) TP2 ConUSB31_632723300011_recept CN1 GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1 GND1 GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1 GND1 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 GND6 SSRXp1 SSRXn1 VBUS4 SBU2 Dn2 Dp2 CC2 VBUS3 SSTXn2 SSTXp2 GND4 GND3 SSTXp1 SSTXn1 VBUS1 CC1 Dp1 Dn1 SBU1 VBUS2 SSRXn2 SSRXp2 GND5 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 CC1c TP5 C1 330pF 50V GND C13 2.2uF 50V D1 ESDA25P35-1U1M R8 200k R9 40.2k GND R19 0 SH11 D+ D- U3 1 D+ ESD 2 D- ESD 3 GND ZDiff 90 ohms 6 D+1 D+ecmf ESD 5 D-1 D-ecmf R20 0 ESD 4 NC SH13 ECMF02-2AMX6 GND DP DP_other DM CC1_G4 R5 0.007 7D C7 NM STL40DN3LLH5 Q1A Q1B S1 G 2 3S D5 G 4 STL40DN3LLH5 R1 200k R2 40.2k D9 NM GND SINK CN2 1 2 GND 1725656 ADC_Cons C10 NM ADC_VBUSc Isense C12 NM R6 10k Vsense C3 100n 50V 10 9 11 14 CC1c 15 CC2c 13 18 17 U1 ISENSE VBUSc VSENSE CBIAS CC1c CC2c SCL SDA GND 21 12 exp pad GND GND GDCs GDCg 8 7 STL40DN3LLH5 Q2A Q2B GND 7D S1 3S D5 G G D10 2 4 R3 NM STL40DN3CL8LH5 200k GND NM GDPs GDPg 6 5 FLGn VCC / VCONN 19 2 CC1 CC2 1 3 IANA ENABLE I2C_ADD 4 20 16 TCPP03-M20 FLGN R10 47K 3.3V R29 CC1 NM CC2 R4 40.2k GND R30 I2C_ADD ENABLE 0 GND C9 NM C11 NM SOURCE CN3 1 2 1725656 ADC_Prov ADC_Isense 3.3V R11 1K 3.3V GND R12 1K GND I2C1_SCL I2C1_SDA UM2891 Schematic diagrams page 17/27 UM2891 - Rev 1 3.3V R31 0 CN7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ESQ-119-14-T-D 5 V Figure 15. X-NUCLEO-DRP1M1 schematic diagram (2 of 3) 5 V GND CN6 1 2 3 4 5 6 7 8 SSQ-108-03-F-S NRST ADC_Vbusc ADC_Prov ADC_Cons ADC_Isense CN8 1 2 3 4 5 6 SSQ-106-03-G-S CC1_G4 CC1 CN5 10 9 8 7 6 5 4 3 2 1 SSQ-110-03-F-S I2C1_SCL I2C1_SDA R24 0 R25 0 CC1_G0 DP_other FLGN CN9 8 7 6 5 4 3 2 1 SSQ-108-03-F-S GND CN10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ESQ-119-14-T-D SH17 3.3V ENABLE DP DM R26 0 CC2_G0 R27 0 CC2_G4 GND CC2 SOURCE I2C1_SCL 3.3V CN4 1 2 3 4 5 6 7 8 I2C1_SDA M20-9980446 GND GND SH16 I2C_ADD R28 1k GND UM2891 Schematic diagrams page 18/27 UM2891 - Rev 1 SINK R21 4k Figure 16. X-NUCLEO-DRP1M1 schematic diagram (3 of 3) D4 BAT54KFILM High input voltage 85 mA LDO linear regulator SOURCE D6 LED red Consumer GND D5 R22 4k BAT54KFILM C5 2 100n 25V 1 9 ST715PU33R U2 1 IN OUT 8 2 3 4 NC1 NC2 GND NC3 NC4 FB 7 6 5 Exp Pad GND 2 C6 1 470n 5V NRST D7 LED blue Provider GND GND 3.3V JP1 1 2 3 4 TSW-102-07-F-D R23 1k D8 LED green 3. 3 V GND Vsense Vbus Max P Max 22 V 100 W 17 V 45 W 13 V 36 W 10 V 27 W 6 V 15 W R0 0 SH2 SH3 SH4 SH5 R13 560 R14 732 R15 976 R16 1.3k R17 2.4k GND UM2891 Schematic diagrams page 19/27 UM2891 Bill of materials 5 Bill of materials Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Q.ty 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 1 Table 3. X-NUCLEO-DRP1M1 bill of materials Ref. U1 U3 D1 Q1, Q2 U2 D4, D5 CN1 CN2, CN3 CN4 JP1 CN5 CN6, CN9 CN8 CN7,CN10 D6 D7 D8 C1 C2 C3 C5 Part/Value Description Manufacturer Order code TCPP03-M20, QFN20 4.0x4.0 Type-CTM Port Protection DRP ST TCPP03-M20 ECMF02-2AMX6, DFN6 1.7x1.5 Common mode filter with ESD protection ST ECMF02-2AMX6 ESDA25P35-1U1 M, DFN 1.6x1.0, TVS 25 V 35 A ST 25 V ESDA25P35-1U1M STL40DN3LLH5, PowerFLAT 5.0x6.0 double island, 30 V Dual N-MOS 30 V 40 A ST STL40DN3LLH5 ST715PU33R, DFN8 3.0x3.0, 24 V LDO 24 V 4 V to 3.3 V - 2 W ST ST715PU33R BAT54KFILM, SOD523, 40 V Small signal Schottky diodes ST 300 mA 40 V BAT54KFILM USB_TypeC_Rec Type-CTM eptacle connector Wurth Electronics Inc. 632723300011 2.54 2 pos. screw connector Through-Hole 2x1 2.54 mm pitch screw connector Phoenix Contact 1725656 2.54 2x4 jumper, 2x4 2.54 mm 2.54mm 2x4 male connector Wurth Electronics Inc. 61300821121 2.54 2x2 jumper, 2x2 2.54 mm 2.54 2x4 male connector Wurth Electronics Inc. 61300421121 Arduino UNO 10 Arduino pins, 2.54 10 connector Wurth Electronics Inc. 61301011821 Arduino UNO 8 pins, 2.54 8 Arduino connectors Wurth Electronics Inc. 61300811821 Arduino UNO 6 pins, 2.54 6 Arduino connector Wurth Electronics Inc. 61300611821 Strip 19x2p 2.54 Morpho connectors SAMTEC ESQ-119-24-T-D SMD 0603 Red LED Wurth Electronics Inc. 150060SS75020 SMD 0603 Blue LED Wurth Electronics Inc. 150060BS75000 SMD 0603 Green LED Wurth Electronics Inc. 150060GS75020 330pF, 0402, 50 V, ±10% MLCC 0402 X7R 50VDC Wurth Electronics Inc. 885012205058 100nF, 0402, 50 V, ±20% MLCC 0402 X7R 50VDC TDK C1005X7R1H104M05 0BB 100nF, 0402, 25 V, ±10% MLCC 0402 X7R 25VDC Wurth Electronics Inc. 885012205085 UM2891 - Rev 1 page 20/27 UM2891 Bill of materials Item 21 22 23 24 25 26 27 28 29 30 31 32 34 33 34 Q.ty 1 1 3 3 1 3 1 1 1 1 1 2 1 8 1 Ref. C6 R5 R1, R3, R8 R2, R4, R9 R6 R11, R12, R23, R28 R13 R14 R15 R16 R17 R21, R22 R10 R0, R19, R20, R24, R25, R26, R27, R30 R31 C13 Part/Value Description Manufacturer Order code 5470nF, 0402, 5 V, ±1% MLCC 0402 X5C 6VDC Wurth Electronics Inc. 885012105004 0.007, 1206, ±1% Resistor Panasonic ERJMP2MF7M0U 200 k, 0402, 1/16 W, ±1% Resistors Any Any 40.2 k, 0402, 1/16 W, ±% Resistors Any Any 10 k, 0402, 1/16 W, ±1% Resistor Any Any 1 K, 0402, 1/16 W, ±1% Resistors Any Any 560, 0402, 1/16 W, ±1% Resistor Any Any 732, 0402, 1/16 W, ±1% Resistor Any Any 976, 0402, 1/16 W, ±1% Resistor Any Any 1.3k, 0402, 1/16 W, ±1% Resistor Any Any 2.4 k, 0402, 1/16 W, ±1% Resistor Any Any 3.9 k, 0402, 1/16 W, ±1% Resistors Any Any 47 k, 0402, 1/16 W, ±1% Resistor Any Any 0402 Resistors Any Any 2.2 µF, 0603 MLCC 0603 X5R 50VDV Any Any UM2891 - Rev 1 page 21/27 Revision history Date 28-Jun-2021 UM2891 Table 4. Document revision history Revision 1 Initial release. Changes UM2891 - Rev 1 page 22/27 UM2891 Contents Contents 1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Hardware architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Type-CTM connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 USB 2.0 data path and configuration settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 ST morpho and Arduino V3 connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Voltage/current analog sense connection to STM32 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.8 Consumer and provider path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.9 VBUS and CC lines over-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.10 VBUS and CC lines overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.11 LDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.12 TCPP03-M20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 STM32 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3 Demo application setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3.1 STM32G474RE application example overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Programming/debugging example for STM32G474RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Hardware configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Software programming/monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Applicative use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 STM33G474RE system validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 Hardware configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Software configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 Applicative use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 5 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 UM2891 - Rev 1 page 23/27 UM2891 Contents List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 UM2891 - Rev 1 page 24/27 UM2891 List of tables List of tables Table 1. Table 2. Table 3. Table 4. VBUS currents according to shunt resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 X-NUCLEO-DRP1M1 - STM32 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 X-NUCLEO-DRP1M1 bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 UM2891 - Rev 1 page 25/27 UM2891 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. X-NUCLEO-DRP1M1 expansion board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 X-NUCLEO-DRP1M1 board on top of STM32 Nucleo development board block diagram (full lines identify TypeCTM connector connections/dotted lines identify internal connections) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 X-NUCLEO-DRP1M1 main functional blocks (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 X-NUCLEO-DRP1M1 main functional blocks (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Type-CTM receptacle (CN1) and ESDA25P35-1U1M TVS diode (D1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 USB2.0 data lines protection ECMF02-2AMX6 (U3) and resistor setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ST morpho and Arduino V3 connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VBUS voltage sense for STM32 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Consumer and provider path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VBUS OVP setting resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 LDO configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 TCPP03-M20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power path of X-NUCLE-DRP1M1 stacked on top NUCLEO-G474RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 X-NUCLEO-DRP1M1 schematic diagram (1 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 X-NUCLEO-DRP1M1 schematic diagram (2 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 X-NUCLEO-DRP1M1 schematic diagram (3 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 UM2891 - Rev 1 page 26/27 UM2891 IMPORTANT NOTICE PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics All rights reserved UM2891 - Rev 1 page 27/27C2 v4.2.0220 build 670 - c2 rendition config : Techlit Active Antenna House PDF Output Library 7.0.1600; modified using iText 2.1.7 by 1T3XT