
 

 

Copyright © 2016-22 Bermondsey Electronics Ltd - Unit B.505, The Biscuit Factory UK 

All rights reserved. This book or any portion thereof 

may not be reproduced or used in any manner whatsoever 

without the express written permission of Bermondsey Electronics Ltd 

 

 

 

 

 

BELIeVE User Manual 

 

 

https://manuals.plus/m/2e21f4050078e0efa9de3fc8b5399f9a6196f4189f25a1e2a90682450f650833


BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 2/16 

1. TABLE OF CONTENTS 

2. HISTORY .....................................................................................................................4 

3. INTRODUCTION ........................................................................................................5 

4. AN IMPORTANT NOTE ON JINT ...........................................................................5 

5. PROJECT SETUP ......................................................................................................5 

1. Create a project .................................................................................................................... 5 

2. Project folder structure ......................................................................................................... 5 

6. GROUPS AND TESTS ...............................................................................................5 

1. Setup Scripts ......................................................................................................................... 6 

2. TearDown Scripts .................................................................................................................. 6 

3. FailSafe Scripts ...................................................................................................................... 7 

4. Abort on failure .................................................................................................................... 8 

5. Script execution in detail ....................................................................................................... 9 

6. Assert thresholds ................................................................................................................ 10 

7. VARIABLES.............................................................................................................. 10 

1. TSTVAR ............................................................................................................................... 10 

2. TGVAR ................................................................................................................................ 10 

3. MSVAR ............................................................................................................................... 10 

8. DLLS .......................................................................................................................... 11 

1. (Another) Important note on Jint ........................................................................................ 11 

2. The GetInfos() method ........................................................................................................ 11 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 3/16 

3. ECMAScript is single threaded, DLLs need not be ................................................................. 11 

4. Init / Exit methods .............................................................................................................. 12 

9. JS TIPS (FROM THE PERSPECTIVE OF A C DEVELOPER) ....................... 12 

1. Dynamic typing is not the same as untyped ......................................................................... 12 

2. All those ASSERTs are there for a reason ............................................................................. 12 

3. IVI/VISA/SCIPI typically deals in strings ............................................................................... 12 

4. Threading ........................................................................................................................... 13 

10. INSTRUMENT TIPS ............................................................................................... 13 

1. Not all instruments are created equal ................................................................................. 13 

2. Not all instruments in the same series are created equal ..................................................... 13 

3. Vendors like to implement vendor-specific stuff .................................................................. 13 

4. Try the other comms interfaces to your TEST & MEASUREMENT KIT .................................... 13 

5. Even low-end test gear can be useful .................................................................................. 14 

6. Remember to close your TCP connections ........................................................................... 14 

11. GENERAL TIPS ....................................................................................................... 14 

1. Forget precise timing on the desktop .................................................................................. 14 

2. Your favourite embedded dev kit is really useful ................................................................. 14 

3. Sometimes you need a back channel to your DUT ............................................................... 15 

4. Test your error handlers...................................................................................................... 15 

5. You can test overnight ........................................................................................................ 15 

6. Let the randomiser find things ............................................................................................ 15 

7. Big log files can be fiddly ..................................................................................................... 15 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 4/16 

1. GLOSSARY ............................................................................................................... 16 

 

 

 

2. HISTORY 

 

Full Name Date Describe Version 

Peter Wrigley 19/10/2022 Initial release 0.1 

Peter Wrigley 25/10/2022 Add glossary 0.2 

Peter Wrigley 09/02/2023 Correct link, typos 0.3 

Peter Wrigley 23/02/2023 Add TCP tip 0.4 

 

  



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 5/16 

3. INTRODUCTION 

The purpose of this document is to describe the internal workings of the 

BELIeVE application. It presents to the user a detailed walk-through of the project 

setup and test run process. This document describes the internal operations of that 

process such that users can get better value from the product. 

4. AN IMPORTANT NOTE ON JINT 

Under the hood, the application uses the open source Jint engine to execute 

ECMAScript on .NET. This has the benefit of .NET interoperability. The Jint site 

itself documents some of its features, such as the .NET types used for Javascript 

objects. At the time of writing, we use 2.11.58, which implements ECMAScript v5.1. 

The manual describing the language is freely available and is recommended 

reading. As of February 2023, the manual is at https://www.ecma-

international.org/wp-content/uploads/ECMA-262_5.1_edition_june_2011.pdf. 

5. PROJECT SETUP 

BELIeVE projects are a collection of test scripts organised into test groups. Scripts 

can be run either individually or as groups. During test runs, data is logged to disk 

and to the debug console.  

1. CREATE A PROJECT 

On creation, a project file is an XML file on disk. Its contents can be edited by hand 

if preferred, as there is no special checksumming or encryption. By default, a 

couple of folders are created alongside as well. 

2. PROJECT FOLDER STRUCTURE 

The idea of the project folders is to contain project data (hex files, dynamic-link 

libraries [DLLs] etc.) in one place such that everything related to a given project can 

be version controlled using a single folder/repository.  

A ‘Log’ folder is created inside the ‘Workspace’ folder when the first test is run. This 
is a text file containing all text written to the “Log” and “Debug” windows of the 

main screen and is timestamped. This happens automatically at runtime without 

user intervention. File writes happen in a separate thread to the main Jint runtime, 

so the runtime overhead is minimal. 

6. GROUPS AND TESTS 

https://www.ecma-international.org/wp-content/uploads/ECMA-262_5.1_edition_june_2011.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_5.1_edition_june_2011.pdf


BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 6/16 

Tests are broken down into “Groups” with shared characteristics. Groups share 

“Test Group variables”. These are prefixed with TGVAR and are shown in 

autocomplete. Common variables used across a group might be a feature of the 

product to be activated, for example. 

1. SETUP SCRIPTS 

Each group can have a SetUp script associated with it. When enabled, the SetUp 

script is executed before each and every test script in a group. 

 

2. TEARDOWN SCRIPTS 

Similarly, every test can run a TearDown script after execution, if one is activated. 

The combination of SetUp and TearDown scripts could be used to reset a target 

between scripts, for example. The TearDown script is not executed once at the end 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 7/16 

of the Group, it is executed after every script in a group. 

 

3. FAILSAFE SCRIPTS 

If a script goes wrong, you may wish to take some protective action. For example, 

you might choose to remove power from the DUT. In the Test Setup view, there is a 

checkbox for “Enable FailSafe script”. When this is checked, any script error will 

launch the FailSafe script (including SetUp and TearDown). Unhandled exceptions 

in a FailSafe script cause the FailSafe script itself to abort, potentially early. 

Note this is linked to, but separate from, the “abort on fail” checkbox. Abort on fail 

will cause the FailSafe script to execute if the option is enabled but is expected to 

be used to skip running any further tests after a failure occurs. 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 8/16 

 

4. ABORT ON FAILURE 

Sometimes you may choose to abandon test group execution should any test fail. 

You can do so by selecting the appropriate option in the UI. The FailSafe script will 

be executed, if enabled, and Project execution will end when any ASSERT fails. This 

is intended to speed up execution if you are only interested in seeing all tests pass, 

and not interested in continuing if any test fails. You might run this ahead of a 

release of the DUT, for example. 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 9/16 

 

5. SCRIPT EXECUTION IN DETAIL 

Before running a script, associated DLLs are scanned for an Init() method (an empty 

one is included in the template). This is run before anything else happens, for all 

DLLs in use by the project regardless of whether or not those DLLs have methods 

invoked in the script being run. In other words, adding a DLL to the project will 

cause its Init() method to be run before every script in the Project. 

After this ends, some Javascript is generated to create variables described in the UI 

(Group, Test and Machine variables). A Jint instance is created and runs this auto-

generated code. The SetUp script, when used, is run next. The test script is then 

executed. Finally, the TearDown script is executed, when used, within the same 

Jint instance as the other scripts (so variables and instances are still accessible). If 

necessary, a FailSafe script may be run at any time (again, in the same Jint 

instance). When all this is complete, the Jint instance is disposed, then DLL Exit() 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 10/16 

methods are called for every DLL required by the project. After this completes, the 

runtime timer in the UI is stopped. No particular order of DLL function call 

execution is guaranteed. These must be designed to run independently of external 

considerations. 

All of this means every script runs in its own standalone instance, with no 

persistence. Note the environment the DUT experiences may or may not change 

during this time – it will depend on how often the device is reset or power cycled. 

When executing a Test Group, scripts are ordinarily run in UI order from the top 

left hand (“Project”) panel. Tests may be rearranged by drag-and-drop. In the “Test 
Setup” tab of the “Test Group” box, there is a “Randomise test order” checkbox, 
which will shuffle the tests randomly. When this option is enabled, the order of 

SetUp->Test->TearDown is not affected. Each script will be run once. The order of 

execution is recorded in the test log. 

6. ASSERT THRESHOLDS 

DUTs are manufactured to a tolerance, as is every piece of test and measurement 

equipment. ASSERTs in code need to deal with this tolerance. Ensure your 

ASSERTs set an appropriate tolerance for the test you are running. If measuring 

timing on the desktop, be aware the StopWatch methods supplied are tied to the OS 

system clock and its scheduler, and plan appropriately. 

7. VARIABLES 

1. TSTVAR 

Individual test  variables (TSTVARs) are defined in the UI / project file. Similar test 

scripts can be copied, pasted and customised with, for example, different firmware 

files or thresholds. Syntax highlighting will pick up these variables in the editor. 

2. TGVAR 

Test Group variables (TGVARs) apply to all tests within a group but otherwise 

behave identically to TSTVARs. 

3. MSVAR 

Machine-specific variables (MSVARs) are custom to each test runner. These might 

define things like which COM port to use to talk to a serial device, or where in the 

filesystem to find a particular file. New machines can be added via the UI, or 

manually in the project file. Internally, the application generates a fingerprint 

(which can be read programmatically using the DLL_TOOL.GetMachineFingerprint() 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 11/16 

method). Each machine can also be given a friendly name. MSVARs must then be 

customised for each test runner. At test runtime, the machine fingerprint is 

compared with any defined MSVARs to define those variables for that runner. 

8. DLLS 

1. (ANOTHER) IMPORTANT NOTE ON JINT 

Jint’s interoperability exposes classes to the runtime. This means classes can be 

defined in an external DLL and accessed in-script using dot notation. These 

interfaces are not necessarily known to the syntax highlighter at test writing time, 

so autocomplete is not available. Jint will happily use methods or class members 

defined in a DLL, even if not highlighted by the UI. This allows passing objects 

similar to C structs between DLL methods and the test script – handy for exposing 

BLE Device Information Service members, for example. 

2. THE GETINFOS() METHOD 

To expose DLL members to the test editor, the GetInfos() method can be populated. 

A sample is installed in the User Documents folder. The GetInfos() method returns 

JSON describing the methods in the DLL. It is strongly recommended to follow the 

rough outline supplied. The test editor calls the GetInfos() method of the DLL to 

populate the autocomplete options, and to offer a popup box. You can, for example, 

use this to describe the methods in terms of parameters and return types. 

3. ECMASCRIPT IS SINGLE THREADED, DLLS NEED NOT BE 

Very importantly, ECMAScript strictly follows a single threaded execution model. 

This means scripts can only consider a single threaded environment. Interrupts and 

callbacks are not available within a script. They confuse the environment, and 

multi-threaded access to scripts will cause the environment to crash, often with an 

inscrutable error code and/or message. 

DLLs run in a .NET environment and are not constrained by this. Should the user 

wish to launch new threads from a DLL method, no limitation is put on this. Users 

must be careful that scripts only access thread safe DLL methods. For instance, a 

DLL could spawn a thread to start communication with a DUT. Using cross 

threaded methods, return values from the DUT could populate a “GetComms” 
method, which can safely be polled from a Jint thread. 

Scripts and the Jint engine execute as individual threads, spawned by the runtime 

on demand. Each test script executed is created in a new Jint instance and passed 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 12/16 

various scripts as described in earlier sections. This helps prevent scripts cross-

polluting each other and provides a clean runtime every time a script is started. 

Jint overhead is not significant. OS overheads are likely to be far higher than 

context switches or interpretation time. 

4. INIT / EXIT METHODS 

Init / Exit DLL methods should be designed to be run independently of any test. 

DLLs should be portable to allow code re-use. They are run before a script starts 

and after any FailSafe or TearDown script ends, and outside any Jint environment. 

No particular order of execution nor concurrency promises are made for Init and 

Exit methods of DLLs. 

9. JS TIPS (FROM THE PERSPECTIVE OF A C DEVELOPER)  

1. DYNAMIC TYPING IS NOT THE SAME AS UNTYPED 

ECMAScript is dynamically typed. That means that often type conversion can be 

ignored. The exceptions then become the problem and are typically only seen at 

runtime. ECMAScript exposes a number of explicit type conversion methods which 

are of great convenience. ParseFloat will take a string and turn it into a double. 

ParseInt, ParseString and so on are all useful explicit type conversion methods 

whose liberal use is encouraged. Note the underlying Number type is double. 

2. ALL THOSE ASSERTS ARE THERE FOR A REASON 

The runtime may dynamically type your values, so the ASSERTs supplied force 

different types (in .NET Common Language Runtime terms) on the comparisons 

used. Jint’s base type for Number is double, which forces us down some interesting 

paths, so the ASSERTs are provided to disambiguate the process. Consider each 

typed ASSERT (e.g. ASSERT.IS_EQUAL_STRING) to carry out explicit type 

conversion before testing the ASSERT condition. It is not infallible, so the user can 

still cause errors by, for example, passing an instrument string value to a float 

ASSERT. 

The untyped ASSERTs will treat Numbers as double but will throw runtime errors if 

an Object type is passed. 

3. IVI/VISA/SCIPI TYPICALLY DEALS IN STRINGS 

Strings like “5.1452E-06A”, for example. This is a real value returned by a DMM. To 

turn this into a mathematical value you can use in an ASSERT, for example, first 

you must strip out the ‘A’ at the end (for amps). You can use the ECMAScript 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 13/16 

substring method for this. Also note the string has a .length property you can use. 

When you have stripped out the units field, you can use the parseFloat method to 

return a Number.  

Should you choose to implement a DLL, it is up to the writer to choose how to 

implement methods to get numbers. Type conversion can happen either in the DLL 

or in Jint, but regardless, be aware many instruments deal in strings, not numbers. 

4. THREADING 

The threading model in ECMAScript is strictly single threaded. Do not attempt to 

work around this; it ends badly. Tests must be designed for single threaded 

operation. Use DLLs to achieve multi-threaded operation. 

10. INSTRUMENT TIPS 

1. NOT ALL INSTRUMENTS ARE CREATED EQUAL 

Depending on the TME, different string formatting might be used.  

Depending on the internal design of the TME, a method to get its most recent value 

may or may not be updated if read too quickly after the last reading. Often this is 

not well signposted in documentation. It can be inferred from timing but the OS 

scheduler may interfere with precise timing of e.g. the DLL_TOOL.WaitMs method. 

2. NOT ALL INSTRUMENTS IN THE SAME SERIES ARE CREATED EQUAL  

We have witnessed wrinkles in communication performance between devices which 

externally appear identical. 

3. VENDORS LIKE TO IMPLEMENT VENDOR-SPECIFIC STUFF 

Fair enough and we do not blame them. Read the small print. The underlying 

protocols may not have been designed for file transfer, so when transferring files 

using a vendor-specific workaround, exercise care and respect the protocol 

definition. 

4. TRY THE OTHER COMMS INTERFACES TO YOUR TEST & MEASUREMENT KIT 

Depends on the specific device, but TCP/IP can be lower latency and/or higher 

bandwidth than USB, particularly USB through a hub. It is worth exploring the 

possibilities of VPN. We have used the application over VPN and while there is an 

increase in latency (roughly the ping time), there are times when this is less 

important than being able to run a test remotely. 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 14/16 

5. EVEN LOW-END TEST GEAR CAN BE USEFUL 

If you are manually putting values into a PSU today then you know how long it 

takes. A low-cost modern bench DMM may return say 4-10 readings per second. 

This is still massively quicker than taking readings by hand. This means your 

potentially-obsolete older TME may still be able to serve a useful purpose. If you 

need high end accuracy, or high throughput, you may have to acquire the TME to 

reflect the requirement (we offer no shortcut to high accuracy and high sample 

rates). By testing automatically, not manually, a test run can be in progress while 

other tasks happen. This increases development efficiency – the developer no longer 

needs to pause for hours to run a release test and can work on other tasks in the 

meantime. 

6. REMEMBER TO CLOSE YOUR TCP CONNECTIONS 

If using TCP/IP to connect to TME, there is a separate state machine running on 

the TME. Just because the test has completed does not mean this state machine 

has ended. If the connection is not gracefully closed, it may end up timing out on 

the target. Limited memory in TME often means they support exactly one 

connection at a time, so if your script does not gracefully close the connection, you 

may have to wait for the internal state machine on the TME to time out before you 

can connect again. Make sure your TCP/IP sessions end gracefully. 

11. GENERAL TIPS 

1. FORGET PRECISE TIMING ON THE DESKTOP 

The OS scheduler can be slept in units of milliseconds. In reality, if another process 

blocks the CPU there can be jitter of double digit milliseconds. Assume the desktop 

runtime is good for about 30ms accuracy and there will be few problems. For better 

timing accuracy, you will require offloaded TME. We often use development kits 

running a simple serial protocol to time PWM, for example. Our first ever dedicated 

test station was/is a second hand NUC8i3 with 8GB RAM and a SATA SSD. It is 

typically 10ms jitter, or up to 100ms if it is writing a file and has to erase a block. 

2. YOUR FAVOURITE EMBEDDED DEV KIT IS REALLY USEFUL  

Do you need to press some buttons? Hook up a dev kit to some optocouplers and 

write a trivial serial protocol. Now you can close a circuit to whatever timing 

accuracy (and synchronisation with external signals) you see fit. Give it a list 

feature to step through different buttons with different timing. Go wild. It’s the best 
way to achieve sub-10msec timing accuracy without buying dedicated bench 

equipment. Arduino provides a controlled hardware platform and pinout supporting 



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 15/16 

a number of different peripherals. Many vendors use this pinout – so pick your 

favourite and use it. 

3. SOMETIMES YOU NEED A BACK CHANNEL TO YOUR DUT 

It is very useful to be able to mock function return values or invoke specific 

behaviour in your DUT. It can often be best to do this out-of-band through a 

communication channel the final product will not use, to decouple it from other 

activity. The channel must be removed before production. Typical back-channel 

commands including changing system time, invoking features, running a dedicated 

debug script on the target, etc. A shim layer running on your target can intercept 

mocked function calls and plug in your desired mocked values. 

Segger RTT is useful on Cortex-M targets. 

4. TEST YOUR ERROR HANDLERS 

Untested error handlers can cause serious production defects. Use the system to 

test them. Create error states in your DUT and ensure the vendor library responds 

appropriately. Use field error reports to increase your test suite. 

5. YOU CAN TEST OVERNIGHT 

Faced with a shortage of TME or DUT PCBs, you can run automated tests at times 

to suit availability of the equipment. 

6. LET THE RANDOMISER FIND THINGS 

It can be tempting to reset the DUT between every test, or between test groups, but 

this is rarely the best outcome. The randomiser causes the DUT state to be retained 

between tests. Unless the test includes an explicit requirement to test a power 

cycle, it is recommended not to power down the DUT between tests. This helps to 

weed out “onceability” in the DUT. 

7. BIG LOG FILES CAN BE FIDDLY 

A multi-GB log file sounds tempting but is not easily opened or processed. Text 

editors and CSV viewers will have trouble (even those designed for large data sets 

will at best be slow). In general, it is preferable to log as little as necessary to the log 

file. Modern SSDs mean rewriting large log files is no longer the error source it was 

in the days of HDDs but that does not make it desirable or necessary. The console 

window can be an alternative but is not always practical. Wherever possible, it is 

easier to break down a big log into smaller files (e.g. time, size).  



BELIeVE User Manual 

 

All rights reserved to Bermondsey Electronics Ltd.   

P a g e  | 16/16 

1. GLOSSARY 

DUT Device Under Test 

BLE Bluetooth Low Energy 

SSD Solid State Disk 

HDD Hard Disk Drive 

TME Test and Measurement Equipment 

DLL Dynamically Linked Library 

PWM Pulse Width Modulation 

PCB Printed Circuit Board 

 


