1.5 kW dual motor drive with digital PFC based on SLLIMM™ IPMs and STM32F3

Summary 2

- Solution Architecture
- Block diagram, example of product selection
- Functions
- STM32F3 cpu load in the application
- IPM, STGIB10CH60TS energy efficiency
- Digital PFC, bench experimental results, THD and PF
- Digital PFC Diode experimental results,
- Digital PFC IGBT experimental results,
- AirCon IPs performed from STM32

Room AirCon Evaluation Boards

1.5 kW Dual motor drive with digital PFC (boost single stage) based on SLLIMM™ IPMs and STM32F3

Key Features

Input voltage: 230VAC 50Hz / 60Hz

Max Power: up to 2kW

PFC topology: digital control, boost single stage

- PFC Protections: Over Current, Over Voltage, Under Voltage Lock Out.
- Inrush current limiter based on Overvoltage protected AC switch
- Motor 1 stage (i.e compressor of out door unit):
 - Max current: up to 10A, 0-to-peak (current sensing network threshold)
 - 1/2/3 shunt resistors for current sensing
 - o Protections: Over current, over temperature, Under voltage lock out
- Motor 2 stage (i.e fan of out door unit): :
 - Max Power: 60W (no heatsink)
 - Max current: up to 1A, 0-to-peak (current sensor network threshold)
 - 1 shunt resistor for current sensing
 - o Protections: Over current, over temperature, Under voltage lock out
- Centralized driving stage (motor 1, motor 2, PFC) from one MCU only the STM32F303RB

• ~150*265 mm

Key Products

- MCU: STM32F303RBT6
- Motor 1: STGIB10CH60TS-L (IPM); Motor 2: STGIPQ3H60T-HZ (IPM)
- PFC: STGWT20H65FB (IGBT); STTH20AC06FP (DIODE); PM8841D (Gate driver)
- VIPER26LD (auxiliary AC-DC converter)
- Inrush Current Limiter (ICL): T1235T-8FP
- TS391RILT (Comp.)
- LD1117S50TR, LD1117S50TR (V.R.)

Block diagram

Outdoor Unit Architecture: dual motor FOC + dPFC

All Functions inside a 64 pins STM32F3 + 2 SLLIMMs

Function	Digital I/O	Analog I/O	Total
Compressor	6	9	15
Fan	7	1	8
PFC & ICL	4	6	10
USARTcomm	2		2
SWD debug	2		2
I2C EEPROM	2		2
Steppervalves	4		4
Other analogs		6	6
Other digitals	4		4
MCU functional			11
GRAND TOTAL			64

OCP & Temperature sensing by MCU
OCP & OTP by IPM
OCP & OVP by MCU

Vdd, Vss, Boot, Vdda, Vssa, NRST

STM32F3, CPU load driving all functions (<56%!)

Task	PWM frequency	Control frequency	Task duration	CPU load
Compressor FOC (sensorless, 1shunt)	6 kHz	6 kHz	22 us	13.2 %
Fan FOC (sensorless, 1shunt)	18 kHz	9 kHz	22 us	19.8 %
PFC current regulation	40 kHz	40 kHz	4.39 us	17.56 %
PFC voltage regulation		2 kHz	4.095 us	0.82 %
Compressor, speed loop and other tasks		0.5 kHz	42 us	2.1 %
Fan, speed loop and other tasks		0.5 kHz	42 us	2.1 %
TOTAL				55.6 %

Focus on SLLIMM® IPM - compressor driving

- energy efficiency test at the bench
- energy efficiency test in application

Efficiency test, measurements diagram

Active Power $P_x = AVG[u_x(n) \cdot i_x(n)]$ (x=1,2,3,4; n = nth measurement period)

- P_{in} = IPM Input Power = P₁
- $P_{out} = IPM Output Power = P_2 + P_3 + P_4$
- Efficiency = $P_{out}/P_{in} \times 100 (\%)$ (used for dynamometer bench test)
- Energy_{in} = P_{in} * time
- Energy_{out} = P_{out} * time
- Efficiency = Energy_{out} / Energy_{in} × 100 (%) (used for in application test)

Load test at dynamometer bench - ST lab

1) Test conditions

Parameters	Designation	Values
$V_{in(DC)}$	Input DC voltage for IPM	380V DC
F_{sw}	Switching frequency for IPM	6.6kHz
T _{amb}	T _{amb} Ambient temperature	
T _{case}	All data for energy efficiency measurement were captured at similar IPM's pre-heated case temperature	75 <u>+</u> 2°C
	Test duration for steady state for thermal comparison	40 min

2) Test tools

Tools	Designation
Inverter board	ST 1.5HP A/C demo board
Firmware	STM32 FOC SDK v4.3
Power source	-
Power meter	-
Thermocouple	-
Oscilloscope	-
Dynamometer (*)	-

(*) A general purpose 3phase PMSM motor (parameters available on request) has been coupled with the dynamometer for this lab test

Efficiency comparison

STGIB10CH60TS-L:

No.	Input Voltage U1 (V)	Phase current I2 (A)	Input Power Pin (W)	Output power Pout (W)	Efficiency(%)
110.	0 = (1)	(/ 1/	()		Limerency
1	379.8	1.033	284.7	278.6	97.86
2	379.5	1.821	596.6	585.4	98.12
3	378.9	2.81	1047.2	1028.1	98.18
4	378.8	3.49	1206.2	1181.2	97.93

device "M":

No.	Input Voltage U1 (V)	Phase current I2 (A)	Input Power Pin (W)	Output power Pout (W)	Efficiency(%)
1	379.7	1.028	285.4	278.9	97.72
2	379.4	1.781	580.4	568.8	98.00
3	378.9	2.79	1046.4	1026	98.05
4	378.7	3.539	1232.1	1204.5	97.76

Efficiency Test Data

*All the data are captured at similar IPM's case temperature pre-heated @ 75±2°C

^{**} Active Power $P = AVG[u(n) \cdot i(n)]$

^{***} True RMS Current $I = SQRT(AVG(i(n)^2)$

^{****} True RMS Voltage $V = SQRT(AVG(v(n)^2)$

Efficiency comparison

EFFICIENCY COMPARISON

Efficiency measured on IN/OUT of the IPM, while driving a BLDC motor with field oriented control (FOC) thanks the ST MC SDK

 ST's IPM has 0.12%~0.17% higher efficiency than device "M", which means for instance 2.55W advantage @ 1500 W.

*All the data are captured at similar IPM's case temperature pre-heated @ 75±2°C

** Active Power $P = AVG[u(n) \cdot i(n)]$

*** True RMS Current $I = SQRT(AVG(i(n)^2)$

*** True RMS Voltage $V = SQRT(AVG(v(n)^2))$

STEVAL-CTM010V1 In application test - 1.5HP A/C - ST lab

Tool

Inverter board

Power source

In application test - 1.5HP A/C - ST lab

STGIB10CH60TS-L:

energy efficiency comparison

TEST (CONDITON	IPMINPUT		IPM OUTPUT	RE	SULTS	
Frequency	Aircon input	DC voltage(V)	Motor Current	5min Input Energy	5min Output	Efficiency	Tcase(Max)
(Hz)	power(W)	from PFC	range (A)	(Wh)	Energy (Wh)	(%)	°C
20	255	293.84	1.38-1.39	13.5768	12.7738	94.085	35.6
30	450	403.04	1.88-1.89	28.7335	27.285	94.959	41.6
50	750	402.97	2.55-2.58	54.2288	52.6492	97.087	47.1
70	1140	402.85	3.36-3.38	85.1568	83.3029	97.823	50.6
90	1580	402.74	4.16-4.18	119.265	117.076	98.165	60.8

device "M"

TEST (CONDITON	IPMINPUT		IPM OUTPUT	RE	SULTS	
 Frequency	Total A/C input	DC voltage (V)	Motor Current	5min Input Energy	5min Output	Efficiency	Tcase(Max)
(Hz)	power(W)	from PFC	range (A)	(Wh)	Energy (Wh)	(%)	°C
20	255	293.79	1.38-1.39	13.3522	12.5112	93.701	37.8
30	450	402.59	1.87-1.88	28.103	26.5781	94.574	44.8
50	750	402.49	2.55-2.58	53.4795	51.7705	96.804	50.5
70	1140	402.38	3.36-3.38	84.5334	82.536	97.637	56.2
90	1580	402.33	4.15-4.20	118.994	116.638	98.020	64.6

STEVAL-CTM010V1 In application test - 1.5HP A/C - ST lab

energy efficiency comparison

In application test - 1.5HP A/C - ST lab

Correlation Case Temperature vs Vtso or Vot

• Comparison: IPM case temperature measured from an external thermocouple and from the built-in temperature sensor

STGIB10CH60TS-L					
Tcase (°C probe)	Vtso (V)	Vtso (°C, datasheet typ)			
35.6	1.468	28.8			
41.6	1.568	34.5			
47.1	1.72	43			
50.6	1.8	47.6			
60.8	1.98	57.7			

					2.2
			1.84	•	
_ 1.49		0	1.72	└ 1.98	
-	1 169	1.568	1.72		
	1.400				
	1.468	1.568			

Device "M"					
Tcase (°C probe)	Vot (V)	Vot (°C, datasheet typ)			
37.8	1.624	42.9			
44.8	1.8	50.2			
50.5	1.904	54.5			
56.2	2.03	59.7			
64.6	2.28	70			

Average $\Delta T = 4.7^{\circ}C$ $\Delta T = 5.4^{\circ}C$ (@ Tcase 64.6°C)

In application test - 1.5HP A/C - ST lab

Correlation Case Temperature vs NTC or Vot

• Comparison: IPM case temperature as measured from an external thermocouple and from the built-in temperature sensor

STGIB10CH60TS-L					
Tcase (°C probe)	NTC (kΩ)	NTC (°C, datasheet typ)			
35.6	50.7	37.5			
41.6	38.2	44			
47.1	29.74	49			
50.6	25.85	54			
60.8	17.55	64			

Device "M"						
Tcase (°C probe)	Vot (V)	Vot (°C, datasheet typ)				
37.8	1.624	42.9				
44.8	1.8	50.2				
50.5	1.904	54.5				
56.2	2.03	59.7				
64.6	2.28	70				

Average $\Delta T = 2.5$ °C

Average $\triangle T = 4.7^{\circ}C$

SLLIMM™ (Small Low-loss Intelligent Molded Module) ST Intelligent Power module (IPM)

STGIB10CH60TS-L (mounted)

- IPM 15 A, 600 V, 3-phase IGBT inverter bridge including 2 control ICs for gate driving and freewheeling diodes
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Internal bootstrap diode
- Undervoltage lockout of gate drivers
- Smart shutdown function
- Short-circuit protection

- Shutdown input/fault output
- Comparator for fault protection
- Short-circuit rugged TFS IGBTs
- Very fast, soft recovery diodes
- 85 kΩ NTC
- UL recognized 1.5 kVrms: UL 1557, file E81734

Alternative devices

- STGIB15CH60TS-L(E): SLLIMM 2nd series IPM, 3-phase inverter, 20 A, 600 V short-circuit rugged IGBTs
- STIB1060DM2T-L: SLLIMM 2nd series IPM, 3-phase inverter, 0.18 Ohm typ., 10 A, 600 V SJ-MOSFET MDmesh DM2
- STIB1560DM2T-L: SLLIMM 2nd series IPM, 3-phase inverter 0.15 Ohm typ., 15 A, 600 V SJ-MOSFET MDmesh DM2

SLLIMM™ nano (Small Low-loss Intelligent Molded Module) ST Intelligent Power module (IPM)

STGIPQ3H60T-HZ (mounted)

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including 3 control ICs for gate driving and freewheeling diodes
- 3.3 V, 5 V, 15 V TTL/CMOS input comparators with hysteresis and pull-down/pull-up resistors
- Internal bootstrap diode
- Undervoltage lockout
- Shutdown function

- interlocking function
- Op-amp for advanced current sensing
- Comparator for fault protection against overcurrent
- Isolation ratings of 1500 Vrms/min.
- Up to ± 2 kV ESD protection (HBM C = 100 pF, R = 1.5 k Ω)
- NTC (UL 1434 CA 2 and 4)
- UL recognized 1.5 kVrms: UL 1557, file E81734

Alternative devices

- STGIPQ5C60T-HZ SLLIMM nano 2nd series IPM, 3-phase inverter, 5 A, 600 V short-circuit rugged TFS IGBTs
- STIPQ3M60T-HL SLLIMM-nano 2nd series IPM, 3-phase inverter, 3 A, 1.6 Ohm max., 600 V N-channel MDmesh DM2

Focus on digital PFC

- IGBT, AC series diode
- THD, Power Factor

- Energy Efficiency

Digital PFC boost single phase

Implementation on STM32F3

Peripheral assignment				
TIM16 ch1	PWM generation			
TIM16 BKIN	EXT fault signal (OVP)			
OP4	Current amplification			
ADC4	Current sampling			
CMP5	OCP			
DAC1 ch2	OCP threshold definition			
TIM4	AC mains voltage, frequency and phase detection			

Digital PFC (dPFC), experimental results

Outstanding THD and Power Factor (small 300uH)

Digital PFC FW, experimental results

Outstanding THD and Power Factor (small 300uH)

dPFC, ST IGBT, experimental results,

bench test vs other key player

STTH60AC06CW+STGWT40H65

DC Load output (A)	Input power (W)	Output Power (W)	Efficiency	Tcase (°C)	PF value
1	374.7	361.7	96.53%	48.1	0.978
2	748.5	722.6	96.53%	58.4	0.994
3	1131.8	1089.6	96.27%	74.9	0.997
4	1512.1	1450.2	95.91%	83.5	0.999
5	1895.6	1809.5	95.46%	>90*	0.999

ST is better than device F on all figures of merit

STTH60AC06CW+device F

DC Load output (A)	Input power (W)	Output Power (W)	Efficiency	Tcase (℃)	PF value
1	376.2	361.9	96.20%	49.7	0.978
2	750.2	722.4	96.30%	56	0.995
3	1134.2	1090.6	96.15%	79.5	0.997
4	1516.4	1448.6	95.53%	87.4	0.999
5	1902.0	1812.1	95.27%	>90*	0.999

dPFC, ST "AC" diode, experimental results,

bench test vs other key player

STTH60AC06CW + STGWT40H65

LOAD (A)	Input power (W)	Output Power (W)	I _{RM}	IF (A)	Trr (ns)	Efficiency	Tcase (°C)	PF value
1	383.8	370.7	5.84	1.72	38.8	96.58%	37.6	0.978
2	757.1	732.2	8.04	3.96	45.2	96.71%	44.2	0.994
3	1139.1	1101.3	10.0	6.28	51.6	96.60%	49	0.997
4	1519.9	1461.3	12.1	8.2	58.2	96.14%	54.8	0.999
5	1903.5	1823.5	14.2	10.8	65.2	95.79%	>60*	0.999

ST is better than device F on all figures of merit

Device V + STGWT40H65

LOAD (A)	Input power(W)	Output power (W)	I _{RM}	IF (A)	Trr (ns)	Efficiency	Tcase (°C)	PF value
1	385.5	371.4	5.92	1.84	49.6	96.34%	39.7	0.978
2	760.7	728.5	8.64	4.0	64.8	95.76%	46.3	0.994
3	1146.2	1106.0	11.2	6.36	71.6	96.49%	54.7	0.997
4	1527.5	1469.2	12.9	8.6	76.4	96.18%	57.6	0.999
5	1914.3	1829.2	14.8	10.8	80.0	95.55%	>60*	0.999

dPFC, ST "AC" diode and IGBT 26

STTH30AC06CPF (Mounted)

600 V, 60 A dual Interleave Boost Ultrafast Diode

Insulated package TO-3PF (2500 V DC)

STGWT20H65FB (Mounted)

Trench gate field-stop IGBT, HB series 650 V, 20 A high speed series

TO-3P

- switching frequency: 16 ÷ 60 kHz
- Maximum junction temperature: $T_{ij} = 175 \, ^{\circ}\text{C}$
- $V_{CE(sat)}$ = 1.55 V (typ.) @ I_{C} = 20 A

Alternative devices

- STGWA30HP65FB2 (/STGWA40HP65FB2) Trench gate field-stop, 650 V, 30 (/40) A, high-speed HB2 series IGBT in a TO-247 long leads package (for more information)
- STTH60AC06: 600 V, 60 A dual Interleave Boost Ultrafast Diode (for more information)

ST Productsmore (1/2)

Auxiliary AC-DC converter: <u>VIPER26LD</u>

VIPerPlus family: Energy saving 12W high voltage converter with direct feedback

- 800 V avalanche rugged power section
- PWM operation with frequency jittering for low EMI
- Operating frequency: 60 kHz
- Standby power < 50 mW at 265 VAC
- Limiting current with adjustable set point
- On-board soft-start
- Safe auto-restart after a fault condition
- Hysteretic thermal shutdown

SO16 narrow

ST Productsmore (2/2)

Inrush Current Limiter (ICL): <u>T1235T-8FP</u>

12 A Snubberless™ Triac

- High static and dynamic commutation
- Three quadrants
- ECOPACK®2 compliant component
- Complies with UL standards (File ref: E81734)

TO-220FPAB (T1235T-8FP)

STM32 FOC SDK Dual Motor Control AirCon IPs

AirCon IPs

High Frequency Injection (HFI)

Reliable and efficient start up, low speed operation

Flux Weakening

Expand the speed limits of a PMSM -> reach compressor's maximum power capability

Maximum Torque Per Ampere (MTPA)

Optimize of the torque for each load -> energy efficiency

On-the-fly startup (OTF)

Smooth drive insertion when the outdoor fan is moving due to the wind.

Reduction of the acoustic noise (ST patent) **Torque Ripple Compensation**

Digital PFC single stage

Dual PMSM FOC

Block Diagram

Dual PMSM FOC with 1 MCU

Advantages

- Flash size required is easily less than two times.
- Design and development of an application layer aimed at the coordination of the 2 motors' activities is simplified
- The effort of appliance certification for IEC 60335-1 Class B compliancy can be focused on only one microcontroller.
- Current consumption, in run or sleep mode, is straightforwardly halved.
- Dedicated space and routing on the PCB are reduced, for instance a 64-pin MCU is suitable
- External components count is reduced (in terms of oscillators, connectors, optoisolators, passives).
 - With STM32F3: comparator and Operational amplifiers are embedded reducing more the external components.
- With STM32F3 the CPU load is <27% (at @16kHz PWM/8kHz FOC)
 - → more room for more tasks, i.e. for digital boost PFC (around 15%)

Dual PMSM FOC with 1 MCU 33

- STM32 has up to 2 advanced timers and up to 4 fast ADC, 1 shunt / 3 shunt topologies can be combined as preferred, together with digital PFC
- The FOC library arranges so as to share CPU time between the two drives, compressor and fan

Digital PFC FW STM32F30x

Digital PFC

Topology & control diagram

Digital PFC Advantages

Advantages of software programmable digital PFC

Flexibility

- **Differentiate** the control performances keeping same HW
- Algorithm upgrade and customization is painless
- Add/remove features at any time

Solution cost

 Components count may be reduced → save PCB and validation time

 Enabling execution of digital PFC and (dual) motor control on same MCU, STM32 makes it possible to get much more....

Increased efficiency

- PFC turned-on only when needed
- Flux-weakening region can be entered at higher speeds -> higher motor efficiency

Improved performances

- Better bus voltage regulation
- Faster motor(s) dynamic response
- In case of dual MC, remove unwanted interactions between drives.

Digital PFC

On-the-fly Turn On/Off

- Turning on PFC only when needed eliminates PFC stage power losses in lowload conditions
 - Specific algorithm for PFC soft start

Digital PFC Load feed-forward

Based on motor power consumption estimation

- Motor dynamic response can be improved if load suddenly increases
- Dangerous bus voltage raisings can be eliminated when load decreases
- In case of dual control, remove unwanted interactions between drives

V_{BUS} response (cyan) to load steps w/o feed-forward

+40V DC bus increase to ~60% load decrease

V_{BUS} response (cyan) to load steps with feed-forward

Feature enabled

No DC bus variations to ~60% load decrease

Digital PFC

Load feed-forward & PFC turn-off on the fly

Digital PFC

Propagation delay compensation

Propagation delay through driver and switch could be easily compensated

- harmonic distortion can be improved
- switch and/or driver part numbers may be replaced more easily

Digital PFC Other Advantages

- Line waveform synthesizing and feed-forward from AC mains make
 DC bus voltage more insensitive to line surges and drops
- Voltage reference can be changed in run time, for instance in special conditions like high motor speed
- Mains frequency measurement could be exploited to protect appliances
- Digital HW filters can be applied on VAC synchronization and External Fault (OVP) protection signals

Digital PFC

Topology & control diagram

Digital PFC boost single phase

Implementation on STM32F3

Peripheral assignment				
TIM16 ch1	PWM generation			
TIM16 BKIN	EXT fault signal (OVP)			
OP4	Current amplification			
ADC4	Current sampling			
CMP5	OCP			
DAC1 ch2	OCP threshold definition			
TIM4	AC mains voltage, frequency and phase detection			

Digital PFC boost single phase

Time diagram, peripherals utilization

Conclusions 45

- ST SLLIMM® IPM has higher energy efficiency than competitor compared
- ST digital PFC has outstanding figures of merit on PF and THD
- ST devices used in digital PFC, both ST IGBT and AC series diode, give higher energy efficiency than compared competitors
- STM32F3 mcu is able to drive 2 motors and dPFC with low cpu load
- STM32F3 mcu has a very good pinout, so that a 64 pin package is enough for the whole solution

Thanks

