
 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 1

Introduction (Ask a Question)

Microchip has adopted IEEE® 1735-2014 and supports an encrypted IP design flow for the SmartFusion® 2,

IGLOO® 2, RTG4™, PolarFire®, and PolarFire SoC silicon families.

• See Securing Your IP Core section to secure your IP core.

• See Running Libero SoC with Encrypted IP section for information on running Libero® SoC with encrypted IP.

Together with its OEM tools, Synplify Pro® from Synopsys® (Synplify Pro ME I2013.09MSP1 or later), ModelSim®
(ModelSim 10.2c or later) from Siemens (both of which support IEEE 1735-2014), and Libero SoC (v11.3 or later)
enable a seamless design flow for designers targeting SmartFusion 2, IGLOO 2, RTG4, PolarFire, and PolarFire
SoC when they use encrypted IP cores in their design.

The use of IP cores not only shortens the design cycle time but also provides proven and reliable design
components for reuse in multiple applications. Using an IP core in the EDA design flow involves two conflicting
considerations that must be resolved: IP security and IP interoperability across different EDA tools.

Libero SoC Secure IP Design Flow Requirements (Ask a Question)

The following table lists the software and hardware requirements for Designing with Secure IPs in Libero SoC.

Table 1. Software and Hardware Design Requirements
Design Requirements Description

Hardware Requirements

PolarFire®, PolarFire SoC, RTG4™, and

SmartFusion® 2/IGLOO 2® Family devices

This feature is supported for the PolarFire, PolarFire SoC, RTG4, and SmartFusion 2/
IGLOO 2 family devices.

Host PC or Laptop Windows® 64-bit Operating System (OS)/Linux® 64-bit OS.

Software Requirements

Libero® System-on-Chip (SoC) v11.3 or later.

Synplify version Synplify Pro® ME I2013.09MSP1 or later.

ModelSim® version ModelSim 10.2c or later.

Encryption Script Requirements

OpenSSL Most Linux and Cygwin have OpenSSL pre-installed. Provide OpenSSL installation
location in the “PATH” environment variable of the system.

Perl Any version of Perl with the following packages installed: FindBin, Math, Getopt, File,
and MIME.

Cygwin (for Windows OS) For executing Perl Script on Windows OS.

Public Keys for encryption See section Public Key from EDA Vendors.

 Secure IP Flow for IP Vendors and Libero SoC User Guide
 Libero SoC v2025.1

https://manuals.plus/m/343d521873571bc3357a4dcdf7af88a8ac4d5fb046fd4210294497ab4fbbf5f5

 Libero SoC v2025.1

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 2

IP Security and IP Interoperability Across Design Tools (Ask a Question)

The use of IP cores not only shortens the design cycle time but also provides proven and reliable design
components for reuse in multiple applications. Using an IP core in the EDA design flow involves two conflicting
considerations that must be resolved: IP security and IP interoperability across different EDA tools.

 Libero SoC v2025.1

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 3

Table of Contents
Introduction...1

Libero SoC Secure IP Design Flow Requirements... 1
IP Security and IP Interoperability Across Design Tools... 2

1. Encryption and Decryption.. 4

1.1. IEEE 1735-2014 Standards for IP and EDA Vendors...4
1.2. Encryption Algorithms...5
1.3. Encryption Envelopes.. 6
1.4. Decryption Envelopes..7

2. Securing Your IP Core... 9

2.1. Encryption of IP Core with IEEE 1735-2014 Scheme..9
2.2. Public Key from EDA Vendors.. 10
2.3. Adding an Encryption Envelope to Your RTL.. 10
2.4. encryptP1735.pl Script.. 11
2.5. Packaging and Bundling the Encrypted IP and the Data Key... 15

3. Running Libero SoC with Encrypted IP... 16

3.1. To run Libero SoC with Encrypted IP...16
3.2. Encrypted IP Design Flow Must Use Verilog Netlist from Synthesis..16
3.3. Import Encrypted IP Core as HDL.. 17
3.4. Run Synthesis... 19
3.5. Run ModelSim Simulation.. 20
3.6. Libero SoC and Encrypted IPs.. 21

4. Frequently Asked Questions..26

5. Revision History...27

Microchip FPGA Support..28

Microchip Information... 28

Trademarks.. 28
Legal Notice..28
Microchip Devices Code Protection Feature..29

 Libero SoC v2025.1
Encryption and Decryption

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 4

1. Encryption and Decryption (Ask a Question)

The following sections provide information about encryption and decryption to consider when
designing an encrypted IP core.

1.1. IEEE 1735-2014 Standards for IP and EDA Vendors (Ask a Question)

IEEE 1735-2014 is an encryption scheme proposal adopted by most IP and EDA vendors to ensure
the interoperability of IP cores among the IP vendors and EDA tools. The objective of IEEE 1735-2014
is to serve the IP vendors and the EDA community in the following ways:

• For the IP vendor: Protect the security of the IP core in the design flow across different EDA tools.
• For the IP core users and EDA tool vendors: Ensure the interoperability of the IP core across

different EDA tools.

 Libero SoC v2025.1
Encryption and Decryption

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 5

1.2. Encryption Algorithms (Ask a Question)

Libero SoC supports the following encryption algorithms:

• des-cbc
• 3des-cbc
• aes128-cbc
• aes256-cbc

There are two major classes of encryption methodologies: Symmetric and Asymmetric.

1.2.1. Symmetric Encryption (Ask a Question)

This encryption scheme uses a special string as a key to encrypt data. The same key is used to
decrypt data. See Figure 1-1.

Examples of this type of encryption algorithm include:

• Data Encryption Standard (DES), such as des-cbc.
– Triple Data Encryption Algorithm (TDES), which uses the DES algorithm three times, such as

3des-cbc.
• Advanced Encryption Standard (AES), such as aes128-cbc and aes256-cbc.

1.2.2. Asymmetric Encryption (Ask a Question)

This encryption scheme uses two different keys: one for encryption and another for decryption. The
end user generates two keys, one public and another private. The end user distributes the public
key to whoever needs it for encryption and keeps the private key to use for decryption (see Figure
1-2).

Common examples of asymmetric encryption algorithms are:

• Diffie-Hellman (DH)
• Rivest–Shamir–Adleman (RSA)

1.2.2.1. Two Levels of Encryption (Ask a Question)

There are two levels of encryption when producing an encrypted IP core. Figure 1-1 shows the first
level of encryption, where the IP core vendor uses a session (random) key to encrypt the IP content.
Figure 1-2 shows the second level of encryption, where the IP core vendor uses the public keys from
EDA vendors to encrypt the session key.

A public key must be provided for each EDA tool to the IP core vendor.

For Libero SoC customers who use third‑party IPs in their design, the EDA vendors are:

• Synopsys for Synplify Pro
• Siemens for ModelSim
• Microchip for Libero SoC

The result of the first level of encryption is the encrypted data block. The Random session key
required for symmetric encryption of the data block is generated by the encryptP1735.pl script.

 Libero SoC v2025.1
Encryption and Decryption

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 6

Figure 1-1. Data Encryption of Source Data IP

The result of the second level of encryption is the encrypted session key.

Figure 1-2. Session Key Encryption

1.3. Encryption Envelopes (Ask a Question)

The Encryption envelope is the preamble to the IP in the HDL file. The IP core vendor must prepare
an Encryption envelope for all EDA tools, which are used with the IP. The encryption envelope
consists of pragma keywords (see section Pragma Keywords) that provide the following information:

• Encryption version
• Encoding type
• Encryption agent
• Key owner
• Key name
• Key method

Following is an example of an Encryption envelope.

module secret (a, b, sum, clk, rstn); input[7:0]a, b;
input clk, rstn; output[8:0]sum; reg[8:0]sum;
`pragma protect version=1
`pragma protect encoding=(enctype="base64")
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect encrypt_agent="encryptP1735.pl", encrypt_agent_info="Synplify
encryption scripts"

 Libero SoC v2025.1
Encryption and Decryption

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 7

`pragma protect
key_keyowner="Synplicity",key_keyname="SYNP05_001",key_method="rsa",key_block
`pragma protect key_keyowner="Mentor Graphics Corporation",key_keyname="MGC-
VERIF-SIM- RSA-1",key_method="rsa",key_block
`pragma protect key_keyowner="Microsemi Corporation",key_keyname="MSC-IP-KEY-
RSA",key_method="rsa",key_block
`pragma protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip",
data_method="aes128-cbc"
`pragma protect begin
always @(posedge clk or negedge rstn) begin if (!rstn)
sum <= 9'b0; else
sum <= a + b; end
`pragma protect end endmodule
Note: The encryption envelope identifies three EDA tool vendors/key owners.

1.4. Decryption Envelopes (Ask a Question)

The Decryption envelope is the preamble to the encrypted IP. The Decryption envelope consists of
pragma keywords (see section Pragma Keywords) that provide the following information:

• Encryption version
• Encoding type
• Encryption agent
• Key owner
• Key name
• Key method

Following is a Verilog example of a Decryption envelope.

module secret (a, b, sum, clk, rstn); input[7:0]a, b;
input clk, rstn; output[8:0]sum; reg[8:0]sum;
`pragma protect begin_protected
`pragma protect version=1
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect encrypt_agent="encryptP1735.pl", encrypt_agent_info="Synplify
encryption scripts"
`pragma protect key_keyowner="Synplicity", key_keyname="SYNP05_001",
key_method="rsa"
`pragma protect encoding=(enctype="base64", line_length=76, bytes=256)
`pragma protect key_block
NfR8W3gmxwh3Bj4QxA+Qi+BhD1CTnQv7KO4UGOOS27KzF4jtejZxAewyFaShFSqRn9tRNx+u7Ivw
1m2BydGyW7MAQx2ePgbrKQbRLaN8XF/iiUFUX0QXnWDZrxtgcVHULOsPXpwd25wNyeWQkTekAsln
ubKiFDfNySxaP5W3SboZE0pMLqH+mpZlcvKljlE30uOAQQLjECEBGj1KxMZQ2hhUKLrXz34+9p68
tVzbM/u1TbsXvdPcN23UItAxNPSH5ND75rAviq7ACIVawH87/m2RshSDSVcmz7ndMpSJRQOFe2pd
usuHdCFJm1YaEaCZYfqReV7RjCzbV48d3LPtoA==
`pragma protect key_keyowner="Mentor Graphics Corporation", key_keyname="MGC-
VERIF-SIM- RSA-1", key_method="rsa"

 Libero SoC v2025.1
Encryption and Decryption

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 8

`pragma protect encoding=(enctype="base64", line_length=76, bytes=128)
`pragma protect key_block boN+vsIsOJ/
Ihy7BF0MM2ZdaeYl2zoepUP9xdDVnlME3q5lgqZtPjMtPqTQDvwbree7NngmOUGVm WbggEEW/
UWYWajwld641fsggKfu7kcFcMhLLBu0WHUVFvQjRhdiqcBWbEKM39O0SCYTJnhQFPs0B
RZgdCwOPvZ4IEAUqx4U=
`pragma protect key_keyowner="Microsemi Corporation", key_keyname="MSC-IP-
KEY-RSA", key_method="rsa"
`pragma protect encoding=(enctype="base64", line_length=76, bytes=960)
`pragma protect key_block
MIID4jANBgkqhkiG9w0BAQEFAAOCA88AMIIDygKCA8EAxvOR7+3o0rtdoggobQ7e
3LQ5Bhjfcudafujkinm+213ui89cvxjkaYKRDadsklgfklDGTFyiYUIKasKv3MrW
xbaIlfktti2lBBdU/SDV83mLYKzAqe20/SaZR5FAZH8cyuUPxYOviHQ/fpqNwUao
U/3jp4nvc76K/FO14W56I/hXb23/0s8zzyny3gHfqcEu8Dn8OpNWDY4fZ4g9vQFB
hmv71HjJl0NRvvJHrXYmCEwlWPQjzru+8lj4JhBx/9ChKskTpVB6vkV//IX5Od1O
Zvaxh5x+xPCSKEgbmjv0uxaXtvnBJQa4xdMM7eHglGDSbZ2A13cg1qtxrCn05f6N
Bc4EiyOT2iofDDtqoxdLZPb4L6UDIR+EY1o+1l1mDBrBvqn6hQtpUoi+bgWe+xtS
ry30qmJkjjkejkJKJk+258uUI622kjlCCVGijj2145x9vnXXINiuOIuIj1K/a2dj
kP+2A3Jvt53z8gv9Jij9xC90725pCl5Cziw4XsBsg+jJJEn4IpqvwgoA/7SkDpZp
/ZSoVRgMfDvn60mzc/0Y6dtaX4FTsyJiduQBtKNtssGSVQGajOKEcfUOVgslkwuX
IPIODGoHEdFC4feve5uuucMbHw8pmjI0dYGz0XIcU5dZNW1yVvNaPXC7cKvIeuKS
F3bogXenDzZ40/6+n9kRRS74vzdOMv5CSoxQOrQw0pBvWm0DyUFRTJ53GZAfbEz+
1IU+cwAMmQR7FMpbJtaKJeNdccHe/nOm4kdnW6W00FxUVeUvbmcuRL8wVMHvXo58
6qDuHOk0LPXK+KLRr5P1QyD7b78t4PJOmbKgT0xQd8h1Oun2j61ZfQsvaguF0dM+
QOO+EWoUU0+1I4eCzMG38R927w9kT8jJCPmIF2DT5tSB0JWIMC+Md6u0HFKUPG2C
qbSB58Ykljvoiu70Avay79vAAREvjkjlVWYKLJMjiuvaweRGPWtKdeBXwOHNSFRY
1JekLYeGaSX0WzVcxQcA3flpGL+4SdjdRWDYK3wXv6QoQ9YVag78nMIYUECtz+Yt
py8dTIjdp3d+KDsJ8t0dYkvHETiv8QoDNeutIZZXgP0PhR1smfcEFeUTwe56nDDp
BJJsyaybQhj76+tz1346gymRTEasBTlklnmu6XafYJ290fklsfdjkYjklaqoviDZ
1OphMGkNCqUa0JslpPBuPbVAgEBB4R3MUNQZpR9W7GlIMW8KNBNtbn6qFYaMq2uG
6AmwTZAVfhru0yjnIELj3k3t/OS/YbA6wRFpg0GddNNRAgMBAAE=
`pragma protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip",
data_method="aes128-cbc"
`pragma protect encoding=(enctype="base64", line_length=76, bytes=128)
`pragma protect data_block
RgKC7i4hx7zh3MLd50RYrZoCwPWFEyLwISIXDLkpkL6qFgFm1WmZEwFvZjNfQCNUgoSHeIRpxg9i
lXnvMiBjQCiQVvMp32UtfSX625K8+yvJLMPdHQ8G/2qxa6ViHAhBhRcsSUl0XGskRmU3JvNuNfAk
0IoB1HpFEJ0Vv6vEI5g=
`pragma protect end_protected endmodule

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 9

2. Securing Your IP Core (Ask a Question)

As an IP vendor, you must protect your Intellectual Property and package your IP core in such a way
that it is interoperable with EDA tools without compromising security. Encryption is managed at two
levels (see Figure 2-1):

• IP Core encryption
• Data Key encryption

2.1. Encryption of IP Core with IEEE 1735-2014 Scheme (Ask a Question)

Perform the following steps to encrypt the IP core with IEEE 1735-2014 scheme.

1. Obtain the Public Key (see section Public Key from EDA Vendors) from each downstream EDA
tool vendor.

2. Add the Encryption Envelopes to the RTL code (see section Encryption Envelopes). Ensure that all
required EDA tool vendors are included.

3. Execute the encryptP1735 Perl script.

Figure 2-1. IP Encryption

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 10

2.2. Public Key from EDA Vendors (Ask a Question)

Obtain a public key from every downstream EDA tool vendor.

Important: Starting with Libero version 2023.2, the public key file (shown below)
that contains all three public keys along with the Perl script to encrypt your files
that are installed with the software at the following locations:
IEEE1735v1 script and keys
<libero installation folder>/Designer/data/vault/ieee1735v1/
encrypt_ieee1735v1.pl
<libero installation folder>/Designer/data/vault/ieee1735v1/public_keys.txt

For Libero versions earlier than version 2023.2, click this link to download the
public key file containing all three public keys along with the Perl script to encrypt
your files. For any issues, file a technical support case at: microchip.my.site.com/s/
newcase.

2.3. Adding an Encryption Envelope to Your RTL (Ask a Question)

You must add the Encryption envelopes (see section Encryption Envelopes) to the RTL codes. All EDA
tools that need access to the encrypted data block must be included and identified as a key owner in
the Encryption envelope.

Following is an example of a Verilog IP core and a VHDL IP core with an Encryption envelope. The
envelope identifies Microchip, Synopsys, and Siemens as key owners.

2.3.1. Verilog IP Core with Encryption Envelope (Ask a Question)

The following shows an example of a Verilog IP core with an encryption envelope.

module secret (a, b, sum, clk, rstn); input[7:0]a, b;
input clk, rstn; output[8:0]sum; reg[8:0]sum;
`pragma protect version=1
`pragma protect encoding=(enctype="base64")
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect encrypt_agent="encryptP1735.pl", encrypt_agent_info="Synplify encryption
scripts"
`pragma protect key_keyowner="Synplicity",key_keyname="SYNP05_001",key_method="rsa",key_block
`pragma protect key_keyowner="Mentor Graphics Corporation",key_keyname="MGC-VERIF- SIM-
RSA-1",key_method="rsa",key_block
`pragma protect key_keyowner="Microsemi Corporation",key_keyname="MSC-IP-KEY-
RSA",key_method="rsa",key_block
`pragma protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip", data_method="aes128-cbc"
`pragma protect begin
always @(posedge clk or negedge rstn) begin if (!rstn)
sum <= 9'b0; else
sum <= a + b; end
`pragma protect end endmodule

2.3.2. VHDL IP Core with Encryption Envelope (Ask a Question)

The following shows an example of a VHDL IP core with an encryption envelope.

library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity counter is
generic(n: natural :=2); port(clock:in std_logic; clear:in std_logic; count:in std_logic;
Q:out std_logic_vector(n-1 downto 0)
);
end counter;
architecture behv of counter is
signal Pre_Q: std_logic_vector(n-1 downto 0); begin
`pragma protect version=1
`pragma protect encoding=(enctype="base64")

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 11

`pragma protect author="author-a", author_info="author-a-details"
`pragma protect encrypt_agent="encryptP1735.pl", encrypt_agent_info="Synplify encryption
scripts"
`pragma protect key_keyowner="Synplicity",key_keyname="SYNP05_001",key_method="rsa",key_block
`pragma protect key_keyowner="Mentor Graphics Corporation",key_keyname="MGC-VERIF- SIM-
RSA-1",key_method="rsa",key_block
`pragma protect key_keyowner="Microsemi Corporation",key_keyname="MSC-IP-KEY-
RSA",key_method="rsa",key_block
`pragma protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip", data_method="aes128-cbc"
`pragma protect begin
process(clock, count, clear) begin
if clear = '1' then
Pre_Q <= Pre_Q - Pre_Q;
elsif (clock='1' and clock'event) then if count = '1' then
Pre_Q <= Pre_Q + 1; end if;
end if;
end process;
Q <= Pre_Q;
`pragma protect end end behv;

2.3.3. Pragma Keywords (Ask a Question)

The following table lists the Pragma keywords in the Encryption envelope.

Table 2-1. Pragma Keywords
Pragma Keywords Description

begin Opens a new encryption envelope

end Closes an encryption envelope

begin_protected Opens a new decryption envelope

end_protected Closes a decryption envelope

author Identifies the author of an envelope

author_info Specifies additional author information

encoding Specifies the coding scheme for the encrypted data

data_keyowner Identifies the owner of the data encryption key

data_method Identifies the data encryption algorithm

data_keyname Specifies the name of the data encryption key

data_public_key Specifies the public key for data encryption

data_decrypt_key Specifies the data session key

key_keyowner Identifies the owner of the key encryption key

key_method Specifies the key encryption algorithm

key_keyname Specifies the name of the key encryption key

key_public_key Specifies the public key for key encryption

key_block Begins an encoded block of key data

version P1735 encryption version

2.4. encryptP1735.pl Script (Ask a Question)

Execute the encryptP1735.pl script to encrypt your IP. The encryptP1735 script is a Perl script
that Synopsys provides to IP vendors for encryption of their IP cores.

Notes: 
• Before running the script, make sure that the OpenSSL is installed on your machine. OpenSSL is

required for the script to work.
• For Windows OS, it is recommended that the script is executed in the Cygwin Environment on

Windows.

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 12

The following example command invokes the script with a random key to encrypt the data block:

perl./encryptP1735.pl -input secret.v -output secret_enc.v -pk
public_keys.txt -v -om encrypted
where:

Table 2-2.
Command Parameters Description

-input secret.v Specifies secret.v as the input file to the script. The input
file is the non‑encrypted HDL file containing one or more
encryption envelopes.

-output secret_enc.v Specifies secret_enc.v as the name of the encrypted
output file after running the encryption script.

-pk public_keys.txt Specifies public_keys.txt as the public keys repository
file. This file contains public keys for all downstream EDA
tools. The public keys file must include public keys for all EDA
vendors mentioned in the Encryption envelope.

-om encrypted Specifies how the IP is treated when generating the synthesis
netlist; encrypted is the default mode. In this mode, the same
data key used for encryption of the IP is used in the output
synthesis netlist.

-v Specifies that the script runs in Verbose mode.

2.4.1. Encrypted Output Files (Ask a Question)

The output file generated by the script contains Pragma directives for decrypting the encrypted
data (IP core) and the data key that encrypts the data. The following sections show examples of
encrypted Verilog and VHDL output.

Example of Encrypted Verilog Output

module secret (a, b, sum, clk, rstn); input[7:0]a, b;
input clk, rstn; output[8:0]sum; reg[8:0]sum
`pragma protect begin_protected
`pragma protect version=1
`pragma protect author="author-a", author_info="author-a-details"
`pragma protect encrypt_agent="encryptP1735.pl", encrypt_agent_info="Synplify
encryption scripts"
`pragma protect key_keyowner="Synplicity", key_keyname="SYNP05_001",
key_method="rsa"
`pragma protect encoding=(enctype="base64", line_length=76, bytes=256)
Synopsis Key Block

`pragma protect key_block
NfR8W3gmxwh3Bj4QxA+Qi+BhD1CTnQv7KO4UGOOS27KzF4jtejZxAewyFaShFSqRn9tRNx+u7Ivw
1m2BydGyW7MAQx2ePgbrKQbRLaN8XF/iiUFUX0QXnWDZrxtgcVHULOsPXpwd25wNyeWQkTekAsln
ubKiFDfNySxaP5W3SboZE0pMLqH+mpZlcvKljlE30uOAQQLjECEBGj1KxMZQ2hhUKLrXz34+9p68
tVzbM/u1TbsXvdPcN23UItAxNPSH5ND75rAviq7ACIVawH87/m2RshSDSVcmz7ndMpSJRQOFe2pd
usuHdCFJm1YaEaCZYfqReV7RjCzbV48d3LPtoA==
`pragma protect key_keyowner="Mentor Graphics Corporation", key_keyname="MGC-
VERIF-SIM- RSA-1", key_method="rsa"

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 13

`pragma protect encoding=(enctype="base64", line_length=76, bytes=128)
Siemens Key Block

`pragma protect key_block boN+vsIsOJ/
Ihy7BF0MM2ZdaeYl2zoepUP9xdDVnlME3q5lgqZtPjMtPqTQDvwbree7NngmOUGVm WbggEEW/
UWYWajwld641fsggKfu7kcFcMhLLBu0WHUVFvQjRhdiqcBWbEKM39O0SCYTJnhQFPs0B
RZgdCwOPvZ4IEAUqx4U=
`pragma protect key_keyowner="Microsemi Corporation", key_keyname="MSC-IP-
KEY-RSA", key_method="rsa"
`pragma protect encoding=(enctype="base64", line_length=76, bytes=960)
Microchip Key Block

`pragma protect key_block
MIID4jANBgkqhkiG9w0BAQEFAAOCA88AMIIDygKCA8EAxvOR7+3o0rtdoggobQ7e
3LQ5Bhjfcudafujkinm+213ui89cvxjkaYKRDadsklgfklDGTFyiYUIKasKv3MrW
xbaIlfktti2lBBdU/SDV83mLYKzAqe20/SaZR5FAZH8cyuUPxYOviHQ/fpqNwUao
U/3jp4nvc76K/FO14W56I/hXb23/0s8zzyny3gHfqcEu8Dn8OpNWDY4fZ4g9vQFB
hmv71HjJl0NRvvJHrXYmCEwlWPQjzru+8lj4JhBx/9ChKskTpVB6vkV//IX5Od1O
Zvaxh5x+xPCSKEgbmjv0uxaXtvnBJQa4xdMM7eHglGDSbZ2A13cg1qtxrCn05f6N
Bc4EiyOT2iofDDtqoxdLZPb4L6UDIR+EY1o+1l1mDBrBvqn6hQtpUoi+bgWe+xtS
ry30qmJkjjkejkJKJk+258uUI622kjlCCVGijj2145x9vnXXINiuOIuIj1K/a2dj
kP+2A3Jvt53z8gv9Jij9xC90725pCl5Cziw4XsBsg+jJJEn4IpqvwgoA/7SkDpZp
/ZSoVRgMfDvn60mzc/0Y6dtaX4FTsyJiduQBtKNtssGSVQGajOKEcfUOVgslkwuX
IPIODGoHEdFC4feve5uuucMbHw8pmjI0dYGz0XIcU5dZNW1yVvNaPXC7cKvIeuKS
F3bogXenDzZ40/6+n9kRRS74vzdOMv5CSoxQOrQw0pBvWm0DyUFRTJ53GZAfbEz+
1IU+cwAMmQR7FMpbJtaKJeNdccHe/nOm4kdnW6W00FxUVeUvbmcuRL8wVMHvXo58
6qDuHOk0LPXK+KLRr5P1QyD7b78t4PJOmbKgT0xQd8h1Oun2j61ZfQsvaguF0dM+
QOO+EWoUU0+1I4eCzMG38R927w9kT8jJCPmIF2DT5tSB0JWIMC+Md6u0HFKUPG2C
qbSB58Ykljvoiu70Avay79vAAREvjkjlVWYKLJMjiuvaweRGPWtKdeBXwOHNSFRY
1JekLYeGaSX0WzVcxQcA3flpGL+4SdjdRWDYK3wXv6QoQ9YVag78nMIYUECtz+Yt
py8dTIjdp3d+KDsJ8t0dYkvHETiv8QoDNeutIZZXgP0PhR1smfcEFeUTwe56nDDp
BJJsyaybQhj76+tz1346gymRTEasBTlklnmu6XafYJ290fklsfdjkYjklaqoviDZ
1OphMGkNCqUa0JslpPBuPbVAgEBB4R3MUNQZpR9W7GlIMW8KNBNtbn6qFYaMq2uG
6AmwTZAVfhru0yjnIELj3k3t/OS/YbA6wRFpg0GddNNRAgMBAAE=
`pragma protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip",
data_method="aes128-cbc"
`pragma protect encoding=(enctype="base64", line_length=76, bytes=128)
Data (IP Core) Block

`pragma protect data_block
RgKC7i4hx7zh3MLd50RYrZoCwPWFEyLwISIXDLkpkL6qFgFm1WmZEwFvZjNfQCNUgoSHeIRpxg9i
lXnvMiBjQCiQVvMp32UtfSX625K8+yvJLMPdHQ8G/2qxa6ViHAhBhRcsSUl0XGskRmU3JvNuNfAk
0IoB1HpFEJ0Vv6vEI5g=
`pragma protect end_protected endmodule
Example of Encrypted VHDL Output
library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 14

entity counter is
generic(n: natural :=2); port(clock:in std_logic; clear:in std_logic;
count:in std_logic;
Q:out std_logic_vector(n-1 downto 0)
);
end counter;
architecture behv of counter is
signal Pre_Q: std_logic_vector(n-1 downto 0); begin
`protect begin_protected
`protect version=1
`protect author="author-a", author_info="author-a-details"
`protect encrypt_agent="encryptP1735.pl", encrypt_agent_info="Synplify
encryption scripts"
`protect key_keyowner="Synplicity", key_keyname="SYNP05_001",
key_method="rsa"
`protect encoding=(enctype="base64", line_length=76, bytes=256)
Synopsys Key Block

`protect key_block
EzupxwpLZCgcCoy7O42J4O6TjEXDsFHlEXYIfYKVXIsm/8incqBuPuWZ26osQcaegOtanunB7lPo
sTFjlZBLLgsDLE/Pl7j8PhcxhySoKy/8TkZClQf7osKMbfeFAMFtIOAqjGT4Ab2F9DdosbC6QkNY
FCVLJSk5nNBeA6bslznTicV416exZcHTV5tJycz2vkFVlRY+BBtcXlhBrxCZSguf9OwHkr0OcufC
jKaHE//kfF1dlJ1jjcuidCnJ5rOtG3BDWFQ7f/ClH6H9IkqikEfDy2qGO4Kz1N8OF6sH2MKCj4O5
ye7d1aH+QH3FrTmoNgnVg9f7McoZ0Ito4Z1qCQ==
`protect key_keyowner="Mentor Graphics Corporation", key_keyname="MGC-VERIF-
SIM-RSA-1", key_method="rsa"
`protect encoding=(enctype="base64", line_length=76, bytes=128)
Mentor Graphics Key Block

`protect key_block
Pfy8Cgmz1tqEDSqqkQ+/HYByVzO7Iq9WSlfEgti2EYSXVTU974UChUeOJwTJUA5z24gL1gI2QF3I
SYQs6NgHG84V+DMh9s3biK9UDHz4KJqa5Xrsx6QwvD6co3rZ09bzNPL8w9uGaPK40DXWTQbY0T6W
pDdIw9u4pvhII/2L5eY=
`protect key_keyowner="Microsemi Corporation", key_keyname="MSC-IP-KEY-RSA",
key_method="rsa"
`protect encoding=(enctype="base64", line_length=76, bytes=960)
Microchip Key Block

`protect key_block
MIID4jANBgkqhkiG9w0BAQEFAAOCA88AMIIDygKCA8EAxvOR7+3o0rtdoggobQ7e
3LQ5Bhjfcudafujkinm+213ui89cvxjkaYKRDadsklgfklDGTFyiYUIKasKv3MrW
xbaIlfktti2lBBdU/SDV83mLYKzAqe20/SaZR5FAZH8cyuUPxYOviHQ/fpqNwUao
U/3jp4nvc76K/FO14W56I/hXb23/0s8zzyny3gHfqcEu8Dn8OpNWDY4fZ4g9vQFB
hmv71HjJl0NRvvJHrXYmCEwlWPQjzru+8lj4JhBx/9ChKskTpVB6vkV//IX5Od1O

 Libero SoC v2025.1
Securing Your IP Core

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 15

Zvaxh5x+xPCSKEgbmjv0uxaXtvnBJQa4xdMM7eHglGDSbZ2A13cg1qtxrCn05f6N
Bc4EiyOT2iofDDtqoxdLZPb4L6UDIR+EY1o+1l1mDBrBvqn6hQtpUoi+bgWe+xtS
ry30qmJkjjkejkJKJk+258uUI622kjlCCVGijj2145x9vnXXINiuOIuIj1K/a2dj
kP+2A3Jvt53z8gv9Jij9xC90725pCl5Cziw4XsBsg+jJJEn4IpqvwgoA/7SkDpZp
/ZSoVRgMfDvn60mzc/0Y6dtaX4FTsyJiduQBtKNtssGSVQGajOKEcfUOVgslkwuX
IPIODGoHEdFC4feve5uuucMbHw8pmjI0dYGz0XIcU5dZNW1yVvNaPXC7cKvIeuKS
F3bogXenDzZ40/6+n9kRRS74vzdOMv5CSoxQOrQw0pBvWm0DyUFRTJ53GZAfbEz+
1IU+cwAMmQR7FMpbJtaKJeNdccHe/nOm4kdnW6W00FxUVeUvbmcuRL8wVMHvXo58
6qDuHOk0LPXK+KLRr5P1QyD7b78t4PJOmbKgT0xQd8h1Oun2j61ZfQsvaguF0dM+
QOO+EWoUU0+1I4eCzMG38R927w9kT8jJCPmIF2DT5tSB0JWIMC+Md6u0HFKUPG2C
qbSB58Ykljvoiu70Avay79vAAREvjkjlVWYKLJMjiuvaweRGPWtKdeBXwOHNSFRY
1JekLYeGaSX0WzVcxQcA3flpGL+4SdjdRWDYK3wXv6QoQ9YVag78nMIYUECtz+Yt
py8dTIjdp3d+KDsJ8t0dYkvHETiv8QoDNeutIZZXgP0PhR1smfcEFeUTwe56nDDp
BJJsyaybQhj76+tz1346gymRTEasBTlklnmu6XafYJ290fklsfdjkYjklaqoviDZ
1OphMGkNCqUa0JslpPBuPbVAgEBB4R3MUNQZpR9W7GlIMW8KNBNtbn6qFYaMq2uG
6AmwTZAVfhru0yjnIELj3k3t/OS/YbA6wRFpg0GddNNRAgMBAAE=
`protect data_keyowner="ip-vendor-a", data_keyname="fpga-ip",
data_method="aes128-cbc"
`protect encoding=(enctype="base64", line_length=76, bytes=288)
Data (IP core) Block

`protect data_block
+m/P6uHpXWo/2MDE8lnrIGmBHe6DSUtiNm7PkpwC+dMErJ9rG4vuwDcoqErHHk4oToYBn4ZavftY
DJc1W3U7+dxEN3lVcgRsWveZZ0ePIfkkEKhp7cSgfFt5kFfwPEoMHPDhAPeElMr84o0pYEiFdO6V
GwOJgULvGsFedDKwWnTn6O9FbtKBKuKyl8NG27C89GRtkr4UhguNgVDJKs/O8E9bHlSlyxSh2sD4
GnTPLAVC4NONi4HjsBhxVGvq04yjbJwOHohjI/WeY26ZqHJN7jqkKrdOhXTi/DRoCY15vjfvALr1
kzErv8zjc9qGqBWucHhmUgwfKzp6p8XfFPHTZlOnsKigVN9Q8Kmu6ZmN3nYadlK8ASo4A7q3v9mA
otx6
`protect end_protected end behv;

2.5. Packaging and Bundling the Encrypted IP and the Data Key (Ask a Question)

When you execute the encryptP1735.pl script, you bundle and package the Encrypted IP and the
Encrypted Data Key together in one single file, which is the output of the script. This file is ready for
delivery to your customers.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 16

3. Running Libero SoC with Encrypted IP (Ask a Question)

Libero SoC software v11.3 or later supports the use of third-party encrypted IP cores in the design
flow for SmartFusion 2, IGLOO 2, RTG4, and PolarFire families (Figure 3-1).

3.1. To run Libero SoC with Encrypted IP (Ask a Question)

The Libero SoC software support for encrypted IP is enabled by default. Perform the following the
steps to incorporate an encrypted IP inside the Libero software.

1. Set your Project Settings so that the synthesized output is a Verilog netlist.
2. Import the encrypted IP core as HDL (see section Import Encrypted IP Core as HDL).
3. Run synthesis (see section Run Synthesis) and simulation (see section Run ModelSim Simulation).
4. The following figure shows how to run the remaining Libero SoC design flow.

Figure 3-1. Encrypted IP Design Flow

3.2. Encrypted IP Design Flow Must Use Verilog Netlist from Synthesis (Ask a Question)

When a new project is created, you must change Project Settings to support the IEEE 1735-2014
secure IP flow. You can then import the encrypted IP core as Verilog or VHDL source files.

The IEEE 1735-2014 scheme supports only Verilog as the netlist format; EDIF format is not
supported. You must set Libero SoC Project Settings to use the Verilog netlist from Synthesis.

1. From the Project menu, choose Project Settings > Design Flow.
2. Select Verilog as the HDL generated file language option as shown in Figure 3-2.
3. Click Save and then Close.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 17

Figure 3-2. Project Settings

3.3. Import Encrypted IP Core as HDL (Ask a Question)

Import the encrypted IP HDL and the non-encrypted HDL file as HDL source files (File > Import >
HDL Source Files). The Design Hierarchy window displays the imported file in your design.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 18

Figure 3-3. Design Hierarchy

Important: It is recommended that the encrypted IP be presented as a single
file. If the IP is currently organized in a hierarchy of files, it is recommended
that the entire IP be concatenated into a single file after encryption. Currently,
if the encrypted IP is defined in multiple files, the user must pass the (lower
level) files manually to synthesis and RTL simulation steps. This is done from
Organize input file option Synthesis/Simulation tool, as shown in Figure 3-4. See
the Organize Source file in Libero Help for more information on how to organize
source files.

Figure 3-4 shows how to organize input source files for Synthesis.

Figure 3-4. Organizing Input Source Files for Synthesis

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 19

3.3.1. Smart Design Support (Ask a Question)

SmartDesign is a visual block-based design creation tool for instantiation, configuration, and
connection of Microchip IP, user-generated IP, and the custom/glue-logic HDL modules. Encrypted
IP can also be instantiated in a SmartDesign, along with another non-encrypted IP. See the About
SmartDesign document in Libero Help for more information.

3.4. Run Synthesis (Ask a Question)

After synthesis, only the interface signals (inputs and output ports) of the Secure IP core are visible
in the RTL and Technology views (Figure 3-5 and Figure 3-6). Signals and instance names that are
internal to the Encrypted IP are not visible.

Figure 3-5. Synplify Pro RTL View

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 20

Figure 3-6. SynplifyPro Technology View

In the RTL and Technology Views, the Push and Pop commands are disabled for design blocks
encrypted with the IEEE 1735-2014. You cannot push into the encrypted IP block ‘U0’ to look at the
internal signals, nets, or instances inside the encrypted block.

3.5. Run ModelSim Simulation (Ask a Question)

ModelSim simulates the entire design for pre-synthesis, post-synthesis, and post-layout simulations.
However, the signals and instances internal to the encrypted IP are not exposed and are not
available for debug.

The values of the internal signals are not displayed in the waveform window; only the interface
signals at the boundary of the encrypted IP instance ‘U0’ are displayed.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 21

Figure 3-7. Modelsim Simulation of Encrypted IP Core

Note: Simulation is supported for both Verilog and VHDL.

3.6. Libero SoC and Encrypted IPs (Ask a Question)

Libero SoC Software processes designs with encrypted IP through the entire Design without
compromising the encrypted IP content. The encryption of IP is protected in Synthesis and
Simulation tools, as mentioned in previous sections.

All netlists exported from Libero SoC have the IP component encrypted. These include:

• Back annotated netlist after Place and Route: *_ba.v or *_ba.vhd
• Exported netlist after Compile: *.v or *.vhd
Microchip adheres to the Encryption Guidelines provided in the IEEE 1735-2014 standard
throughout the design flow.

3.6.1. Example (Ask a Question)

This section shows an example in which an Encrypted module is implemented using the Libero SoC
Secure IP flow.

The example consists of the following files:

• Secret.v: This is a simple Non-Encrypted Verilog module. This module has encryption
envelopes, as shown in section Encryption Envelopes.

• Secret_enc.v: This is the encrypted version of Secret.v module that has been encrypted by
executing the encryptP1735.pl script on the Secret.v module.

• Top.v: This is a top-level module instantiating encrypted secret_enc.v module. Tb.v is the test
bench for the Top.v module.

• Public_keys.txt: This text file contains Public Keys from Synopsys, Siemens, and Microchip, as
shown in section Public Key from EDA Vendors.

3.6.1.1. Encryption of IP Module (Ask a Question)

We are going to use to encryptP1735.pl script which implements IEEE 1735-2014 standard for
encryption of IP modules (secret.v in this example). The segment of the code that needs to

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 22

be encrypted have to be included within Encryption envelopes. (see section Adding an Encryption
Envelope to Your RTL).

All Public Keys from vendors supporting this standard are stored in a single file Public_Keys.txt.
Execute encryptP1735.pl script with the secret.v as input file and secret_enc.v as output file.

The following figure shows an example of output after encryptP1735.pl has been executed on
the secret.v module.

Figure 3-8. Output of EncryptP1735.pl Script

The output file is similar to the one shown in section Encrypted Output Files.

The encrypted output source file of the IP has key_blocks corresponding to all the vendors and
Data_blocks with encrypted information.

Note: See section encryptP1735.pl Script for more information about different parameters of the
script. The script can be executed on both Windows and Linux OS with OpenSSL and Perl Installed.

3.6.1.2. Importing Encrypted IP in Libero SoC (Ask a Question)

Perform the following steps to import an Encrypted module. The Encrypted module can be imported
in the same way you import any HDL file into a Libero Project.

1. Create a Libero Project with SmartFusion 2/IGLOO 2/RTG4/PolarFire family die.
2. Import the files Top.v and Secret_enc.v files into the Libero Project using the following path:

File > import > HDL Source Files.
3. Import the corresponding Test bench file tb.v into the Libero Project using the following

path:File > Import > HDL Stimulus Files.
4. Upon importing these files, your design hierarchy and stimulus hierarchy appear, as shown in

Figure 3-9 and Figure 3-10.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 23

Figure 3-9. Design Hierarchy

Figure 3-10. Stimulus Hierarchy

5. Within a Top Level module or Smart Design, it's possible to have multiple instantiations of an
encrypted module. To designate top.v as the Root module, select Set as Root.

6. Change the HDL-generated file language option to Verilog by accessing the Libero Project
Settings Menu through the following path: Project > Project Settings > Design Flow. For visual
guidance, see Figure 3-11.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 24

Figure 3-11. Project Settings for Netlist Format

3.6.1.3. Synthesis (Ask a Question)

The Synthesis tool (Synplify Pro) decrypts the protected content using Synopsys Key Block present
in Encrypted module secret_enc.v. After synthesis, only the interface signals (inputs and output
ports) of secure IP core are visible in the RTL and Technology views. See section Run Synthesis for
more information. The Verilog netlist file (.vm file) obtained after synthesis does not show internal
instances of encrypted module and this information is again re-encrypted by the Synthesis tool.

3.6.1.4. Simulations (Ask a Question)

The Simulation tool (ModelSim) decrypts the protected content using the ModelSim Key Block
present in Encrypted module secret_enc.v. ModelSim simulates the entire design for pre-synthesis,
post-synthesis, and post-layout simulations. However, the signals and instances internal to the
encrypted IP are not exposed and are not available for debug. See section Run ModelSim Simulation
for more information.

3.6.1.5. Compile and Layout (Ask a Question)

The rest of the tools in the Libero SoC Design Flow decrypt the protected content using Microchip
Key Block present in Encrypted module secret_enc.v.

Once the synthesis is completed, the Compile tool takes the encrypted .vm netlist file as input for
further processing by the Layout tool. The execution and output of these tools are similar to the
Regular flow.

Note: Constraints flow, including Timing Constraints and Floorplan Constraints, are not supported
for instances inside encrypted blocks. In the above example, Constraint flow is not supported
for secret_enc.v module. However, you can provide constraints to the interface of the Encrypted
module.

 Libero SoC v2025.1
Running Libero SoC with Encrypted IP

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 25

3.6.1.6. Generate Back Annotated Files (Ask a Question)

Once the Layout is complete, you can generate the Back Annotated Files for Post-Layout
simulations. The *_ba.v or *_ba.vhd files generated show the internal information of secure_enc.v
module as encrypted. These files incorporate Key_Block from Siemens, which is used for decryption
while running Post-Layout simulations.

3.6.1.7. Generate Programming Data (Ask a Question)

Once the design has completed the Layout and Post-Layout simulations, you can generate the
programming file.

 Libero SoC v2025.1
Frequently Asked Questions

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 26

4. Frequently Asked Questions (Ask a Question)

Following is a list of FAQs about Secure IP flow and its support in Libero SoC.

Are VHDL simulations supported, as we are using a Verilog Netlist?
Secure IP flow is supported for both VHDL and Verilog. Mixed mode simulation is not required if
the design and test bench are both in VHDL. The Verilog netlist is only required for passing the
design from the synthesis to compile step in Libero. Post-synthesis and other simulation steps still
use VHDL netlist, if the preferred input HDL type is VHDL at Project Creation.

Is Microchip Block flow supported in Secure IP flow?
No. Block flow is not supported for Encrypt IP and Secure IP flow.

Are parameters/generics supported?
Yes. Secure IP flow works on an Encrypted IP with parameters or generic definitions. However,
leaving top level parameters/generics and ports unencrypted makes the RTL easier to integrate.

See the VHDL example in this document, which has a generic definition.

Which versions of Perl and OpenSSL are required for encryptP1735.pl script?
Any version of OpenSSL/Perl can be used for the script to execute.

How is OpenSSL installed?
OpenSSL is Open-Source Software. Most Linux Installations have OpenSSL pre-installed.

For Windows, you must install OpenSSL.exe. You can download the application from the OpenSSL
website. Once you install OpenSSL on Windows, you need to set the PATH environment variable to
<openssl_installation_dir>\bin for the EncryptP1735.pl to work.

Can we import an encrypted Verilog core into a VHDL design, and vice versa?
Yes. You can import an Encrypted Verilog (or VHDL) module in a VHDL (or Verilog) Design.

 Libero SoC v2025.1
Revision History

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 27

5. Revision History (Ask a Question)

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

Revision Date Description

G 05/2025 The following is the list of changes made in revision G of the document:
• Updated the paths for Keys and script in section Public Key from EDA

Vendors.

• Updated section VHDL IP Core with Encryption Envelope.

F 11/2024 The following is the list of changes made in revision F of the document:
• In section Public Key from EDA Vendors, provided a link for filing a

technical support case and removed sample keys.

E 08/2024 This document is released with Libero SoC Design Suite v2024.2 without
changes from v2024.1.

D 02/2024 The following is the list of changes made in revision D of the document:
• In section Introduction, added PolarFire SoC to the list of design

families.

• In section Libero SoC Secure IP Design Flow Requirements, updated
the descriptions for Hardware Requirements and Public Keys for
encryption.

• Incorporated general editing improvements.

C 02/2024 In section Public Key from EDA Vendors, revised the way in which users
of Libero v2024.1 and later can obtain the public key file.

B 08/2023 In section Public Key from EDA Vendors, revised the way in which users
of Libero v2023.2 and later can obtain the public key file.

A 05/2021 Initial Revision.

 Libero SoC v2025.1

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 28

Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including
Customer Service, Customer Technical Support Center, a website, and worldwide sales offices.
Customers are suggested to visit Microchip online resources prior to contacting support as it is
very likely that their queries have been already answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the
FPGA Device Part number, select appropriate case category, and upload design files while creating a
technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

Microchip Information
Trademarks
The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks”). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-1145-2

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

 Libero SoC v2025.1

 User Guide
© 2025 Microchip Technology Inc. and its subsidiaries

DS00003944G - 29

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

	Introduction
	1. Libero SoC Secure IP Design Flow Requirements
	2. IP Security and IP Interoperability Across Design Tools

	Table of Contents
	1. Encryption and Decryption
	1.1. IEEE 1735-2014 Standards for IP and EDA Vendors
	1.2. Encryption Algorithms
	1.2.1. Symmetric Encryption
	1.2.2. Asymmetric Encryption
	1.2.2.1. Two Levels of Encryption

	1.3. Encryption Envelopes
	1.4. Decryption Envelopes

	2. Securing Your IP Core
	2.1. Encryption of IP Core with IEEE 1735-2014 Scheme
	2.2. Public Key from EDA Vendors
	2.3. Adding an Encryption Envelope to Your RTL
	2.3.1. Verilog IP Core with Encryption Envelope
	2.3.2. VHDL IP Core with Encryption Envelope
	2.3.3. Pragma Keywords

	2.4. encryptP1735.pl Script
	2.4.1. Encrypted Output Files

	2.5. Packaging and Bundling the Encrypted IP and the Data Key

	3. Running Libero SoC with Encrypted IP
	3.1. To run Libero SoC with Encrypted IP
	3.2. Encrypted IP Design Flow Must Use Verilog Netlist from Synthesis
	3.3. Import Encrypted IP Core as HDL
	3.3.1. Smart Design Support

	3.4. Run Synthesis
	3.5. Run ModelSim Simulation
	3.6. Libero SoC and Encrypted IPs
	3.6.1. Example
	3.6.1.1. Encryption of IP Module
	3.6.1.2. Importing Encrypted IP in Libero SoC
	3.6.1.3. Synthesis
	3.6.1.4. Simulations
	3.6.1.5. Compile and Layout
	3.6.1.6. Generate Back Annotated Files
	3.6.1.7. Generate Programming Data

	4. Frequently Asked Questions
	5. Revision History
	Microchip FPGA Support
	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

