Getting started with the X-NUCLEO-DRP1M1 USB Type-C™ Power Delivery dual role port expansion board based on TCPP03-M20 for STM32 Nucleo - User manual Getting started with the X-NUCLEO-DRP1M1 USB Type-C™ Power Delivery dual role port expansion board based on TCPP03-M20 for STM32 Nucleo

The X-NUCLEO-DRP1M1 expansion board allows evaluating the features of TCPP03-M20 and the USB Type-C™ required features and protections for VBUS and CC lines suitable for DRP (Dual Role Port) applications.

STMICROELECTRONICS

Getting started with the X-NUCLEO-DRP1M1 USB Type-C ...

User manual. UM2891 - Rev 1 - June 2021. For further information contact your local STMicroelectronics sales office. www.st.com ...

Getting started with the X-NUCLEO-DRP1M1 USB Type-C …

User manual UM2891 - Rev 1 - June 2021 For further information contact your local STMicroelectronics sales office. www.st.com. X-NUCLEO-DRP1M1. TCPP03-M20. X-NUCLEO-DRP1M1. ST715PU33R . STM32 Nucleo. X-NUCLEO-DRP1M1. X-CUBE-TCPP. NUCLEO …


File Info : application/pdf, 27 Pages, 7.63MB

PDF preview unavailable. Download the PDF instead.

um2891-getting-started-with-the-xnucleodrp1m1-usb-typec-power-delivery-stmicroelectronics
UM2891
User manual
Getting started with the X-NUCLEO-DRP1M1 USB Type-CTM Power Delivery dual role port expansion board based on TCPP03-M20 for STM32 Nucleo
Introduction
The X-NUCLEO-DRP1M1 expansion board allows evaluating the features of TCPP03-M20 and the USB Type-CTM features and protections required for VBUS and CC lines suitable for dual role power (DRP) applications. The expansion board can be stacked on top of any STM32 Nucleo-64 with Power Delivery (UCPD) peripheral embedded in their microcontrollers. The X-NUCLEO-DRP1M1 effectively demonstrates the dead battery and Sink operation, thanks to the integrated ST715PU33R LDO linear regulator that supplies the connected STM32 Nucleo development board. It also demonstrates USB Type-CTM Source operation when a compatible external Source is connected to the board. Moreover, the expansion board allows Dual Role Data functionalities for sourcing devices. The X-NUCLEO-DRP1M1 is compliant with the USB Type-CTM and Power Delivery specifications 3.1 standard power range (SPR) and is USB-IF certified as a 100 W DRP solution supporting programmable power supply (PPS). The companion software package (X-CUBE-TCPP) contains the application examples for development boards embedding UCPD-based microcontrollers (NUCLEO-G071RB, NUCLEO-G474RE and NUCLEO-G0B1RE).
Figure 1. X-NUCLEO-DRP1M1 expansion board

UM2891 - Rev 1 - June 2021 For further information contact your local STMicroelectronics sales office.

www.st.com

UM2891
Getting started

1

Getting started

1.1

Overview

The X-NUCLEO-DRP1M1 expansion board features:

· Support for all USB Type-CTM Power Delivery SPR profiles up to 100 W

· Management of Dual Role Data/Power configuration

· USB 2.0 Dual Role Data compliant according to STM32 USB data capability

· 8/20 s surge, overvoltage, overcurrent protection and discharge for VBUS · Short to VBUS protection for CC1 and CC2 configuration channel pins · ESD protection (IEC61000-4-2 level 4 ± 8 kV contact discharge) for CC1, CC2, D+ and D-

· Overvoltage, overcurrent protection and discharge for VCONN · Common mode filter on D+/D- data lines

· Three power modes to optimize current consumption

· Compliant with Programmable Power Supplies (PPS)

· Free comprehensive development firmware library

· Compliant with STM32 Nucleo-64 boards featuring an STM32 with UCPD

The X-NUCLEO-DRP1M1 interfaces three main blocks for USB Type-CTM Power Delivery dual role port (DRP): · Type-CTM connector · the power delivery controller embedded into the STM32 (UCPD) on the STM32 Nucleo development board
and · the power management

It also provides USB 2.0 data line interface connection to the STM32 on the STM32 Nucleo development board. The bill of materials has been optimized without compromising the protection: · VBUS line: overvoltage, overcurrent and surge protections · CC lines: overvoltage, overcurrent and ESD protections · Data lines: ESD protection and EMI filtering

The embedded TCPP03-M20 features comply with the Power Delivery protocol: · CC lines switch matrix for VCONN · VBUS discharge · VCONN discharge

Fault mode report and three optimized power modes are also available.
All these features are managed through I²C communication.
VBUS current analog readout is also possible with STM32 ADC connected to the TCPP03-M20 differential amplifier output.

UM2891 - Rev 1

page 2/27

UM2891
Hardware architecture

Figure 2. X-NUCLEO-DRP1M1 board on top of STM32 Nucleo development board block diagram (full lines identify Type-CTM connector connections/dotted lines identify internal connections)

Provider path Consumer path

STM32

ADC UCPD

N-MOSFET SOURCE N-MOSFET SINK
TCPP03-M20

X-NUCLEO-DRP1M1 board

Power bus

VBUS

USB Type-CTM connector
Configuration channels CC1/CC2 lines

Firmware

I2C USB 2.0

Data lines

D+/D- lines

NUCLEO board

Protections

1.2

Hardware architecture

The X-NUCLEO-DRP1M1 expansion board can be used with any STM32 Nucleo-64 development board embedding the UCPD peripheral (mainly NUCLEO-G071RB, NUCLEO-G474RE and NUCLEO-G0B1RE).

The expansion board must be plugged on the matching pins of the development board CN7 and CN10 ST morpho connectors.

When plugged onto an STM32 Nucleo development board, the expansion board can be supplied in two different ways:

· through the STM32 Nucleo ST-LINK supply using the development board internal LDO

· by the VBUS provided when a Source is plugged into the CN1 USB Type-CTM connector and thanks to the integrated ST715PU33R LDO linear regulator (U2) that supplies the entire system, which supports Dead Battery operation mode and source powered mode.

UM2891 - Rev 1

page 3/27

UM2891
Hardware architecture

Figure 3. X-NUCLEO-DRP1M1 main functional blocks (top view)

1-2. Morpho connectors

3-6. Arduino connectors

7. Type-CTM connector

8. Provider path screw connector plus LED

9. Consumer path screw connector plus LED

10. 3.3 V LED

11. Jumpers for self-powering (LDO out plus NRST)

12. TCPP03-M20 - USB-C DRP protection

13. ECMF02-2AMX6 - common mode filter plus ESD protection

14. ESDA25P35-1U1M - TVS diode

1

2

3 11

5

4
8 10

6 12 14 13

9

7

UM2891 - Rev 1

page 4/27

UM2891
Type-CTM connector

Figure 4. X-NUCLEO-DRP1M1 main functional blocks (bottom view)

1. Morpho connector

2. Morpho connector

3. OVP threshold solder bridges (R0, SH2, SH3, SH4, SH5)

4. ST715PU33R high input voltage LDO linear regulator (U2)

5. STL40DN3LLH5 dual N-channel 30 V, 0.016 Ohm, 11 A STripFET H5 Power MOSFET (Q1 and Q2)

6. Current sense shunt resistor

1

2

3 4

65

1.3

Type-CTM connector

The USB Type-CTM receptacle (CN1) gathers the VBUS path and the main connections, such as CC lines and USB 2.0 data lines (DP, DM), before dispatching data to the main functional blocks.

UM2891 - Rev 1

page 5/27

UM2891
USB 2.0 data path and configuration settings

Figure 5. Type-CTM receptacle (CN1) and ESDA25P35-1U1M TVS diode (D1) VBUS
TP1

TP3 TP4
CC2c C2 330pF 50V GND

TP2 ConUSB31_632723300011_recept
CN1

GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1
GND1

GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1
GND1

B12 B11 B10
B9 B8 B7 B6 B5 B4 B3 B2 B1

GND6 SSRXp1 SSRXn1 VBUS4 SBU2 Dn2 Dp2 CC2 VBUS3 SSTXn2 SSTXp2 GND4

GND3 SSTXp1 SSTXn1 VBUS1
CC1 Dp1 Dn1 SBU1 VBUS2 SSRXn2 SSRXp2 GND5

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

CC1c TP5

C1 330pF 50V
GND

C13 2.2uF 50V

D1 ESDA25P35-1U1M

GND
An ESDA25P35-1U1M TVS diode (D1) has been integrated to protect the VBUS power line and, consequently, the entire system against electrical over-stress (EOS) when a Source/Sink is connected through the USB-C cable. 330 pF C1 and C2 capacitors and 2.2 µF C13 capacitor are required by the USB Power Delivery standard. C13 capacitor also ensures a good system robustness.

1.4

USB 2.0 data path and configuration settings

The X-NUCLEO-DRP1M1 expansion board allows STM32 Nucleo development boards that feature a USB2.0 peripheral to expose the D+/D- lines on the Type-CTM receptacle (CN1).

Most STM32 Nucleo-64 development boards feature this functionality on the ST morpho connector CN10-12 and CN10-14 pins, whereas NUCLEO-L412RB-P, NUCLEO-L433RC-P, NUCLEO-L452RE-P and NUCLEO-L476RG boards map USB2.0 data pins on CN10-33 and CN10-17 pins.

Two couples of resistances has been implemented and connected to the ECMF02-2AMX6 (U3) USB2.0 data lines protection to extend the use of this peripheral to all STM32 Nucleo-64 development boards.

UM2891 - Rev 1

page 6/27

1.5

UM2891
ST morpho and Arduino V3 connectors

Figure 6. USB2.0 data lines protection ECMF02-2AMX6 (U3) and resistor setup

ZDiff 90 ohms

R19 0

SH11

D+ D-

U3 1 D+
ESD
2 D-
ESD
3 GND

ZDiff

90 ohms

6 D+1

D+ecmf

ESD
5 D-1

D-ecmf

R20 0

ESD

4
NC

SH13

ECMF02-2AMX6

DP DP_other
DM CC1_G4

GND
By default, the X-NUCLEO-DRP1M1 mounts R19 and R20 resistors fitted to guarantee USB2.0 compatibility to all the main microcontroller families, but, for the L4 family (NUCLEO-L412RB-P, NUCLEO-L433RC-P, NUCLEOL452RE-P and NUCLEO-L476RG) only, they must be removed and replaced by SH11 and SH13 solder bridges.

ST morpho and Arduino V3 connectors
The figure below shows the X-NUCLEO-DRP1M1 expansion board ST morpho and Arduino UNO V3 connectors, detailing the main connections, functions, and configuration settings.

CN7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ESQ-119-14-T-D

Figure 7. ST morpho and Arduino V3 connectors

3.3V 5 V

R31 0

CN6

1

2

3

4

5

6

7

8

SSQ-108-03-F-S GND

NRST

ADC_Vbusc ADC_Prov ADC_Cons ADC_Isense
CN8 1 2 3 4 5 6 SSQ-106-03-G-S

CC1_G4 CC1

CN5 10 9 8 7 6 5 4 3 2 1
SSQ-110-03-F-S I2C1_SCL I2C1_SDA
R24 0 R25 0

CC1_G0

DP_other FLGN
CN9 8 7 6 5 4 3 2 1
SSQ-108-03-F-S

GND

CN10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ESQ-119-14-T-D

ENABLE DP DM
R26 0 CC2_G0
R27 0 CC2_G4

GND CC2

CC lines are connected to the UCPD connection of the ST morpho connectors (CN7, CN10). Two configurations are possible according to the ST morpho connectors on the STM32 Nucleo development board. To limit pin count on the STM32, unused lines can be disconnected by removing R26/R25 or R24/R27.
TCPP03-M20 (U1) FLGN pin corresponds to an STM32 wake-up pin to optimize power consumption when no Type-CTM cable is connected. TCPP03-M20 OFF/hibernate/low power modes can be used with STM32 sleeping modes. STM32 is then woken up when a voltage is present on VBUS thanks to the FLGN pin.
TCPP03-M20 ENABLE pin is managed by an STM32 GPIO. Consumption is almost null in hibernate mode (only the I2C interface dynamic current consumption occurs when using the I2C bus).

UM2891 - Rev 1

page 7/27

UM2891
I2C bus

1.6

I2C bus

An I2C communication is implemented between the STM32 Nucleo development board master port and the TCPP03-M20 (U1) slave port through SCL and SDA pins.

TCPP03-M20 I2C default address is 0x68. It can be changed to 0x6A by closing SH16 solder bridge and unsoldering R28; level high is then connected to TCPP03-M20 I2C_ADD pin.

I2C pull-up 1 k resistors (R11 and R12) are present on the X-NUCLEO-DRP1M1.

1.7

Voltage/current analog sense connection to STM32 ADC

The X-NUCLEO-DRP1M1 features three voltage senses connected to the STM32 ADC:

· ADC_VBUSc: measures voltage on VBUS; it is mandatory to ensure system operation (as example, for vSafe0V measurement)

· ADC_Prov: for information on the provider path voltage

· ADC_Cons: for information on the consumer path voltage

Voltage dividers (ratio 6) are compatible with 24 V DC voltages.

Figure 8. VBUS voltage sense for STM32 ADC

R8 200k

R9 40.2k

ADC_VBUSc C12 NM

The X-NUCLEO-DRP1M1 implements the analog current sense output of TCPP03-M20 (U1, IANA pin) and connects it to the STM32 ADC (ADC_Isense).
The TCPP03-M20 has an internal differential amplifier (42 V/V) which measures the current flowing though R5 (7 m). As the current measurement is bi-directional, it is functional for both Source and Sink.
Capacitor footprints (C9, C10, C11 and C12) have been added for potential filtering on analog senses.

1.8

Consumer and provider path

Consumer and provider path can be connected to VBUS thanks to two dual STL40DN3LLH5 N-MOSFETs (Q1 and Q2) controlled by TCPP03-M20 gate drivers (U1- GDCs, GDCg, GDPs and GDPg pins).

UM2891 - Rev 1

page 8/27

Note:

UM2891
Consumer and provider path

7D
C7 NM

Figure 9. Consumer and provider path

STL40DN3LLH5

Q1A

Q1B

S1
G 2

3S

D5

G 4
STL40DN3LLH5

R1 200k

R2 40.2k

D9 NM
GND

SINK CN2 1 2
GND 1725656 ADC_Cons

C10 NM

STL40DN3LLH5

Q2A

Q2B

GND

7D

S1
G 2

10 9
11 14 CC1c 15 CC2c 13 18 17

U1 ISENSE VBUSc VSENSE CBIAS CC1c CC2c SCL SDA

exp pad GND GND

GDCs GDCg

8 7

GDPs GDPg

6 5

FLGn VCC / VCONN

19 2

CC1 CC2 IANA ENABLE I2C_ADD TCPP03-M20

3S

D5

G 4
STL40DN3CL8LH5 NM

FLGN
R10 47K
3.3V

R3 200k

D10 NM
GND

R4 40.2k

GND

SOURCE CN3 1 2
GND 1725656 ADC_Prov
C9 NM

21 12

When TCPP03-M20 is OFF and, by default, at turn-on, the consumer path is closed in order to power the system when the battery is fully depleted.
TCPP03-M20 does not allow Q1 and Q2 closed at the same time to avoid any provider and consumer connection.
Voltage presence on the provider and consumer path is indicated by a LED (D7 blue on the provider path and D6 red on the consumer path). These LEDs does not indicate the N-MOSFET state. For example, Source LED D5 can be ON indicating voltage presence on the provider path but Q2 can be OFF without connection of the provider path on VBUS.
You can access the consumer path and provider path thanks to CN2 and CN3 screw connectors. Additional protections (transient or free wheel diode) can be added on D9 and D10 footprints compatible with ESDAP series (from ESDA7P120-1U1M to ESDA25P35-1U1M).
Inrush current is managed by TCPP03-M20 gate driver charge pump output current associated to STL40DN3LLH5 drain to gate MOSFET capacitance (also called Miller capacitance or reverse transfer capacitance). This association avoids any potential parasitic OCP triggering due to inrush current generated by cSnkBulk (between 1 µF and 10 µF) as defined by USB Power Delivery standard.
When another MOSFET reference is used, C7 and C8 external capacitors can be associated to other MOS references to avoid OCP trigger due to inrush current, if drain to gate capacitance is too low. The effective drain to gate capacitance including C7 and C8 must be higher than 20 pF.
When a higher cSnkBulk capacitance is used, Q1 or Q2 must be closed slower and C7 or C8 capacitor must be mounted and selected with 100 pF to every additional 10 µF on cSnkBulk terminal.

UM2891 - Rev 1

page 9/27

1.9 1.10

UM2891
VBUS and CC lines over-current protection

VBUS and CC lines over-current protection
R5 terminal voltage (voltage between TCPP03-M20 and ISENSE) is used for TCPP03-M20 overcurrent protection on VBUS. When this voltage is higher than 0.042 V, OCP turns on and the consumer and provider paths are opened.

Table 1. VBUS currents according to shunt resistor

Max. nominal current 0.5 A 1.5 A 3.0 A 5.0 A

OCP threshold 0.9 A 1.9 A 4.2 A 6.0 A

Shunt resistor R5 47 m 22 m 10 m
7 m (default value)

TCPP03-M20 protects CC1 and CC2 lines against overcurrent (OCP on CC turn-on at 47 mA), in case of overcurrent when VCONN is used. When overcurrent fault is detected: · FLGN falls · Register 2 is updated · Recovery word is mandatory to get back to operational system. Recovery words are:
­ 0x18 written on I2C register 0 to return to normal mode ­ 0x28 written on I2C register 0 to return to low power mode ­ 0x08 written on I2C register 0 to return to hibernate mode
The recovery word erases the error register (register 2) but does not connect consumer or the provider path to VBUS nor VCONN: the corresponding bits must be written to close switch(es) on an additional step.

VBUS and CC lines overvoltage protection
TCPP03-M20 VBUS overvoltage protection (OVP) threshold is set by a resistive bridge connected to the TCPP03M20 (U1) VSENSE pin. When the voltage on VSENSE pin is above 1.16 V, VBUS, OVP turns on, the consumer and provider paths are opened and register 2 is updated.
On the X-NUCLEO-DRP1M1 expansion board, the resistor connected to VBUS (R6) is set to 10 k. OVP threshold can be adjusted thanks to the resistor connected to GND. R13 to R17 resistors can be selected with R0, SH2, SH3, SH4 and SH5.
R0, selected by default, sets the OVP threshold to 22 V. To select another threshold value, R0 must be removed and the solder bridge that corresponds to the selected voltage must be filled.
When a defective power source plugged onto the Type-CTM connector produces a voltage higher than the selected OVP threshold, the TCPP03-M20 OVP mechanism controls the external MOSFET and opens the VBUS line.

UM2891 - Rev 1

page 10/27

1.11

UM2891
LDO

Figure 10. VBUS OVP setting resistors
Vsense

Vbus Max 22 V 17 V 13 V 10 V 6 V

P Max 100 W 45 W 36 W 27 W 15 W

R0 0 SH2 SH3 SH4 SH5

R13 560 R14 732 R15 976 R16 1.3k R17 2.4k

GND
TCPP03-M20 protects CC1 and CC2 lines against overvoltage (OVP on CC turn-on at 5.75 V). When a defective cable is unplugged from the Type-CTM connector with a voltage higher than 5 V can produce a VBUS short to CC lines (adjacent lines) and apply a voltage higher than the one specified by STM32 ARM on CC line (FT IO). The TCPP03-M20 OVP on CC lines protects the STM32 as well.
LDO
ST715PU33R (U2) is a 3.3 V high input voltage LDO. It is supplied by two input voltages: provider path and consumer path. BAT54KFILM diodes (D4 and D5) select the highest available voltage and block the other voltage. To supply the system through LDO output, JP1 must be closed with: · jumper between 1 ­ 2 to connect 3.3 V output voltage to the system 3.3 V · jumper between 3 ­ 4 to force STM32 NRST pin to 3.3 V (otherwise it would be HZ with potential parasitic
reset)
D8 LED signals the 3.3 V presence on X-NUCLEO-DRP1M1.

UM2891 - Rev 1

page 11/27

UM2891
TCPP03-M20

1.12

SINK R21 4k

D4 BAT54KFILM

Figure 11. LDO configuration
High input voltage 85 mA LDO linear regulator

SOURCE

D6 LED red Consumer
GND D5

R22

4k

BAT54KFILM

C5 2 100n 25V 1

9

ST715PU33R U2

1 IN

OUT 8

2 3 4

NC1 NC2 GND

NC3 NC4
FB

7 6 5

Exp Pad GND

2
C6 1 470n 5V

NRST

D7 LED blue Provider

GND

3.3V

JP1

1

2

3

4

TSW-102-07-F-D R23 1k

D8 LED green
3. 3 V

GND

GND

TCPP03-M20
3.3 V is connected to TCPP03-M20 VCC/VCONN pin. It supplies the IC and provides the input voltage for VCONN.
According to the USB-PD standard, VCONN voltage can be between 3.0 and 5.5 V. VCC/VCONN is compatible with this voltage range.
All TCPP03-M20 I/Os connected to the STM32 are 3.3 V and 1.8 V compliant (FLGn, ENABLE, IANA, SDA, SLC), except CC1 and CC2 I/O in which they are in accordance with USB-PD standard voltages. I2C_ADD is also 3.3 V and 1.8 V compliant.
TCPP03-M20 ENABLE pin is connected to the STM32 GPIO but it can also be connected directly to 3.3 V through R29 resistor.
CBIAS pin (C3) is the TCPP03-M20 ESD capacitor. Its value must be 100 nF or higher and 50 V rated to limit voltage de-rating.

Figure 12. TCPP03-M20

Vsense

R6 10k
C3 100n 50V

10 9
11 14 CC1c 15 CC2c 13 18 17

U1 ISENSE VBUSc VSENSE CBIAS CC1c CC2c SCL SDA

GND

21 12

exp pad GND GND

GDCs GDCg

8 7

GDPs GDPg

6 5

FLGn VCC / VCONN

19 2

CC1 CC2

1 3

IANA ENABLE I2C_ADD

4 20 16

TCPP03-M20

FLGN
R10 47K
3.3V

R29

CC1

NM

CC2

I2C_ADD

ENABLE

3.3V

3.3V GND

R11

R12

1K

1K

I2C1_SCL

I2C1_SDA

UM2891 - Rev 1

page 12/27

UM2891
STM32 resources

2

STM32 resources

STM32 resources provided to TCPP03-M20 are 1.8 V and 3.3 V compatible. This allows using 1.8 V STM32 by a slight change on the voltage divider bridge connected to ADC (R2, R4 and R9 resistors decreased to 20 k, obtaining a divider ratio of 11).
Some resources are needed on the STM32 to start a USB Power Delivery dual role port (DRP):
· UCPD peripheral to manage USB Power Delivery protocol
· I2C bus that can be shared with other slaves
· ADC to get the VBUS voltage image
To optimize power consumption on battery powered systems, two additional GPIO can be used:
· when attaching the cable, TCPP03-M20 needs to be switched from hibernate mode (Sink only) or low power mode (Sink to Source toggling) to normal mode. Wake-up GPIO connected to TCPP03-M20 FLGn pin triggers STM32 to activate useful resources, fully enabling TCPP03-M20. If not used, leave FLGn pin unconnected
· TCPP03-M20 ENABLE pin supplies the I2C interface. It consumes current for I2C requests not addressed to TCPP03-M20 (dynamic current consumption). In hibernate mode, this current consumption can be disabled by setting the ENABLE pin to 0. If not used, leave the ENABLE pin connected to 3.3 V or 1.8 V.
Other resources are:
· USB 2.0 peripheral
· ADC to get consumer and provider path voltages as well as current on VBUS images

Table 2. X-NUCLEO-DRP1M1 - STM32 resources

STM32 resource

USB-PD minimal resources

UCPD CC1

X

UCPD CC2

X

I2C SCL

X

I2C SDA

X

GPIO Flgn

ADC Vbusc

X

ADC Provider ADC Consumer

ADC Isense

GPIO ENABLE

USB D+ USB D-

USB-PD low power
resources
X
X

Additional features
X X X X X

X-NUCLEO-DRP1M1 associated connection
USB-PD CC USB-PD CC I2C bus clock I2C bus data STM32 wake up GPIO VBUS voltage info Provider path voltage info Consumer path voltage info Current on VBUS for PPS VDD via GPIO for low power USB 2.0 data line USB 2.0 data line

UM2891 - Rev 1

page 13/27

UM2891
Demo application setup

3

Demo application setup

The X-NUCLEO-DRP1M1 expansion board flexibility allows demonstrating the TCPP03-M20 protection features and capabilities with a wide range of STM32 Nucleo development boards with UCPD peripheral on the STM32 MCU.
The X-CUBE-TCPP companion software package contains dedicated application examples for the STM32 Nucleo featuring USB Type-CTM and Power Delivery management (NUCLEO-G071RB, NUCLEO-G474RE and NUCLEOG0B1RE).

3.1

STM32G474RE application example overview

This application example shows how to start battery-powered DRP applications with TCPP03-M20 and STM32G474RE using X-NUCLEO-DRP1M1 expansion board stacked on a NUCLEO-G474RE development board.

There are two modes:

1. Programming mode:

­ STM32G474RE is powered by ST-LINK

­ STM32G474RE power supply is always present as ST-LINK power line is connected

2. System validation:

­ STM32G474RE is powered by:

 the battery (5 V voltage power supply)

or

 the Type-CTM connector (USB Type-CTM wall charger)

When the battery is empty and no source is attached to the Type-CTM connector, the STM32G474RE is not powered:
 STM32G474RE cannot be programmed as ST-LINK does not supply the system
 STM32CubeMonUCPD is still working when the ST-LINK is connected
These two modes cannot be merged as the STM32 NRST pin is managed by 3.3 V coming from ST-LINK. If ST-LINK is not powered, STM32 NRST pin becomes HZ and might generate parasitic resets.

Figure 13. Power path of X-NUCLE-DRP1M1 stacked on top NUCLEO-G474RE
Power path: · Consumer (yellow dotted lines) · Provider (green dotted lines) · STM32G474RE powered by ST-LINK (light grey line) · STM32G474RE powered by the system (pink line)

UM2891 - Rev 1

page 14/27

3.2
3.2.1 3.2.2 3.2.3
3.3
3.3.1 3.3.2

UM2891
Programming/debugging example for STM32G474RE

Programming/debugging example for STM32G474RE

Hardware configuration Step 1. Add no jumper on the X-NUCLEO-DRP1M1 expansion board.

Step 2.

On the NUCLEO-G474RE, add: ­ 5V_STLINK jumper on JP5 to select 5 V from ST-LINK USB as power source for STM32G474RE ­ 1-2 jumper on JP8 to select 5 V as reference voltage initiator

Step 3. Connect a USB type A to micro-USB cable to the NUCLEO-G474RE development board.

Software programming/monitoring Step 1. Drag and drop G4_DRP1M1_DRP.bin to the NUCLEO-G474RE node (or use an IDE for programming).
Step 2. Monitor with STM32CubeMonUCPD.

Applicative use cases
1. Battery working (5 V source connected on the Source connector) and Sink device connected to the TypeCTM connector:
­ Sink device can be a smartphone, USB key, hardware drive, accessory, etc.
­ Sink device is being supplied and STM32CubeMonUCPD indicates 5 V and the associated current
­ 3.3 V LED on, Source LED on
2. Battery working (5 V source connected on the Source connector) and Source device connected to the Type-CTM connector:
­ Source device (for example, a wall adapter) presents its highest voltage available on the Source indicated by STM32CubeMonUCPD
­ 3.3 V LED on, Source LED on, Sink LED on
3. Battery empty (no source connected to the Source connector) and no Source device is connected to the Type-CTM connector:
­ ST-LINK used to program STM32G474RE powers the MCU continuously
­ 3.3 V LED on, while it should be off
4. Battery empty (no source connected on the Source connector) and a Source device is connected to the Type-CTM connector:
­ Source device (for example, a wall adapter) presents its highest voltage available on the Source indicated by STM32CubeMonUCPD
­ 3.3 V LED on, Source LED off, Sink LED on

STM33G474RE system validation

Hardware configuration Step 1. On the X-NUCLEO-DRP1M1, add two jumpers on JP1:
LDO OUT 3.3 V and NRS 3.3 V to power STM32G474RE with 3.3 V LDO output.

Step 2.

On the NUCLEO-G474RE add: ­ no jumper on JP5 ­ 2-3 jumper to JP8 to select 3.3 V as reference voltage initiator

Step 3. Connect a USB type A to micro-USB cable to the NUCLEO-G474RE development board.

Software configuration Step 1. Monitor with STM32CubeMonUCPD.

UM2891 - Rev 1

page 15/27

3.3.3

UM2891
STM33G474RE system validation
Applicative use cases 1. Battery working (5 V source connected on the Source connector) and Sink device connected to the Type-
CTM connector: ­ Sink device can be a smartphone, USB key, hardware drive, accessory, etc. ­ Sink device is being supplied and STM32CubeMonUCPD indicates 5 V and the associated current ­ 3.3 V LED on, Source LED on 2. Battery working (5 V source connected on the Source connector) and Source device connected to the Type-CTM connector: ­ Source device (for example, a wall adapter) presents its highest voltage available on the Source
indicated by STM32CubeMonUCPD ­ 3.3 V LED on, Source LED on, Sink LED on 3. Battery empty (no source connected to the Source connector) and no Source device is connected to the Type-CTM connector: ­ all LEDs are off 4. Battery empty (no source connected on the Source connector) and a Source device is connected to the Type-CTM connector: ­ Source device (for example, a wall adapter) presents its highest voltage available on the Source
indicated by STM32CubeMonUCPD ­ 3.3 V LED on, Sink LED on

UM2891 - Rev 1

page 16/27

UM2891 - Rev 1

4

Schematic diagrams

VBUS TP1
TP3 TP4
CC2c C2 330pF 50V GND
ZDiff 90 ohms

Figure 14. X-NUCLEO-DRP1M1 schematic diagram (1 of 3)

TP2 ConUSB31_632723300011_recept
CN1

GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1
GND1

GND2 SHELL6 SHELL5 SHELL4 SHELL3 SHELL2 SHELL1
GND1

B12 B11 B10
B9 B8 B7 B6 B5 B4 B3 B2 B1

GND6 SSRXp1 SSRXn1 VBUS4 SBU2 Dn2 Dp2 CC2 VBUS3 SSTXn2 SSTXp2 GND4

GND3 SSTXp1 SSTXn1 VBUS1
CC1 Dp1 Dn1 SBU1 VBUS2 SSRXn2 SSRXp2 GND5

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

CC1c TP5

C1 330pF 50V
GND

C13 2.2uF 50V

D1 ESDA25P35-1U1M

R8 200k R9 40.2k

GND

R19 0

SH11

D+ D-

U3 1 D+
ESD
2 D-
ESD
3 GND

ZDiff

90 ohms

6 D+1

D+ecmf

ESD
5 D-1

D-ecmf

R20 0

ESD

4
NC

SH13

ECMF02-2AMX6

GND

DP DP_other
DM CC1_G4

R5 0.007

7D
C7 NM

STL40DN3LLH5

Q1A

Q1B

S1
G 2

3S

D5

G 4
STL40DN3LLH5

R1 200k
R2 40.2k

D9 NM
GND

SINK CN2 1 2
GND 1725656 ADC_Cons

C10 NM

ADC_VBUSc

Isense

C12 NM
R6 10k Vsense
C3 100n 50V

10 9
11 14 CC1c 15 CC2c 13 18 17

U1 ISENSE VBUSc VSENSE CBIAS CC1c CC2c SCL SDA

GND

21 12

exp pad GND GND

GDCs GDCg

8 7

STL40DN3LLH5

Q2A

Q2B

GND

7D

S1 3S

D5

G

G

D10

2

4

R3

NM

STL40DN3CL8LH5 200k

GND

NM

GDPs GDPg

6 5

FLGn VCC / VCONN

19 2

CC1 CC2

1 3

IANA ENABLE I2C_ADD

4 20 16

TCPP03-M20

FLGN
R10 47K
3.3V

R29

CC1

NM

CC2

R4 40.2k GND
R30

I2C_ADD

ENABLE

0

GND C9 NM
C11 NM

SOURCE CN3 1 2 1725656 ADC_Prov
ADC_Isense

3.3V
R11 1K

3.3V GND R12 1K

GND

I2C1_SCL

I2C1_SDA

UM2891
Schematic diagrams

page 17/27

UM2891 - Rev 1

3.3V R31
0

CN7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ESQ-119-14-T-D

5 V

Figure 15. X-NUCLEO-DRP1M1 schematic diagram (2 of 3)

5 V

GND

CN6 1 2 3 4 5 6 7 8 SSQ-108-03-F-S

NRST

ADC_Vbusc ADC_Prov ADC_Cons ADC_Isense
CN8 1 2 3 4 5 6 SSQ-106-03-G-S

CC1_G4 CC1

CN5 10 9 8 7 6 5 4 3 2 1
SSQ-110-03-F-S I2C1_SCL I2C1_SDA
R24 0 R25 0

CC1_G0

DP_other FLGN
CN9 8 7 6 5 4 3 2 1
SSQ-108-03-F-S

GND

CN10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ESQ-119-14-T-D

SH17

3.3V

ENABLE DP DM
R26 0 CC2_G0
R27 0 CC2_G4

GND CC2

SOURCE I2C1_SCL

3.3V

CN4

1

2

3

4

5

6

7

8

I2C1_SDA

M20-9980446

GND

GND

SH16
I2C_ADD R28 1k
GND

UM2891
Schematic diagrams

page 18/27

UM2891 - Rev 1

SINK R21 4k

Figure 16. X-NUCLEO-DRP1M1 schematic diagram (3 of 3)
D4

BAT54KFILM

High input voltage 85 mA LDO linear regulator

SOURCE

D6 LED red Consumer
GND D5

R22

4k

BAT54KFILM

C5 2 100n 25V 1

9

ST715PU33R U2

1 IN

OUT 8

2 3 4

NC1 NC2 GND

NC3 NC4
FB

7 6 5

Exp Pad GND

2
C6 1 470n 5V

NRST

D7 LED blue Provider

GND

GND

3.3V

JP1

1

2

3

4

TSW-102-07-F-D R23 1k

D8 LED green
3. 3 V

GND

Vsense

Vbus Max P Max

22 V

100 W

17 V

45 W

13 V

36 W

10 V

27 W

6 V

15 W

R0 0 SH2 SH3 SH4 SH5

R13 560 R14 732 R15 976 R16 1.3k R17 2.4k

GND

UM2891
Schematic diagrams

page 19/27

UM2891
Bill of materials

5

Bill of materials

Item 1 2
3
4
5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q.ty 1 1
1
2
1
2 1 2 1 1 1 2 1 2 1 1 1 2 1 1

Table 3. X-NUCLEO-DRP1M1 bill of materials

Ref. U1 U3
D1
Q1, Q2
U2
D4, D5 CN1 CN2, CN3 CN4 JP1 CN5 CN6, CN9 CN8 CN7,CN10 D6 D7 D8 C1 C2 C3 C5

Part/Value

Description Manufacturer

Order code

TCPP03-M20, QFN20 4.0x4.0

Type-CTM Port Protection DRP

ST

TCPP03-M20

ECMF02-2AMX6, DFN6 1.7x1.5

Common mode filter with ESD protection

ST

ECMF02-2AMX6

ESDA25P35-1U1 M, DFN 1.6x1.0, TVS 25 V 35 A ST 25 V

ESDA25P35-1U1M

STL40DN3LLH5, PowerFLAT 5.0x6.0 double island, 30 V

Dual N-MOS 30 V 40 A

ST

STL40DN3LLH5

ST715PU33R, DFN8 3.0x3.0, 24 V

LDO 24 V ­ 4 V to 3.3 V - 2 W

ST

ST715PU33R

BAT54KFILM, SOD523, 40 V

Small signal Schottky diodes ST 300 mA 40 V

BAT54KFILM

USB_TypeC_Rec Type-CTM

eptacle

connector

Wurth Electronics Inc.

632723300011

2.54 2 pos. screw connector

Through-Hole 2x1 2.54 mm pitch screw connector

Phoenix Contact

1725656

2.54 2x4 jumper, 2x4 2.54 mm

2.54mm 2x4

male connector

Wurth Electronics Inc.

61300821121

2.54 2x2 jumper, 2x2 2.54 mm

2.54 2x4

male connector

Wurth Electronics Inc.

61300421121

Arduino UNO 10 Arduino

pins, 2.54 10

connector

Wurth Electronics Inc.

61301011821

Arduino UNO 8 pins, 2.54 8

Arduino connectors

Wurth Electronics Inc.

61300811821

Arduino UNO 6 pins, 2.54 6

Arduino connector

Wurth Electronics Inc.

61300611821

Strip 19x2p 2.54

Morpho connectors

SAMTEC

ESQ-119-24-T-D

SMD 0603

Red LED

Wurth Electronics Inc.

150060SS75020

SMD 0603

Blue LED

Wurth Electronics Inc.

150060BS75000

SMD 0603

Green LED

Wurth Electronics Inc.

150060GS75020

330pF, 0402, 50 V, ±10%

MLCC 0402 X7R 50VDC

Wurth Electronics Inc.

885012205058

100nF, 0402, 50 V, ±20%

MLCC 0402 X7R 50VDC

TDK

C1005X7R1H104M05 0BB

100nF, 0402, 25 V, ±10%

MLCC 0402 X7R 25VDC

Wurth Electronics Inc.

885012205085

UM2891 - Rev 1

page 20/27

UM2891
Bill of materials

Item 21 22 23 24 25 26 27 28 29 30 31 32 34
33
34

Q.ty 1 1 3 3 1 3 1 1 1 1 1 2 1
8
1

Ref. C6 R5 R1, R3, R8
R2, R4, R9
R6 R11, R12, R23, R28 R13
R14
R15
R16
R17
R21, R22
R10 R0, R19, R20, R24, R25, R26, R27, R30 R31 C13

Part/Value

Description Manufacturer

Order code

5470nF, 0402, 5 V, ±1%

MLCC 0402 X5C 6VDC

Wurth Electronics Inc.

885012105004

0.007, 1206, ±1% Resistor

Panasonic

ERJMP2MF7M0U

200 k, 0402, 1/16 W, ±1%

Resistors

Any

Any

40.2 k, 0402, 1/16 W, ±%

Resistors

Any

Any

10 k, 0402, 1/16 W, ±1%

Resistor

Any

Any

1 K, 0402, 1/16 W, ±1%

Resistors

Any

Any

560, 0402, 1/16 W, ±1%

Resistor

Any

Any

732, 0402, 1/16 W, ±1%

Resistor

Any

Any

976, 0402, 1/16 W, ±1%

Resistor

Any

Any

1.3k, 0402, 1/16 W, ±1%

Resistor

Any

Any

2.4 k, 0402, 1/16 W, ±1%

Resistor

Any

Any

3.9 k, 0402, 1/16 W, ±1%

Resistors

Any

Any

47 k, 0402, 1/16 W, ±1%

Resistor

Any

Any

0402

Resistors

Any

Any

2.2 µF, 0603

MLCC 0603 X5R 50VDV

Any

Any

UM2891 - Rev 1

page 21/27

Revision history
Date 28-Jun-2021

UM2891

Table 4. Document revision history

Revision 1

Initial release.

Changes

UM2891 - Rev 1

page 22/27

UM2891
Contents
Contents
1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Hardware architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Type-CTM connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 USB 2.0 data path and configuration settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 ST morpho and Arduino V3 connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Voltage/current analog sense connection to STM32 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.8 Consumer and provider path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.9 VBUS and CC lines over-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.10 VBUS and CC lines overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.11 LDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.12 TCPP03-M20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 STM32 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3 Demo application setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.1 STM32G474RE application example overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Programming/debugging example for STM32G474RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Hardware configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Software programming/monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Applicative use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 STM33G474RE system validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 Hardware configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Software configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 Applicative use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 5 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

UM2891 - Rev 1

page 23/27

UM2891
Contents
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

UM2891 - Rev 1

page 24/27

UM2891
List of tables

List of tables

Table 1.
Table 2. Table 3. Table 4.

VBUS currents according to shunt resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 X-NUCLEO-DRP1M1 - STM32 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 X-NUCLEO-DRP1M1 bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

UM2891 - Rev 1

page 25/27

UM2891
List of figures

List of figures

Figure 1. Figure 2.
Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16.

X-NUCLEO-DRP1M1 expansion board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 X-NUCLEO-DRP1M1 board on top of STM32 Nucleo development board block diagram (full lines identify TypeCTM connector connections/dotted lines identify internal connections) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 X-NUCLEO-DRP1M1 main functional blocks (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 X-NUCLEO-DRP1M1 main functional blocks (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Type-CTM receptacle (CN1) and ESDA25P35-1U1M TVS diode (D1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 USB2.0 data lines protection ECMF02-2AMX6 (U3) and resistor setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ST morpho and Arduino V3 connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VBUS voltage sense for STM32 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Consumer and provider path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VBUS OVP setting resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 LDO configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 TCPP03-M20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power path of X-NUCLE-DRP1M1 stacked on top NUCLEO-G474RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 X-NUCLEO-DRP1M1 schematic diagram (1 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 X-NUCLEO-DRP1M1 schematic diagram (2 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 X-NUCLEO-DRP1M1 schematic diagram (3 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

UM2891 - Rev 1

page 26/27

UM2891
IMPORTANT NOTICE ­ PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics ­ All rights reserved

UM2891 - Rev 1

page 27/27


C2 v4.2.0220 build 670 - c2 rendition config : Techlit Active Antenna House PDF Output Library 7.0.1600; modified using iText 2.1.7 by 1T3XT