
SONY CXQ70116
16-Bit Microprocessor

Description
The CX070116 is a CMOS 16-bit microprocessor

with internal 16-bit architecture and a 16-bit external

data bus. The CX070116 instruction set is a superset

of the 8086/8088; however, mnemonics and execution

times are different. The CX070116 additionally has a

powerful instruction set including bit processing,

packed BCD operations, and high-speed multiplication/

division operations. The CX070116 can also emulate

the functions of an 8080 and comes with a standby

mode that significantly reduces power consumption.

It is software-compatible with the CX070108

microprocessor.

Features
Minimum instruction execution time:

250 ns (at 8 MHz)

• Maximum addressable memory: 1 Mbytes

• Abundant memory addressing modes

• 14 X 16-bit register set

• 101 instructions

• Instruction set is a superset of 8086/B088

instruction set

• Bit, byte, word, and block operations

• Bit field operation instructions

• Packed BCD operation instructions

• Multiplication/division instructions execution time:

2.4 µs to 7.1 µs (at 8 MHz)

• High-speed block transfer instructions:

2 Mbytes/s (at 8 MHz)

• High-speed calculation of effective addresses:

2 clock cycles in any addressing mode

• Maskable (INT) and nonmaskable (NMI) interrupt

inputs

• IEEE-796 bus compatible interface

• 8080 emulation functions

• CMOS technology

• Low power consumption

• Standby function

• Single power supply

• 5-MHz or B-MHz clock

• 40-pin Plastic/Ceramic DIP (600 mil)

• NEC µPD70116 (V30) compatible

Pin

IC

A014

AD13

A012

AD11

AD10

A09

ADe

AD1

A De

AD,

AD3

AD2

AD1

A Do

NMI

INT

CLK

GND

-71-

Configuration (Top View)

{Small-scale} { Large-scale }
Mode Mode

•oo
ADn

A,tlPSo

A11/PS1

A1a!PS2

A1t!PS3

UBE

S/LG

iiD

HLORQ (AQ/AKoJ

HLOAK 1R01AK,1

WR (BUSLDCKJ

IO/M (BS2(

BUFRtw (BS1J

BUFEN (BSoJ

ASTB !OSoJ

INTAK [OS1)

POLL

READY

RESET

© 1985 NEC Electronics

I

https://manuals.plus/m/33072b9e08bc78e2703d0f6c873ae9a0a1e4852395fff2376d48f1beae827b49

CX070116

Block Diagram

LC

PC

AW

aw

cw

ow

IX

IY

BP

SP

PSW

Sub Data Bus (16]

a,

Main Data Bus [16]

T-State
Control

-72-

Bus
Butter

Status
Control

Bus Hold
Control

SONY@

Ull!
BUFEN[BSo], BUFFi/W [8$1]
flliM{BSaJ
ASTB [OSgJ, INTAK (OS1]
iiO, \iili {iJlJSl:llCKJ

S/LG

READY

RESET

POLL

HLDRO !RO!iKoJ

HLDAK [RQ/W,]

lnterrupl
Control

~NMI

INT

~~ CLK

~

Effective Address
Generator

Microinstruction
Storage

Mlcrosequence
Control

lnslruction Decoder

Bus
Control

Unit
[BCU]

Execution
Unit

[EXU]

Microinstruction

CX070116 SONY@

Pin Identification

No. Symbol Direction Function

1 IC* Internally connected

2-16 AD14-ADo In/Out Address/ data bus

17 NMI In Nonmaskable interrupt input

18 INT In Maskable interrupt input

19 CLK In Clock input

20 GND Ground

21 RESET In Reset input

22 READY In Ready input

23 POLL In Poll input

24 INTAK (QS1) Out Interrupt acknowledge output (queue status bit 1 output)

25 ASTB (QSo) Out Address strobe output (queue status bit 0 output)

26 BUFEN (BSo) Out Buffer enable output (bus status bit 0 output)

27 BUFR/W (BS1) Out Buffer read/write output (bus status bit 1 output)

28 10/M (BS2) Out Access is 1/0 or memory (bus status bit 2 output)

29 WR (BUSLOCK) Out Write strobe output (bus lock output)

30 HLDAK (RQ/AK1)
Out Hold acknowledge output, (bus hold request input/

(In/Out) acknowledge output 1)

31 HLDRQ (RQ/AKo)
In Hold request input (bus hold request input/acknowledge

(In/Out) output 0)

32 RD Out Read strobe output

33 S/LG In Sma II-scale/large-scale system input

34 UBE Out Upper byte enable

35-38 Ais/PS3-A16/PSo Out Address bus, high bits or processor status output

39 AD15 In/Out Address/data bus, bit 15

40 Voo Power supply

Notes: *IC should be connected to ground.

Where pins have different functions in small- and large-scale systems, the large-scale system pin

symbol and function are in parentheses.

Unused input pins should be tied to ground or Voo to minimize power dissipation and prevent the

flow of potentially harmful currents.

- 73 -

I

CX070116 SONY@

Pin Functions

Some pins of the CXQ70116 have different functions according to whether the microprocessor is used in

a small- or large-scale system. Other pins function the same way in either type of system.

AD1s - ADo [Address/Data Bus]

For small- and large-scale systems.

AD1s - ADo are the time-multiplexed address and data bus. They are active high. This bus contains the

lower 16 bits of the 20-bit address during T1 of the bus cycle. It is used as a 16-bit data bus during T2, T3,

and T4 of the bus cycle.

The address/data bus is a three-state bus and can be high or low during standby mode. The bus will float

to the high impedance during hold and interrupt acknowledge.

NMI [Nonmaskable Interrupt]

For small· and large-scale systems.

This pin is used to input nonmaskable interrupt requests. NMI cannot be masked by software. This input

is positive edge-triggered and can be sensed during any clock cycle. Actual interrupt processing begins,

however, after completion of the instruction in progress.

The contents of interrupt vector 2 determine the starting address for the interrupt-servicing routine. Note

that a hold request will be accepted even during NMI acknowledge.

This interrupt will cause the CXQ70116 to exit the standby mode.

INT [Maskable Interrupt]

For small· and large-scale systems.

This pin is a level-triggered interrupt request that can be masked by software.

INT is active high and is sensed during the last clock of the instruction. The interrupt will be accepted if

the system is in interrupt enable state (if the interrupt enable flag IE is set). The CPU outputs the INTAK

signal to inform external devices that the interrupt request has been granted.

If NMI and INT interrupts occur at the same time, NMI has higher priority than INT and INT cannot be

accepted. A hold request will be accepted during INT acknowledge.

This interrupt causes the CXQ70116 to exit the standby mode.

CLK [Clock]

For small- and large-scale systems.

This pin is used for external clock input.

RESET [Reset]

For small- and large-scale systems.

This pin is used for the CPU reset signal. It is active high. Input of this signal has priority over all other

operations. After the reset signal input returns low, the CPU begins execution of the program starting at

address FFFFOH.

In addition to causing normal CPU start, RESET input will cause the CXQ70116 to exit the standby mode.

READY [Ready]

For small- and large-scale systems.

When the memory or 1/0 device being accessed cannot complete data read or write within the CPU basic

access time, it can generate a CPU wait state (Tw) by setting this signal to inactive (low) and requesting a

read/write cycle delay.

If the READY signal is active (high) during either T3 or Tw state, the CPU will not generate a wait state.

- 74-

CX070116 SONY@

POLL [Poll]

For small- and large-scale systems.

The CPU checks this input upon execution of the POLL instruction. If the input is low, then execution

continues. If the input is high, the CPU will check the POLL input every five clock cycles until the input

becomes low again.

The POLL and READY functions are used to synchronize CPU program execution with the operation of

external devices.

RD [Read Strobe]

For small- and large-scale systems.

The CPU outputs this strobe signal during data read from an 1/0 device or memory. The 16/M signal is

used to select between 1/0 and memory. RD will be high during standby mode. It is three-state and floats to

the high impedance during hold acknowledge.

S/LG [Small/Large]

For small- and large-scale systems.

This signal determines the operation mode of the CPU. This signal is fixed either high or low. When this

signal is high, the CPU will operate in small-scale system mode, and when low, in the large-scale system

mode. A small-scale system will have at most one bus master such as a DMA controller device on the bus. A

large-scale system can have more than one bus master accessing the bus as well as the CPU.

Pins 24 to 31 function differently depending on the operating mode of the CPU. Separate nomenclatttre is

adopted for these signals in the two operational modes.

Function
Pin No.

S/LG-high

24 INTAK

25 ASTB

26 BU FEN

27 BUFR/W

28 10/M

29 WR

30 HLDAK

31 HLDRQ

INTAK [Interrupt Acknowledge]

For small-scale systems.

S/LG-low

OS1

OSo

BSo

BS1

BS2

BUSLOCK

RO/AK1

RO/AKo

The CPU generates the INTAK signal low when it accepts an INT signal.

The interrupting device synchronizes with this signal and outputs the interrupt vector to the CPU via the

data bus (AD1 - ADo). INTAK will be high during standby mode.

ASTB [Address Strobe]

For small-scale systems.

The CPU outputs this strobe signal to latch address information at an external latch. ASTB will be low

during standby mode.

- 75 -

I

CX070116

BUFEN [Buffer Enable]

For small-scale systems.

SONY@

It is used as the output enable signal for an external bidirectional buffer. The CPU generates this signal

during data transfer operations with external memory or 1/0 devices or during input of an interrupt vector.

BU FEN will be high during standby mode. It is three-state and floats to the high impedance during hold

acknowledge.

BUFR/W [Buffer Read/Write]

For small-scale systems.

The output of this signal determines the direction of data transfer with an external bidirectional buffer. A

high output causes transmission from the CPU to the external device; a low signal causes data transfer from

the external device to the CPU.

BUFR/W will be either high or low during standby mode. It is three-state and floats to the high impedance

during hold acknowledge.

iO/M [10/Memory]

For small-scale systems.

The CPU generates this signal to specify either 1/0 access or memory access. A low-level output

specifies 1/0 and a high-level specifies memory.

iO/M will be either high or low during standby mode. It is three-state and floats to the high impedance

during hold acknowledge.

WR [Write Strobe]

For small-scale systems.

The CPU generates this strobe signal during data write to an 1/0 device or memory. Selection of either

1/0 or memory is performed by the 10/M signal.

WR will be high during standby mode. It is three-state and floats to the high impedance during hold

acknowledge.

HLDAK [Hold Acknowledge]

For small-scale systems.

The HLDAK signal is used to indicate that the CPU accepts the hold request signal (HLDRQ). When this

signal is high, the address bus, address/data bus, and the control lines become high impedance.

HLDRQ [Hold Request]

For small-scale systems.

This input signal is used by external devices to request the CPU to release the address bus, address/data

bus, and the control bus.

UBE [Upper Byte Enable]

For small- and large-scale systems.

UBE indicates the use of the upper eight bits (AD1s - ADs) of the address/data bus during a bus cycle.

This signal is active low during T1 for read, write, and interrupt acknowledge cycles when AD1s - ADs are

to be used. Bus cycles in which UBE is active are shown in the following table.

- 76 -

CXQ70116

Type of Bus Operation

Word at even address

Word at odd address

Byte at even address

Byte at odd address

Notes: *First bus cycle

**Second bus cycle

SONY@

--
UBE A Do Number of Bus Cycle

0 0 1

0 1 *
2 o•• 1

1 0 1

0 1 1

UBE is low continuously during the interrupt acknowledge state. It will be high during standby mode. It is

three-state and floats to the high impedance during hold acknowledge.

A19/PS3 - A16/PSo [Address Bus/Processor Status]

For small- and large-scale systems.

These pins are time-multiplexed to operate as an address bus and as processor status signals.

When used as the address bus, these pins are the high 4 bits of the 20-bit memory address. During 1/0

access, a 11 4 bits output data 0.

The processor status signals are provided for both memory and 1/0 use. PSJ is always 0 in the native

mode and 1 in 8080 emulation mode. The interrupt enable flag (IE) is output on pin PS2. Pins PS1 and PSo

indicate which memory segment is being accessed.

A11/PS1 A16/PSo Segment

0 0 Data segment 1

0 1 Stack segment

1 0 Program segment

1 1 Data segment 0

A19/PS3 - A16/PSo will be either high or low during standby mode. They are three-state and float to the

high impedance during hold acknowledge.

QS1, QSo [Queue Status]

For large-scale systems.

The CPU uses these signals to allow external devices, such as the floating-point arithmetic processor

chip, to monitor the status of the internal CPU instruction queue.

QS1 QSo Instruction Queue Status

0 0 NOP (queue does not change)

0 1 First byte of instruction

1 0 Flush queue

1 1 Subsequent bytes of instruction

The instruction queue status indicated by these signals is the status when the execution unit (EXU)

accesses the instruction queue. The data output from these pins is therefoe valid only for one clock cycle

immediately following queue access. These status signals are provided so that the floating-point processor

chip can monitor the CPU's program execution status and synchronize its operation with the CPU when

control is passed to it by the FPO (Floating Point Operation) instructions.

QS1, QSo will be low during standby mode.

-77-

I

CX070116

BS2 - BSo [Bus Status]

For large-scale systems.

SONY@

The CPU uses these status signals to allow an external bus controller to monitor what the current bus

cycle is.

The external bus controller decodes these signals and generates the control signals required to perform

access of the memory or 1/0 device.

BS2 BS1 BSo Bus Cycle

0 0 0 Interrupt acknowledge

0 0 1 1/0 read

0 1 0 1/0 write

0 1 1 Halt

1 0 0 Program fetch

1 0 1 Memory read

1 1 0 Memory write

1 1 1 Passive state

BS2 - BSo will be high during standby mode. They are three-state and float to the high impedance

during hold acknowledge.

BUSLOCK [Bus Lock]

For large-scale systems.

The CPU uses this signal to secure the bus while executing the instrucion immediately following the

BUSLOCK prefix instruction. It is a status signal to the other bus masters in a multiprocessor system

inhibiting them from using the system bus during this time.

The output of this signal is three-state and becomes high impedance during hold acknowledge.

BUSLOCK is high during standby mode except if the HALT instruction has a BUSLOCK prefix.

RO/AK1, RO/AKo [Hold Request/Acknowledge]
For large-scale systems.

These pins function as bus hold request inputs (RO) and as bus hold acknowledge outputs (AK). RO/AKo

has a higher priority than RO/ AK1.

These pins have three-state outputs with on-chip pull-up resistors which keep the pin at high level when

the output is high impedance.

Voo [Power Supply]

For small- and large-scale systems.

This pin is used for the +sv power supply.

GND [Ground]

For small- and large-scale systems.

This pin is used for ground.

IC [Internally Connected]

This pin is used for tests performed at the factory by SONY. The CXQ70116 is used with this pin at

ground potential.

-78 -

CX070116

Absolute Maximum Ratings (Ta=+25°C)

Parameter Symbol Rating Value Unit

Power supply voltage Voo -0.5 to +7.0 v
Input voltage V1 -0.5 to Voo +o.3 v
CLK input voltage VK -0.5 to Voo +1.0 v
Output voltage Vo -0.5 to Voo +0.3 v
Power dissipation PoMAX +o.5 w
Operating temperature Topr -40 to +85 oc
Storage temperature Tstg -65 to +150 oc

Comment: Exposing the device to stresses above those listed in

Absolute Maximum Ratings could cause permanent

damage. The device is not meant to be operated under

conditions outside the limits described in the

operational sections of this specification.

Exposure to absolute maximum rating conditions for

extended periods may affect device reliability.

SONY@

DC Characteristics CXQ70116-5, Ta=-40°C to +85°C, Voo=+5V±10%

CX070116-8, Ta=-10°C to +70°C, Voo=+5V±5%

Limits
Parameter Symbol Unit Test Conditions

Min. Typ. Max.

Input voltage high VIH 2.2 Voo+0.3 v
Input voltage low VIL -0.5 0.8 v
CLK input voltage high VKH 3.9 Voo+1.0 v
CLK input voltage low VKL -0.5 0.6 v
Output voltage high VOH 0.7XVoo v loH=-400 µA

Output voltage low VOL 0.4 v loL=2.5 mA

Input leakage current high ILIH 10 µA V1=Voo

Input leakage current low ILIL -10 µA V1=0V

Output leakage current high ILOH 10 µA Vo=Voo

Output leakage current low ILOL -10 µA Vo=OV

70116-5 30 60 mA Normal operation

5 MHz 5 10 mA Standby mode Supply current loo

70116-8 45 80 mA Normal Operation

8 MHz 6 12 mA Standby mode

Capacitance (Ta=+25°C, Voo=OV)

Limits
Parameter Symbol Unit Test Conditions

Min. Max.

Input capacitance C1 15 pF fc=1 MHz

1/0 capacitance C10 15 pF
Unmeasured pins

returned to OV

- 79 -

I

CX070116

AC Characteristics

Parameter Symbol

Small/Large Scale

Clock cycle tCYK

Clock pulse width high tKKH

Clock pulse width low tKKL

Clock rise time tKR
r---

Clock fall time tKF

READY inactive setup to CLK ! tSRYLK

READY inactive hold after CLK t tHKRYH

READY active setup to CLK t tSRYHK

READY active hold after CLK t tHKRYL

Data setup time to CLK ! tSDK

Data hold time after CLK ! tHKD

NMI. INT, POLL setup time to CLK t tSIK

RESET setup time to CLK t tSRST

RESET hold time to CLK t tHRST

Input rise time (except CLK) tlR

Input fall time (except CLK) tlF

Output rise time tOR

Output fall time tOF

Small Scale

Address delay time from CLK tDKA

Address hold time from CLK tHKA

PS delay time from CLK ! tDKP

PS float delay time from CLK t tFKP

Address setup time to ASTB ! tSAST

Address float delay time from CLK ! tFKA

ASTB t delay time from CLK ! tDKSTH

ASTB ! delay time from CLK t tDKSTL

ASTB width high tSTST

Address hold time from ASTB ! tHSTA

SONY@

CX070116-5, Ta=-40°C to +85°C, Voo=+5V±10%

CX070116-8, Ta=-10°C to +70°C, Voo=+5V±5%

CXQ70116-5 CXQ70116-8 Test
Unit

Conditions Min. Max. Min. Max.

200 500 125 500 ns

69 50 ns VKH=3.0V

90 60 ns VKL=1.5V

10 8 ns 1.5V to 3.0V

10 7 ns 3.0V to 1.5V

-8 -8 ns

30 20 ns

tKKL-8 tKKL-8 ns

30 20 ns

30 20 ns

10 10 ns

30 15 ns

30 20 ns

10 10 ns

20 20 ns 0.8V to 2.2V

12 12 ns 2.2V to 0.8V

20 20 ns 0.8V to 2.2V

12 12 ns 2.2V to 0.8V

10 90 10 60 ns

10 10 ns

10 90 10 60 ns

10 80 10 60 ns

tKKL-60 tKKL-30 ns

80 60
CL=100 pF

tHKA tHKA ns

80 50 ns

85 55 ns

tKKL-20 tKKL-10 ns

tKKH-10 tKKL-10 ns

- 80-

CX070116

CXQ70116·5 CXQ70116-8 Test
Parameter Symbol Unit

Conditions Min. Max. Min. Max.

Control delay time from CLK tDKCT 10 110 10 65 ns

Address float to RD) tAFRL 0 0 ns

RD) delay time from CLK) lDKRL 10 165 10 80 ns

RD t delay time from CLK) tDKRH 10 150 10 80 ns

Address delay time from RD l lDRHA tCYk-45 tCYk-40 ns
--·

RD width low IRA 2tcvK-75 2tcvK-50 ns CL=100 pF

Data output delay time from CLK) tDKD 10 90 10 60 ns

Data float delay time from CLK) tFKD 10 80 10 60 ns

WR width low tww 2tcvK-60 2tcvK-40 ns
-

HLDRO setup time to CLK l tSHQK 35 20 ns

HLDAK delay time from CLK) lDKHA 10 160 10 100 ns

Large Scale

Address delay time from CLK !OKA 10 90 10 60 ns

Address hold time from CLK tHKA 10 10 ns

PS delay time from CLK) IDKP 10 90 10 60 ns

PS float delay time from CLK t IFKP 10 80 10 60 ns

Address float delay time from CLK) tFKA tHKA 80 tHKA 60 ns I
Address delay time from RD l tDRHA tcvK-45 tcvK-40 ns

ASTB l delay time from BS) !OBST 15 15 ns

BS) delay time from CLK l lDKBL 10 110 10 60 ns

BS l delay time from CLK) tDKBH 10 130 10 65 ns

RD) delay time from address float 0 0
CL=100 pF

tDAFRL ns

RD) delay time from CLK l tDKRL 10 165 10 80 ns
-
RD l delay time from CLK l tDKRH 10 150 10 80 ns

RD width low !RR 2tcvK-75 2tcvK-50 ns

Data output delay time from CLK) IDKD 10 90 10 60 ns

Data float delay time from CLK) !FKD 10 80 10 60 ns

AK delay time from CLK) tDKAK 70 50 ns

RO setup time to CLK t tSRQK 20 10 ns

RO hold time after CLK t lHKRO 40 30 ns

-81-

CXQ70116

Timing Waveforms

AC Test Input Waveform [Except CLK]

2.2V 2.2V
2.4V~

0.4V~
o.av o.av

{c

AC Output Test Points

----~r-
~

o.av o.av

Wait [Ready] Timing

CLK

POLL. NM I, I NT input Timing

CLK~

PO([~~
NMl,INT~

SONY@

Clock Timing

CLK

BUSLOCK Output Timing

RESET Timing

Vee _J

CLK

RESET

L4 CLK CYCLES

-82-

CX070116

Read Timing [Small Scale]

T4 T1 T2 T3 T4

CLK

A1/PS3 -

A,,IPS0 ...j..._...J,'1<-..;...--llf1<-..j....-----<.._-~--' ,_

ASTB

BUFFi.1W

Read Timing [Large Scale]

CLK

ASTB
(71088

Output)

T4 T1 T2 T3 T4

SONY@

Write Timing [Small Scale]

T4 T1 T2 T3 T4

CLK

A1.,'PS3 -

A11/PS0 __ ..,,._.,_......,,'------...;._...jL_.j(,_

BUFR W

iOM -V V--_/\...__ ______ I__

I
Write Timing [Large Scale]

T4 T1 T2 T3 T4

CLK

A1,JPS3 -

A 1_tP$0

USE

A0 15 -A00

ASTB
(71088

Output)

8$2 - 850 \ Bus Status I

as,-as0

-83 -

CX070116 SONY@

Interrupt Acknowledge Timing

TI T2 T3 Tl Tl Tl T4 TI T2 T3 Tl

BUFFi'W

IOM

Hold Request/ Acknowledge Timing [Small Scale]

1 or2

CLK

HLDRQ

HLDAK

Bus Request/ Acknowledge Timing [Large Scale]

~~~~~~~~~1m~1•_1"_P_"'~~~--1~...::: 1 ._~~~1-m-1•_1_"P_"_'~~---.I 
70116 ~ Coprocessor 

- 84-



CX070116 SONY@ 

Register Configuration 

Program Counter [PC] 

The program counter is a 16-bit binary counter that contains the segment offset address of the next 

instruction which the EXU is to execute. 

The PC increments each time the microprogram fetches an instruction from the instruction queue. A new 

location value is loaded into the PC each time a branch, call, return, or break instruction is executed. At this 

time, the contents of the PC are the same as the Prefetch Pointer (PFP). 

Prefetch Pointer [PFP] 

The prefetch pointer ( PFP) is a 16-bit binary counter which contains a segment offset which is used to 

calculate a program memory address that the bus control unit ( BCU) uses to prefetch the next word for the 

instruction queue. The contents of PFP are an offset from the PS (Program Segment) register. 

The PFP is incremented each time the BCU prefetches an instruction from the program memory. A new 

location will be loaded into the PFP whenever a branch, call, return, or break instrucion is executed. At that 

time the contents of the PFP will be the same as those of the PC (Program Counter). 

Segment Registers [PS, SS, DSo, and DS1] 

The memory addresses accessed by the CXQ70116 are divided into 64K-byte logical segments. The 

starting (base) address of each segment is specified by a segment register, and the offset from this starting 

address is specified by the contents of another register or by the effective address. 

These are the four types of segment registers used. 

Segment Register Default Offset 

PS (Program Segment) PFP 
!--------

SS (Stack Segment) SP, effective address 

DSo (Data Segment 0) IX, effective address 

DS1 (Data Segment 'I) IY 

General-Purpose Registers [AW, BW, CW, and OW] 

There are four 16-bit general-purpose registers. Each one can be used as one 16-bit register or as two 

8-bit registers by dividing them into their high and low bytes (AH, AL BH, BL CH, CL, DH, DL). 

Each register is also used as a default register for processing specific instructions. The default 

assignments are: 

AW: Word multiplication/division, word 1/0, BCD rotation, data conversion, translation 

AL: Byte multiplication/division, byte 1/0, BCD rotation, data conversion, translation 

AH: Byte multiplication/division 

BW: Translation 

CW: Loop control branch, repeat prefix 

CL: Shift instructions, rotation instructions, BCD operations 

OW: Word multiplication/division, indirect addressing 1/0 

Pointers [SP, BP] and Index Registers [IX, IY] 

These registers serve as base pointers or index registers when accessing the memory using based 

addressing, indexed addressing, or based indexed addressing. 

These registers can also be used for data transfer and arithmetic and logical operations in the same 

manner as the general-purpose registers. They cannot be used as 8-bit registers. 

Also, each of these registers acts as a default register for specific operations. The default assignments are: 

SP: Stack operations 

IX: Block transfer (source), BCD string operations 

IY: Block transfer (destination), BCD string operations 

- 85 -

I 



CX070116 SONY@ 

Program Status Word [PSW] 

The program status word consists of the following six status and four control flags. 

Status Flags Control Flags 

• V (Overflow) • MD (Mode) 

• S (Sign) • DIR (Direction) 

• Z (Zero) • IE (Interrupt Enable) 

• AC (Auxiliary Carry) • BRK (Break) 

• P (Parity) 

• CY (Carry) 

When the PSW is pushed on the stack, the word images of the various flags are as shown here. 

PSW 

15 14 13 12 11 10 9 

M 

D 

v D 

I 

R 

E 

8 

B 

R 

K 

7 

s 
6 5 

z 0 

4 3 

A 0 

c 

2 

p 

0 

c 
y 

The status flags are set and reset depending upon the result of each type of instruction executed. 

Instructions are provided to set, reset and complement the CY flag directly. 

Other instructins set and reset the control flags and control the operation of the CPU. 

High-Speed Execution of Instructions 

This section highlights the major architectural features that enhance the performance of the CXQ70116. 

• Dual data bus in EXU 

• Effective address generator 

• 16/32-bit temporary registers/shifters (TA. TB) 

• 16-bit loop counter 

• PC and PFP 

Dual Data Bus Method 

To reduce the number of processing steps for instruction execution, the dual data bus method has been 

adopted for the CXQ70116 (figure 1 ). The two data buses (the main data bus and the subdata bus) are both 

16 bits wide. For addition/subtraction and logical and comparison operations, processing time has been 

speeded up some 30% over single-bus systems. 

-86 -



CX070116 

Fig. 1. Dual Data Buses 

16 

SUbdatabus 

Example 

ADD AW, BW 

Single Bus 

Step 1 TA - AW 

Step 2 TB - BW 

Step 3 AW - TA + TB 

Effective Address Generator 

16 

Main data bus 

;AW - AW+ BW 

Dual Bus 

TA - AW, TB - BW 

AW+-- TA+ TB 

SONY@ 

Fig. 2. Effective Address Generator 

First and second byte of instruclion 

EA Generator 

l!ffectlve •ddreH 

This circuit (figure 2) performs high-speed processing to calculate effective addresses for accessing 

memory. 

Calculating an effective address by the microprogramming method normally requires 5 to 12 clock cycles. 

This circuit requires only two clock cycles for addresses to be generated for any addressing mode. Thus, 

processing is several times faster. 

16/32· Bit Temporary Registers/Shifters [TA. TB] 

These 16-bit temporary registers/shifters (TA. TB) are provided for multiplication/division and shift/rotation 

instructions. 

These circuits have decreased the execution time of multiplication/division instructions. In fact, these 

instructions can be executed about four times faster than with the microprogramming method. 

TA + TB: 32-bit temporary register/shifer for multiplication and division instructions. 

TB: 16-bit temporary register/shifter for shift/rotation instructions. 

- 87-

I 



CX070116 SONY@ 

Loop Counter [LC] 

This counter is used to count the number of loops for a primitive block transfer instruction controlled by a 

repeat prefix instruction and the number of shifts that will be performed for a multiple bit shift/rotation 

instruction. 

The processing performed for a multiple bit rotation of a register is shown below. The average speed is 

approximately doubled over the microprogram method. 

Example 

RORC AW.CL; CL= 5 

Microprogram method 

8 + (4 X 5) = 28 clocks 

LC method 

7 + 5 = 12 clocks 

Program Counter and Prefetch Pointer [PC and PFP] 

The CXQ70116 microprocessor has a program counter (PC), which addresses the program memory 

location of the instruction to be executed next, and a prefetch pointer (PFP), which addresses the program 

memory location to be accessed next. Both functions are provided in hardware. A time saving of several 

clocks is realized for branch, call, return, and break instruction execution, compared with microprocessors 

that have only one instruction pointer. 

Enhanced Instructions 

In addition to the 8088/86 instructions, the CXQ70116 has the following enhanced instructions. 

Instruction Function 

PUSH imm Pushes immediate data onto stack 

PUSH R Pushes 8 general registers onto stack 

POP imm Pops immediate data onto stack 

POP R Pops 8 general registers from stack 

MUL imm Executes 16-bit multiply of register or memory contents by immediate data 

SHL imm8 

SHR imm8 

SHRA imm8 

ROL imm8 Shifts/rotates register or memory by immediate value 

ROR imm8 

ROLC imm8 

RORC imm8 

CH KIND Checks array index against designated boundaries 

INM Moves a string from an 1/0 port to memory 

OUTM Moves a string from memory to an 1/0 port 

PREPARE Allocates an area for a stack frame and copies previous frame pointers 

DISPOSE Frees the current stack frame on a procedure exit 

- 88-



CX070116 

Enhanced Stack Operation Instructions 

PUSH imm/POP imm 

These instructions allow immediate data to be pushed onto or popped from the stack. 

PUSH R/POP R 

SONY@ 

These instructions allow the contents of the eight general registers to be pushed onto or popped from the 

stack with a single instruction. 

Enhanced Multiplication Instructions 

MUL reg16, imm16/MUL mem16, imm16 

These instructions allow the contents of a register or memory location to be 16-bit multiplied by 

immediate data. 

Enhanced Shift and Rotate Instructions 

SHL reg, imm8/SHR reg, imm8/SHRA reg, imm8 

These instructions allow the contents of a register to be shifted by the number of bits defined by the 

immediate data. 

ROL reg, imm8/ROR reg. imm8/ROLC reg, imm8/RORC reg, imm8 

These instructions allow the contents of a register to be rotated by the number of bits defined by the 

immediate data. 

Check Array Boundary Instruction 

CHKIND reg16, mem32 

This instruction is used to verify that index values pointing to the elements of an array data structure are 

within the defined range. The lower limit of the array should be in memory location mem32, the upper lmit 

in mem32 + 2. If the index value in reg16 is not between these limits when CH KIND is executed, a BRK 5 

will occur. This causes a jump to the location in interrupt vector 5. 

Block 1/0 Instructions 

OUTM OW, src-block/INM dst-block, OW 

These instructions are used to output or input a string to or from memory. when preceded by a repeat 

prefix. 

Stack Frame Instructions 

PREPARE imm16, imm8 

This instruction is used to generate the stack frames required by block-structures languages, such as 

PASCAL and Ada. The stack frame consists of two area. One area has a pointer that points to another frame 

which has variables that the current frame can access. The other is a local variable area for the current 

procedure. 

DISPOSE 

This instruction releases the last stack frame generated by the PREPARE instruction. It returns the stack 

and base pointers to the values they had before the PREPARE instruction was used to call a procedure. 

-89-

I 



CX070116 SONY@ 

Unique Instructions 

In addition to the 8088/86 instructions and the enhanced instructions, the CXQ70116 has the following 

unique instructions. 

Instruction Function 

INS Insert bit field 

EXT Extract bit field 

ADD4S Adds packed decimal strings 

SUB4S Subtracts one packed decimal string from another 

CMP4S Compares two packed decimal strings 

ROL4 Rotates one BCD digit left through AL lower 4 bits 

ROR4 Rotates one BCD digit right through AL lower 4 bits 

TEST1 Tests a specified bit and sets/resets Z flag 

NOT1 Inverts a specified bit 

CLR1 Clears a specified bit 

SET1 Sets a specified bit 

REPC Repeats next instruction until CY flag is cleared 

RE PNC Repeats next instruction until CY flag is set 

FP02 Additional floating point processor call 

Variable Length Bit Field Operation Instructions 

This category has two instructions: INS (Insert Bit Field) and EXT (Extract Bit Field). These instructions 

are highly effective for computer graphics and high· level languages. They can, for example, be used for data 

structures such as packed arrays and record type data used in PASCAL. 

INS reg8, regB/INS reg8, imm4 

This instruction (figure 3) transfers low bits from the 16-bit AW register (the number of bits is specified 

by the second operand) to the memory location specified by the segment base (DS1 registe~ plus the byte 

offset (IY register). The starting bit position within this byte is specified as an offset by the lower 4-bits of 

the first operand. 

After each complete data transfer, the IY register and the register specified by the first operand are 

automatically updated to point to the next bit field. 

Either immediate data or a register may specify the number of bits transferred (second operand). Because 

the maximum transferable bit length is 16-bits, only the lower4·bits of the specified register (OOH to OFH) 

will be valid. 

Bit field data may overlap the byte boundary of memory. 

-90-



CX070116 SONY@ 

Fig. 3. Bit Field Insertion 

Btt-h 

15 

AW 

I ~-
Bit offset 

r 
Byleolfset(IY) 

~1 

:'. 
I Memory V(l ' 

I 

t 
Byte boundary Segment base (DS1) 

EXT reg8. reg8/ EXT reg8, imm4 

This instruction (figure 4) loads to the AW register the bit field data whose bit length is specified by the 

second operand of the instruction from the memory location that is specified by the DSo segment register 

(segment base), the IX index register (byte offset), and the lower 4-bits of the first operand (bit offset). 

After the transfer is complete, the IX register and the lower 4-bits of the fi'rst operand are automatically 

updated to point to the next bit field. 

Either immediate data or a register may be specified for the second operand. Because the maximum 

transferrable bit length is 16 bits, however, only the lower4-bits of the specified register(OH to OFH) will be 

valid. 

Bit field data may overlap the byte boundary of memory. 

Fig. 4. Bit Field Extraction 

ij(J 
Btt-

l 
Byle-(IX) 

·, 

i :: t 

1 
Byte Boundary Segmeot base (OSOi 

15 0 

AWi V/111 

-91-

I 



CX070116 SONY@ 

Packed BCD Operation Instructions 

The instructions described here process packed BCD data either as strings (ADD4S, SUB4S, CMP4S) or 

byte-format operands (ROR4, ROL4). Packed BCD strings may be from 1 to 255 digits in ~ngth. 

When the number of digits is even, the zero and carry flags will be set according to the result of the 

operation. When the number of digits is odd, the zero and carry flags may not be set correctly in this case, 

(CL= odd), the zero flag will not be set unless the upper4 bits of the highest byte are all zero. The carry flag 

will not be set unless there is a carry out of the upper 4 bits of the highest byte. When CL is odd, the 

contents of the upper 4 bits of the highest byte of the result are undefined. 

ADD4S 

This instruction adds the packed BCD string addressed by the IX index register to the packed BCD string 

addressed by the IY index register, and stores the result in the string addressed by the IY register. The 

length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will 

affect the carry flag (CY) and zero flag (Z). 

BCD string (IY, CL) - BCD string (IY, CL) + BCD string (IX, CL) 

SUB4S 

This instruction subtracts the packed BCD string addressed by the IX index register from the packed BCD 

string addressed by the IY index register, and stores the result in the string addressed by the IY register. The 

length of the string (number of BCD digits) is specified by the CL register, and the result of the operation will 

affect the carry flag (CY) and zero flag (Z). 

BCD string (IY, CL) - BCD string (IY, CL) - BCD String (IX, CL) 

CMP4S 

This instruction performs the same operation as SUB4S except that the result is not stored and only carry 

flags (CY) and zero flag (Z) are affected. 

BCD string (IY, CL) - BCD string (IX, CL) 

ROL4 

This instruction (figure 5) treats the byte data of the register or memory directly specified by the instruction 

byte as BCD data and uses the lower 4 bits of the AL register (ALL) to rotate that data one BCD digit to the 

left. 

Fig. 5. BCD Rotate Left (ROL4) 

AL reg/mem 

ROR4 

This instruction (figure 6) treats the byte data of the register or memory directly specified by the instruction 

byte as BCD data and uses the lower 4 bits of the AL register (ALL) to rotate that data one BCD digit to the 

right. 

Fig. 6. BCD Rotate Right (ROR4) 

AL 

Bit Manipulation Instructions 

TEST1 

This instruction tests a specific bit in a register or memory location. If the bit is 1, the Z flag is reset to O. 

If the bit is 0, the Z flag is set to 1 . 

-92-



CX070116 

NOT1 

This instruction inverts a specific bit in a register or memory location. 

CLR1 

This instruction clears a specific bit in a register or memory location. 

SET1 

This instruction sets a specific bit in a register or memory location. 

Repeat Prefix Instructions 

REPC 

SONY@ 

This instruction causes the CXQ70116 to repeat the following primitive block transfer instruction until 

the CY flag becomes cleared or the CW register becomes zero. 

REPNC 

This instruction causes the CXQ70116 to repeat the following primitive block transfer instruction until 

the CY flag becomes set or the CW register becomes zero. 

Floating Point Instruction 

FP02 

This instruction is in addition to the 8088/86 floating point instruction, FP01. These instructions are 

covered in a later section. 

Mode Operation Instructions 

The CXQ70116 has two operating modes (figure 7). One is the native mode which executes 8088/86, 

enhanced and unique instructions. The other is the 8080 emulation mode in which the instruction set of the 

8080 is emulated. A mode flag (MD) is provided to select between these two modes. Native mode is 

selected when MD is 1 and emulation mode when MD is 0. MD is set and reset. directly and indirectly, by 

executing the mode manipulation instructions. 

Two instructions are provided to switch operation from the native mode to the emulation mode and back: 

BRKEM (Break for Emulation), and RETEM (Return from Emulation). 

Two instructions are used to switch from the emulation mode to the native mode and back: CALLN (Call 

Native Routine), and RETI (Return from Interrupt). 

The system will return from the 8080 emulation mode to the native mode when the RESET signal is 

present, or when an external interrupt ( NMI or INT) is present. 

Fig. 7. Operating Modes 
HOLD REOJHOLD ACK 

8080 Mode 

- 93 -

I 



CX070116 SONY@ 

BRKEM imm8 

This is the basic instruction used to start the 8080 emulation mode. This instruction operates exactly the 

same as the BRK instruction, except that BRKEM resets the mode flag (MD) to 0. PSW, PS and PC are 

saved to the stack. MD is then reset and the interrupt vector specified by the operand imm8 of this 

command is loaded into PS and PC. 

The instruction codes of the interrupt processing routine jumped to are then fetched. Then the CPU 

executes these codes as 8080 instructions. 

In 8080 emulation mode, registers and flags of the 8080 are performed by the following registers and 

flags of the CXQ70116. 

8080 CXQ70116 

Registers: A AL 

B CH 

c CL 

D DH 

E DL 

H BH 

L BL 

SP BP 

PC PC 

Flags: c CY 

z z 
s s 
p p 

AC AC 

In the native mode, SP is used for the stack pointer. In the 8080 emulation mode this function is 

performed by BP. 

This use of independent stack pointers allows independent stack areas to be secured for each mode and 

keeps the stack of one of the modes from being destroyed by an erroneous stack operation in the other 

mode. 

The SP, IX, IY and AH registers and the four segment registers (PS, SS, DSo, and DS1) used in the native 

mode are not affected by operations in 8080 emulation mode. 

In the 8080 emulation mode, the segment register for instructions is determined by the PS register (set 

automatically by the interrupt vector) and the segment register for data is the DSo register (set by the 

programmer immediately before the 8080 emulation mode is entered). 

RETEM [no operand] 

When RETEM is executed in 8080 emulation mode (interpreted by the CPU as 8080 instruction), the 

CPU restores PS, PC, and PSW (as it would when returning from an interrupt processing routine), and returns 

to the native mode. At the same time, the contents of the mode flag (MD) which was saved to the stack by 

the BRKEM instruction, is restored to MD = 1. The CPU is set to the native mode. 

CALLN imm8 

This instruction makes it possible to call the native mode subroutines from the 8080 emulation mode. To 

return from subroutine to the 8080 emulation mode, the RETI instruction is used. 

The processing performed when this instruction is executed in the 8080 emulation mode (it is interpreted 

by the CPU as 8080 instruction), is similar to that performed when a BRK instruction is executed in the 

-94-



CX070116 SONY@ 

native mode. The imm8 operand specifies an interrupt vector type. The contents of PS. PC, and PSW are 

pushed on the stack and an MD flag value of 0 is saved. The mode flag is set to 1 and the interrupt vector 

specified by the operand is loaded into PS and PC. 

R ETI [no operand] 

This is a general-purpose instruction used to return from interrupt routines entered by the BRK instruction 

or by an external interrupt in the native mode. When this instruction is executed at the end of a subroutine 

entered by the execution of the CALLN instruction, the operation that restores PS, PC, and PSW is exactly 

the same as the native mode execution. When PSW is restored, however, the 8080 emulation mode value 

of the mode flag (MD) is restored, the CPU is set in emulation mode, and all subsequent instructions are 

interpreted and executed as 8080 instructions. 

RETI is also used to return from an interrupt procedure initiated by an NMI or INT interrupt in the emulation 

mode. 

Floating Point Operation Chip Instructions 

FP01 fp-op, mem/FP02 fp-op, mem 

These instructions are used for the external floating point processor. The floating point operation is 

passed to the floating point processor when the CPU fetches one of these instructions. From this point the 

CPU performs only the necessary auxiliary processing (effective address calculation, generation of physical 

addresses, and start-up of the memory read cycle). 

The floating point processor always monitors the instructions fetched by the CPU. When it interprets one 

as an instruction to itself, it performs the appropriate processing. At this time, the floating point processor 

chip uses either the address alone or both the address and read data of the memory read cycle executed by 

the CPU. This difference in the data used depends on which of these instructions is executed. 

Note: During the memory read cycle initiated by the CPU for FP01 or FP02 execution, the CPU does not 

accept any read data on the data bus from memory. Although the CPU generates the memory 

address, the data is used by the floating point processor. 

Interrupt Operation 

The interrupts used in the CXQ70116 can be divided into two types: interrupts generated by external 

interrupt requests and interrupts generated by software processing. These are the classifications. 

External interrupts 

(a) NMI input (nonmaskable) 

(b) INT input (maskable) 

Software processing 

As the result of instruction execution 

-When a divide error occurs during execution of the DIV or DIVU instruction 

-When a memory-boundary-over error is detected by the CHKIND instruction 

Conditional break instruction 

- When V = 1 during execution of the BRKV instruction 

Unconditional break instructions 

-1-byte break instruction: BRK3 

-2-byte break instruction: BAK imm8 

Flag processing 

-When stack operations are used to set the BRK flag 

8080 Emulation mode instructions 

-BRKEM imm8 

-CALLN imm8 

- 95 -

I 



CX070116 SONY@ 

Interrupt vectors 

Starting addresses for interrupt processing routines are either determined automatically by a single 

location of the interrupt vector table or selected each time interrupt processing is entered. 

The interrupt vector table is shown in figure 8. The table uses 1 K bytes of memory addresses OOOH to 

3 FFH and can store starting address data for a maximum of 256 vectors (4 bytes per vector). 

The corresponding interrupt sources for vectors 0 to 5 are predetermined and vectors 6 to 31 are 

reserved. These vectors consequently cannot be used for general applications. 

The BR KEM instruction and CALLN instruction (in the emulation mode) and the INT input are available for 

general applications for vectors 32 to 255. 

A single interrupt vector is made up of 4 bytes (figure g). The 2 bytes in the low addresses of memory are 

loaded into PC as the offset, and the high 2 bytes are loaded into PS as the base address. The bytes are 

combined in reverse order. The lower-order bytes in the vector become the most significant bytes in the PC 

and PS, and the higher-order bytes become the least significant bytes. 

Fig. 8. Interrupt Vector Table 

OOOH 

VectorO Divide Error 

004H 

Veclor1 Break Flag 

008H 

Vector2 NMI Input 

OOCH 

Vector3 BAK 3 lnstrucllon 

010H 

Vector4 BRKV Instruction 

014H 

018H 

Yector5 

Vector& 

Vector31 

r= .. "-_ 
07CH 

Vector32 

Vector225 

080H 

}

Gene<alUse 

• BAK imma Instruction 

• BRKEM lnslruction 

• INT Input [External) 

• CALLN Instruction 

3FCH 

Dedicated 

Fig. 9. Interrupt Vector 0 

002H 

PS ~(003H. 002H) 
PC ~ (001H. OOOH) 

001H 

003H 

Based on this format, the contents of each vector should be initialized at the beginning of the program. 

The basic steps to jump to an interrupt processing routine are now shown. 

(SP -1, SP -2) PSW 

(SP -3, SP -4) PS 

(SP -5. SP -6) PC 

SP +- SP -6 

IE +- 0, BRK +- 0, MD 

PS vector high bytes 

PC +- vector low bytes 

-96 -



CX070116 SONY@ 

Standby Function 

The CXQ70116 has a standby mode to reduce power consumption during program wait states. This 

mode is set by the HALT instruction in both the native and the emulation mode. 

In the standby mode, the internal clock is supplied only to those circuits related to functions required to 

release this mode and bus hold control functions. As a result, power consumption can be reduced to 1/10 

the level of normal operation in either native or emulation mode. 

The standby mode is released by inputting a RESET signal or an external interrupt (NMI, INT). 

The bus hold function is effective during standby mode. The CPU returns to standby mode when the bus 

hold request is removed. 

During standby mode, all control outputs are disabled and the address/data bus will be either high or low. 

Instruction Set 

The following tables briefly describe the CXQ70116's instruction set. 

• Operation and Operand Types - difines abbreviations used in the Instruction Set table. 

• Flag Operations - difines the symbols used to describe flag operations. 

• Memory Addressing - shows how mem and mod combinations specify memory addressing modes. 

• Selection of 8- and 16-Bit Registers - shows how reg and W select a register when mod = 111 . 

• Selection of Segment Registers - shows how sreg selects a segment register. 

• Instruction Set - shows the instruction mnemonics, their effect their operation codes the number of 

bytes in the instruction, the number of clocks required for execution, and the effect on the CXQ70116 

flags. 

Operation and Operand Types 

Identifier Description 

reg 8- or 16-bit general-purpose register 

reg8 8-bit general-purpose register 

regl 6 16-bit general-purpose register 

dmem 8- or 16-bit direct memory location 

mem 8- or 16-bit memory location 

mem8 8- bit memory location 

mem16 16-bit memory location 

mem32 32-bit memory location 

imm Constant (0 to FFFFH) 

imm16 Constant (0 to FFFFH) 

imm8 Constant (0 to FFH) 

imm4 Constant (0 to FH) 

imm3 Constant (0 to 7) 

ace AW or AL register 

sreg Segment register 

src-table Name of 256-byte translation table 

- 97 -

I 



CX070116 SONY@ 

Identifier Description 

src-block Name of block addressed by the IX register 

dst-block Name of block addressed by the IY register 

near-proc Procedure within the current program segment 

far-proc Procedure located in another program segment 

near-label Label in the current program segment 

short-label Label between -128 and +127 bytes from the end of instruction 

far-label Label in another program segment 

memptr16 
Word containing the offset of the memory location within the current program 

segment to which control is to be transferred 

memptr32 
Double word containing the offset and segment base address of the memory 

location to which control is to be transferred 

regptrl 6 
16-bit register containing the offset of the memory location within the 

program segment to which control is to be transferred 

pop-value 
Number of bytes of the stack to be discarded (0 to 64 K bytes, usually even 

addresses) 

fp-op 
Immediate data to identify the instruction code of the external floating point 

operation 

R Register set 

w Word/byte field (0 to 1) 

reg Register field (000 to 111) 

mem Memory field (000 to 111) 

mod Mode field (00 to 10) 

S:W When S:W=01 or 11, data=l 6 bits. At all other times, data=8 bits. 

X, XXX, YYY, zzz Data to identify the instruction code of the external floating point arithmetic 

chip 

AW Accumulator (16 bits) 

AH Accumulator (high byte) 

AL Accumulator (low byte) 

BW BW register (16 bits) 

cw cw register (16 bits) 

CL CW register (low byte) 

ow OW register ( 1 6 bits) 

SP Stack pointer (16 bits) 

PC Program counter (16 bits) 

PSW Program status word (16 bits) 

IX Index register (source) (16 bits) 

IY Index register (destination) (16 bits) 

- 98-



CX070116 SONY@ 

Identifier Description 

PS Program segment register (16 bits) 

SS Stack segment register ( 16 bits) 

DSo Data segment 0 register (16 bits) 

DS1 Data segment 1 register ( 16 bits) 

AC Auxiliary carry flag 

CY Carry flag 

p Parity flag 

s Sign flag 

z Zero flag 

DIR Direction flag 

IE Interrupt enable flag 

v Overflow flag 

BRK Break flag 

MD Mode flag 

( ... ) Values in parentheses are memory contents 

disp Displacemerit (8 or 16 bits) 

ext-disp8 16-bit displacement (sign-extension byte +8-bit displacement) 

temp Temporary register (8/16/32 bits) 

tmpcy Temporary carry flag (1 bit) 

seg Immediate segment data ( 16 bits) 

offset Immediate offset data ( 16 bits) 

~ Transfer direction 

+ Addition 

Subtraction 

x Multiplication 

Division 

% Modulo 

AND Logical product 

OR Logical sum 

XOR Exclusive logical sum 

XXH Two-digit hexadecimal value 

XXXXH Four-digit hexadecimal value 

-99-



CXQ70116 SONY@ 

Flag Operations 

Identifier Description 

(blank) No change 

0 Cleared to 0 

1 Set to 1 

x Set or cleared according to the result 

u Undefined 

R Value saved earlier is restored 

Memory Addressing 

mod 
mem 

00 01 10 

000 BW +IX BW +IX+ disp8 BW +IX+ disp16 

001 BW+ IY BW + IY + disp8 BW + IY + disp16 

010 BP+ IX BP+ IX+ disp8 BP+ IX+ ·disp16 

011 BP+ IY BP+ IY + disp8 BP+ IY + disp16 

100 IX IX+ disp8 IX+ disp16 

101 IY IY + disp8 IY + disp16 

110 Direct address BP+ disp8 BP+ disp16 

111 BW BW + disp8 BW + disp16 

Selection of 8-and 16-Bit Registers (mod 11) 

reg W=O W=1 

000 AL AW 

001 CL cw 
010 DL DW 

011 BL BW 

100 AH SP 

101 CH BP 

110 DH IX 

111 BH IY 

Selection of Segment Registers 

sreg 

00 DS1 

01 PS 

10 SS 

11 DSo 

- 100-



CX070116 SONY@ 

The table on the following pages shows the instruction set. 

At "No. of Clocks," for instructions referencing memory operands, the left side of the slash(/) is the number 

of clocks for byte operands or word operands of an even address, and the right side is for word operands of 

an odd address. For conditional control transfer instructions, the left side of the slash(/) is the number of 

clocks if a control transfer takes place. The right side is the number of clocks when no control transfer or 

branch occurs. Some instructions show a range of clock times, separated by a hyphen. The execution time 

of these instructions varies from the minimum value to the maximum, depending on the operands involved. 

Note: Add four clocks to these times for each word transfer made to an odd address. 

"No. of Clocks" includes these times: 

• Decoding 

• Effective address generation 

• Operand fetch 

• Execution 

It assumes that the instruction bytes have been prefetched. 

-101 -

I 



0 
N 

I 

Mnemonic 

MOV 

LOEA 

TRANS 

XCH 

REPC 

RE PNC 

Operand 

reg, reg 

mem, reg 

reg, mem 

mem, imm 

reg, imm 

ace, dmem 

dmem, ace 

sreg, reg16 

sreg, mem16 

reg16, sreg 

mem16, sreg 

OSO, reg16, 
mem32 

OS1, reg16, 
mem32 

AH, PSW 

PSW, AH 

reg16, mem16 

src-table 

reg, reg 

mem, reg 
or reg, mem 

AW, reg16 
or reg16, AW 

Operation Code 
Operation 7 6 5 4 3 2 I D 7 6 

Data Transfer Instructions 

reg - reg 1 0 0 0 1 0 1 w 1 1 

(mem)-reg 1 0 0 0 1 o O W mod 

reg-(mem) 1 0 0 0 1 0 1 W mod 

(mem)-imm 1 1 0 0 0 1 1 W mod 

reg -imm 1 0 1 1 w reg 

When W = 0 AL - (dmem) 1 0 1 0 0 0 0 w 
When W = 1 AH - (dmem + 1), AL - (dmem) 

When W = 0 (dmem) - AL 1 0 1 0 0 0 1 w 
When W= 1 (dmem + 1) - AH, (dmem) - AL 

sreg - reg16 sreg : SS. OSO, OS1 1 0 0 0 1 1 1 0 1 1 

sreg - (mem16) sreg : SS, OSO, OS1 1 0 0 0 1 1 1 0 mod 

reg16-sreg 1 0 0 0 1 1 0 0 1 1 

(mem16) - sreg 1 0 0 0 1 1 0 0 mod 

reg16 - (mem32) 1 1 0 0 0 1 0 1 mod 
OSO - (mem32 + 2) 

reg16 - (mem32) 1 1 0 0 0 1 0 0 mod 
OS1 - (mem32 + 2) 

AH - S, Z, x, AC, x, P, x, CY 1 0 0 1 1 1 1 1 

S, Z, x, AC, x, P, x, CY - AH 1 0 0 1 1 1 1 0 

reg16 - mem16 1 0 0 0 1 1 0 1 mod 

AL-(BW+ AL) 1 1 0 1 0 1 1 1 

reg-reg 1 0 0 0 0 1 1 W1 1 

(mem)-reg 1 0 0 0 0 1 1 W mod 

AW-reg16 1 0 0 1 0 reg 

Repeat Prefixed 

While CW = 0, the following primitive block 0 1 1 0 0 1 0 1 
transfer instruction is executed and cw is 
decremented (- 1 ). If there is a waiting interrupt it 
is processed. When CY = 1, exit the loop. 

While CW = 0, the following primitive block 0 1 1 0 0 1 0 0 
transfer instruction is executed and cw is 
decremented (- 1). If there is a waiting interrupt it 
is processed. When CY = 0, exit the loop. 

No. of 
5 4 3 2 I D Clocks 

reg reg 2 

reg mem 9/13 

reg mem 11/15 

0 0 0 mem 11/15 

4 

10/14 

9/13 

0 sreg reg 2 

0 sreg mem 11/15 

0 sreg reg 2 

0 sreg mem 10/14 

reg mem 18/26 

reg mem 18/26 

2 

3 

reg mem 4 

9 

reg reg 3 

reg mem 16/24 

2 

2 

2 

No. of 
Bytes AC CY 

2 

2-4 

2-4 

3-6 

2-3 

3 

3 

2 

2-4 

2 

2-4 

2-4 

2-4 

1 x x 

1 x x 

2-4 

1 

2 

2-4 

1 

1 

1 

Flags 
v p s z 

x x x 

x x x 

() 

x 
p 
-.I 

!:: 

"' 

en 

0 
z 
~ 



0 
w 

Mnemonic 

REP 
REPE 
REPZ 

~· 

REPNZ 

MOVBK 

t--
CMPBK 

CMPM 

LDM 

STM 

INS 

Operand 

dst-block, 
src-block 

dst-block, 
src-block 

dst-block 

src-block 

dst-block 

reg8, reg8 

reg8, imm4 

Operation Code 
Operation 7 6 5 4 3 2 I 0 7 6 5 4 

Repeat Prefixed (cont) 

While CW .= O. the following primitive block 1 1 1 1 0 0 1 1 
transfer instruction is executed and CW is 
decremented (- 1). If there is a waiting interrupt, 11 is 
processed. If the primitive block transfer instruction 
is CMPBK or CMPM and Z # 1, exit the loop. 

While CW # 0, the following primitive block 1 1 1 1 0 0 1 0 
transfer instruction is executed and CW is 
decremented (- 1). If there is a waiting interrupt, it is 
processed. If the primitive block transfer instruction 
is CMPBK or CMPM and Z # 0, exit the loop. 

Primitive Block Transfer Instructions 

When W = 0 (IY) - (IX) 1 0 1 0 0 1 0 w 
DIR= 0: IX - IX+ 1, IY - IY + 1 
DIR= 1: IX - IX -1, IY - IY- 1 

When W = 1 (IY + 1, IY) - (IX+ 1, IX) 

DIR = 0: IX - IX + 2, IY - IY + 2 
DIR= 1: IX - IX - 2, IY - IY - 2 

When W = 0 (IX) - (IY) 1 0 1 0 0 1 1 w 
DIR= 0: IX - IX+ 1, IY - IY + 1 
DIR= 1: IX - IX - 1, IY - IY - 1 

When W= 1 (IX+ 1, IX) - (IY -t 1, IY) 
DIR= 0: IX - IX + 2, IY - IY + 2 
DIR= 1: IX -1x - 2, IY -1v - 2 

When W = 0 AL- (IY) 1 0 1 0 1 1 1 w 
DIR =0: IY-IY + 1; DIR= 1: IY-IY-1 

When W= 1 AW- (IY + 1, IY) 
DIR= O: IY - IY + 2; DIR= 1: IY - IY - 2 

When W = 0 AL - (IX) 1 0 1 0 1 1 0 w 
DIR= 0: IX - IX+ 1; DIR= 1: IX - IX - 1 

When W = 1 AW - (IX+ 1, IX) 
DIR = 0: IX - IX + 2; DIR= 1 IX - IX - 2 

When W = 0 (IY)-AL 1 0 1 0 1 0 1 w 
DIR= 0: IY - IY + 1; DIR= 1: IY - IY - 1 

When W = 1 (IY+ 1, IY)-AW 
DIR= 0 IY-IY + 2; DIR= 1: IY-IY-2 n: number of transfers 

Bit Field Transfer Instructions 

16-Bit field - AW 0 0 0 0 1 1 1 1 0 0 1 1 
1 1 reg reg 

16-Bit field - AW 0 0 0 0 1 1 1 1 0 0 1 1 
1 1 0 0 0 reg 

-

No.of No. ol 
3 2 I 0 Clocks Bytes 

2 1 

2 1 

11+8n 1 

7 + 14n 1 

7+10n 1 

7 + 9n 1 

7 + 4n 1 

0 0 0 1 31-117 3 
/35-133 

1 0 0 1 67-87 4 
/75-103 

AC CY 

x x 

x x 

Flags 
v p s z 

x x x x 

x x x x 

(") 

x 
0 .... 
!:! 
O> 

00 
0 
z 
~ 



0 
.j:>. 

I 

Mnemonic 

EXT 

IN 

OUT 

INM 

OUTM 

ADD 

ADDC 

Operand 

regs, regs 

regs, imm4 

ace, immS 

ace, OW 

imms. ace 

OW, ace 

dsl-block, OW 

OW, src-block 

reg, reg 

mem,reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

reg, reg 

mem, reg 

reg, mem 

reg, imm 

mem, imm 

Operation Code 
Operation 765432 I 0 765432 I 0 

Bit Field Transfer Instructions (cont! 

AW+- 16-Bit field 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 
1 1 reg reg 

AW +- 16-Bit field 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 
1 1 0 0 0 reg 

1/0 Instructions 

When W = O AL +- (imm8) 1 1 1 0 0 1 0 w 
When W = 1 AH+- (immS + 1), AL+- (immS) 

When W = 0 Al +- (OW) 1 1 1 0 1 1 0 w 
When W = 1 AH +- (OW+ 1), Al+- (OW) 

When W = O (immS) +- AL 1 1 1 0 0 1 1 w 
When W = 1 (imm8 + 1) +- AH, (imm8) +-Al 

When W = 0 (OW) +- Al 1 1 1 0 1 1 1 w 
When W = 1 (OW+ 1) +-AH, (OW) +- Al 

Primitive 1/0 Instructions 

When W = 0 (IV) +- (OW) 0 1 1 0 1 1 0 w 
DIR= O: IV+- IV+ 1; DIR= 1: IV+- IV - 1 

When W = 1 (IV+ 1, IY) +-(OW+ 1, OW) 
DIR = 0: IV +- IV+ 2; DIR= 1: IV +- IV - 2 

When W = 0 (OW) +- (IX) 0 1 1 0 1 1 1 w 
DIR = O: IX +- IX + 1; DIR = 1: IX +- IX - 1 

When W = 1 (OW+ 1, OW)+- (IX+ 1, IX) 
DIR = 0: IX +- IX + 2; DIR = 1: IX +- IX - 2 n: number of transfers 

Addition/Subtraction Instructions 

reg +- reg + reg 0000001 W1 1 reg reg 

(mem) +- (mem) + reg O 0 0 0 0 0 0 W mod reg mem 

reg +- reg + (mem) 0000001 W mod reg mem 

reg +- reg + imm 1 OOOOOSW1 1 0 0 0 reg 

(mem)+-(mem)+imm 1 0 0 0 0 0 S W mod 0 0 0 mem 

When W = 0 Al +- Al + imm 0000010W 
WhenW=l AW+-AW+imm 

reg +- reg + reg + CY 0 0 0 1 0 0 1 W1 1 reg reg 

(mem) +- (mem) +reg + CY 0 0 0 1 O O O W mod reg mem 

reg +- reg + (mem) +CY 0 0 0 1 0 0 1 W mod reg mem 

reg +- reg + imm +CY 100000SW1 1 0 1 0 reg 

(mem) +- (mem) + imm + CY 1 0 0 0 0 0 S W mod 0 1 0 mem 

No.of No.of 
Clocks Bytes 

26-55 3 
/34-59 

21-44 4 
/25-52 

9/13 2 

8/12 1 

8/12 2 

8/12 1 

9 +Sn 1 

9+ 8n 1 

2 2 

16/24 2-4 

11 /15 2-4 

4 3-4 

18/26 3-6 

4 2-3 

2 2 

16/24 2-4 

11/15 2-4 

4 3-4 

18/26 3-6 

Flags 
AC CYVPSZ 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

() 

x 
p .... 
g 

"' 

en 

0 
z 
~ 



0 
V1 

Mnemonic 

ADDC 

SUB 

SUBC 

ADD4S 

SUB4S 

CMP4S 

ROL4 

ROR4 

Operand 

ace, imm 

reg, reg 

mem, reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

reg, reg 

mem, reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

reg8 7 AL 

I 

mem8 7 AL 

I 
reg8 7 AL 

I 
mem8 7 AL 

I 

Operation Code No.of 
Operation 7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0 Clocks 

Addition/Subtraction Instructions !cont) 

When W = 0 AL +--AL - imm - CY 0 0 0 1 0 1 0 w 4 
When W = 1 AW+-- AW - imm - CY 

reg +-- reg - reg 0 0 1 0 1 0 1 W1 1 reg reg 2 

(mem) +-- (mem) - reg 0 0 1 o· 1 0 0 W mod reg mem 16/24 

reg +--reg - (mem) 0 0 1 0 1 0 1 W mod reg mem 11/15 

reg +-- reg - imm 1 0 0 0 0 0 s W1 1 1 0 1 reg 4 

(mem)+-(mem)-imm 1 0 0 0 0 0 s W mod 1 0 1 mem 18/26 

When W = 0 AL+-- AL - imm 0 0 1 0 1 1 0 w 4 
WhenW= 1 AW+-AW-imm 

reg +-- reg - reg - CY 0 0 0 1 1 0 1 w 1 1 reg reg 2 

(mem) +-- (mem) - reg - CY 0 0 0 1 1 O O W mod reg mem 16/24 

reg +-- reg - (mem) - CY 0 0 0 1 1 0 1 W mod reg mem 11/15 

reg +-- reg - imm - CY 1 0 0 0 0 0 s w 1 1 0 1 1 reg 4 

(mem) +-- (mem) - imm - CY 1 0 0 0 0 0 s W mod 0 1 1 mem 18/26 

When W = 0 AL+-- AL+ imm +CY 0 0 0 1 1 1 0 w 4 
WhenW= 1 AW +--AW+ imm +CY 

BCD Operation Instructions 

dst BCD string ........ dst BCD string 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 7+19n 
+ src BCD string 

dst BCD string ........ dst BCD string 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 7+19n 
- src BCD string 

dst BCD string - src BOC string 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 7+19n 
n: number of BCD numerals divided by 2 

0 '"9 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 25 

I H Uppe<4bits I L.ower4bits I· I 1 1 0 0 0 reg 
AL, 

I 

0 mem 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 28 

I H Uppe< 4 bits I Lower 4 bits I · I 
mod 0 0 0 mem 

AL, 

I 

0 '"9 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 29 

I AL, 

! 
H Uppe<4btts I Lower4btts I 

1 

1 1 0 0 0 reg 

0 mem 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 33 

I AL, H Uppe<4btts I Lower4bits I I mod 0 0 0 mem 

I 

No.of 
Bytes AC CY 

2-3 x x 

2 x x 

2-4 x x 

2-4 x x 

3-4 x x 

3-6 x x 

2-3 x x 

2 x x 

2-4 x x 

2-4 x x 

3-4 x x 

3-6 x x 

2-3 x x 

2 u x 

2 u x 

2 u x 

3 

I 

l 
I 3-5 

3 

3-5 

Flags 
v p s z 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

u u u x 

u u u x 

u u u x 

n 
x 
p 
.... 
'.: 

"' 

00 
0 
z 
~ 



0 

°' 
I 

Mnemonic 

ING 

DEG 

MULU 

MUL 

Operand 

reg8 

mem 

reg16 

reg8 

mem 

reg16 

reg8 

mem8 

reg16 

mem16 

reg8 

mem8 

reg16 

mem16 

reg16, 
(reg16,) 
imm8 

reg16, 
mem16, 
imm8 

Operation Code 
Operation 7 6 5 4 3 2 I 0 7 6 

Increment/Decrement Instructions (cont) 

reg8 +- reg8 + 1 1 1 1 1 1 1 1 0 1 1 

(mem) ....... (mem) + 1 1 1 1 1 1 1 1 W mod 

reg16 - reg16 + 1 0 1 0 0 0 reg 

reg8 ....... reg8 - 1 1 1 1 1 1 1 1 0 1 1 

(mem) ....... (mem) - 1 1 1 1 1 1 1 1 W mod 

reg16 ....... reg16 - 1 0 ·1 0 0 1 reg 

Multiplication Instructions 

AW+-ALx reg8 1 1 1 1 0 1 1 0 1 1 
AH = 0: CY ....... O. V +- 0 
AH.CO: GY +-1, V +-1 

AW+- AL x (mem8) 1 1 1 1 0 1 1 0 mod 
AH = 0: CY ....... 0, V ....... 0 
AH.CO: GY +-1, V +-1 

DW, AW +-AW x reg16 1 1 1 1 0 1 1 1 1 1 
DW = O: CY +- 0, V ....... 0 
DW.cO: GY +-1, V +-1 

DW, AW+- AW x (mem16) 1 1 1 1 0 1 1 1 mod 
DW = 0: CY ....... 0, V ....... 0 
DW.cO: CY +-1, V+-1 

AW +-ALx reg8 1 1 1 1 0 1 1 0 1 1 
AH = AL sign expansion: CY ....... 0, V +- O 
AH ,c AL sign expansion: CY ....... 1, V +- 1 

AW +-AL x (mem8) 1 1 1 1 0 1 1 0 mod 
AH = AL sign expansion: CY +- 0. V ....... 0 
AH # AL sign expansion: CY +- 1, V ....... 1 

DW, AW +-AW x reg16 1 1 1 1 0 1 1 1 1 1 
DW =AW sign expansion: CY +- 0. V +-- 0 
DW ,c AW sign expansion: CY ....... 1, V +- 1 

DW, AW+- AW x (mem16) 1 1 1 1 0 1 1 1 mod 
DW =AW sign expansion: CY ....... 0, V +- O 
DW #AW sign expansion: CY ....... 1, V +-- 1 

reg16 +-- reg16 x imm8 0 1 1 0 1 0 1 1 1 1 
Product,.; 16 bits: CY +- 0, V +- O 
Product> 16 bits: CY +- 1, V +-- 1 

reg16 +- (mem16) x imm8 0 1 1 0 1 0 1 1 mod 
Product,.; 16 bits: CY +- 0, V ....... 0 
Product> 16 bits: CY +- 1, V ....... 1 

No. of 
5 4 3 2 I 0 Clocks 

0 0 0 reg 2 

0 0 0 mem 16/24 

2 

0 0 1 reg 2 

0 0 1 mem 16/24 

2 

1 0 0 reg 21-22 

1 0 0 mem 27-28 

1 0 0 reg 29-30 

1 0 0 mem 35-36 
/39-40 

1 0 1 reg 33-39 

1 0 1 mem 39-45 

1 0 1 reg 41-47 

1 0 1 mem 47-53 
/51-57 

reg reg 28-34 

reg mem 34-40 
/38-44 

No.of 
Bytes AC CY 

2 x 

2·4 x 

1 x 

2 x 

2·4 x 

1 x 

2 u x 

2-4 u x 

2 u x 

2-4 u x 

2 u x 

2-4 u x 

2 u x 

2-4 u x 

3 u x 

3-5 u x 

Flags 

v p s z 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x u u u 

x u u u 

x u u u 

x u u u 

x u u u 

x u u u 

x u u u 

x u u u 

x u u u 

x u u u 

n 
x 
0 ..... 
~ 

"' 

rn 
0 
z 
~ 



0 
-J 

Mnemonic 

MUL 

DIVU 

DIV 

Operand 

reg16, 
(reg16,) 
imm16 

reg16, 
mem16, 
imm16 

reg8 

mem8 

reg16 

mem16 

reg8 

Operation Code 
Operation 7 6 5 4 3 2 I 0 7 6 

Multiplication Instructions (cont) 

reg16 ....... reg16 x imm16 0 1 1 0 1 0 0 1 1 1 
Product,,:; 16 bits: CY ....... 0, V ....... 0 
Product> 16 bits: CY ....... 1, V ....... 1 

reg16 ....... (mem16) x imm16 0 1 1 0 1 0 0 1 mod 
Product,,:; 16 bits: CY ....... 0, V ....... O 
Product> 16 bits: CY ....... 1, V ....... 1 

Unsigned Division Instructions 

temp ....... AW 1 1 1 1 0 1 1 0 1 1 
When temp+ reg8 > FFH 
(SP - 1, SP - 2) ....... PSW, (SP - 3, SP - 4) ....... PS 
(SP - 5, SP - 6) ....... PC, SP ....... SP - 6 
IE ....... 0, BRK ....... 0, PS +- (3, 2), PC ....... (1, 0) 
All other times 
AH ....... temp % reg8, AL ....... temp + reg8 

temp ....... AW 1 1 1 1 0 1 1 0 mod 
When temp+ (mem8) > FFH 
(SP - 1, SP - 2) +- PSW, (SP - 3, SP - 4) ....... PS 
(SP - 5, SP - 6) ....... PC, SP ....... SP - 6 
IE ....... 0, BRK ....... 0, PS ....... (3, 2), PC ....... (1, 0) 
All other times 
AH ....... temp% (mem8), AL ....... temp+ (mem8) 

temp +-AW 1 1 1 1 0 1 1 1 1 1 
When temp+ reg16 > FFFFH 
(SP - 1, SP - 2) ....... PSW, (SP - 3, SP - 4) ....... PS 
(SP - 5, SP - 6) ....... PC, SP ....... SP - 6 
IE ....... 0, BRK ....... 0, PS +- (3, 2), PC ....... (1, 0) 
All other times 
AH ....... temp% reg16, AL ....... temp+ reg16 

temp +-AW 1 1 1 1 0 1 1 1 mod 
When temp+ (mem16) > FFFFH 
(SP - 1, SP - 2) ....... PSW, (SP - 3. SP - 4) ....... PS 
(SP - 5, SP - 6) ....... PC, SP ....... SP - 6 
IE ....... 0, BRK ....... 0, PS ....... (3, 2), PC ....... (1, 0) 
All other times 
AH ....... temp% (mem16), AL ....... temp+ (mem16) 

Signed Division Instructions 

temp +-AW 1 1 1 1 0 1 1 0 1 1 
When temp + reg8 > O and temp + reg8 > 7FH or 
temp+ reg8 < 0 and temp+ reg8:;;: 0 • 7FH - 1 
(SP - 1, SP - 2) ....... PSW, (SP - 3, SP - 4) ....... PS 
(SP - 5, SP - 6) ....... PC, SP ....... SP - 6 
IE ....... 0, BRK ....... 0, PS +- (3, 2), PC ....... (1, 0) 
All other times 
AH ....... temp% reg8, AL ....... temp+ reg8 -

No.of 
5 4 3 2 I 0 Clocks 

reg reg 36-42 1 
reg mem 42·48 

/46·52 

1 1 0 reg 19 

' 

1 1 0 mem 25 

1 1 0 reg 25 

1 1 0 mem 31/35 

1 1 1 reg 29·34 

No.of 
Bytes AC 

4 u 

4-6 u 

2 u 

2-4 u 

2 u 

2-4 u 

2 u 

CY 

x 

x 

u 

u 

u 

u 

u 

Flags 
v p s z 

x u u u 

x u u u 

u u u u 

u u u u 

u u u u 

u u u u 

u u u u 

() 

x 
0 ... 
~ 

"' 

fl} 

0 
z 
~ 



0 
00 

Mnemonic 

DIV 

ADJ BA 

ADJ4A 

ADJ BS 

ADJ4S 

Operand 

mem8 

reg16 

mem16 

Operation Code 
Operation 7 6 5 4 3 2 

Signed Division Instructions (cont) 

temp <--AW 1 1 1 1 0 1 
When temp+ (mem6) > 0 and temp+ (mem6) > 7FH 
or temp + (memB) < 0 and 
temp+ (mem8)::; 0 - 7FH - 1 
(SP - 1, SP - 2) ..._ PSW, (SP - 3, SP - 4) ..._ PS 
(SP - 5, SP - 6) ..._ PC, SP ..._ SP - 6 
IE ..._ 0, BAK ..._ 0, PS ..._ (3, 2), PC..._ (1, 0) 
All other times 
AH - temp% (mem8), AL - temp+ (mem8) 

temp-AW 1 1 1 1 0 1 
When temp+ reg16 > O and temp+ reg16 > 7FFFH 
or temp + reg16 < O and 
temp+ reg16 ,;;O- 7FFFH - 1 
(SP - 1, SP - 2) ..._ PSW, (SP - 3, SP - 4) ..._ PS 
(SP - 5, SP - 6) ..._ PC, SP..._ SP - 6 
IE..._ 0, BAK..._ 0, PS..._ (3, 2), PC<-- (1, 0) 
All other times 
AH - temp% reg16, AL ..._ temp+ reg 16 

temp-AW 1 1 1 1 0 1 
When temp+(mem16)>0 and temp+(mem16)>7FFFH 
or temp+ (mem16) < 0 and temp+ (mem16) 
o>O-?FFFH-1 
(SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) - PS 
(SP - 5, SP - 6) ..._ PC, SP - SP - 6 
IE..._ 0, BAK..._ 0, PS - (3, 2), PC - (1, 0) 
All other times 
AH - temp% (mem16), AL..._ temp+ (mem16) 

BCD Complement Instructions 

When (AL AND OFH) > 9 or AC = 1, 0 0 1 1 0 1 
AL - AL+ 6, AH..._ AH+ 1, AC..._ 1, 
CY ..._ AC, AL ..._ AL AND OFH 

When (AL AND OFH) > 9 or AC= 1, 0 0 1 0 0 1 
AL..._ AL+ 6, CY ..._CY OR AC, AC..._ 1, 
When AL> 9FH, or CY= 1 
AL..._ AL+ 60H, CY ..._ 1 

When (AL AND OFH) > 9 or AC = 1, 0 0 1 1 1 1 
AL..._ AL - 6, AH..._ AH - 1, AC - 1, 
CY ..._AC, AL - AL AND OFH 

When (AL AND OFH) > 9 or AC= 1, 0 0 1 0 1 1 
AL-AL-6, CY <--CY OR AC, AC <--1 
When AL > 9FH or CY = 1 
AL ..._ AL - 60H, CY ..._ 1 

No.of 
10765432 I 0 Clocks 

1 0 mod 1 1 1 mem 35-40 

1 1 1 1 1 1 1 reg 38-43 

1 1 mod 1 1 1 mem 44-49 
/48-53 

1 1 3 

1 1 3 

1 1 7 

1 1 7 

No.of 
Bytes AC 

2-4 u 

2 u 

2-4 u 

1 x 

1 x 

1 x 

1 x 

Flags 
CY V P S Z 

u u u u u 

u u u u u 

u u u u u 

x u u u u 

x u x x x 

x u u u u 

x u x x x 

(') 

x 
0 .... 
~ 

Ol 

rn 
0 
z 
~ 



0 
\D 

I 

Mnemonic 

CVTBD 

CVTDB 

GVTBW 

CVTWL 

CMP 

NOT 

NEG 

TEST 

AND 

Operand 

reg, reg 

mem, reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

reg 

mem 

reg 

mem 

reg, reg 

mem, reg 
or reg, mem 

reg, imm 

mem. imm 

ace, imm 

reg, reg 

mem. reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

Operation 

AH - AL+ OAH, AL - AL % OAH 

AH - 0, AL - AH x OAH + AL 

When AL< 80H, AH - 0, 
all other times AH - FFH 

When AL< 8000H, OW - 0, 
all other times DW - FFFFH 

reg - reg 

(mem) - reg 

reg-(mem) 

reg-imm 

(mem)-imm 

When W = 0, AL - imm 
When W= 1, AW-imm 

reg - reg 

(mem) - (mem) 

reg - reg+ 1 

(mem) - (mem) + 1 

reg AND reg 

(mem) AND reg 

reg AND imm 

(mem) AND imm 

When W = 0, AL AND imm8 
When W = 1, AW AND imm8 

reg - reg AND reg 

(mem) - (mem) AND reg 

reg - reg AND (mem) 

reg - reg AND imm 

(mem) - (mem) AND imm 

When W = 0, AL - AL AND imm8 
When W = 1, AW -AW AND imm16 

Operation Code 

7 6 5 4 3 2 I 0 7 6 

Data Conversion Instructions 

1 1 0 1 0 1 0 0 0 0 

1 1 0 1 0 1 0 1 0 0 

1 0 0 1 1 0 0 0 

1 0 0 1 1 0 0 1 

Comparison Instructions 

0 0 1 1 1 0 1 w 1 1 

0 0 1 1 1 0 0 W mod 

0 0 1 1 1 0 1 W mod 

1 0 0 0 0 0 s w 1 1 

1 0 0 0 0 0 s W mod 

0 0 1 1 1 1 0 w 

Complement Instructions 

1 1 1 1 0 1 1 w 1 1 

1 1 1 1 0 1 1 W mod 

1 1 1 1 0 1 1 w 1 1 

1 1 1 1 0 1 1 W mod 

Logical Operation Instructions 

1 0 0 0 0 1 0 w 1 1 

1 0 0 0 0 1 0 W mod 

1 1 1 1 0 1 1 w 1 1 

1 1 1 1 0 1 1 W mod 

1 0 1 0 1 0 0 w 

0 0 1 0 0 0 1 w 1 1 

0 0 1 0 0 0 0 W mod 

0 0 1 0 0 0 1 W mod 

1 0 0 0 0 0 0 w 1 1 

1 0 0 0 0 0 0 W mod 

0 0 1 0 0 1. 0 w 

-

No.of 
5 4 3 2 I 0 Clocks 

0 0 1 0 1 0 15 

0 0 1 0 1 0 7 

2 

4-5 

reg reg 2 

reg mem 11/15 

reg mem 11/15 

1 1 1 reg 4 

1 1 1 mem 13/17 

4 

0 1 0 reg 2 

0 1 0 mem 16/24 

0 1 1 reg 2 

0 1 1 mem 16/24 

reg reg 2 

reg mem 10/14 

0 0 0 reg 4 

0 0 0 mem 11/15 

4 

reg reg 2 

reg mem 16/24 

reg mem 11/15 

1 0 0 reg 4 

1 1 0 mem 18/26 

4 

No. of 
Bytes AC CY 

2 u u 

2 u u 

1 

1 

2 x x 

2-4 x x 

2-4 x x 

3-4 x x 

3-6 x x 

2-3 x x 

2 

2-4 

2 x x 

2-4 x x 

2 u 0 

2-4 u 0 

3-4 u 0 

3~ u 0 

2-3 u 0 

2 u 0 

2-4 u 0 

2-4 u 0 

3-4 u 0 

3~ u 0 

2-3 u 0 

Flags 
v p s z 

u x x x 

u x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

x x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

(') 

x 
p 
.... 
s 
"' 

en 

0 
z 
~ 



0 

I 

Mnemonic 

OR 

XOR 

TEST1 

Operand 

reg, reg 

mem, reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

reg, reg 

mem, reg 

reg, mem 

reg, imm 

mem, imm 

ace, imm 

reg8, CL 

memB, CL 

reg16, CL 

mem16, CL 

reg8, imm3 

mem8, imm3 

reg16, imm4 

mem16, imm4 

Operation 

reg - reg OR reg 

(mem) - (mem) OR reg 

reg - reg OR (mem) 

reg - reg OR imm 

(mem) +-- (mem) OR imm 

When W = 0, AL +-- AL OR imm8 
When W = 1, AW +--AW OR imm16 

reg +-- reg XOR reg 

(mem) ,..__ (mem) XOR reg 

reg ,..__ reg XOR (mem) 

reg +-- reg XOR imm 

(mem)+--(mem)XORimm 

When W = 0, AL+-- AL XOR imm8 
When W = 1, AW+-- AW XOR imm16 

reg8 bit no. CL = O: Z +-- 1 
reg8 bit no. CL = 1: Z ,..__ O 

(mem8) bit no. CL= O: Z ,..__ 1 
(mem8) bit no. CL= 1: Z - O 

reg16 bit no. CL= O: Z ,..__ 1 
reg16 bit no. CL= 1: Z ,..__ O 

(mem16) bit no. CL= 0: Z +-- 1 
(mem16) bit no. CL= 1: Z ,..__ 0 

reg8 bit no. imm3 = 0: Z +- 1 
reg8 bit no. imm3 = 1: Z +--0 

[mem8) bit no. imm3 = O: Z ,..__ 1 
(mem8) bit no. imm3 = 1: Z +-- 0 

reg16 bit no. imm4 = 0: Z +-- 1 
reg16 bit no. imm4 = 1: Z +-- 0 

(mem16) bit no. imm4 = 0: Z +-- 1 
(mem16) bit no. imm4 = 1: Z ,..__ O 

Operation Code 
7 6 5 4 3 2 I 0 7 6 

Logical Operation Instructions [contl 

0 0 0 0 1 0 1 W1 1 

0 0 0 0 1 0 0 W mod 

0 0 0 0 1 0 1 W mod 

1 0 0 0 0 0 0 w 1 1 

1 0 0 0 0 0 0 W mod 

0 0 0 0 1 1 0 w 

0 0 1 1 0 0 1 W1 1 

0 0 1 1 0 0 0 W mod 

0 0 1 1 0 0 1 W mod 

1 0 0 0 0 0 0 w 1 1 

1 0 0 0 O O O W mod 

0 0 1 1 0 1 0 w 

Bit Operation Instructions 

2nd byte• 

0 0 0 1 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 mod 

0 0 0 1 0 0 0 1 1 1 

0 0 0 1 0 0 0 1 mod 

0 0 0 1 1 0 0 0 1 1 

0 0 0 1 1 0 0 0 mod 

0 0 0 1 1 0 0 1 1 1 

0 0 0 1 1 0 0 1 mod 

2nd byte* 
'Note: First byte= OFH 

No. of 
5 4 3 2 I 0 Clocks 

reg reg 2 

reg rnem 16/24 

reg mem 11/15 

0 0 1 reg 4 

0 0 1 mem 18/26 

4 

reg reg 2 

reg mem 16/24 

reg mem 11/15 

1 1 0 reg 4 

1 1 0 mem 18/26 

4 

3rd byte• 

0 0 0 reg 3 

0 0 0 mem 12 

0 0 0 reg 3 

0 0 0 mem 12/16 

0 0 0 reg 4 

0 0 0 mem 13 

0 0 0 reg 4 

0 0 0 mem 13/17 

3rd byte' 

No. of 
Bytes AC CY 

2 u 0 

2-4 u 0 

2-4 u 0 

3-4 u 0 

3-6 u 0 

2-3 u 0 

2 u 0 

2-4 u 0 

2-4 u 0 

3-4 u 0 

3-6 u 0 

2-3 u 0 

3 u 0 

3-5 u 0 

3 u 0 

3-5 u 0 

4 u 0 

4-6 u 0 

4 u 0 

4-6 u 0 

Flags 
y p s z 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 x x x 

0 u u x 

0 u u x 

0 u u x 

0 u u x 

0 u u x 

0 u u x 

0 u u x 

0 u u x 

() 

x 
0 .... 
~ 

Oi 

en 

0 
z 
~ 



Operation Code 
Mnemonic Operand Operation 7 6 5 4 3 2 1 0 7 6 

Bit Operation lnslructions fcontl 

2nd byte' 

NOT1 regs. CL regs bit no. CL - regs bit no. CL 0 0 0 1 0 1 1 0 1 1 

memS, CL (memS) bit no. CL - (memS) bit no. CL 0 0 0 1 0 1 1 0 mod 

reg16, CL reg16 bit no. CL - reg16 bit no. CL 0 0 0 1 0 1 1 1 1 1 

mem16, CL (mem16) bit no. CL - (mem16) bit no. CL 0 0 0 1 0 1 1 1 mod 

regS, imm3 regs bit no. imm3 - regs bit no. imm3 0 0 0 1 1 1 1 0 1 1 

memS, imm3 (memS) bit no. imm3 - (mem8) bit no. imm3 0 0 0 1 1 1 1 0 mod 

reg16, imm4 reg16 bit no. imm4 - (reg16) bit no. imm4 0 0 0 1 1 1 1 1 1 1 

mem16, imm4 (mem16) bit no. imm4 - (mem16) bit no. imm4 0 0 0 1 1 1 1 1 mod 

2nd byte' 
•Note: First byte = OFH 

CY CY+- CY 1 1 1 1 0 1 0 1 

2ndjyte' 

CLR1 reg8, CL regs bit no. CL - 0 0 0 0 1 0 0 1 0 1 1 

memS, CL (memS) bit no. CL - 0 0 0 0 1 0 0 1 0 mod 

reg16, CL reg16 bit no. CL - 0 0 0 0 1 0 0 1 1 1 1 

mem16, CL (mem16) bit no. CL - 0 0 0 0 1 0 0 1 1 mod 

reg8, imm3 reg8 bit no. imm3 - 0 0 0 0 1 1 0 1 0 1 1 

memS, imm3 (memS) bit no. imm3 - 0 0 0 0 1 1 0 1 0 mod 

reg16, imm4 reg16 bit no. imm4 - O 0 0 0 1 1 0 1 1 1 1 

mem16, imm4 (mem16) bit no. imm4 - 0 0 0 0 1 1 0 1 11Lmod 

2nd byte• 
•Note: First byte= OFH 

CY CY-a 1 1 1 1 1 0 0 0 

DIR DIR-a 1 1 1 1 1 1 0 0 

No. of 
5 4 3 2 1 0 Clocks 

3rd byte' 

0 0 0 reg 4 

0 0 0 mem 1S 

0 0 0 reg 4 

0 0 0 mem 18/26 

0 0 0 reg 5 

0 0 0 mem 19 

0 0 0 reg 5 

0 0 0 mem.J 19/27 

3rd byte' 

2 

3rd _'!.Yte' 

0 0 0 reg 5 

0 0 0 mem 14 

0 0 0 reg 5 

0 0 0 mem 14/22 l 
0 0 0 reg 6 

0 0 0 mem 15 

0 0 0 reg 6 

0 0 0 mem 15/27 

3rd byte' 

2 

2 

No. of 
Bytes AC 

3 

3-5 

3 

3-5 

4 

4-6 

4 

4-6 

1 

3 

3-5 

3 

3-5 

4 

4-6 

4 

4-6 

1 

1 

Flags 
CY ' p s z 

x 

0 

() 

x 
0 
-.J 

:? 
O> 

rn 
0 
z 
~ 



Operation Code 

Mnemonic Operand Operation 7 6 5 4 3 2 107654 3 2 

Bit Operation Instructions (cont) 

2ndjyte• 3rd byte• 

SET1 reg8, CL reg8 bit no. CL+- 1 0 0 0 1 0 1 0 0 1 1 0 0 0 

mem8, CL (mem8) bit no. CL +- 1 0 0 0 1 0 1 0 0 mod 0 0 0 

reg16, CL reg16 bit no. CL+- 1 0 0 0 1 0 1 0 1 1 1 0 0 0 

mem16, CL (mem16) bit no. CL+- 1 0 0 0 1 0 1 0 1 mod 0 0 0 

reg8, imm3 reg8 bit no. imm3 +- 1 0 0 0 1 1 1 0 0 1 1 0 0 0 

mem8, imm3 (mem8) bit no. imm3 +- 1 0 0 0 1 1 1 0 0 mod 0 0 0 

reg16, imm4 reg16 bit no. imm4 +- 1 0 0 0 1 1 1 0 1 1 1 0 0 0 

mem16, imm4 (mem16) bit no. imm4 +- 1 0 0 0 1 1 1 0 1 mod 0 0 0 

2nd byte• 3rd byte• 
•Note: First byte = OFH 

CY CY +-1 1 1 1 1 1 0 0 1 

DIR DIR+- 1 1 1 1 1 1 1 0 1 

Shift Instructions 

N SHL reg, 1 CY +- MSB of reg, reg +- reg x 2 0 1 0 0 0 w 1 1 1 0 0 reg 
When MSB of reg# CY, V +- 1 
When MSB of reg= CY, V +- 0 

mem, 1 CY +- MSB of (mem), (mem) +- (mem) x 2 1 1 0 1 OOOWmod 1 0 0 
When MSB of (mem) #CY, V +- 1 
When MSB of (mem) =CY, V +- O 

reg, CL temp +- CL, while temp "" 0, 1 1 0 1 0 0 1 w 1 1 1 0 0 
repeat this operation: CY +- MSB of reg, 
reg +- reg x 2, temp +-temp - 1 

mem, CL temp +- CL, while temp# 0, 1 1 0 1 0 0 1 W mod 1 0 0 
repeat this operation: CY +- MSB of (mem), 
(mem) +- (mem) x 2, temp +-temp - 1 

reg, immB temp+- imm8, while temp# 0, 1 1 OOOOOW1 1 1 0 0 
repeat this operation: CY+- MSB of reg, 
reg +- reg x 2, temp +-temp - 1 

mem, immB temp+- imm8, while temp# 0, 1 1 0 0 0 0 0 W mod 1 0 0 
repeat this operation: CY +- MSB of (mem), 
(mem) +- (mem) x 2, temp +- temp - 1 n: number of shifts 

SHR reg, 1 CY +- LSB of reg, reg +- reg + 2 1 1 0 1 0 0 0 w 1 1 1 0 1 
When MSB oi reg #bit following MSB 
of reg: V +-1 
When MSB of reg = bit following MSB 
of reg: V +-0 

No. of 
1 0 Clocks 

reg 4 

niem 13 

reg 4 

mem 13/21 

reg 5 

mem 14 

reg 5 

mem 14/22 

2 

2 

2 2 

mem 16/24 

reg 7+n 

mem 19/27 

+ n 

reg 7+n 

mem 19/27 

+ n 

reg 2 

No. of 
Bytes 

3 

3.5 

3 

3.5 

4 

4-6 

4 

4-6 

1 

1 

u 

2-4 

2 

2-4 

3 

3.5 

2 

Flags 
AC CY V P S Z 

1 

x x x x x 

uxxxxx 

uxuxxx 

uxuxxx 

uxuxxx 

uxuxxx 

uxxxxx 

() 

x 
0 .... 
~ 

"' 

00 
0 
z 
~ 



Operation Code 
Mnemonic Operand Operation 7 6 5 4 3 2 I 0 7 6 5 4 

Shih lnstrucllons (conl) 

SHR mem, 1 CY+-- LSB of (mem), (mem) +-- (mem) + 2 1 1 0 1 0 0 0 W mod 1 0 
When MSB of (mem) '°bit following MSB 
of (mem): V +-- 1 
When MSB of (mem) = bit following MSB 
of (mem): V +-- 0 

reg, CL temp +--CL, while temp'° 0, 1 1 0 1 0 0 0 w 1 1 1 0 
repeat this operation: CY +-- LSB of reg, 
reg +-- reg + 2, temp +--temp - 1 

mem,CL temp +--CL, while temp'° 0, 1 1 0 1 0 0 1 W mod 1 0 
repeat this operation: CY+-- LSB of (mem), 
(mem) +-- (mem) + 2, temp+-- temp - 1 

reg, imm8 temp +-- imm8, while temp '° 0, 1 1 0 0 0 0 0 W1 1 1 0 
repeat this operation: CY +-- LSB of reg, 
reg +-- reg + 2, temp +-- temp - 1 

mem, imm8 temp +-- imm8, while temp '° 0, 1 1 0 0 OOOWmod 1 0 
repeat this operation; CY +-- LSB of (mem), 
(mem) - (mem) + 2, temp - temp - 1 n: number of shifts 

SHRA reg, 1 CY +-- LSB of reg, reg +-- reg + 2, V +-- 0 1 1 0 1 0 0 0 w 1 1 1 1 
MSB of operand does not change 

w 
mem, 1 CY+-- LSB of (mem), (mem) - (mem) + 2, 1 1 0 1 0 0 0 W mod 1 1 

V +-- 0, MSB of operand does not change 

reg, CL temp - CL, while temp '° 0, 1 1 0 1 0 0 1 w 1 1 1 1 
repeat this operation: CY +-- LSB of reg, 
reg +- reg + 2, temp +-- temp - 1 
MSB of operand does not change 

mem, CL temp - CL, while temp '° 0, 1 1 0 1 0 0 1 W mod 1 1 
repeat this operation: CY +-- LSB of (mem), 
(mem) +-- (mem) + 2, temp - temp - 1 
MSB of operand does not change 

reg, imm8 temp +-- imm8, while temp '° 0, 1 1 OOOOOW1 1 1 1 
repeat this operation: CY - LSB of reg, 
reg +- reg + 2, temp +-- temp - 1 
MSB of operand does not change 

mem, imm8 temp +-- imm8, while temp "" 0, 1 1 0 0 OOOWmod 1 1 
repeat this operation: CY+- LSB of (mem), 
(mem) +-- (mem) + 2, temp - temp - 1 
MSB of operand does not change n: number of shifts 

-

No.DI 
3 2 I 0 Clocks 

1 mem 16/24 

1 reg 7+n 

1 mem 19/27 
+ n 

1 reg 7+n 

1 mem 19/27 
+ n 

1 reg 2 

1 mem 16/24 

1 reg 7+n 

1 mem 19/27 
+ n 

1 reg 7+n 

1 mem 19/27 
+ n 

No.DI 
Bytes AC CY 

2-4 u x 

2 u x 

2-4 u x 

3 u x 

3-5 u x 

2 u x 

2-4 u x 

2 u x 

2-4 u x 

3 u x 

3-5 u x 

flags 
v p s z 

x x x x 

u x x x 

u x x x 

u x x x 

u x x x 

0 X- X x 

0 x x x 

u x x x 

u x x x 

u x x x 

u x x x 

() 

x 
0 .... 
:1 
en 

en 

0 
z 
~ 



.j::>. 

I 

Mnemonic 

ROL 

ROR 

Operand 

reg, 1 

mem, 1 

reg, CL 

mem, CL 

reg, imm8 

mem, imm8 

reg, 1 

mem, 1 

reg, CL 

mem, CL 

Operation 

CY +- MSB of reg, reg +- reg x 2 + CV 
MSB of reg 7' CV: V +-1 
MSB of reg = CV· V +- 0 

CY +- MSB of (mem), 
(mem) +- (mem) x 2 +CY 
MSB of (mem) 7' CY: V +- 1 
MSB of (mem) = CY: V +- 0 

temp +- CL, while temp 7' 0, 
repeal this operation: CY +- MSB of reg, 
reg +-regx2+CY 
temp +- temp - 1 

temp +- CL, while temp 7' 0, 
repeat this operation: CY +- MSB of (mem), 
(mem) +- (mem) x 2 +CY 
temp +- temp - 1 

temp +- imm8, while temp 7' 0, 
repeat this operation: CY +- MSB of reg, 
reg+-regx2+CY 
temp +- temp - 1 

temp +- imm8, while temp 7' 0, 
repeal this operation: CY+- MSB of (mem), 
(mem) +- (mem) x 2 +CY 
temp +- temp - 1 

CY +- LSB of reg, reg +- reg "' 2 
MSB of reg +- CV 
MSB of reg 7' bit following MSB of reg: V +- 1 
MSB of reg = bit 1ollowing MSB of reg: V +- 0 

CY +- LSB of (mem), (mem) +- (mem) "'2 
MSB of (mem) +-CY 
MSB of (mem),,. bit following MSB 
of (mem): V +- 1 
MSB o1 (mem) = bit following MSB 
of (mem): V +- 0 

temp +- CL, while temp 7' 0, 
repeat this operation: CY +- LSB of reg, 
reg +- reg "' 2, MSB of reg +- CY 
temp +- tP,mp - 1 

temp +- CL, while temp 7' 0, 
repeat this operation: CY +- LSB of (mem). 
(mem) +- (mem) "'2, MSB of (mem) +-CY 
temp +-temp - 1 

Operation Code 
7&5432 10765432 

Rotation Instructions 

1 1 0 1 0 0 0 w 1 1 0 0 0 

1 1 0 1 OOOWmodOOO 

1 1 0 1 0 0 1 w 1 1 0 0 0 

1 1 0 1 0 0 1 WmodOOO 

1 1 OOOOOW1 1 0 0 0 

1 1 O 0 O 0 O W mod 0 0 0 

n: number of shifts 

1 1 0 1 0 0 0 w 1 1 0 0 1 

1 1 0 1 OOOWmod 0 0 1 

1 1 0 1 0 0 1 w 1 1 0 0 1 

1 1 0 1 0 0 1 W mod 0 0 1 

n:number of shifts 

Na.of 
1 0 Clocks 

reg 2 

mem 16/24 

reg 7+n 

reg 19/27 
+ n 

reg 7+n 

mem 19/27 
+ n 

reg 2 

mem 16/24 

reg 7+n 

mem 19/27 
+ n 

Na.of 
Byles AC 

2 

2-4 

2 

2-4 

3 

3-5 

2 

·2-4 

2 

2-4 

Flags 
CY V P S Z 

x x 

x x 

x u 

x u 

x u 

x u 

x x 

x x 

x u 

x u 

() 

~ .... 
~ 

"' 

Cll 
0 
z 
~ 



Operation Code 
Mnemonic Operand Operation 7 6 5 4 3 2 1 0 7 6 5 4 

Rotation Instructions (cont) 

ROA reg, imm8 temp +- imm8, while temp 7' 0, 1 1 0 0 0 0 0 w 1 1 0 0 
repeat this operation: CY +- LSB of reg, 
reg +- reg + 2, MSB of reg +- CY 
temp +- temp - 1 

mem, imm8 temp +- imm8, while temp,. 0, 1 1 0 0 0 0 0 W mod 0 0 
repeat this operation: CY+- LSB of (mem), 
(mem) +- (mem) + 2 
temp +- temp - 1 n: number of shifts 

Rotate Instruction 

ROLC reg, 1 tmpcy +-CY, CY+- MSB of reg 1 1 0 1 0 0 0 w 1 1 0 1 
reg +- reg x 2 + tmpcy 
MSB of reg = CY: V +- 0 
MSB of reg 7' CY: V +- 1 

mem, 1 tmpcy +-CY, CY+- MSB of (mem) 1 1 0 1 0 0 0 W mod 0 1 
(mem) +- (mem) x 2 + tmpcy 
MSB of (mem) =CY: V +- 0 
MSB of (mem) 7' CY: V +- 1 

reg, CL temp +- CL, while temp 7' 0, 1 1 0 1 0 0 1 w 1 1 0 1 

V1 
repeat this operation: tmpcy +-CY, 
CY +- MSB of reg, reg +- reg x 2 + tmpcy 
temp +- temp - 1 

mem,CL temp +- CL, while temp 7' 0, 1 1 0 1 0 0 1 W mod 0 1 
repeat this operation:tmpcy +-CY, 
CY +- MSB of (mem), 
(mem) +- (mem) x 2 + tmpcy 
temp +- temp - 1 

reg, imm8 temp +- imm8, while temp 7' 0, 1 1 OOOOOW1 1 0 1 
repeat this operation: tmpcy +- CY, 
CY +- MSB of reg, reg +- reg x 2 + tmpcy 
temp +- temp - 1 

mem, imm8 temp +- imm8, while temp 7' 0, 1 1 0 0 0 0 0 W mod 0 1 
repeat this operation: tmpcy +-CY, 
CY +- MSB of (mem) 
(mem) +- (mem) x 2 + tmpcy 
temp +- temp - 1 n: number of shifts 

-

No.of 
3 2 I 0 Clocks 

1 reg 7+n 

1 mem 19/27 
+ n 

0 reg 2 

0 mem 16/24 

0 reg 7+n 

0 mem 19/27 
+ n 

0 reg 7+n 

0 mem 19/27 
+ n 

No.of 
Bytes AC CY 

3 x 

3-5 x 

2 x 

2-4 x 

2 x 

2-4 x 

3 x 

3-5 x 

Flags 

' p s z 

u 

u 

x 

x 

u 

u 

u 

u 

(") 

x 
8 
~ 

m 

m 
0 
z 
~ 



0\ 

I 

Mnemonic 

RORC 

CALL 

Operand 

reg, 1 

mem, 1 

reg, CL 

mem, CL 

reg, imm8 

mem, imm8 

near-proc 

regptr16 

memptr16 

far-proc 

memptr32 

Operation Code No.of 
Operation 765432 10765432 I 0 Clocks 

Rotate Instructions (cont) 

tmpcy - CY, CY - LSB of reg 1 1 0 1 0 0 0 w 1 1 0 1 1 reg 2 
reg - reg + 2, MSB of reg - tmpcy 
MSB of reg# bit following MSB of reg: V - 1 
MSB of reg =bit following MSB of reg: V - 0 

tmpcy - CY, CY - LSB of (mem) 1 1 0 1 OOOWmod 0 1 1 mem 16/24 
(mem) - (mem) + 2, MSB of (mem) - tmpcy 
MSB of (mem) ,e bit following MSB 
of (mem): V - 1 
MSB of (mem) = bit following MSB 
of (mem): V - 0 

temp - CL, while temp ,e 0, 1 1 0 1 0 0 1 w 1 1 0 1 1 reg 7+n 
repeat this operation: tmpcy - CY, 
CY - LSB of reg, reg - reg + 2, 
MSB of reg - tmpcy, temp - temp -1 

temp - CL, while temp ,e 0, 1 1 0 1 0 0 1 W mod 0 1 1 mem 19/27 
repeat this operalion;tmpcy - CY, + n 
CY - LSB of (mem), (mem) - (mem) + 2 
MSB of (mem) - tmpcy, temp - temp - 1 

temp - imm8, while temp ,e O 1 1 OOOOOW1 1 0 1 1 reg 7+n 
repeat this operation:tmpcy - CV, 
CY - LSB of reg, reg - reg + 2 
MSB of reg - tmpcy, temp - temp - 1 

temp - imm8, while temp ,e 0, 1 1 0 O 0 0 O W mod 0 1 1 mem 19/27 
repeat this operation:tmpcy - CY, + n 
CY +- LSB of (mem), (mem) - (mem) + 2 
MSB of (mem) - tmpcy, temp - temp - 1 n: number of shifts 

Subroutine Control Instructions 

(SP-1, SP-2) - PC, SP-SP-2 1 1 1 0 1 0 0 0 16/20 
PC-PC+disp 

(SP-1, SP-2)- PC, SP-SP-2 1 1 1 1 1 1 1 1 1 1 0 1 0 reg 14/18 
PC - reg ptr16 

(SP-1, SP-2)- PC, SP-SP-2 1 1 1 1 1 1 1 1 mod 0 1 0 mem 23/31 
PC +- (memptr16) 

(SP - 1, SP - 2) - PS, (SP - 3, SP - 4) - PC 1 0 0 1 1 0 1 0 21/29 
SP - SP - 4, PS - seg, PC - offset 

(SP - 1, SP - 2) - PS, (SP - 3, SP - 4) +-PC 1 1 1 1 1 1 1 1 mod 0 1 1 mem 31/47 
SP - SP - 4, PS - (memptr32 + 2), 
PC - (memptr32) 

No.of 
Bftes AC 

2 

2-4 

2 

2-4 

3 

3-5 

3 

2 

2-4 

5 

2-4 

Flags 
CT V P S Z 

x x 

x x 

x u 

x u 

x u 

x u 

·-

(") 
)( 
p 
.... 
~ 

"' 

m 
0 
z 
~ 



Operation Code 
Mnemonic Operand Operation 765432 107654 3 2 I 0 

Subroutine Control Instructions (cont) 

RET PC ...... (SP+ 1. SP), SP ...... SP+ 2 1 1 0 0 0 0 1 1 

pop-value PC ...... (SP+ 1, SP) 1 1 0 0 0 0 1 0 
SP ...... SP+ 2, SP ...... SP+ pop-value 

PC ...... (SP+ 1, SP), PS ...... (SP+ 3, SP+ 2) 1 1 0 0 1 0 1 1 
SP ...... SP+ 4 

pop-value PC ...... (SP+ 1, SP), PS ...... (SP+ 3, SP+ 2) 1 1 0 0 1 0 1 0 
SP ...... SP + 4, SP ...... SP + pop-value 

Stack Manipulation Instructions 

PUSH mem16 (SP-1, SP - 2) ...... (mem16), SP ...... SP-2 1 1 1 1 1 1 1 1 mod 1 1 0 mem 

reg16 (SP - 1, SP - 2) ...... reg16, SP+- SP - 2 0 1 0 1 0 reg 

sreg (SP- 1, SP- 2) ...... sreg, SP ...... SP - 2 OOOsreg 1 1 0 

PSW (SP-1, SP-2) +- PSW, SP +-SP-2 1 0 0 1 1 1 0 0 

R Push registers on the stack 0 1 1 0 0 0 0 0 

imm (SP - 1, SP - 2) - imm, SP - SP - 2, 0 1 1 0 1 0 s 0 
When S = 1, sign extension 

--l 
POP mem16 (mem16) ...... (SP+ 1, SP), SP ...... SP+ 2 1 0 0 0 1 1 1 1 mod 0 0 0 mem 

reg16 reg16 ...... (SP+ 1, SP), SP ...... SP+ 2 0 1 0 1 1 reg 

sreg sreg ...... (SP+ 1, SP) sreg : SS, DSO, DS1 0 0 0 sreg 1 1 1 
SP +-SP+ 2 

PSW PSW +-(SP+ 1, SP), SP +-SP+2 1 0 0 1 1 1 0 1 

R Pop registers from the slack 0 1 1 0 0 0 0 1 

PREPARE imm16, imm8 Prepare new stack frame 11001000 
•: imm8 = 0: 12/16 

imm8 z1: 22 + 20 x (imm8 -1): Odd Address 
18 + 12 X (imm8 - 1): Even Address 

DISPOSE Dispose of stack frame 11001001 

Branch Instruction 

BR near-label PC- PC+ disp 1 1 1 0 1 0 0 1 

short-label PC ...... PC + ext-disp8 1 1 1 0 1 0 1 1 

regptr16 PC ...... regptr16 1 1 1 1 1 1 1 1 1 1 1 0 0 reg 

memptr16 PC ...... (memptr16) 1 1 1 1 1 1 1 1 mod 1 0 0 mem 

far-label PS ...... seg, PC ...... offset 1 1 1 0 1 0 1 0 

memptr32 PS ...... (memptr32 + 2), PC ...... (memptr32) 1 1 1 1 1 1 1 1 mod 1 0 1 mem 

-

No. of ~ No. of 
Clocks • Bytes AC 

15119 I 1 

20124 T 3 

I 

21129 T 1 

24/32 3 

18126 T 2-4 

8/12 1 

8/12 1 

8/12 1 

35/67 1 

7/11 2-3 
or 8/12 

17/25 2-4 

8/12 
: 1 

8/12 1 1 

8/12 l 1 R 

43/75 1 . ! 
4 

l 
6110 I 1 

12 I 3 

12 I 2 

11 I 2 

20124 I 2-4 

15 5 

27/35 2-4 

Flags 
CY V P S Z 

R R R R R 

() 

x 
0 ..., 
~ 

Ol 

00 
0 
z 
~ 



00 

I 

Mnemonic 

BV 

BNV 

BC, BL 

BNC,BNL 

BE, BZ 

BNE,BNZ 

BNH 

BH 

BN 

BP 

BPE 

BPO 

BLT 

BGE 

BLE 

BGT 

OBNZNE 

OBNZE 

OBNZ 

BCWZ 

BRK 

Operand 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

short-label 

3 

imm8 
(#3) 

Operation Code 
Operation 765432 107654 

Conditional Brarn:h Instructions 

If V = 1, PC - PC + ext-disp8 0 1 1 1 0 0 0 0 

If V = 0, PC - PC + ext-disp8 0 1 1 1 0 0 0 1 

If CY = 1, PC - PC + ext-disp8 0 1 1 1 0 0 1 0 

If CY = 0, PC - PC + ext-disp8 0 1 1 1 0 0 1 1 

If Z = 1, PC - PC + ext-disp8 0 1 1 1 0 1 0 0 

If Z = 0, PC - PC + ext-disp8 0 1 1 1 0 1 0 1 

If CY OR Z = 1, PC - PC + ext-disp8 0 1 1 1 0 1 1 0 

If CY OR Z = 0, PC - PC+ ext-disp8 0 1 1 1 0 1 1 1 

If S = 1, PC - PC + ext-disp8 0 1 1 1 1 0 0 0 

If S = 0, PC - PC + ext-disp8 0 1 1 1 1 0 0 1 

If P = 1, PC - PC + ext-disp8 0 1 1 1 1 0 1 0 

If P = 0, PC - PC + ext-disp8 0 1 1 1 1 0 1 1 

If S XOR V = 1, PC - PC+ ext-disp8 0 1 1 1 1 1 0 0 

If S XOR V = 0, PC - PC + ext-disp8 0 1 1 1 1 1 0 1 

If (S XOR V) OR Z = 1, PC - PC+ ext-disp8 0 1 1 1 1 1 1 0 

If (S XOR V) OR Z = 0, PC - PC+ ext-disp8 0 1 1 1 1 1 1 1 

cw-cw-1 1 1 1 0 0 0 0 0 
If Z = 0 and CW # 0, PC - PC + ext-disp8 

cw-cw-1 1 1 1 0 0 0 0 1 
If Z = 1 and CW # 0, PC - PC + ext-disp8 

cw-cw-1 1 1 1 0 0 0 1 0 
If CW# 0, PC - PC+ ext-disp8 

If CW = 0, PC - PC + ext-disp8 1 1 1 0 0 0 1 1 

Interrupt Instructions 

(SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) - PS, 1 1 0 0 1 1 0 0 
(SP - 5, SP - 6) - PC, SP - SP - 6 
IE-0,BRK-O 
PS - (15, 14), PC - (13, 12) 

(SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) - PS, 1 1 0 0 1 1 0 1 
(SP - 5, SP - 6) - PC, SP - SP - 6 
IE-0,BRK-O 
PC - (n x 4 + 1 n x 4) 
PS - (n x 4 + 3, n x 4 + 2) n = imm8 

No.of 
3 2 I 0 Clocks 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/4 

14/5 

14/5 

13/5 

13/5 

38/50 

38/50 

No.of 
Bytes AC 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

2 

Flags 
CYVPSZ 

("') 

x 
D ... 
:1 
;;; 

rn 
0 
z 
~ 



\0 

I 

Mnemonic 

BRKV 

RETI 

CH KIND 

BR KEM 

HALT 

BUSLOCK 

FP01 

FP02 

POLL 

NOP 

DI 

El 

RETEM 

CALLN 

Operand 

reg16, 
mem32 

imm8 

Ip-op 

Ip-op, mem 

Ip-op 

Ip-op, mem 

imm8 

Operation Code 
Operation 765432 I 0 7 6 5 4 3 2 I 0 

lnlerrupt Instructions (cont) 

When V = 1 1 1 0 0 1 1 1 0 
(SP - 1, SP - 2) - PSW. (SP - 3, SP - 4) - PS, 
(SP - 5, SP - 6) - PC, SP - SP - 6 
IE-0, BRK-0 
PS - (19, 18), PC - (17, 16) 

PC- (SP+ 1, SP), PS - (SP+ 3, SP+ 2), 1 1 0 0 1 1 1 1 
PSW - (SP+ 5, SP+ 4), SP - SP+ 6 

When (mem32) > reg16 or (mem32 -+- 2) < reg16 0 1 1 0 0 0 1 0 mod reg mem 
(SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) - PS, 
(SP - 5, SP - 6) - PC, SP - SP - 6 
IE - 0, BRK - 0, 
PS - (23, 22), PC - (21, 20) 

(SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) - PS, 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
(SP - 5, SP - 6) - PC, SP - SP -- 6 
MD - 0, PC - (n x 4 + 1, n x 4) 
PS - (n x 4 + 3, n x 4 + 2), n = imm8 

CPU Control Instructions 

CPU Halt 1 1 1 1 0 1 0 0 

Bus Lock Prefix 1 1 1 1 0 0 0 0 

No Operation 1 1 0 1 1 x x x 1 1YYYZZZ 

data bus - (mem) 1 1 0 1 1 X X X mod Y Y Y mem 

No Operation 0 1 1 0 0 1 1 x 1 1YYYZZZ 

data bus - (mem) 0 1 1 0 0 1 1 X mod Y Y Y mem 

Poll and wait 1 0 0 1 1 0 1 1 
n: number of times POLL pin is sampled 

No Operation 1 0 0 1 0 0 0 0 

IE-0 1 1 1 1 1 0 1 0 

IE-1 1 1 1 1 1 0 1 1 

8080 Mode Instructions 

PC - (SP+ 1, SP), PS - (SP i" 3, SP+ 2), 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 
PSW - (SP+ 5, SP+ 4), SP - SP+ 6 

(SP - 1, SP - 2) - PSW, (SP - 3, SP - 4) 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 
- PS, (SP - 5, SP - 6) - PC, SP - SP - 6 
MD -1. PC - (n x 4 + 1, n x 4) 
PS - ( n x 4 + 3, n x 4 + 2), n = imm8 

-

No. of No.of 
Clocks Bytes 

40/52 1 
3 

27/39 1 

53-56 2-4 
/73-76 
18/26 

38/50 3 

2 1 

2 1 

2 2 

11/15 2-4 

2 2 

11/15 2-4 

2 +Sn 1 

3 1 

2 1 

2 1 

27/39 2 

38/58 3 

Flags 
AC CY V P S Z 

R R R R R R 

R R R R R R 

C'l 
x 
8 
s: 
o; 

00 
0 
z 
~ 



CX070116 SONY@ 

Package Outline Unit: mm 

40 pin DIP (Plastic) 40 pin DIP (Ceramic) 

- 120-


