i.MX 8QuadPlus Automotive and Infotainment Applications Processors

NXP Semiconductors

i.MX 8QuadPlus Automotive and Infotainment Applications ...

Reference manual The i.MX 8QuadMax Applications Processor Reference Manual (IMX8QMRM) contains a comprehensive description of the structure and function (oper ation) of the QuadPlus SoC. Data sheet This data sheet includes electrical characteristics and signal connections.

MIMX8QP5AVUFFAB

MIMX8QP5AVUFFAB Datasheet PDF - NXP

PDF preview unavailable. Download the PDF instead.

MIMX8QP5AVUFFAB-NXP
NXP Semiconductors Data Sheet: Technical Data

IMX8QPAEC Rev. 2, 05/2021
MIMX8QPnAVUxxAx

i.MX 8QuadPlus Automotive and Infotainment Applications Processors

Package Information 29 x 29 mm package case outline

Ordering Information See Table 2 on page 5

1 Introduction
The i.MX 8 Family consists of two processors: i.MX 8QuadMax and 8QuadPlus. This data sheet covers the i.MX 8QuadPlus processor, which is composed of seven cores (one Arm® Cortex®-A72, four Arm Cortex®-A53, and two Arm Cortex®-M4F), dual 32-bit GPU subsystems, 4K H.265 capable VPU, and dual failover-ready display controllers. This processor supports a single 4K display (with multiple display output options, including MIPI-DSI, HDMI, eDP/DP, and LVDS), or multiple smaller displays. Memory interfaces supporting LPDDR4, Quad SPI/Octal SPI (FlexSPI), eMMC 5.1, RAW NAND, SD 3.0, and a wide range of peripheral I/Os such as PCIe 3.0, provide wide flexibility. Advanced multicore audio processing is supported by the Arm cores and a high performance Tensilica® HiFi 4 DSP for pre- and post-audio processing as well as voice recognition.

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 System Controller Firmware (SCFW) Requirements5 1.3 Related resources . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 13 3.2 Recommended Connections for Unused Interfaces13
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Power supplies requirements and restrictions. . . . 26 4.3 PLL electrical characteristics . . . . . . . . . . . . . . . . . 29 4.4 On-chip oscillators. . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 42 4.7 Output Buffer Impedance Parameters. . . . . . . . . . 45 4.8 System Modules Timing . . . . . . . . . . . . . . . . . . . . 49 4.9 General-Purpose Media Interface (GPMI) Timing . 53 4.10 External Peripheral Interface Parameters . . . . . . . 62 4.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . 111
5 Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 115 5.1 Boot mode configuration inputs. . . . . . . . . . . . . . 115 5.2 Boot devices interfaces allocation . . . . . . . . . . . . 115
6 Package information and contact assignments . . . . . . 117 6.1 FCPBGA, 29 x 29 mm, 0.75 mm pitch . . . . . . . . 117
7 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.
© 2018-2021 NXP B.V.

Introduction
The i.MX 8QuadPlus processor offers numerous advanced features as shown in this table.

Table 1. i.MX 8QuadPlus advanced features

Function

Feature

Multicore architecture provides 4× Cortex-A53, 1× Cortex-A72 cores, and 2× Cortex-M4F cores Graphics Processing Unit (GPU)
Video Processing Unit (VPU)
Tensilica HiFi 4 DSP for pre- and post-processing Memory

AArch64 for 64-bit support and new architectural features AArch32 for full backward compatibility with ARMv7 Cortex-A72 and Cortex-A53 cores support ARM virtualization extensions. sMMU provides address virtualization to all subsystems. Cortex-M4F cores for real-time applications 16× Vec4 shaders with 64 execution units. Split GPU architecture allows for dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU. Supports OpenGL 3.0, 2.1,; OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1; OpenCL 1.2 Full Profile and 1.1; OpenVG 1.1; and Vulkan High-performance 2D Blit Engine H.265 decode (4Kp60) H.264 decode (4Kp30) WMV9/VC-1 imple decode MPEG 1 and 2 decode AVS decode MPEG4.2 ASP, H.263, Sorenson Spark decode Divx 3.11 including GMC decode ON2/Google VP6/VP8 decode RealVideo 8/9/10 decode JPEG and MJPEG decode H.264 encode (1080p30) 666 MHz Fixed-point and vector-floating-point support 32 KB instruction cache, 48 KB data cache, 512 KB SRAM (448 KB of OCRAM and 64 KB of TCM) 64-bit LPDDR4 @1600 MHz 1× Quad SPI which can be used to connect to an FPGA 2× Quad SPI or 1× Octal SPI (FlexSPI) for fast boot from SPI NOR flash 2× SD 3.0 card interfaces 1× eMMC5.1/SD3.0 RAW NAND (62-bit ECC support via BCH-62 module)

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

2

NXP Semiconductors

Function Display Controller
Display I/O
Camera I/O and video Security
System Control

Introduction
Table 1. i.MX 8QuadPlus advanced features (continued)
Feature
Supports single UltraHD 4Kp60 display or up to 4 independent FullHD 1080p60 displays
Up to 18-layer composition
Complementary 2D blitting engines and online warping functionality
Integrated Failover Path (SafeAssure) to ensure display content stays valid even in event of a software failure
2× MIPI-DSI with 4 lanes each
1× HDMI-TX/DisplayPort compliant with: · HDMI · eDP 1.4 · DP 1.3
This high performance serializer supports a pair of LVDS displays with 8 lanes each. Each port can be configured for 2x Tx with 4 lanes each.
2× MIPI-CSI with 4-lanes each
Advanced High Assurance Boot (AHAB) secure & encrypted boot
Random Number Generator with a high-quality entropy source generator and Hash_DRBG (based on hash functions)
RSA up to 4096, Elliptic Curve up to 1023
AES-128/192/256, DES, 3DES, MD5, SHA-1, SHA-224/256/384/512
Dedicated Security Controller for Flashless SHE and HSM support, Trustzone
Built-in ECDSA/DSA protocol support
See the security reference manual for this chip for a full list of security features. · 2× I2C tightly coupled with Cortex-M4 cores (1× per Cortex M4F core)
· The tightly coupled M4 I2C ports cannot be used for general-purpose use · System Control Unit (SCU):
· Power control, clocks, reset · Boot ROMs · PMIC interface · Resource Domain Controller

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

3

Introduction Function
I/O
Packaging

Table 1. i.MX 8QuadPlus advanced features (continued)
Feature
1× PCIe 3.0 (2-lanes). Can be used as two PCIe 3.0 controllers with one-lane, independent operation. PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your NXP representative.
1× USB 3.0 with PHY
2× USB 2.0 (1 with PHY, 1 with HSIC)
1× SATA 3.0 can be used as PCIe one-lane. This is in addition to the standard PCIe controller. PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your NXP representative.
2× 1Gb Ethernet with AVB (can be used as 10/100 Mbps ENET with AVB)
3× CAN/CAN-FD
8× UARTs: · 5× UARTs (2× with hardware flow control) · 2× UARTs tightly coupled with Cortex-M4F cores (1× per Cortex-M4F core) · 1× UART tightly coupled with SCU 18× I2C: · 5× General-Purpose I2C (full-speed with DMA support) · Low-speed I2C without DMA support:
· 2× master I2C in MIPI-DSI (1× per instance) · 4× master I2C in LVDS (2× per instance) · 2× master I2C in HDMI-TX · 2× master I2C in MIPI-CSI (1× per instance) Note: Although low-speed I2Cs can be made available for general purpose use which requires the associated PHY (for example, MIPI) to be powered on, it is not recommended. Note: I/O muxing constraints prevent using all I2Cs simultaneously. · 2x I2C tightly coupled with Cortex-M4 cores (1x per Cortex M4F core) Note: The tightly coupled M4 I2C ports cannot be used for general purpose use. · 1× I2C tightly coupled with SCU for communication with the PMIC. Not general purpose and not available for non-PMIC uses.
4× SAI (SAI0 and SAI1 are transmit/receive; SAI2 and SAI3 are receive only)
2× Enhanced Serial Audio Interface (ESAI)
× ASRC (Asynchronous Sample Rate Converter) (note: no I/O signals are directly connected to this module)
1× SPDIF (Tx and Rx)
2× 4-channel ADC converters
3.3 V/1.8 V GPIO
4× PWM channels
1× 6×8 KPP (Key Pad Port)
1× MQS (Medium Quality Sound)
4× SPI
Case FCPBGA 29 x 29 mm, 0.75 mm pitch

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

4

NXP Semiconductors

1.1 Ordering Information
The following table provides the ordering information.

Architectural Overview

Table 2. i.MX 8QuadPlus Orderable part numbers

Part Number
MIMX8QP5AVUFFAB MIMX8QP6AVUFFAB

Options Cortex-A72 Cortex-A53 Cortex-M4F

GPU

Qualification Tier

Package

1 x VPU
1 x VPU 1 x DSP

One @ 1.6 GHz

Four @ 1.2 GHz

Two @ 264 MHz

Two @ Automotive 625 MHz AEC-Q100

29 mm × 29 mm
0.75 mm pitch FCPBGA (lidded)

1.2 System Controller Firmware (SCFW) Requirements
The i.MX 8 and 8X families require a minimum SCFW release version for correct operation and to prevent potential reliability issues.
The SCFW is released as part of a Board Support Package (e.g. Linux, Android) which may vary in version number for a specific BSP.
For example, 5.4.70_2.3.0 GA contains SCFW version 1.7.1. Whereas 5.10.0_1.0.0 GA contains SCFW version 1.8.0.
The released SCFW version associated within each BSP is the minimum version required to correctly support the wider BSP functionality.
Customers should always check that they are using the specific SCFW binary delivered within their chosen BSP release. Customers should not mix newer BSP versions with older revisions of the SCFW.

1.3 Related resources
Table 3. Related resources

Type Reference manual
Data sheet Chip Errata
Package drawing
Hardware guide

Description
The i.MX 8QuadMax Applications Processor Reference Manual (IMX8QMRM) contains a comprehensive description of the structure and function (operation) of the QuadPlus SoC.
This data sheet includes electrical characteristics and signal connections.
The chip mask set errata provides additional and/or corrective information for a particular device mask set.
Package dimensions are provided in Section 6, "Package information and contact assignments"."
The i.MX 8QuadMax/8QuadPlus Hardware Developer's Guide (IMX8HWDG) provides system design guidelines.

2 Architectural Overview
The following subsections provide an architectural overview of the i.MX 8QuadPlus processor system.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

5

Architectural Overview
2.1 Block Diagram
The following figure shows the functional modules in the processor system.

1x UART (each)
1x I2C (each)
1x GPIO (each)

2x User CM4 Complexes

M4 Platform

M4 CPU

nvic

fpu

mpu

MMCAU

MCM

16KB code$ 16KB system$

256KB TCM w/ ECC

LPIT LPUART

INTs LPI2C

WDOG RGPIO

PWM 2x MU

CPU1 Platform

4x ARM Cortex-A53

NEON

VFP

32KB I$

32KB D$

1MB L2 w/ ECC

CPU2 Platform

1x ARM Cortex-A72

NEON

VFP

48KB I$

32KB D$

1MB L2 w/ optional ECC

Cache Coherent Interconnect (CCI-400)

I2C w/ DMA UART (5 Mb/s) CAN / CAN-FD
ADC (4 channels each)
SPDIF TX / RX ESAI TX / RX 2x SAI TX / RX
2x SAI RX
RAW / ONFI 3.2 NAND Flash 1x eMMC 5.1 / SD 3.0 2x SD 3.0 (UHS-I) 1x USB 3.0 PHY 1x USB 2.0 Host / HSIC 1x USB 2.0 OTG, PHY 10/100/1000M Ethernet + AVB
24M and 32k XTALOSC Sources

2x ADC

DMA Subsystem 2x eDMA 5x LPUART

2x EVM SIM 3x FlexCAN 4x LPSPI

5x LPI2C 2x FTM

2x ASRC 2x ESAI 8x SAI

Audio Subsystem

SPDIF

HDMI TX SAI

MQS

6x GPT

Audio Mixer

ACM 2x eDMA

Connectivity Subsystem NAND
3x uSDHC USB3
2x USB2 2x ENET

VPU Subsystem Video Processing Unit
VPU
DSP Core HIFI4 DSP
32KB I$ 48KB D$ 448KB OCRAM 64KB TCM

System Control Unit

SCU CM4 Complex

M4 Platform

M4 CPU

nvic

fpu

mpu

MMCAU

MCM

16KB code$ 16KB system$

256KB TCM w/ ECC

LPIT LPUART

INTs LPI2C

WDOG RGPIO

PWM 2x MU

SJC Debug
DAP, CTI, etc
Boot ROM HAB
PMIC I/F

IOMUX Clock, Reset Power Mgmt
RDC Tempmon

Security SNVS SECO

OTP ADM CAAM

Security Controller
(M0+)

External Memory Interface

PG
PG BN
PG
PG

DDR Controller

SSI Bus

High Speed I/O
2x PCIe SATA

Imaging MJPEG MJPEG ISI
DEC ENC

2x LVDS TX
LPI2C

Display Controllers 2x DPU (4x LCD) Graphics Processing Unit
2x GPU
Internal Memory OCRAM (256KB)

LPI2C
2x MIPI CSI2
LPI2C
2x MIPI DSI
LPI2C LPI2C
HDMI

PHY PHY

64-bit LPDDR4 @1600 MHz
x1 PCIe 2 lanes / x2 PCIe 1 lane each 1x SATA 3.0 / 1x PCIe (1 lane)
1/2 LVDS TX (4 lanes each)
1x I2C
1x I2C 2x MIPI CSI2
(4-lanes)
1x I2C
MIPI Display (4-lanes)
1x I2C
1x I2C HDMI Tx 2.0a (eDP 1.4 DisplayPort 1.3)

Low Speed I/O (LSIO) Subsystem

IEE 14x MU 2x FlexSPI

4x PWM 5x GPT

KPP 8x GPIO

6x8 Keypad
32-bit GPIO
2x Quad SPI / 1x Octal SPI NOR Flash

1x UART 1x I2C 1x GPIO
Dedicated

RNG
Tamper Detection Secure RTC

Secure JTAG
Ciphers (ECC, RSA)
64k Secure RAM

Mult-format Decode H.265 Dec (4k60) H.264 Dec (1080p60) H.264 Enc (1080p30)

Dual Core, 16 shaders Vulkan, OGLES 3.2 w/ AEP,
OCL 2.0, VG 1.1 2D Blit Engine

Figure 1. i.MX 8QuadPlus System Block Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

6

NXP Semiconductors

Modules List
3 Modules List
The i.MX 8QuadPlus processors contain a variety of digital and analog modules. This table describes the processor modules in alphabetical order.

Table 4. i.MX 8QuadPlus modules list

Block Mnemonic ADC APBH-DMA
A53 A72 ASRC
BCH-62 CAAM
CTI CTM DAP
DC DDR Controller

Block Name

Brief Description

Analog-to-Digital Converter

The analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within a SoC.

NAND Flash and BCH ECC DMA Controller

The AHB-to-APBH bridge provides the chip with a peripheral attachment bus running on the AHB's HCLK, which includes the AHB-to-APB PIO bridge for a memory-mapped I/O to the APB devices, as well as a central DMA facility for devices on this bus and a vectored interrupt controller for the Arm core.

Arm (CPU1)

CPU cluster embedding 4x Cortex-A53 CPUs with a 32KB L1 instruction cache and a 32KB data cache. The CPUs share a 1 MB L2 cache.

Arm (CPU2)

CPU cluster embedding 1x Cortex-A72 CPU with a 48 KB L1 instruction cache and 32 KB data cache. The CPU has a 1MB L2 cache.

Asynchronous Sample Rate Converter

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.

Binary-BCH ECC Processor

The BCH62 module provides up to 62-bit ECC for NAND Flash controller (GPMI2)

Cryptographic Accelerator and Assurance Module

CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). CAAM also implements a Secure Memory mechanism. In this device the security memory provided is 64 KB.

Cross Trigger Interface CTI sends signals across the chip indicating that debug events have occurred. It is used by features of the Coresight infrastructure.

Cross Trigger Matrix Cross Trigger Matrix IP is used to route triggering events between CTIs.

Debug Access Port

The DAP provides real-time access for the debugger without halting the core to: · System memory and peripheral registers · All debug configuration registers The DAP also provides debugger access to JTAG scan chains.

Display Controller

Dual display controller

DRAM Controller

· Memory types: LPDDR4 · Two channels of 32-bit memory:
· LPDDR4 up to 1.6 GHz

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

7

Modules List Block Mnemonic DPR eDMA
ENET ESAI
FTM FlexCAN

Table 4. i.MX 8QuadPlus modules list (continued)

Block Name

Brief Description

Display/Prefetch/ Resolve

The DPR prefetches data from memory and converts the data to raster format for display output. Raster source buffers can also be prefetched unconverted. The resolve process supports graphics and video formatted tile frame buffers and converts them to raster format. Embedded display memory is used as temporary storage for data which is sourced by the display controller to drive the display.

Enhanced Direct Memory Access

· 4× eDMA with a total of 128 channels (note: all channels are not assigned; see the product reference manual for more information): · 4× instances with 32 channels each
· Programmable source, destination addresses, transfer size, plus support for enhanced addressing modes
· Internal data buffer, used as temporary storage to support 64-byte burst transfers, one outstanding transaction per DMA controller.
· Transfer control descriptor organized to support two-deep, nested transfer operations
· Channel service request via one of three methods: · Explicit software initiation · Initiation via a channel-to-channel linking mechanism for continuous transfers · Peripheral-paced hardware requests (one per channel)
· Support for fixed-priority and round-robin channel arbitration · Channel completion reported via interrupt requests · Support for scatter/gather DMA processing · Support for complex data structures via transfer descriptors · Support to cancel transfers via software or hardware · Each eDMA instance can be uniquely assigned to a different resource domain,
security (TZ) state, and virtual machine · In scatter-gather mode, each transfer descriptor's buffers can be assigned to
different SMMU translation

Ethernet Controller

2× 1 Gbps Ethernet controllers supporting RGMII + AVB (Audio Video Bridging, IEEE 802.1Qav)

Enhanced Serial Audio Interface

The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices.

FlexTimer

Provides input signal capture and PWM support

Flexible Controller Area Communication controller implementing the CAN with Flexible Data rate (CAN FD)

Network

protocol and the CAN protocol according to the CAN 2.0B protocol specification.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

8

NXP Semiconductors

Block Mnemonic FlexSpi (Quad SPI/Octal SPI)
GIC GPIO GPMI
GPT
GPU HDMI Tx/ DP/eDP HiFi 4 DSP I2C IEE

Table 4. i.MX 8QuadPlus modules list (continued)

Modules List

Block Name

Brief Description

Flexible Serial Peripheral Interface

· Flexible sequence engine to support various flash vendor devices, including HyperBusTM devices:
· Support for FPGA interface · Single, dual, quad, and octal mode of operation. · DDR/DTR mode wherein the data is generated on every edge of the serial flash
clock. · Support for flash data strobe signal for data sampling in DDR and SDR mode. · Two identical serial flash devices can be connected and accessed in parallel for
data read operations, forming one (virtual) flash memory with doubled readout bandwidth.

Generic Interrupt Controller

The GIC-500 handles all interrupts from the various subsystems and is ready for virtualization.

General Purpose I/O Modules

Used for general purpose input/output to external devices. Each GPIO module supports 32 bits of I/O.

General Purpose Media The GPMI module supports up to 8× NAND devices. 62-bit ECC (BCH)

Interface

encryption/decryption for NAND Flash controller (GPMI). The GPMI supports

separate DMA channels per NAND device.

General Purpose Timer Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.

Graphics Processing

2× GC7000XSVX GPUs with 8 shaders each that can run either independently or in "dual-mode" with 16 shaders.

HDMI Tx interface

HDMI transmitter, Display Port 1.3 and embedded Display Port 1.4

Audio Processor I2C Interface

A highly optimized audio processor geared for efficient execution of audio and voice codecs and pre- and post-processing modules to offload the Arm core.
I2C provides serial interface for external devices.
· Supports direct encryption and decryption of FlexSPI memory type · Provides decryption services (lower performance) for DRAM traffic · Supports I/O direct encrypted storage and retrieval · Support for a number of cryptographic standards:
· 128/256-bit AES Encryption (AES-CTR, AES-XTS mode options) · Multiple keys supported:
· Loaded via secure key channel from security block · Key selection is per access and based on source of transaction

IOMUXC JPEG/dec

IOMUX Control
MJPEG engine for decode

This module enables flexible I/O multiplexing. Each I/O pad has default and several alternate functions. The alternate functions are software configurable.
Provides up to 4-stream decoding in parallel.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

9

Modules List

Block Mnemonic JPEG/enc KPP LPIT-1 LPIT-2
LPSPI 0­3 LVDS M4F
MIPI CSI-2 MIPI-DSI MQS OCOTP_CTRL

Table 4. i.MX 8QuadPlus modules list (continued)

Block Name

Brief Description

MJPEG engine for encode

Provides up to 4-stream encoding in parallel.

Key Pad Port

The Keypad Port (KPP) is a 16-bit peripheral that can be used as a 6 x 8 keypad matrix interface or as general purpose input/output (I/O).

Low-Power Periodic Interrupt Timer

Each LPIT is a 32-bit "set and forget" timer that starts counting after the LPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly.

Configurable SPI

Full-duplex enhanced Synchronous Serial Interface. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals.

LVDS Display Bridge

This high performance serializer supports a pair of LVDS displays with 8 lanes each. Each port can be configured for 2x Tx with 4 lanes each.

Arm (CPU3)

· Cortex-M4F core · AHB LMEM (Local Memory Controller) including controllers for TCM and cache
memories · 256 KB embedded tightly coupled memory(TCM) (128 KB TCMU, 128 KB
TCML) · 16 KB Code Bus Cache · 16 KB System Bus Cache · ECC for TCM memories and parity for code and system caches · Integrated Nested Vector Interrupt Controller (NVIC) · Wakeup Interrupt Controller (WIC) · FPU (Floating Point Unit) · Core MPU (Memory Protection Unit) · Support for exclusive access on the system bus · MMCAU (Crypto Acceleration Unit) · MCM (Miscellaneous Control Module)

MIPI CSI-2 Interface

The MIPI CSI-2 IP provides MIPI CSI-2 standard camera interface ports. The MIPI CSI-2 interface supports up to 1.5 Gbps for up to 4 data lanes

MIPI DSI interface

The MIPI DSI IP provides DSI standard display serial interface. The DSI interface supports 80 Mbps to 1.5 Gbps speed per data lane.

Medium Quality Sound Medium Quality Sound (MQS) is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins.

OTP Controller

The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent nonvolatility.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

10

NXP Semiconductors

Block Mnemonic OCRAM
PCIe PRG
PWM
RAM 64 KB Secure RAM RAM 256 KB RNG
SAI
SECO SJC
sMMU SNVS SPDIF

Table 4. i.MX 8QuadPlus modules list (continued)

Modules List

Block Name

Brief Description

On-Chip Memory Controller

The On-Chip Memory controller (OCRAM) module is designed as an interface between the system's AXI bus and the internal (on-chip) SRAM memory module. The OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit AXI bus.

PCI Express 3.0

PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable; contact your NXP representative.

Prefetch/Resolve Gasket

The PRG is a gasket which translates system memory accesses to local display RTRAM accesses for display refresh. It works with the DPR to complete the prefetch and resolving operations needed to drive the display.

Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4×16 data FIFO to generate square waveforms.

Secure/non-secure RAM

Secure/non-secure Internal RAM, interfaced through the CAAM.

Internal RAM

Internal RAM, which is accessed through OCRAM memory controllers.

Random Number Generator

The purpose of the RNG is to generate cryptographically strong random data. It uses a true random number generator (TRNG) and a pseudo-random number generator (PRNG) to achieve true randomness and cryptographic strength. The RNG generates random numbers for secret keys, per message secrets, random challenges, and other similar quantities used in cryptographic algorithms.

I2S/SSI/AC97 Interface The SAI module provides a synchronous audio interface that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces.

Security Controller

Core and associated memory and hardware responsible for key management.

Secure JTAG Controller The SJC provides the JTAG interface, which is compatible with JTAG TAP standards, to internal logic. This device uses JTAG port for production, testing, and system debugging. Additionally, the SJC provides BSR (Boundary Scan Register) standard support, which is compatible with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration.

System MMU

The System MMU is an MMU-500 from Arm. It supports two-stage address translation and multiple translation contexts.

Secure Non-Volatile Storage

Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control.

Sony Philips Digital Interconnect Format

The Sony/Philips Digital Interface (SPDIF) audio block is a stereo transceiver that allows the processor to receive and transmit digital audio. The SPDIF transceiver allows the handling of both SPDIF channel status (CS) and User (U) data and includes a frequency measurement block that allows the precise measurement of an incoming sampling frequency.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

11

Modules List Block Mnemonic TEMPMON UART
USB3/USB2
USBOH

Table 4. i.MX 8QuadPlus modules list (continued)

Block Name Temperature Monitor
UART Interface

Brief Description
The temperature monitor/sensor IP module for detecting high temperature conditions. The temperature read out does not reflect case or ambient temperature. It reflects the temperature in proximity of the sensor location on the die. Temperature distribution may not be uniformly distributed; therefore, the read-out value may not be the reflection of the temperature value for the entire die.
· High-speed TIA/EIA-232-F compatible, up to 5.0 Mbps · Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s) · 9-bit or Multidrop mode (RS-485) support (automatic slave address detection) · 7, 8, 9, or 10-bit data characters (7-bits only with parity) · 1 or 2 stop bits · Programmable parity (even, odd, and no parity) · Hardware flow control support for request to send (RTS_B) and clear to send
(CTS_B) signals
The USB3/USB2 OTG module has been specified to perform USB 3.0 dual role and USB 2.0 On-The-Go (OTG) compatible with the USB 3.0, and USB 2.0 specification with OTG supplementary specifications. This controller supports
twoindependent USB cores (1× USB3.0 dual-role, 1× USB2.0 OTG) and includes
the PHY and I/O interfaces to support this operation. The full pinout of the USB 3.0 controller includes the signaling for both USB 3.0 and USB 2.0. This does not mean there is a separate USB 2.0 controller that can be used independently and simultaneously with USB 3.0. This device has an additional separate, independent USB 2.0 OTG controller which can be used simultaneously with this USB 3.0. Specific features requested for this updated module: · Super Speed (5 Gbps), High Speed (480 Mbps), full speed (12 Mbps) and low
speed (1.5 Mbps) · Fully compatible with the USB 3.0 specification (backward compatible with USB
2.0) · Fully compatible with the USB On-The-Go supplement to the USB 2.0
specification · Hardware support for OTG signaling · Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
implemented in hardware, which can also be controlled by software
The USBOH module has been specified which performs USB 2.0 On-The-Go (OTG) and USB 2.0 Host functionality compatible with the USB 2.0 with OTG supplement and HS IC-USB specification. This controller supports two
independent USB cores (1× USB2.0 OTG, 1× USB2.0 Host) and includes the PHY
and I/O interfaces to support this operation. Key features: · One USB2.0 OTG controller · High Speed (480 Mbps), full speed (12 Mbps) and low speed (1.5 Mbps) · Fully compatible with the USB 2.0 specification · Fully compatible with the USB On-The-Go supplement to the USB 2.0
specification · Hardware support for OTG signaling · Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)
implemented in hardware, which can also be controlled by software · USB2.0 Host with HS IC-USB specification · HS IC-USB transceiver-less downstream support (Host only).

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

12

NXP Semiconductors

Modules List

Table 4. i.MX 8QuadPlus modules list (continued)

Block Mnemonic uSDHC
VPU WDOG XTAL OSC24M XTAL OSC32K

Block Name

Brief Description

SD/eMMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller

i.MX 8 Family SoC-specific characteristics: All three MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. The uSDHC is a host controller used to communicate with external low cost data storage and communication media. It supports the previous versions of the MultiMediaCard (MMC) and Secure Digital Card (SD) standards. Specifically, the uSDHC supports: · SD Host Controller Standard Specification v3.0 with the exception that all the
registers do not match the standards address mapping. · SD Physical Layer Specification v3.0 UHS-I (SDR104/DDR50) · SDIO specification v3.0 · eMMC System Specification v5.1

Video Processing Unit See the device reference manual for the complete list of the VPU's decoding/encoding capabilities.

Watchdog

The Watchdog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line.

The 24 MHz clock source is an external crystal that acts as the main system clock. The OSC24M is used as the source clock for subsystem PLLs. OSC24M can be turned off by the System Control Unit (SCU) during sleep mode.

The 32.768 kHz clock source is an external crystal. The OSC32K is intended to be always on and is distributed by the SCU to modules in the chip.

3.1 Special Signal Considerations
Special signal considerations can be found in the Hardware Developer's Guide for this device in the Design Checklist section.

3.2 Recommended Connections for Unused Interfaces
The recommended connections for unused analog interfaces can be found in the section, "Unused Input/Output Terminations," in the Hardware Developer's Guide for this device.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

13

Electrical characteristics
4 Electrical characteristics
This section provides the device and module-level electrical characteristics for these processors.

4.1 Chip-level conditions
This section provides the device-level electrical characteristics for the SoC. See the following table for a quick reference to the individual tables and sections.
Table 5. Chip-level conditions

For these characteristics, ...
Absolute maximum ratings FCPBGA package thermal resistance data Operating ranges External Input Clock Frequency Maximum supply currents Standby use cases USB 2.0 PHY typical current consumption in Power-Down Mode USB 3.0 PHY typical current consumption in Power-Down Mode Typical current consumption in Power-Down mode for USB 2.0 PHY embedded in USB 3.0 PHY

Topic appears ... on page 15 on page 17 on page 17 on page 21 on page 21 on page 48 on page 25
on page 25
on page 25

4.1.1

Absolute Maximum Ratings
CAUTION
Stresses beyond those listed under Table 6 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the "Operating ranges" or other parameter tables is not implied. Exposure to absolute-maximum-rated conditions for extended periods will affect device reliability.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

14

NXP Semiconductors

Parameter Description Core Supplies Input Voltage
DDR PHY supplies 1.0V IO supplies IO Supply for GPIO Type 1.8V IO Single supply
IO Supply for GPIO Type 1.8 / 2.5 / 3.3V IO Tri-voltage Supply

Table 6. Absolute maximum ratings

Symbol

Min

VDD_A72

-0.3

VDD_A53

VDD_GPU0

VDD_GPU1

VDD_MAIN

VDD_MEMC

VDD_DDR_VDDQ

-0.3

VDD_MIPI_1P0

-0.3

VDD_USB_OTG_1P0

VDD_ADC_1P8

-0.5

VDD_ADC_DIG_1P8

VDD_ANA0_1P8 (IO, analog,OSC SCU)

VDD_ANA1_1P8 (IO, analog,OSC SCU)

VDD_DDR_PLL_1P8 (memory PLLs)

VDD_MIPI_1P8 (PHY, GPIO)

VDD_MIPI_CSI_DIG_1P8 (PHY, GPIO)

VDD_PCIE_1P8 (PHY)

VDD_USB_1P8 (PHY, GPIO)

VDD_ENET1_1P8_2P5_3P3

-0.3

VDD_ENET0_1P8_3P3

Electrical characteristics

Max

Units

1.2

V

1.75

V

1.2

V

2.1

V

3.8

V

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

15

Electrical characteristics

Table 6. Absolute maximum ratings (continued)

Parameter Description

Symbol

IO Supply for GPIO Type 1.8 / 3.3V IO Dual Voltage Supply

VDD_CAN_UART_1P8_3P3 VDD_CSI_1P8_3P3

VDD_EMMC0_1P8_3P3

VDD_EMMC0_VSELECT_1P8_3P3

VDD_ENET_MDIO_1P8_3P3

VDD_MIPI_DSI_DIG_1P8_3P3

VDD_PCIE_DIG_1P8_3P3

VDD_QSPI0A_1P8_3P3

VDD_QSPI0B_1P8_3P3

VDD_SPI_MCLK_UART_1P8_3P3

VDD_SPI_SAI_1P8_3P3

VDD_TMPR_CSI_1P8_3P3

VDD_USB_3P3 (PHY & GPIO)

VDD_USDHC1_1P8_3P3

VDD_USDHC1_VSELECT_1P8_3P3

SNVS Coin Cell

VDD_SNVS_4P2

USB VBUS (OTG2)

USB_OTG2_VBUS

USB VBUS (OTG1)

USB_OTG1_VBUS

I/O Voltage for USB Drivers

USB_OTG1_DP/USB_OTG1_DN

USB_OTG2_DP/USB_OTG2_DN

I/O Voltage for ADC

ADC_INx

Vin/Vout input/output voltage range (GPIO Vin/Vout Type Pins)

Vin/Vout input/output voltage range (DDR Vin/Vout pins)

ESD immunity (HBM).

Vesd_HBMX

ESD immunity (CDM).

Vesd_CDM

Storage temperature range

Tstorage

Min

Max

-0.3

3.8

-0.3

4.3

-0.3

3.63

-0.3

5.5

-0.3

3.63

-0.1

2.1

See Section 4.6.1

See Section 4.6.1

--

1000

--

250

-40

150

NOTE
HDMI CEC is 3.3V tolerant. HDMI DDC signals and HPD are 5V tolerant. Refer to the Hardware Developer's Guide for proper terminations.

Units V
V V V V V V V V V °C

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

16

NXP Semiconductors

4.1.2 Thermal resistance
4.1.2.1 FCPBGA package thermal resistance This table provides the FCPBGA package thermal resistance data.

Electrical characteristics

Table 7. FCPBGA package thermal resistance data

Rating

Board Type1

Symbol

29x29 mm package

Unit

Junction to Ambient Thermal Resistance2

JESD51-9, 2s2p

RJA

12.9

°C/W

Junction to Package Top Thermal Resistance2

JESD51-9, 2s2p

JT

0.1

°C/W

Junction to Case Thermal Resistance3

JESD51-9, 1s

RJC

0.3

°C/W

1 Thermal test board meets JEDEC specification for this package (JESD51-9). 2 Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. 3 Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the mold surface temperature at the package top side dead center.

4.1.3 Operating Ranges
The following table provides the operating ranges of these processors.

VDD_A722

Symbol

VDD_A532

VDD_GPU0 VDD_GPU1 VDD_MEMC

Table 8. Operating ranges1

Description Mode Min Typ Max Unit

Comments

Power supply Overdrive 1.05 1.10 1.15 V Min frequency = 208.5 MHz

of Cortex-A72

Max frequency = 1.6 GHz

cluster

Nominal 0.95 1.00 1.10 V Max frequency = 1.06 GHz

Power supply Overdrive 1.05 1.10 1.15 V Min frequency = 208.5 MHz

of Cortex-A53

Max frequency = 1.2 GHz

cluster

Nominal 0.95 1.00 1.10 V Max frequency = 900 MHz

Power supply of first GPU instance

Nominal 0.95 1.00 1.10 V Max frequencies: Shaders = 625 MHz; Core = 625 MHz

Power supply of second GPU instance

Nominal 0.95 1.00 1.10 V Max frequencies.: Shaders = 625 MHz; Core = 625 MHz

Power supply of memory controller

N/A 1.05 1.10 1.15 V --

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

17

Electrical characteristics

Table 8. Operating ranges1 (continued)

Symbol VDD_MAIN3

Description
Power supply of remaining core logic

VDD_DDR_CH0_VDDQ, VDD_DDR_CH0_VDDQ_CKE, VDD_DDR_CH1_VDDQ, VDD_DDR_CH1_VDDQ_CKE,

Power supplies of memory I/Os

VDD_DDR_CH0_VDDA_PLL_1P8, VDD_DDR_CH1_VDDA_PLL_1P8

Power supplies of memory PLLs

VDD_MIPI_CSI0_1P0, VDD_MIPI_CSI1_1P0, VDD_MIPI_DSI0_1P0, VDD_MIPI_DSI0_PLL_1P0, VDD_MIPI_DSI1_1P0, VDD_MIPI_DSI1_PLL_1P0, VDD_LVDS0_1P0, VDD_LVDS1_1P0

Power supplies of PHYs (1.0 V part)

VDD_ANA1_1P8, VDD_ANA2_1P8, VDD_ANA3_1P8, VDD_CP_1P8, VDD_SCU_1P8, VDD_SCU_ANA_1P8, VDD_SCU_XTAL_1P8

Power supplies of I/Os, analog and oscillator of the SCU

VDD_PCIE_IOB_1P8, VDD_ADC_1P8, VDD_ADC_DIG_1P8, VDD_HDMI_RX0_1P84, VDD_HDMI_TX0_1P8, VDD_LVDS0_1P8, VDD_LVDS1_1P8, VDD_MIPI_CSI0_1P8, VDD_MIPI_CSI1_1P8, VDD_MIPI_DSI0_1P8, VDD_MIPI_DSI1_1P8, VDD_MLB_1P85, VDD_PCIE_LDO_1P8, VDD_PCIE_SATA0_PLL_1P84, VDD_PCIE0_PLL_1P8, VDD_PCIE1_PLL_1P8, VDD_USB_HSIC0_1P8, VDD_ANA0_1P8, VDD_MIPI_CSI_DIG_1P8

Power supplies of PHYs (1.8 V part) and GPIO operating at 1.8 V only.

Mode Min Typ Max Unit

Comments

N/A 0.95 1.00 1.10 V Max frequencies: HiFi4 DSP = 666 MHz M4 = 264 MHz VPU = 600 MHz
LPDDR4 1.06 1.10 1.17 V Max frequency = 1.6 GHz Supports LPDDR4-3200

N/A 1.65 1.80 1.95 V PLL supply can be merged with other 1.8V supplies with proper on board decoupling.
N/A 0.95 1.00 1.10 V These balls shall be connected to the same power supply as VDD_MAIN. It shall be a star connection from the power supply. Each VDD power supply ball shall have its own dedicated decoupling caps.

N/A 1.65 1.70 1.75 V These balls shall be powered by a dedicated supply. Note: The disconnect between the ball naming, implying a 1.8 V supply, and the actual required operating voltage of 1.7 V is known and correct as shown.

N/A 1.65 1.80 1.95 V

--

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

18

NXP Semiconductors

Electrical characteristics

Table 8. Operating ranges1 (continued)

Symbol

Description

VDD_HDMI_RX0_VH_RX_3P34, VDD_HDMI_TX0_DIG_3P3, VDD_USB_OTG1_3P3, VDD_USB_OTG2_3P3, VDD_USB_SS3_TC_3P3

Power supplies of PHYs (3.3 V part) and GPIO operating at 3.3 V only

VDD_PCIE_DIG_1P8_3P3,

Power

VDD_ENET0_1P8_3P3,

supplies of

VDD_ENET_MDIO_1P8_3P3,

GPIO

VDD_EMMC0_1P8_3P3,

supporting

VDD_USDHC1_1P8_3P3,

both 1.8 V or

VDD_USDHC2_1P8_3P3,

3.3 V

VDD_USDHC_VSELECT_1P8_3P3,

VDD_SIM0_1P8_3P3,

VDD_ESAI0_MCLK_1P8_3P3,

VDD_ESAI1_SPDIF_SPI_1P8_3P3,

VDD_FLEXCAN_1P8_3P3,

VDD_LVDS_DIG_1P8_3P3,

VDD_M4_GPT_UART_1P8_3P3,

VDD_MIPI_DSI_DIG_1P8_3P3, VDD_MLB_DIG_1P8_3P36,

VDD_QSPI0_1P8_3P3,

VDD_QSPI1A_1P8_3P3,

VDD_SPI_SAI_1P8_3P3

VDD_ENET1_1P8_2P5_3P3

Power supplies of ethernet I/Os

VDD_USB_HSIC0_1P2 VDD_SNVS_4P2

Power supply of USB-HSIC I/Os
Power supply of SNVS

Mode N/A

Min Typ Max Unit 3.00 3.30 3.60 V

Comments --

1.8 V 3.3 V

1.65 1.80 1.95 V When VDD_USDHC1_1P8_3P3

3.00 3.30 3.60

V

or VDD_USDHC2_1P8_3P3 is used to support an SD card then

it shall be on a dedicated

1.8V/3.3V regulator.

When VDD_SIM0_1P8_3P3 is

used to support a SIM card, it

shall be on a dedicated 1.8V/3.3V

regulator.

VDDs of this list targeting 1.8V

can share 1.8V regulator of 1.8V

only VDDs

VDDs of this list targeting 3.3V

can share 3.3V regulator of 3.3V

only VDDs

1.8 V 1.65 1.80 1.95 V

--

2.5 V 2.38 2.50 2.63 V

--

3.3 V 3.00 3.30 3.60 V

--

N/A

1.1 1.2 1.3 V

--

N/A 2.80 3.30 4.20 V It can be supplied by a backup battery: a coin cell or a super cap.

Output of embedded LDOs and negative charge pump

VDD_USB_SS3_LDO_1P0_CAP, 1.0 V output of

N/A

-- 1.00 -- V

--

VDD_HDMI_RX0_LDO0_1P0_CAP4 embedded

,

LDOs

VDD_HDMI_RX0_LDO1_1P0_CAP4

, VDD_HDMI_TX0_LDO_1P0_CAP,

VDD_PCIE_LDO_1P0_CAP

VDD_SNVS_LDO_1P8_CAP

1.8 V output of

N/A

-- 1.80 -- V

--

SNVS

embedded

LDO

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

19

Electrical characteristics

Table 8. Operating ranges1 (continued)

Symbol

Description Mode Min Typ Max Unit

Comments

VDD_M1P8 _CAP

-1.8 V output

N/A

-- -1.80 -- V

--

of embedded

charge pump

Power supplies that shall be connected to output of an embedded LDO

VDD_HDMI_TX0_1P0

--

VDD_PCIE_SATA0_1P04,

--

VDD_PCIE0_1P0, VDD_PCIE1_1P0

VDD_USB_OTG1_1P0,

--

VDD_USB_OTG2_1P0

N/A

-- 1.00 -- V Shall be externally connected to

VDD_HDMI_TX0_LDO_1P0_CA

P

N/A

-- 1.00 -- V Shall be externally connected to

VDD_PCIE_LDO_1P0_CAP

N/A

-- 1.00 -- V Shall be externally connected to

VDD_USB_SS3_LDO_1P0_CA

P

Junction temperature

Junction temperature

--

--

-40

125 °C

--

1 Voltage ranges are defined to group as many supplies as possible. Individual supplies may have a wider range than listed here. 2 These are the supported frequencies included in the Linux, Android, and all other operating systems using the SCU defined
DVFS (Dynamic Voltage and Frequency Scaling) set points. An additional Overdrive set point is included to provide a more balanced power-versus-performance trade-off, where the A72 runs at 1.3 GHz and the A53 runs at 1.1 GHz. Likewise, an additional Nominal set point is included where both the A72 and A53 run at 600 MHz. 3 During low power state, this voltage can be dropped to 0.8 V +/- 3% for retention. 4 HDMI-RX is not currently supported, the related power and signal connections are provided for future use when it is expected HDMI-RX support will be enabled. 5 MLB is not supported on this product. This MLB power rail may be tied to the power supply voltage indicated or may be terminated, per the Hardware Developer's Guide power supplies of unused functions. 6 MLB is not supported on this product. The MLB power rail must be tied to the power supply voltage indicated if other I/O functions are used, as determined by IOMUX selection. Alternately, terminate the MLB supply per the Hardware Developer's Guide power supplies of unused functions.

4.1.4 External clock sources
Each processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI).
The RTC_XTALI is used for real time functions. It supplies the clock for real time clock operation and for slow-system and watchdog counters. The clock input can be connected to either an external oscillator or a crystal using the internal oscillator amplifier.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input requires a crystal using the internal oscillator amplifier.
The PCIe oscillator can be sourced internally or input to the chip. In both cases, it is a 100 MHz nominal clock using HCSL signaling to provide the PCIe reference clock.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

20

NXP Semiconductors

The following table shows the interface frequency requirements.

Electrical characteristics

Table 9. External Input Clock Frequency

Parameter Description

Symbol

Min

Typ

Max

Unit

RTC_XTALI Oscillator1,2 XTALI Oscillator4,2 PCIe oscillator5

fckil

--

fxtal

--

f100M

--

32.7683/32.0 24 100

--

kHz

--

MHz

--

MHz

Frequency accuracy

--

--

--

±300

ppm

1 External oscillator or a crystal with internal oscillator amplifier. 2 The required frequency stability of this clock source is application dependent. For recommendations, see the hardware
development guide for this device. 3 Recommended nominal frequency 32.768 kHz. 4 Fundamental frequency crystal with internal oscillator amplifier. 5 If using an external clock instead of the internal clock source, an HCSL-compatible clock is required. Concerning EMI/EMC,
note that internal source is not spread-spectrum capable.

The typical values shown in Table 9 are required for use with NXP board support packages (BSPs) to ensure precise time keeping and USB and HDMI operations.

4.1.5

Maximum Supply Currents
NOTE
Some of the numbers shown in this table are based on the companion regulator limits and not actual use cases. Current-drain application note AN13249 is also available for reference. This document contains measured results for i.MX 8QuadMax and should be used as a guideline for i.MX 8QuadPlus.

Symbol VDD_A72 VDD_A53 VDD_GPU0 VDD_GPU1 VDD_MAIN VDD_MEMC VDD_DDR_CH0_VDDQ VDD_DDR_CH0_VDDQ_CKE VDD_DDR_CH0_VDDA_PLL_1P8

Table 10. Maximum supply currents

Value Unit

Comments

3500 2500 3500 3500 5000 3200 800 200
20

mA Value based on max current delivered by PMIC mA Value based on max current delivered by PMIC mA Value based on max current delivered by PMIC mA Value based on max current delivered by PMIC mA Value based on max current delivered by PMIC mA Value based on max current delivered by PMIC mA Does not include current used by external memory. mA Does not include current used by external memory. mA

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

21

Electrical characteristics

Table 10. Maximum supply currents (continued)

Symbol VDD_DDR_CH1_VDDQ VDD_DDR_CH1_VDDQ_CKE VDD_DDR_CH1_VDDA_PLL_1P8 VDD_SCU_ANA_1P8 VDD_SCU_1P8 VDD_CP_1P8 VDD_SCU_XTAL_1P8 VDD_ANA0_1P8 VDD_ANA1_1P8 VDD_ANA2_1P8 VDD_ANA3_1P8 VDD_SIM0_1P8_3P3 VDD_M4_GPT_UART_1P8_3P3 VDD_ESAI1_SPDIF_SPI_1P8_3P3 VDD_ESAI0_MCLK_1P8_3P3 VDD_SPI_SAI_1P8_3P3 VDD_FLEXCAN_1P8_3P3 VDD_QSPI1A_1P8_3P3 VDD_QSPI0_1P8_3P3 VDD_EMMC0_1P8_3P3 VDD_USDHC_VSELECT_1P8_3P3 VDD_USDHC1_1P8_3P3 VDD_USDHC2_1P8_3P3 VDD_ENET_MDIO_1P8_3P3 VDD_ENET0_1P8_3P3 VDD_ENET1_1P8_2P5_3P3 VDD_LVDS_DIG_1P8_3P3 VDD_LVDSx_1P8 VDD_LVDSx_1P0 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSIx_1P8 VDD_MIPI_DSIx_1P0 VDD_MIPI_DSIx_PLL_1P0

Value Unit

Comments

800 mA Does not include current used by external memory. 200 mA Does not include current used by external memory. 20 mA
5 mA 20 mA Digital I/Os of SCU 60 ma There is a peak current of 60mA over 140 s. 10 mA Supply of crystal oscillator and integrated 200 MHz oscillator 175 mA 45 mA 140 mA 110 mA 15 mA 45 mA 40 mA 25 mA 35 mA 15 mA 20 mA 35 mA 55 mA 5 mA 55 mA 35 mA 15 mA 25 mA 25 mA 25 mA 100 mA x is 0 or 1 5 mA x is 0 or 1 20 mA 5 mA x is 0 or 1 35 mA x is 0 or 1 5 mA x is 0 or 1

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

22

NXP Semiconductors

Electrical characteristics

Table 10. Maximum supply currents (continued)

Symbol

Value Unit

Comments

VDD_MIPI_CSI_DIG_1P8

20 mA

VDD_MIPI_CSIx_1P8

5 mA x is 0 or 1

VDD_MIPI_CSIx_1P0

20 mA x is 0 or 1

VDD_HDMI_TX0_DIG_3P3

5 mA

VDD_HDMI_TX0_1P8

80 mA

VDD_HDMI_TX0_1P0

80 mA Shall be externally connected to VDD_HDMI_TX0_LDO_1P0_CAP

VDD_ADC_1P8

5 mA

VDD_ADC_DIG_1P8 VDD_MLB_DIG_1P8_3P31 VDD_MLB_1P82

1 mA 10 mA 50 mA

VDD_USB_OTG1_1P0

1 mA Shall be externally connected to VDD_USB_SS3_LDO_1P0_CAP

VDD_USB_OTG1_3P3

30 mA

VDD_USB_OTG2_1P0

35 mA Shall be externally connected to VDD_USB_SS3_LDO_1P0_CAP

VDD_USB_OTG2_3P3

10 mA

VDD_USB_SS3_TC_3P3

10 mA

VDD_USB_HSIC0_1P2

10 mA

VDD_USB_HSIC0_1P8

5 mA

VDD_PCIE_DIG_1P8_3P3

5 mA

VDD_PCIE_IOB_1P8

45 mA

VDD_PCIE_LDO_1P8

190 mA

VDD_PCIE_SATA0_PLL_1P8

20 mA

VDD_PCIE0_PLL_1P8

20 mA

VDD_PCIE1_PLL_1P8

20 mA

VDD_PCIE_SATA0_1P0

65 mA Shall be externally connected to VDD_PCIE_LDO_1P0_CAP

VDD_PCIE0_1P0

65 mA Shall be externally connected to VDD_PCIE_LDO_1P0_CAP

VDD_PCIE1_1P0

60 mA Shall be externally connected to VDD_PCIE_LDO_1P0_CAP

VDD_SNVS_4P23

5 mA Start-up current

1 MLB is not supported on this product. This MLB power rail must be tied to the voltage specified in Table 8 if other I/O functions are used, as determined by IOMUX selection. Alternately, terminate the MLB supply per the Hardware Developer's Guide power supplies of unused functions.
2 MLB is not supported on this product. The MLB power rail must be tied to the voltage specified in Table 8 or may be terminated, per the Hardware Developer's Guide power supplies of unused tables.
3 Under normal operating conditions, the maximum current on VDD_SNVS_4P2 is shown Table 11. During initial power on, VDD_SNVS_4P2 can draw up to 5 mA if the supply is capable of sourcing that current. If less than 5 mA is available, the VDD_SNVS_LDO_1P8_CAP charge time will increase.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

23

Electrical characteristics
4.1.6 Low power mode supply currents
The following table shows the current core consumption (not including I/O) in selected low power modes.

Table 11. i.MX 8QuadPlus Key State (KSx) power consumption

Mode

Test conditions

Supply

KS0 KS11

SNVS only, all other supplies OFF. RTC running, tamper not active, external 32K crystal.
RAM and IO state retained. DRAM in self-refresh, associated I/O's OFF. 32K running, 24M, PLLs and ring oscillators OFF PHYs are in idle state. MEMC, A53, A72, and GPU supplies OFF. MAIN2 dropped to 0.8 V.

KS43

Leakage test, not intended as a customer use case. Overdrive conditions set, memories active, all sub-systems powered ON. Active power minimized.

VDD_SNVS_4P2 (4.2 V)
VDD_ANAx_1P8, VDD_SCUx_1P8, VDD_CP_1P8 (1.7V) VDD_A53 (OFF) VDD_A72 (OFF) VDD_GPU0 (OFF) VDD_GPU1 (OFF) VDD_MEMC (OFF) VDD_DDR_CHx_VDDQ (1.1V) VDD_MAIN (0.8V) Total VDD_A53 (1.1V) VDD_A72 (1.1V) VDD_GPU0 (1.0V)

VDD_GPU1 (1.0V)

VDD_MEMC (1.1V)
VDD_MAIN (1.0V)
Total 1 Maximum values are for 25 °C Tambient . 2 0.8 V nominal--voltage specification under this case is ± 3%. 3 Maximum values are for 125 °C Tjunction . Stated supply voltages do not exceed +2% during test. 4 Unavailable at time of publication.

Max

Unit

50

A

6

mA

--

mA

--

mA

--

mA

--

mA

--

mA

1.4

mA

12

mA

21.94 mW

1066

mA

2000

mA

See

mA

footnote4

See

mA

footnote4

1800

mA

1500

mA

mW

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

24

NXP Semiconductors

Electrical characteristics

4.1.7 USB 2.0 PHY typical current consumption in Power-Down mode
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition. The following table shows the USB interface typical current consumption in Power-Down mode.
Table 12. USB 2.0 PHY typical current consumption in Power-Down Mode

Current

VDD_USB_OTG1_3P3 (3.3 V) 1 A

VDD_ANA0_1P8 (1.8 V) 0.06 A

VDD_USB_OTG1_1P0 (1.0 V) 0.5 A

4.1.8 USB 3.0 PHY typical current consumption in Power-Down mode
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition. The following table shows the USB interface typical current consumption in Power-Down mode.

Table 13. USB 3.0 PHY typical current consumption in Power-Down Mode

Current

--

VDD_ANA0_1P8 (1.8 V) VDD_USB_OTG2_1P0 (1.0 V)

--

10 A

70 A

The following table shows the current consumption for the USB 2.0 PHY embedded in the USB 3.0 PHY.

Table 14. Typical current consumption in Power-Down mode for USB 2.0 PHY embedded in USB 3.0 PHY

Current--Host mode Current--Device mode

VDD_USB_OTG2_3P3 (3.3 V) 22.6 A 12.6 

VDD_ANA0_1P8 (1.8 V) 12.7  85.7 

VDD_USB_OTG2_1P0 (1.0 V) 81.5  78.5 

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

25

Electrical characteristics
4.2 Power supplies requirements and restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to ensure the reliable operation of the device. Any deviation from these sequences may result in the following situations:
· Excessive current during power-up phase · Prevention of the device from booting · Irreversible damage to the processor
4.2.1 Power-up sequence
The device has the following power-up sequence requirements: · Supply group 0 (SNVS) must be powered first. It is expected that group 0 will typically remain always on after the first power-on. · Supply group 1 (MAIN and SCU) and group 0 must both be powered to their nominal values prior to boot. They must power up after or simultaneously with group 0. · Supply group 2 (I/O's and DDR interface) consists of those modules required to start the boot process by accessing external storage devices. These must be fully powered prior to POR release if booting from one of these supplies interfaces. They must power up after or simultaneously with group 1. · Supply group 3 consists of the remaining portions of the SoC. This includes nonboot I/O voltages and supplies for the major computational units. These can be sequenced in any order and as required to perform the desired functions for the intended application. They must power up after or simultaneously with group 2.
NOTE The definition of "power-up" refers to a stable voltage operating within the range defined in Table 8. This should be taken into consideration, along with the different capacitive loading on each rail, if considering simultaneous switch-on of the different supply groups.
4.2.2 Power-down sequence
The device processor has the following power-down sequence requirements: · Supply group 0 must be turned off last, after all other supplies.
· Supply group 1 can be turned off just prior to group 0.
All remaining supplies can be turned off prior to group 1.
NOTE When switching off supply group 0 (SNVS), VDD_SNVS_LDO_1P8_CAP must be fully discharged to 0 V before starting the next power-up sequence to ensure correct operation.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

26

NXP Semiconductors

4.2.3 Power Supplies Usage
The following table shows the power supplies usage by group.

Electrical characteristics

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

27

Electrical characteristics

28

Table 15. Power supplies usage

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

Supply Groups

Voltage

Group 0

2.4 - 4.2v

VDD_SNVS_4P2

Group 1

1.0v

1.8v

VDD_MAIN

VDD_ANA1_1P8

VDD_LVDSx_1P0

VDD_ANA2_1P8

VDD_MIPI_CSIx_1P0

VDD_ANA3_1P8

VDD_MIPI_DSIx_1P0

VDD_CP_1P8

VDD_MIPI_DSIx_PLL_1P0

VDD_SCU_1P8

VDD_SCU_x_1P8

Group 2

1.1V

1.8v

1.8v or 3.3v

1.8v or 3.3v switchable

3.3v

VDD_MEMC

VDD_ADC_DIG_1P8

VDD_EMMC0_1P8_3P3

VDD_USDHCx_1P8_3P3 VDD_HDMI_RX0_VH_RX_3P3

VDD_DDR_CHx_VDDQ

VDD_ADC_1P8

VDD_ESAI0_MCLK_1P8_3P3

VDD_SIM0_1P8_3P3 VDD_HDMI_TX0_DIG_3P3

VDD_DDR_CHx_VDDQ_CKE

VDD_ANA0_1P8

VDD_ESAI1_SPDIF_SPI_1P8_3P3

VDD_USB_OTGx_3P3

VDD_DDR_CHx_VDDA_PLL_1P8

VDD_FLEXCAN_1P8_3P3

VDD_USB_SS3_TC_3P3

VDD_HDMI_x_1P8

VDD_LVDS_DIG_1P8_3P3

VDD_LVDSx_1P8

VDD_M4_GPT_UART_1P8_3P3

VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_x_1P8 VDD_MLB_1P82

VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MLB_DIG_1P8_3P31 VDD_PCIE_DIG_1P8_3P3

VDD_PCIE_SATA0_PLL_1P8

VDD_QSPIx_1P8_3P3

VDD_PCIE_x_1P8

VDD_SPI_SAI_1P8_3P3

VDD_PCIEx_PLL_1P8

VDD_USDHC_VSELECT_1P8_3P3

VDD_USB_HSIC0_1P8

Group 3

1.1 - 1.1v

1.0v internal LDO's

1.2v

1.8v or 2.5v or 3.3v

VDD_A53

VDD_HDMI_TX0_1P0

VDD_USB_HSIC0_1P2

VDD_ENET_MDIO_1P8_3P3

VDD_A72

VDD_PCIE_SATA0_1P0

VDD_ENET0_1P8_3P3

VDD_ENET1_1P8_2P5_3P3

VDD_GPUx

VDD_PCIEx_1P0

VDD_USB_OTGx_1P0
1 MLB is not supported on this product. This MLB power rail must be tied to the voltage specified in Table 8 if other I/O functions are used as determined by IOMUX selection. Alternately, terminate the MLB supply, per the Hardware Developer's Guide power supplies usage of unused features.
2 MLB is not supported on this product. The MLB power rail must be tied to the voltage specified in Table 8 or may be terminated, per the Hardware Developer's Guide power supplies of unused functions.

NXP Semiconductors

4.3 PLL electrical characteristics

Electrical characteristics

4.3.1 PLLs of subsystems
i.MX 8QuadPlus embeds a large number of PLLs to address clocking requirements of the various subsystems. These PLLs are controlled through the SCU and not directly by Cortex-A or Cortex-M4F processors. A software API shall be used by those processors to access the PLL settings. Additional PLLs are specific to high-performance interfaces. These are described in the following sections.
This table summarizes the PLLs controlled by the SCU.

Table 16. PLLs controlled by SCU

Subsystem

PLL usage

Cortex-A532 Cortex-A723

Subsystem Subsystem

CCI GPU

Subsystem PLL #0: subsystem

PLL #1: shaders

DRC (DRAM Controller)

Subsystem

DB (DRAM Block) Subsystem

DBLog

Subsystem

Display Controller 0 PLL #0: subsystem

PLL #1: display clock #0

PLL #2: display clock #1

Display Controller 1 PLL #0: subsystem

PLL #1: display clock #0

PLL #2: display clock #1

Imaging

Subsystem

Audio

PLL #0: subsystem

PLL #1: audio PLL #0

PLL #2: audio PLL #1

Connectivity

Subsystem

Source clock 24 24 24 24 24 24

Locking range1

Min freq. Max freq.

1250

2500

1250

2500

650 1250

1300 2500

1250

2500

1250

2500

Lock freq.
· Overdrive: 2400 · Nominal: 1800 · Overdrive: 1600 · Nominal: 2120
1000 · Nominal: 2500 · Underdrive: 16004 · Nominal: 2500 · Underdrive: 16004 · LPDDR4: 1600

Unit MHz MHz MHz MHz MHz MHz

24

650

1300

750

MHz

24

650

1300

800

MHz

24

650

1300

800

MHz

24

650

1300

User-configurable MHz

24

650

1300

User-configurable MHz

24

650

1300

800

MHz

24

650

1300

User-configurable MHz

24

650

1300

User-configurable MHz

24

650

1300

1200

MHz

24

650

1300

700

MHz

24

650

1300

User-configurable MHz

24

650

1300

User-configurable MHz

24

650

1300

792

MHz

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

29

Electrical characteristics

Table 16. PLLs controlled by SCU (continued)

Subsystem

PLL usage

Locking range1

Source clock

Lock freq.

Unit

Min freq. Max freq.

HSIO (High-speed Subsystem I/O)

24

650

1300

800

MHz

LSIO (Low-speed I/O)

Subsystem

24

650

1300

800

MHz

Cortex-M4

Subsystem

24

650

1300

792

MHz

VPU

PLL #0: subsystem

24

650

1300

1200

MHz

PLL #1: Audio DSP (HiFi 4)

24

650

1300

666

MHz

HDMI-TX / eDP

Subsystem

24

650

1300

User-configurable MHz

MIPI-DSI

Subsystem

24

650

1300

864

MHz

MIPI-CSI

Subsystem

24

650

1300

720

MHz

DMA

Subsystem

24

650

1300

960

MHz

SCU (System Controller Unit)

Subsystem

24

650

1300

1056

MHz

1 Operating frequencies are limited to only those supported by the SCFW. 2 2400 MHz is used to generate the 1200 MHz maximum and 600 MHz slow operating points; 1800 MHz is used to generate the
900 MHz typical operating point. See Table 8 to get associated voltages. 3 1600 MHz is used for max operating point, 2120 MHz is used to generate 1060 MHz for typical operating point, and 2400 MHz
is used to generate the 600 MHz slow operating point. See Table 8 to get associated voltages. 4 2500 MHz is used to generate 625 MHz for the max operating point, 1600 MHz is used to generate 400 MHz for the slow
operating point. See Table 8 to get associated voltages.

4.3.2 PLLs dedicated to specific interfaces
The following sections cover PLLs used for specific interfaces. Clock output frequency and clock output range refer to the output of the PLL. Additional clock dividers may be on the output path to divide the output frequency down to the targeted frequency. See the related sections in the reference manual for settings of these clock dividers.

4.3.2.1 Ethernet PLL This PLL is controlled by the SCU.

Reference clock Clock output frequency

Parameter

Table 17. Ethernet PLL

Value 24 1

Unit MHz GHz

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

30

NXP Semiconductors

Electrical characteristics
4.3.2.2 USB 3.0 PLLs USB 3.0 has two PLLs. One is embedded in Super-Speed PHY. The other one is embedded in the USB 2.0 OTG PHY that is part of the USB 3.0 interface. The table below describes the PLL embedded in the Super-Speed PHY.

Table 18. USB 3.0 PLL embedded in Super Speed PHY

Reference clock Clock output frequency

Parameter

Value 24 5

Unit MHz GHz

The table below describes the PLL embedded in the USBOTG PHY.

Table 19. USB 3.0 PLL embedded in USBOTG PHY

Reference clock Clock output frequency

Parameter

Value 24 480

Unit MHz MHz

4.3.2.3 USB 2.0 OTG and USB-HSIC PLLs This PLL is embedded in the USB 2.0 OTG PHY (the one which is not part of the USB 3.0 feature). It is also used to supply the 480 MHz clock to the HSIC interface.

Reference clock Clock output frequency

Table 20. USB 2.0 OTG and USB-HSIC PLLs

Parameter

Value 24 480

Unit MHz MHz

4.3.2.4 PCIe PLLs
The PCIe interface has seven PLLs: · One is used to generate the single, common 100 MHz reference clock to each lane · One Transmit and one Receive PLL per lane (three lanes)

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

31

Electrical characteristics
The table below shows the characteristics for the reference clock PLL.

Parameter Reference clock Clock output frequency

Table 21. PCIe reference clock PLLs

Value 24 100

Unit

Comments

MHz

--

MHz Used to generate internal 100 MHz reference clock to PCIe lanes

The table below shows characteristics of the TX and RX PLLs used in each lane.

Table 22. PCIe Transmit and Receive PLLs1

Parameter

Value Unit

Comments

Reference clock

100 MHz From differential input clock pads or from internal PLL

Clock output range

6 ~ 10

GHz PCIe gen3: 8GHz to get 8GHz baud clock PCIe gen2: 10GHz to get 5GHz baud clock PCIe gen1: 10GHz to get 2.5GHz baud clock

1 PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your NXP representative.

4.3.2.5 HDMI-TX / DP PLLs
The HDMI-TX interface uses two PLLs. One is used to generate the reference clock when using the HDMI PHY itself in HDMI mode. In DP mode, this PLL is bypassed and only the PLL embedded in the PHY is used.
The table below shows characteristics of the reference clock PLL for HDMI.

Parameter Reference clock Clock output range

Table 23. HDMI reference clock PLL

Value 24
1.25 ~ 2.5

Unit

Comments

MHz

--

GHz Refer to HDMI / DP section of reference manual

The table below shows characteristics of the PLL embedded in HDMI/DP PHY.

Parameter Reference clock
Clock output range

Table 24. PLL embedded in HDMI/DP PHY

Value
24MHz / derived from HDMI-TX PLL
5.4

Unit

Comments

MHz 24MHz: when in DP mode derived from HDMI-TX PLL: when in HDMI mode
GHz Dependent on targeted display configuration

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

32

NXP Semiconductors

Electrical characteristics
4.3.2.6 MIPI-DSI PLL The table below shows characteristics of the PLL embedded in the MIPI-DSI PHY.

Parameter Reference clock Clock output range

Table 25. MIPI-DSIPHY PLL

Value 24
0.75 ~ 1.5

Unit

Comments

MHz

--

GHz Dependent on targeted display configuration

4.3.2.7 LVDS PLL The table below shows characteristics of the PLL embedded in LVDS PHY.

Parameter Reference clock Data rate range

Table 26. LVDS PHY PLL

Value 25 ~ 160 175 ~ 1120

Unit

Comments

MHz

--

Mbps Dependent on targeted display configuration

4.4 On-chip oscillators

4.4.1 OSC24M
This block integrates trimmable internal loading capacitors and driving circuitry. When combined with a suitable 24 MHz external quartz element, it can generate a low-jitter clock. The oscillator is powered from VDD_SCU_XTAL_1P8. The internal loading capacitors are trimmable to provide fine adjustment of the 24 MHz oscillation frequency. It is expected that customers burn appropriate trim values for the selected crystal and board parasitics.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

33

Electrical characteristics

Figure 2. Normal Crystal Oscillation mode

Table 27. Crystal specifications

Parameter description

Min

Typ

Max

Unit

Frequency1 Cload2

--

24

--

MHz

--

18

--

pF

Maximum drive level

200

--

--

W

ESR

--

--

60



1 The required frequency accuracy is set by the serial interfaces utilized for a specific application and is detailed in the respective standard documents.
2 Cload is the specification of the quartz element, not for the capacitors coupled to the quartz element.

4.4.2 OSC32K
This block implements an internal amplifier, trimmable load capacitors and a bias network that when combined with a suitable quartz crystal implements a low power oscillator.
Additionally, if the clock monitor determines that the 32KHz oscillation is not present, then the source of the 32 KHz clock will automatically switch to the internal relaxation oscillator of lesser frequency accuracy.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

34

NXP Semiconductors

Electrical characteristics
CAUTION
The internal ring oscillator is not meant to be used in customer applications, due to gross frequency variation over wafer processing, temperature, and supply voltage. These variations will cause timing issues to many different circuits that use the internal ring oscillator for reference; and, if this timing is critical, application issues will occur. To prevent application issues, it is recommended to only use an external crystal or an accurate external clock. If this recommendation is not followed, NXP cannot guarantee full compliance of any circuit using this clock. The OSC32K runs from VDD_SNVS_LDO_1P8_CAP, which is regulated from VDD_SNVS. The target battery/voltage range is 2.8 to 4.2 V for VDD_SNVS, with a regulated output of approximately 1.75 V.

Table 28. OSC32K main characteristics

Parameter Min

Typ

Max

Comments

Fosc

--

32.768 kHz

-- This frequency is nominal and determined mainly by the crystal selected. 32.0 KHz is also supported.

Current

-- · xtal oscillator mode: 5 A

-- These values are for typical process and room

consumption

· 32K internal oscillator mode: 10 A

temperature. Values will be updated after silicon

characterization.

Bias resistor --

200 M

-- This the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amplifier. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.

Target Crystal Properties

Cload

--

10 pF

-- Usually crystals can be purchased tuned for different Cloads. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin, but increases current oscillating through the crystal.

ESR

--

50 k

100 k Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease the oscillating margin.

Frequency VPP RTC_XTALI Rise/fall time

Table 29. External input clock for OSC32K

Min

Typ

--

32.768 or 32

700

--

--

--

Max -- VDD_SNVS_LDO_1P8_CAP --

Unit kHz mV ns

Notes --
1,2,3 4

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

35

Electrical characteristics

1 The external clock is fed into the chip from the RTC_XTALI pin; the RTC_XTALO pin should be left floating. 2 The parameter specified here is a peak-to-peak value and VIH/VIL specifications do not apply. 3 The voltage applied on RTC_XTALI must be within the range of VSS to VDD_SNVS_LDO_1P8_CAP. 4 The rise/fall time of the applied clock are not strictly confined.

4.5 I/O DC Parameters
This section includes the DC parameters of the following I/O types: · XTALI and RTC_XTALI (clock inputs) DC parameters · General Purpose I/O (GPIO) DC parameters
NOTE The term `OVDD' in this section refers to the associated supply rail of an input or output.

1

or

pdat

0

Predriver

ovdd pmos (Rpu)
pad

Voh min Vol max

nmos (Rpd)
ovss
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.5.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters
For RTC_XTALI, VIH/VIL specifications do not apply. The high and low levels of the applied clock on this pin are not strictly defined, as long as the input's peak-to-peak amplitude meet the requirements and the input's voltage value does not exceed the limits.

4.5.2

General-purpose I/O (GPIO) DC parameters
NOTE The term "OVDD" in this section refers to the associated supply rail of an input or output. The association is shown in Table 127.

4.5.2.1 Tri-voltage GPIO DC parameters
The following tables show tri-voltage 1.8V, 2.5 V, and 3.3 V DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 8, unless otherwise noted.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

36

NXP Semiconductors

Electrical characteristics

Table 30. Tri-voltage 1.8 V GPIO DC parameters1

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage2,3

VOH

IOH= 0.1mA PDRV=1

0.8 × OVDD

--

V

Low-level output voltage2,3

VOL

IOH= 2mA PDRV=0 IOL= -0.1mA PDRV=1

--

0.125 × OVDD V

High-Level input voltage2,4

VIH

Low-Level input voltage

VIL

Pull-up resistance

RPU

IOL= -2mA PDRV=0
-- -- VIN=0V (Pullup Resistor) PUN = "L", PDN = "H"

0.625 × OVDD

OVDD

V

0

0.25 × OVDD V

15

50

k

Pull-down resistance

RDOWN

VIN=OVDD( Pulldown Resistor)

15

PUN = "H", PDN = "L"

50

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-1

1

A

PUN = "H", PDN = "H"

1 For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly. For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation, PSW_OVR = 0b1 and COMP = 0b010.
2 Refer to Section 4.6.1 for undershoot and overshoot specifications. 3 As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for 3v3 and 2v5 modes.
Low Drive mode is recommended for 1v8 mode. 4 Refer to Section 4.6.2 for monotonic requirements.

Parameter High-level output voltage2,3
Low-level output voltage2,3
High-Level input voltage2,4 Low-Level input voltage Pull-up resistance

Table 31. Tri-voltage 2.5 V GPIO DC parameters1

Symbol
V OH
V OL
V IH
VIL RPU

Test Conditions IOH= 2mA PDRV=0 IOL= -2mA PDRV=0 -- --
VIN=0V (Pullup Resistor) PUN = "L", PDN = "H"

Min 0.8 × OVDD
--
0.625 × OVDD 0 10

Max --
0.125 × OVDD
OVDD 0.25 × OVDD
100

Units V
V
V V k

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

37

Electrical characteristics

Table 31. Tri-voltage 2.5 V GPIO DC parameters1 (continued)

Parameter

Symbol

Test Conditions

Min

Max

Units

Pull-down resistance

RDOWN

VIN=OVDD( Pulldown

10

Resistor)

PUN = "H", PDN = "L"

100

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-1

PUN = "H", PDN = "H"

1

A

1 For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly. For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation, PSW_OVR = 0b1 and COMP = 0b010.
2 Refer to Section 4.6.1 for undershoot and overshoot specifications. 3 As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for 3v3 and 2v5 modes.
Low Drive mode is recommended for 1v8 mode. 4 Refer to Section 4.6.2 for monotonic requirements.

Table 32. Tri-voltage 3.3 V GPIO DC parameters1

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage2,3

VOH

IOH= 0.1mA

0.8 × OVDD

V

PDRV=1

Low-level output voltage2,3

V OL

IOH= 2mA PDRV=0 IOPLD=R-0V.31=m1A

--

0.125 × OVDD V

High-Level input voltage2,4,3 Low-Level input voltage Pull-up resistance

V IH
VIL RPU

IOL= -2mA PDRV=0
-- -- VIN=0V (Pullup Resistor) PUN = "L", PDN = "H"

0.725 × OVDD

OVDD

V

0

0.25 × OVDD V

10

100

k

Pull-down resistance

RDOWN

VIN=OVDD( Pulldown Resistor)

10

PUN = "H", PDN = "L"

100

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-2

2

A

PUN = "H", PDN = "H"

1 For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly. For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation, PSW_OVR = 0b1 and COMP = 0b010.
2 Refer to Section 4.6.1 for undershoot and overshoot specifications. 3 As programmed in the associated IOMUX (PDRV field) register. High Drive mode recommended for 3v3 and 2v5 modes. Low
Drive mode is recommended for 1v8 mode. 4 Refer to Section 4.6.2 for monotonic requirements.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

38

NXP Semiconductors

Electrical characteristics
4.5.2.2 Dual-voltage GPIO DC parameters The following two tables show dual-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 8, unless otherwise noted.

Table 33. Dual-voltage 1.8 V GPIO DC parameters

Parameter

Symbol

Test Conditions

Min

Max

Units

High-level output voltage1,2

VOH Ioh= 0.1mA PDRV=1

0.8 × OVDD

--

V

Low-level output voltage1,2

Ioh= 2mA PDRV=0
VOL Iol= -0.1mA PDRV=1

--

0.125 × OVD V

D

High-Level input voltage1,3

Iol= -2mA PDRV=0

VIH

--

0.625 × OVD

OVDD

V

D

Low-Level input voltage Pull-up resistance

VIL

--

RPU Vin=0 V (Pullup Resistor) PUN = "L", PDN = "H"

0

0.25 × OVDD V

15

50

k

Pull-down resistance

Rdown Vin=OVDD( Pulldown Resistor)

15

PUN = "H", PDN = "L"

50

k

Input current (no PU/PD)

IIN VI = 0, VI = OVDD PUN = "H", PDN = "H"

-1

1

A

1 Refer to Section 4.6.1 for undershoot and overshoot specifications. 2 As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for SD standard (3v3 mode)
and MMC standard (1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode). 3 Refer to Section 4.6.2 for monotonic requirements.

Parameter High-level output voltage1,2
Low-level output voltage1,2
High-Level input voltage1,3 Low-Level input voltage

Table 34. Dual-voltage 3.3 V GPIO DC parameters

Symbol VOH
VOL
VIH VIL

Test Conditions
Ioh= 0.1mA PDRV=1
Ioh= 2mA PDRV=0
Iol= -0.1mA PDRV=1
Iol= -2mA PDRV=0
--
--

Min 0.8 × OVDD

Max

Units

--

V

--

0.125 × OVDD V

0.725 × OVDD

OVDD

V

0

0.25 × OVDD V

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

39

Electrical characteristics

Table 34. Dual-voltage 3.3 V GPIO DC parameters (continued)

Parameter

Symbol

Test Conditions

Min

Max

Units

Pull-upresistance

RPU

Vin=0V (Pullup Resistor)

10

100

k

PUN = "L", PDN = "H"

Pull-down resistance

Rdown

Vin=OVDD( Pulldown Resistor)

10

PUN = "H", PDN = "L"

100

k

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD

-2

2

A

PUN = "H", PDN = "H"

1 Refer to Section 4.6.1 for undershoot and overshoot specifications. 2 As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for SD standard (3v3 mode)
and MMC standard (1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode). 3 Refer to Section 4.6.2 for monotonic requirements.

4.5.2.3 Single-voltage GPIO DC parameters
Table 35 and Table 36 show single-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 8 unless otherwise noted.

Parameter High-level output voltage1,2
Low-level output voltage1,2
High-Level input voltage2,3 Low-Level input voltage2,3 Pull-up resistance Pull-down resistance Input current (no PU/PD) Keeper Circuit Resistance

Table 35. Single-voltage 1.8 V GPIO DC parameters

Symbol VOH
VOL
VIH VIL RPU Rdown IIN R_Keeper

Test Conditions
IOH= 0.1mA DSE = 000 or 001
IOH= 2mA DSE = 010 or 011
IOH= 4mA DSE = 100 to 110
IOL= -0.1mA DSE = 000 or 001
IOL= -2mA DSE = 010 or 011
IOL= -4mA DSE = 100 to 110
-- -- Vin=0V (Pullup Resistor) PUN = "L", PDN = "H" Vin=OVDD( Pulldown Resistor) PUN = "H", PDN = "L" VI = 0, VI = OVDD PUN = "H", PDN = "H" VI =.3xOVDD, VI = .7x OVDD PUN = "L", PDN = "L"

Min OVDD × 0.8

Max

Units

--

V

--

OVDD × 0.2

V

0.65 × OVDD

OVDD

V

0

0.35 × OVDD V

20

90

k

20

90

k

-5

5

A

20

90

k

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

40

NXP Semiconductors

1 As programmed in the associated IOMUX (DSE field) register. 2 Refer to Section 4.6.1 for undershoot and overshoot specifications. 3 Refer to Section 4.6.2 for monotonic requirements.

Electrical characteristics

Table 36. Single-voltage 3.3 V GPIO DC parameters

Parameter

Symbol

Test Conditions

High-level output voltage1,2

VOH

IOH = 0.1mA DSE = 00 or 01

Low-level output voltage1,2

VOL

IOH= 2mA DSE = 10 or 11
IOL= -0.1mA DSE = 00 or 01

High-Level input voltage2,3

VIH

Low-Level input voltage2,3

VIL

Pull-upresistance

RPU

IOL = -2mA DSE = 10 or 11
--
--
Vin=0 V (Pullup Resistor) PUN = "L", PDN = "H"

Pull-down resistance

Rdown

Vin=OVDD( Pulldown Resistor) PUN = "H", PDN = "L"

Input current (no PU/PD)

IIN

VI = 0, VI = OVDD PUN = "H", PDN = "H"

Keeper Circuit Resistance

R_Keeper VI =.3xOVDD, VI = .7x OVDD PUN = "L", PDN = "L"

1 As programmed in the associated IOMUX (DSE field) register. 2 Refer to Section 4.6.1 for undershoot and overshoot specifications. 3 Refer to Section 4.6.2 for monotonic requirements.

Min 0.8 × OVDD
--
0.75 × OVDD 0 20 20 -5 20

Max

Units

--

V

0.2 × OVDD

V

OVDD

V

0.25 × OVDD

V

90

k

90

k

5

A

90

k

4.5.3 HDMI control signals parameters
The following table shows HDMI control signals DC parameters. These parameters are guaranteed per the operating ranges in Table 8, unless otherwise noted.

Parameter High-level input voltage Low-level input voltage

Table 37. HDMI DDC and HPD DC parameters

Symbol

Test Conditions

Min

VIH

--

2

VIL

--

0

Max

Units

5.3

V

0.8

V

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

41

Electrical characteristics
4.5.4 DDR I/O DC parameters
4.5.4.1 LPDDR4 mode I/O DC parameters These parameters are guaranteed per the operating ranges in Table 8 unless otherwise noted.

Table 38. LPDDR4 DC parameters

Parameter

Symbol

Test Conditions

High-level output voltage1 Low-level output voltage1

VOH Output Drive = All settings (40,48,60,80,120,240) unterminated outputs

VOL

Output Drive = All settings

(40,48,60,80,120,240)

unterminated outputs

Input current (no ODT)

IIN

VI = VSSQ, VI = VDDQ

DC High-Level input voltage

VIH_DC

--

DC Low-Level input voltage

VIL_DC

--

1 Refer to Section 4.6.1 for undershoot and overshoot specifications.

Min 0.9 × VDDQ
--
-2 VREF + 0.1
VSSQ

Max

Units

--

V

0.1 × VDDQ

V

2

A

VDDQ

V

VREF ­ 0.1

V

4.6 I/O AC Parameters
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

From Output Under Test

Test Point CL

CL includes package, probe and fixture capacitance Figure 4. Load Circuit for Output

Output (at pad)

80%

20%

tr

tf

Figure 5. Output Transition Time Waveform

OVDD 80%
20% 0V

4.6.1 I/O Overshoot and Undershoot Parameters
For all inputs/outputs, maximum peak amplitude allowed for overshoot and undershoot is specified in Table 39. OVDD is the I/O Supply.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

42

NXP Semiconductors

Electrical characteristics
NOTE If a signal edge produces more than one overshoot/undershoot event, the sum of all areas following the transition must be less than the area specified.

Table 39. Overshoot and Undershoot Parameters

Parameter Amplitude above OVDD or below GND Area above OVDD or below GND (A + B)

Symbol

Min

VPeak

--

VArea

--

Max

Units

0.35

V

0.8

V-ns

Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, and other methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device.

VPeak

A

B

Figure 6. Undershoot Waveform Example

4.6.2 Input Signal Monotonic Requirements
Processor input signal monotonic requirements are illustrated in the following figure.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

43

Electrical characteristics

Figure 7. Input Waveform Monotonic Requirement
VIH_min and VIL_max are the guaranteed minimum logic-high and maximum logic-low voltage specifications, respectively. NXP devices are typically better than guaranteed specifications; these values are shown in the diagram as "typ". Nominally, lower voltages than the guaranteed specification are accepted by the device as logic high and higher voltages than the guaranteed specification are accepted as logic low.
4.6.3 General Purpose I/O (GPIO) AC Parameters

Table 40. General Purpose I/O AC Parameters1

Symbol

Parameter

fmax Maximum frequency

tr Rise time tf Fall time
fmax Maximum frequency

Test Condition

Min Typ

1.8 V application2

Load = 21 pF (PDRV = L, high --

--

drive, 33 

Load = 15 pF (PDRV = H, low drive, 50 

Measured between VOL and 0.4

--

VOH

Measured between VOH and 0.4

--

VOL

Driver 3.3 V application3

Load = 30 pF

--

--

Max 208
1.32 1.32 52

Unit MHz
ns ns MHz

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

44

NXP Semiconductors

Electrical characteristics

Table 40. General Purpose I/O AC Parameters1 (continued)

Symbol

Parameter

Test Condition

Min Typ

Max

Unit

tr Rise time

Measured between

--

--

3

ns

VOL and VOH

tf Fall time

Measured between

--

--

3

ns

VOH and VOL

1 All output I/O specifications are guaranteed for Accurate mode of the compensation cell operation. This is applicable for both DC and AC specifications.
2 All timing specifications in 1.8 V application are valid for High Drive mode (PDRV = L). In Low Drive mode (PDRV = H), the driver is functional.
3 All timing specifications in 3.3 V application are valid for Low Drive only. For High Drive setting, the driver is functional.

Table 41. Dynamic input characteristics

Symbol

Parameter

Condition1,2

Min

Dynamic Input Characteristics for 3.3 V Application

fop

Input frequency of operation

INPSL Slope of input signal at I/O

--

--

Measured between 10% to 90% of the I/O swing --

Dynamic Input Characteristics for 1.8 V Application

fop

Input frequency of operation

--

--

INPSL Slope of input signal at I/O

Measured between 10% to 90% of the I/O swing --

1 For all supply ranges of operation. 2 The dynamic input characteristic specifications are applicable for the digital bidirectional cells.

Max

Unit

52

MHz

3.5

ns

208

MHz

1.5

ns

4.7 Output Buffer Impedance Parameters
This section defines the I/O impedance parameters for the following I/O types: · General Purpose I/O (GPIO) output buffer impedance · Double Data Rate I/O (DDR) output buffer impedance for LPDDR4
NOTE GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 8).

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

45

Electrical characteristics

ipp_do

predriver

U,(V) VDD

OVDD PMOS (Rpu)
pad

Ztl , L = 20 inches

NMOS (Rpd)

OVSS

Vin (do)

Cload = 1p

0 U,(V) OVDD
Vref

Vref1

Vref2

t,(ns) Vout (pad)

0

Vovdd ­ Vref1

Rpu =

× Ztl

Vref1

t,(ns)

Rpd =

Vref2 × Ztl
Vovdd ­ Vref2
Figure 8. Impedance Matching Load for Measurement

4.7.1 GPIO output buffer impedance

4.7.1.1 Tri-voltage GPIO output buffer impedance

Parameter Output impedance Output impedance

Table 42. Tri-voltage 1.8 V GPIO output impedance DC parameters

Symbol ZO ZO

Test conditions 1DSE=0 1DSE=1

Typical 33 50

Units  

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

46

NXP Semiconductors

1 As programmed in the associated IOMUX (PDRV field) register.

Electrical characteristics

Table 43. Tri-voltage 2.5 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 As programmed in the associated IOMUX (PDRV field) register.

Typical 25 33

Units  

Table 44. Tri-voltage 3.3 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 As programmed in the associated IOMUX (PDRV field) register.

Typical 25 37

4.7.1.2 Dual-voltage GPIO output buffer impedance

Table 45. Dual-voltage 1.8 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 `As programmed in the associated IOMUX (PDRV field) register.

Typical 33 50

Units  
Units  

Table 46. Dual-voltage 3.3 V GPIO output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=0

Output impedance

ZO

1DSE=1

1 As programmed in the associated IOMUX (PDRV field) register.

Typical 25 37

Units  

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

47

Electrical characteristics
4.7.1.3 Single-voltage 1.8 V GPIO output buffer drive strength The following table shows the GPIO output buffer drive strength (OVDD 1.8 V).

Table 47. Single-voltage GPIO 1.8 V output impedance DC parameters

Parameter

Symbol

Test conditions

1DSE=000

1DSE=001

1DSE=010

Output impedance

ZO

1DSE=011 1DSE=100

1DSE=101

1DSE=110

1DSE=111

1 As programmed in the associated IOMUX (DSE field) register.

Typical 200 100 55 40 30 24 20 18

4.7.1.4 Single-voltage 3.3 V GPIO output buffer drive strength The following table shows the GPIO output buffer drive strength (OVDD 3.3 V).

Units 

Table 48. Single-voltage GPIO 3.3 V output impedance DC parameters

Parameter

Symbol

Test conditions

Output impedance

ZO

1DSE=00 1DSE=01

1DSE=10

1DSE=11

1 As programmed in the associated IOMUX (DSE field) register.

Typical 400 200 100 50

Units 

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

48

NXP Semiconductors

Electrical characteristics
4.7.2 DDR I/O output buffer impedance
The following tables show LPDDR4 I/O output buffer impedance of the device. The ZQ Calibration cell uses a single register (ZQnPR0) to determine the target output buffer impedances of the pull-up driver and the pull-down driver, as well as the target on-die termination impedance. The resulting calibration setting is then applied to all DDR pads within the PHY complex. Table 49 shows the recommended ZQnPR0 field settings for the LPDDR4 I/Os to achieve the desired output buffer impedances.

Parameter
Recommended combinations for DQ /CA pins

Table 49. LPDDR4 I/O output buffer impedance

Typical

ZQnPR0 ZPROG_ASYM_PU_DRV
5 7 9 11

Impedance
80  60  48  40 

ZQnPR0 ZPROG_ASYM_PD_DRV
3 5 7 9

Impedance
120  80  60  48 

Table 50. LPDDR4 I/O on-die termination impedance

Parameter

Typical Impedance

Recommended combinations for DQ/CA pins

120.0  80.0  60.0  48.0  40.0 

ZQnPR0. ZPROG_HOST_ODT
3 5 7 9 11

4.8 System Modules Timing
This section contains the timing and electrical parameters for the modules in each processor.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

49

Electrical characteristics
4.8.1 Reset Timing Parameters
The following figure shows the reset timing and Table 51 lists the timing parameters.

POR_B (Input)
CC1 Figure 9. Reset timing diagram

Table 51. Reset timing parameters

ID CC1

Parameter Duration of SRC_POR_B to be qualified as valid

Min Max

Unit

1

-- XTALOSC_RTC_ XTALI cycle

4.8.2 WDOG reset timing parameters
The following figure shows the WDOG reset timing and Table 52 lists the timing parameters.

Figure 10. SCU_WDOG_OUT timing diagram

Table 52. WDOG1_B timing parameters

ID

Parameter

CC3 Duration of SCU_WDOG_OUT assertion

Min Max

1

--

Unit XTALOSC_RTC_ XTALI cycle

NOTE
XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 s.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

50

NXP Semiconductors

Electrical characteristics
4.8.3 DDR SDRAM­specific parameters (LPDDR4)
The i.MX 8 Family of processors have been designed and tested to work with JEDEC JESD209-4A­ compliant LPDDR4 memory . Timing diagrams and tolerances required to work with these memories are specified in the respective documents and are not reprinted here.
Meeting the necessary timing requirements for a DDR memory system is highly dependent on the components chosen and the design layout of the system as a whole. NXP cannot cover in this document all the requirements needed to achieve a design that meets full system performance over temperature, voltage, and part variation; PCB trace routing, PCB dielectric material, number of routing layers used, placement of bulk/decoupling capacitors on critical power rails, VIA placement, GND and Supply planes layout, and DDR controller/PHY register settings all are factors affecting the performance of the memory system. Consult the hardware user guide for this device and NXP validated design layouts for information on how to properly design a PCB for best DDR performance. NXP strongly recommends duplicating an NXP validated design as much as possible in the design of critical power rails, placement of bulk/decoupling capacitors and DDR trace routing between the processor and the selected DDR memory. All supporting material is readily available on the device web page on https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applicatio ns-processors/i.mx-8-processors:IMX8-SERIES .
Processors that demonstrate full DDR performance on NXP validated designs, but do not function on customer designs, are not considered marginal parts. A report detailing how the returned part behaved on an NXP validated system will be provided to the customer as closure to a customer's reported DDR issue. Customers bear the responsibility of properly designing the Printed Circuit Board, correctly simulating and modeling the designed DDR system, and validating the system under all expected operating conditions (temperatures, voltages) prior to releasing their product to market.

Table 53. i.MX 8 Family DRAM controller supported SDRAM configurations

Parameter
Number of Controllers Number of Channels Number of Chip Selects Bus Width Number of Address Rows Maximum Clock Frequency 1 Only 16-bit external memory configurations are supported.

LPDDR4
2 2 per controller 2 per channel 16 bit per channel1
16 (R0-R15) 1600 MHz

4.8.3.1 Clock/data/command/address pin allocations
These processors uses generic names for clock, data and command address bus (DCF--DRAM controller functions); the following table provides mapping of clock, data and command address signals for LPDDR4 modes.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

51

Electrical characteristics

Table 54. Clock, data, and command address signals for LPDDR4 modes

DDR_CH[1:0].CK0_P DDR_CH[1:0].CK0_N DDR_CH[1:0].CK1_P DDR_CH[1:0].CK1_N DDR_CH[1:0].DQ_[15:0] DDR_CH[1:0].DQ_[31:16] DDR_CH[1:0].DQS_N_[3:0] DDR_CH[1:0].DQS_P_[3:0] DDR_CH[1:0].DM_[3:0] DDR_CH[1:0].DCF00 DDR_CH[1:0].DCF01 DDR_CH[1:0].DCF02 DDR_CH[1:0].DCF03 DDR_CH[1:0].DCF04 DDR_CH[1:0].DCF05 DDR_CH[1:0].DCF06 DDR_CH[1:0].DCF07 DDR_CH[1:0].DCF08 DDR_CH[1:0].DCF09 DDR_CH[1:0].DCF10 DDR_CH[1:0].DCF11 DDR_CH[1:0].DCF12 DDR_CH[1:0].DCF13 DDR_CH[1:0].DCF14 DDR_CH[1:0].DCF15 DDR_CH[1:0].DCF16 DDR_CH[1:0].DCF17 DDR_CH[1:0].DCF18 DDR_CH[1:0].DCF19 DDR_CH[1:0].DCF20 DDR_CH[1:0].DCF21 DDR_CH[1:0].DCF22

Signal name

LPDDR4 CK_t_A CK_c_A CK_t_B CK_c_B DQ[15:0]_A DQ[15:0]_B DQS_N_[3:0] DQS_P_[3:0] DM_[3:0] CA2_A CA4_A
CA5_A
CA3_A ODT_CA_A
CS0_A CA0_A CS1_A
CKE0_A CKE1_A CA1_A CA4_B RESET_N CA5_B

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

52

NXP Semiconductors

Electrical characteristics

Table 54. Clock, data, and command address signals for LPDDR4 modes (continued)

DDR_CH[1:0].DCF23 DDR_CH[1:0].DCF24 DDR_CH[1:0].DCF25 DDR_CH[1:0].DCF26 DDR_CH[1:0].DCF27 DDR_CH[1:0].DCF28 DDR_CH[1:0].DCF29 DDR_CH[1:0].DCF30 DDR_CH[1:0].DCF31 DDR_CH[1:0].DCF32 DDR_CH[1:0].DCF33

Signal name

LPDDR4
ODT_CA_B CA3_B CA0_B CS0_B CS1_B CKE0_B CKE1_B CA1_B CA2_B

4.9 General-Purpose Media Interface (GPMI) Timing
The GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 400 MB/s I/O speed, and individual chip select. It supports Asynchronous Timing mode, Source Synchronous Timing mode, and Toggle Timing mode, as described in the following subsections.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

53

Electrical characteristics
4.9.1 GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 11 through Figure 14 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 55 describes the timing parameters (NF1­NF17) that are shown in the figures.

.!.$?#,% .!.$?#%?"

NF1 NF3

NF2 NF4

.!.$?7%?"

NF5

.!.$?!,% .!.$?$!4!XX

NF6

NF7

NF8

NF9

Command

Figure 11. Command Latch Cycle Timing Diagram

.!.$?#,% .!.$?#%?" .!.$?7%?"

NF1
NF3 NF10
NF5

NF11

.!.$?!,% NAND_DATAxx

NF6
NF8 Address

NF7 NF9

Figure 12. Address Latch Cycle Timing Diagram

.!.$?#,% .!.$?#%?" .!.$?7%?"

NF1
NF3 NF10
NF5

NF11

.!.$?!,%

NF6

NF7

.!.$?$!4!XX

NF8

NF9

Data to NF

Figure 13. Write Data Latch Cycle Timing Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

54

NXP Semiconductors

Electrical characteristics

.!.$?#,%

.!.$?#%?" .!.$?2%?"

NF14 NF13

NF15

.!.$?2%!$9?"

NF12

NF16

NF17

.!.$?$!4!XX

Data from NF

Figure 14. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)

.!.$?#,% .!.$?#%?"
.!.$?2%?"

NF14 NF13

NF15

.!.$?2%!$9?"

NF12

NAND_DATAxx

NF16

NF17 Data from NF

Figure 15. Read Data Latch Cycle Timing Diagram (EDO Mode)

Table 55. Asynchronous Mode Timing Parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min

Max

NF1 NAND_CLE setup time

tCLS

(AS + DS) × T - 0.12 [see 2,3]

ns

NF2 NAND_CLE hold time

tCLH

DH × T - 0.72 [see 2]

ns

NF3 NAND_CEx_B setup time

tCS

(AS + DS + 1) × T [see 3,2]

ns

NF4 NAND_CEx_B hold time

tCH

(DH+1) × T - 1 [see 2]

ns

NF5 NAND_WE_B pulse width

tWP

DS × T [see 2]

ns

NF6 NAND_ALE setup time

tALS

(AS + DS) × T - 0.49 [see 3,2]

ns

NF7 NAND_ALE hold time

tALH

(DH × T - 0.42 [see 2]

ns

NF8 Data setup time

tDS

DS × T - 0.26 [see 2]

ns

NF9 Data hold time

tDH

DH × T - 1.37 [see 2]

ns

NF10 Write cycle time

tWC

(DS + DH) × T [see 2]

ns

NF11 NAND_WE_B hold time

tWH

DH × T [see 2]

ns

NF12 Ready to NAND_RE_B low

tRR4

(AS + 2) × T [see 3,2]

--

ns

NF13 NAND_RE_B pulse width

tRP

DS × T [see 2]

ns

NF14 READ cycle time

tRC

(DS + DH) × T [see 2]

ns

NF15 NAND_RE_B high hold time

tREH

DH × T [see 2]

ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

55

Electrical characteristics

Table 55. Asynchronous Mode Timing Parameters1 (continued)

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min

Max

NF16 Data setup on read NF17 Data hold on read

tDSR tDHR

-- 0.82/11.83 [see 5,6]

(DS × T -0.67)/18.38 [see 5,6] ns

--

ns

1 The GPMI asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1. 3 T = GPMI clock period -0.075ns (half of maximum p-p jitter). 4 NF12 is met automatically by the design. 5 Non-EDO mode. 6 EDO mode, GPMI clock  100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 15), NF16/NF17 are different from the definition in non-EDO mode (Figure 14). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the device reference manual. The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

56

NXP Semiconductors

Electrical characteristics
4.9.2 GPMI Source Synchronous mode AC timing (ONFI 2.x compatible)
The following figure shows the write and read timing of Source Synchronous mode.

NF18

NF19

.!.$?#%?"

NAND_CLE NAND_ALE NAND_WE/RE_B NAND_CLK

NF23

NF25 NF26

NF25 NF26 NF22

NF24

NAND_DQS NAND_DQS Output enable
NAND_DATA[7:0]

NF20
NF21
CMD

NF20
NF21
ADD

NAND_DATA[7:0] Output enable

Figure 16. Source Synchronous Mode Command and Address Timing Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

57

Electrical characteristics

.!.$?#%?"

NF18

.!.$?#,%

.!.$?!,%

NF23 NF23

NF25 NF25

NF26 NF26

NF24 NF24

NF19

NAND_WE/RE_B .!.$?#,+ .!.$?$13

NF27

NF22

NF27

.!.$?$13 Output enable

NF29

NF29

.!.$?$1;=
.!.$?$1;= Output enable

NF28

NF28

Figure 17. Source Synchronous Mode Data Write Timing Diagram

NF18

.!.$?#%?"

NF19

.!.$?#,%

NF23

NF25

NF26

NF24

NAND_ALE

NF23

NF25

NF26

NF24

.!.$?7%2%

NF25

NF22

.!.$?#,+

NF26

NF25

.!.$?$13
.!.$?$13 /UTPUTENABLE

.!.$?$!4!;=

.!.$?$!4!;= /UTPUTENABLE

Figure 18. Source Synchronous Mode Data Read Timing Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

58

NXP Semiconductors

Electrical characteristics

.!.$?$13

NF30

.!.$?$!4!;=

D0

D1

D2

D3

NF30

NF31

NF31

Figure 19. NAND_DQS/NAND_DQ Read Valid Window

Table 56. Source Synchronous Mode Timing Parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min

Max

NF18 NAND_CEx_B access time NF19 NAND_CEx_B hold time

tCE

CE_DELAY × T - 0.79 [see 2]

ns

tCH

0.5 × tCK - 0.63 [see 2]

ns

NF20 Command/address NAND_DATAxx setup time

tCAS

0.5 × tCK - 0.05

ns

NF21 Command/address NAND_DATAxx hold time

tCAH

0.5 × tCK - 1.23

ns

NF22 clock period NF23 preamble delay NF24 postamble delay

tCK

--

ns

tPRE

PRE_DELAY × T - 0.29 [see 2]

ns

tPOST

POST_DELAY × T - 0.78 [see 2]

ns

NF25 NAND_CLE and NAND_ALE setup time

tCALS

0.5 × tCK - 0.86

ns

NF26 NAND_CLE and NAND_ALE hold time

tCALH

0.5 × tCK - 0.37

ns

NF27 NAND_CLK to first NAND_DQS latching transition

tDQSS

T - 0.41 [see 2]

ns

NF28 Data write setup

tDS

0.25 × tCK - 0.35

ns

NF29 Data write hold

tDH

0.25 × tCK - 0.85

ns

NF30 NAND_DQS/NAND_DQ read setup skew

tDQSQ

--

2.06

--

NF31 NAND_DQS/NAND_DQ read hold skew

tQHS

--

1.95

--

1 The GPMI source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
2 T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

Figure 19 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference manual. Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

59

Electrical characteristics
4.9.3 ONFI NV-DDR2 mode (ONFI 3.2 compatible)

4.9.3.1 Command and address timing
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.9.1, "GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)"," for details.

4.9.3.2 Read and write timing
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 4.9.4, "Toggle mode AC Timing"," for details.

4.9.4 Toggle mode AC Timing

4.9.4.1

Command and address timing
NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 4.9.1, "GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)"," for details.

4.9.4.2 Read and write timing

Figure 20. Toggle mode data write timing

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

60

NXP Semiconductors

DEV?CLK .!.$?#%X?" .!.$?#,%

.&

.!.$?!,%

 .!.$?7%?" .!.$?2%?"
.!.$?$13 .!.$?$!4!;=

T#+

.&

T#+

T#+

Electrical characteristics

.&

T#+

T#+

Figure 21. Toggle mode data read timing

Table 57. Toggle mode timing parameters1

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Min.

Max.

NF1 NAND_CLE setup time NF2 NAND_CLE hold time NF3 NAND_CE0_B setup time NF4 NAND_CE0_B hold time NF5 NAND_WE_B pulse width NF6 NAND_ALE setup time NF7 NAND_ALE hold time NF8 Command/address NAND_DATAxx setup time NF9 Command/address NAND_DATAxx hold time NF18 NAND_CEx_B access time

tCLS tCLH tCS tCH tWP tALS tALH tCAS tCAH tCE

(AS + DS) × T - 0.12 [see note2s,3]

DH × T - 0.72 [see note2]

(AS + DS) × T - 0.58 [see notes,2]

DH × T - 1 [see note2]

DS × T [see note2]

(AS + DS) × T - 0.49 [see notes,2]

DH × T - 0.42 [see note2]

DS × T - 0.26 [see note2]

DH × T - 1.37 [see note2]

CE_DELAY × T [see notes4,2]

--

NF22 clock period NF23 preamble delay

tCK

--

--

tPRE PRE_DELAY × T [see notes5,2]

--

NF24 postamble delay

tPOST POST_DELAY × T +0.43 [see

--

note2]

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021 NXP Semiconductors

Unit
ns ns ns ns
61

Electrical characteristics

Table 57. Toggle mode timing parameters1 (continued)

Timing

ID

Parameter

Symbol

T = GPMI Clock Cycle

Unit

Min.

Max.

NF28 Data write setup NF29 Data write hold NF30 NAND_DQS/NAND_DQ read setup skew NF31 NAND_DQS/NAND_DQ read hold skew

tDS6 tDH6 tDQSQ7 tQHS7

0.25 × tCK - 0.32 0.25 × tCK - 0.79
-- --

--

ns

--

ns

3.18

3.27

1 The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1. 3 T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter). 4 CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
5 PRE_DELAY+1)  (AS+DS)
6 Shown in Figure 20. 7 Shown in Figure 21.

For DDR Toggle mode, Figure 21 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference manual. Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.10 External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.

4.10.1 LPSPI timing parameters
All LPSPI interfaces do not have the same maximum serial clock frequency. There are two groups. LPSPI interfaces which can operate at 60 MHz in Master mode and 40 MHz in Slave mode and the other group where interfaces operate at 40 MHz in Master mode and 20 MHz in Slave mode. The same performance is achieved at 1.8 V and 3.3 V unless otherwise stated.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

62

NXP Semiconductors

Below are the LPSPI interfaces and their respective chip selects:

Electrical characteristics

Table 58. LPSPI interfaces and chip selects

LPSPI interface

Chip select

Comment

60 MHz in Master mode and 40 MHz in Slave mode
40 MHz in Master mode and 20 MHz in Slave mode

SPI0, SPI1, SPI2, SPI3 (primary mode) SPI3b (behind UART1)

SPI1 is muxed behind ADC pins so it operates at 1.8 V only.
--

4.10.1.1 LPSPI Master mode
Waveform is assuming LPSPI is configured in mode 0, i.e. TCR.CPOL=0b0 and TCR.CPHA=0b0. Timing parameters are valid for all modes using appropriate edge of the clock.

Figure 22. LPSPI Master mode

Table 59. LPSPI timings--Master mode at 60 MHz

ID

Parameter

-- SPIx_SCLK Cycle frequency
t1 SPIx_SCLK High or Low Time­Read SPIx_SCLK High or Low Time­Write
t2 SPIx_CSy pulse width t3 SPIx_CSy Lead Time(1)

t4 SPIx_CSy Lag Time(3)

Min -- 7.5
7.5 FCLK_PERIOD(2) x (PCSSCK
+ 1) / 2PRESCALE - 3 FCLK_PERIOD(2) x (SCKPCS
+ 1) / 2PRESCALE + 3

Max Unit

60 MHz

--

ns

--

ns

--

ns

--

ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

63

Electrical characteristics

Table 59. LPSPI timings--Master mode at 60 MHz (continued)

ID

Parameter

Min

Max Unit

t5 SPIx_SDO output Delay (CLOAD = 20 pF)

--

3

ns

t6 SPIx_SDI Setup Time

2

--

ns

t7 SPIx_SDI Hold Time

2

--

ns

1 This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers. 2 FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz. 3 This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.

Table 60. LPSPI timings--Master mode at 40 MHz

ID

Parameter

Min

Max Unit

-- SPIx_SCLK Cycle frequency

--

40 MHz

t1 SPIx_SCLK High or Low Time­Read SPIx_SCLK High or Low Time­Write

11

--

ns

t2 SPIx_CSy pulse width t3 SPIx_CSy Lead Time(1)
t4 SPIx_CSy Lag Time(3)

11 FCLK_PERIOD(2) x (PCSSCK
+ 1) / 2PRESCALE + 3 FCLK_PERIOD(2) x (SCKPCS
+ 1) / 2PRESCALE + 3

--

ns

--

ns

--

ns

t5 SPIx_SDO output Delay (CLOAD = 20 pF)

--

5

ns

t6 SPIx_SDI Setup Time

5

--

ns

t7 SPIx_SDI Hold Time

4

--

ns

1 This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers. 2 FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz. 3 This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

64

NXP Semiconductors

Electrical characteristics

Figure 23. LPSPI Slave mode

Table 61. LPSPI timings--Slave mode at 40 MHz

ID

Parameter

-- SPIx_SCLK Cycle frequency t1 SPIx_SCLK High or Low Time­Read
SPIx_SCLK High or Low Time­Write t2 SPIx_CSy pulse width t3 SPIx_CSy Lead Time (CS setup time) t4 SPIx_CSy Lag Time (CS hold time) t5 SPIx_SDO output Delay (CLOAD = 20 pF) t6 SPIx_SDI Setup Time t7 SPIx_SDI Hold Time

Min

Max

Unit

--

40

MHz

11

--

ns

11

--

ns

4

--

ns

2

--

ns

--

5

ns

2

--

ns

2

--

ns

Table 62. LPSPI timings--Slave mode at 20 MHz

ID

Parameter

-- SPIx_SCLK Cycle frequency
t1 SPIx_SCLK High or Low Time­Read SPIx_SCLK High or Low Time­Write
t2 SPIx_CSy pulse width
t3 SPIx_CSy Lead Time (CS setup time)

Min

Max

Unit

--

20

MHz

22

--

ns

22

--

ns

4

--

ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

65

Electrical characteristics

Table 62. LPSPI timings--Slave mode at 20 MHz (continued)

ID

Parameter

t4 SPIx_CSy Lag Time (CS hold time) t5 SPIx_SDO output Delay (CLOAD = 20 pF) t6 SPIx_SDI Setup Time t7 SPIx_SDI Hold Time

Min

Max

Unit

2

--

ns

--

18

ns

2

--

ns

2

--

ns

4.10.2 Serial audio interface (SAI) timing parameters
The timings and figures in this section are valid for noninverted clock polarity (I2S_TCR2.BCP = 0b0, I2S_RCR2.BCP = 0b0) and non-inverted frame sync polarity (I2S_TCR4.FSP = 0b0, I2S_RCR4.FSP = 0b0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_TXC / SAI_RXC) and/or the frame sync (SAI_TXFS / SAI_RXFS) shown in the figures below.
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.
NOTE SAI0 and SAI1 are transmit/receive capable. SAI2 and SAI3 are receive only.

4.10.2.1 SAI Master Synchronous mode
In this mode, transmitter clock and frame sync are used by both transmitter and receiver (I2S_TCR2.SYNC=0b00, I2S_RCR2.SYNC=0b01). In that case, SAI interface requires only 4 signals to be routed: SAI_TXC, SAI_TXFS, SAI_TXD and SAI_RXD. SAI_RXC and SAI_RXFS can be left unconnected. I2S_RCR2.BCI shall be set to 0b1 to get setup and hold times provided in Table 63.

Figure 24. SAI Master Synchronous mode

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

66

NXP Semiconductors

Electrical characteristics

Table 63. SAI timings--Master Synchronous mode

ID

Parameters

-- SAI TXC clock frequency t1 SAI TXC pulse width low / high t2 SAI TXFS output valid t3 SAI TXD output valid t4 SAI RXD input setup t5 SAI RXD input hold

Min -- 45% -- -- 1 4

Max 49.152
55% 2 2 -- --

Unit MHz SAI_TXC period
ns ns ns ns

4.10.2.2 SAI Master mode
In this mode, transmitter and/or receiver part are set to bring out transmit and/or receive clock. Frame sync can be either input or output.

Figure 25. SAI Master mode

Table 64. SAI timings--Master mode

ID

Parameters

-- SAI TXC / RXC clock frequency1

t1 SAI TXC / RXC pulse width low / high

t2 SAI TXFS / RXFS output valid

Min -- 45% --

Max 49.152
55% 2

Unit MHz TXC/RXC period
ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

67

Electrical characteristics

Table 64. SAI timings--Master mode (continued)

ID

Parameters

Min

Max

Unit

t3 SAI TXD output valid

--

2

ns

t4 SAI RXD/RXFS/TXFS input setup

6

--

ns

t5 SAI RXD/RXFS/TXFS input hold

0

--

ns

1 Given the high setup time requirement on inputs, receiver and transmitter, when using frame sync in input, are likely to run at a lower frequency. This frequency will be driven by characteristics of the external component connected to the interface.

4.10.2.3 SAI Slave mode
In this mode, transmitter and/or receiver parts are set to receive transmit and/or receive clock from external world. Frame sync can be either input or output.

Figure 26. SAI Slave mode

Table 65. SAI timings--Slave mode

ID

Parameters

-- SAI TXC/RXC clock frequency t11 SAI TXC/RXC pulse width low/high t12 SAI TXFS/RXFS output valid t13 SAI TXD output valid t14 SAI RXD/RXFS/TXFS input setup t15 SAI RXD/RXFS/TXFS input hold

Min -- 45% -- -- 1 4

Max 24.576
55% 13 13 -- --

Unit MHz TXC/RXC period
ns ns ns ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

68

NXP Semiconductors

Electrical characteristics
4.10.3 Enhanced serial audio interface (ESAI)
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.

SCKT (Input / Output)
FST (bit) out FST (word) out
Data Out FST (bit) in FST (word) in Flags Out

t1

t1

2t

2t

2t

t3 t4

t5

t6

First bit
4t

t5

t6

t7
Figure 27. ESAI Transmit timing

2t
Last bit
t3

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

69

Electrical characteristics

Figure 28. ESAI Receive timing
The following table shows the interface timing values. The ID field in the table refers to timing signals found in Figure 27 and Figure 28.

Table 66. Enhanced Serial Audio Interface (ESAI) Timing

ID

Parameters

Min Max

Condition1

Unit

--

Clock frequency

-- 24.576

--

t1

SCKT / SCKT pulse width high / low

45% 55%

--

t2

FST output delay

--

10

x ck

2

i ck

t3

TX data - high impedance / valid data

--

9

x ck

1

i ck

t4

TX data output delay

--

10

x ck

2

i ck

t5

FST - setup requirement

--

2

x ck

10

i ck

t6

FST - hold requirement

--

2

x ck

0

i ck

t7

Flag output delay

10

x ck

2

i ck

MHz SCKT / SCKR period
ns ns ns ns ns ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

70

NXP Semiconductors

Electrical characteristics

Table 66. Enhanced Serial Audio Interface (ESAI) Timing (continued)

ID

Parameters

Min Max

Condition1

Unit

t8

FSR output delay

7

x ck

ns

4

i ck a

t9

RX data pins - setup requirement

2

--

x ck

ns

10

i ck

t10

RX data pins - hold requirement

2

--

x ck

ns

0

i ck

t11

FSR - setup requirement

2

--

x ck

ns

10

i ck a

t12

FSR - hold requirement

2

--

x ck

ns

0

i ck a

t13

Flags - setup requirement

2

--

x ck

ns

10

i ck s

t14

Flags - hold requirement

2

--

x ck

ns

0

i ck s

--

RX_HF_CLK / TX_HX_CLK clock cycle

20

--

--

ns

--

TX_HF_CLK input to SCKT

10

--

ns

--

RX_HF_CLK input to SCKR

10

--

ns

1 i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (SCKT and SCKR are two different clocks) i ck s = internal clock, synchronous mode (SCKT and SCKR are the same clock)

4.10.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
Timing
This section describes the electrical information of the uSDHC, including: · SD3.1/eMMC5.1 High-Speed mode AC Timing · eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing · HS400 AC timing--eMMC 5.1 only · HS200 Mode Timing · SDR50/SDR104 AC Timing

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

71

Electrical characteristics
4.10.4.1 SD3.1/eMMC5.1 High-Speed mode AC Timing The following figure depicts the timing of SD3.1/eMMC5.1 High-Speed mode, and Table 67 lists the timing characteristics.
SD4
SD2 SD1
SD5

SDx_CLK

SD3 SD6

Output from uSDHC to card SDx_DATA[7:0]

SD7 SD8

Input from card to uSDHC SDx_DATA[7:0]
Figure 29. SD3.1/eMMC5.1 High-Speed mode Timing

Table 67. SD3.1/eMMC5.1 High-Speed mode interface timing specification

ID

Parameter

Symbols

Min

Max

Unit

Card Input Clock

SD1 Clock Frequency (Low Speed) Clock Frequency (SD/SDIO Full Speed/High Speed) Clock Frequency (MMC Full Speed/High Speed) Clock Frequency (Identification Mode)
SD2 Clock Low Time SD3 Clock High Time SD4 Clock Rise Time SD5 Clock Fall Time

fPP1

0

400

fPP2

0

25/50

fPP3

0

20/52

fOD

100

400

tWL

7

--

tWH

7

--

tTLH

--

3

tTHL

--

3

eSDHC Output/Card Inputs SD_CMD, SD_DATA (Reference to SD_CLK)

kHz MHz MHz kHz ns ns ns ns

SD6 eSDHC Output Delay

tOD

­6.6

3.6

ns

eSDHC Input/Card Outputs SD_CMD, SD_DATA (Reference to SD_CLK)

SD7 eSDHC Input Setup Time

tISU

2.5

--

ns

SD8 eSDHC Input Hold Time4

tIH

1.5

--

ns

1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2 In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0­25 MHz. In high-speed mode, clock frequency can be any value between 0­50 MHz.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

72

NXP Semiconductors

Electrical characteristics
3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0­20 MHz. In high-speed mode, clock frequency can be any value between 0­52 MHz.
4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
4.10.4.2 eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing The following figure depicts the timing of eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode, and Table 68 lists the timing characteristics. Be aware that only SDx_DATA is sampled on both edges of the clock (not applicable to SD_CMD).

SD1

SDx_CLK

SD2

SD2

Output from eSDHCv3 to card SDx_DATA[7:0]

......

SD3 SD4

Input from card to eSDHCv3

SDx_DATA[7:0]

......

Figure 30. eMMC 5.1 timing Figure 31. eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode interface timing

Table 68. eMMC5.1 DDR 52 mode/SD3.150 mode interface timing specification

ID

Parameter

Symbols

Min

Max

Card Input Clock1

SD1 Clock Frequency (eMMC5.1 DDR) SD1 Clock Frequency (SD3.1 DDR)

fPP

0

52

fPP

0

50

uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)

SD2 uSDHC Output Delay

tOD

2.8

6.8

uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)

SD3 uSDHC Input Setup Time SD4 uSDHC Input Hold Time 1 Clock duty cycle will be in the range of 47% to 53%.

tISU

1.7

--

tIH

1.5

--

Unit
MHz MHz
ns
ns ns

4.10.4.3 HS400 AC timing--eMMC 5.1 only
Figure 32 depicts the timing of HS400. Table 69 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

73

Electrical characteristics
HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7 parameters in Table 71 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode.

Figure 32. HS400 timing

Table 69. HS400 interface timing specifications

ID

Parameter

Symbols

Min

Max

Unit

Card Input clock

SD1

Clock Frequency

fPP

0

200

Mhz

SD2

Clock Low Time

SD3

Clock High Time

tCL

0.46 × tCLK

0.54 × tCLK

ns

tCH

0.46 × tCLK

0.54 × tCLK

ns

uSDHC Output/Card inputs DAT (Reference to SCK)

SD4

Output Skew from Data of

tOSkew1

0.45

--

ns

Edge of SCK

SD5

Output Skew from Edge of

tOSkew2

0.45

--

ns

SCK to Data

uSDHC input/Card Outputs DAT (Reference to Strobe)

SD6

uSDHC input skew

SD7

uSDHC hold skew

tRQ

--

0.45

ns

tRQH

--

0.45

ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

74

NXP Semiconductors

Electrical characteristics
4.10.4.4 HS200 Mode Timing The following figure depicts the timing of HS200 mode, and Table 70 lists the HS200 timing characteristics.

SCK

SD1

SD2

SD3

SD4/SD5

8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC

SD6

SD7

SD8

Figure 33. HS200 Mode Timing

Table 70. HS200 Interface Timing Specification

ID

Parameter

Symbols

Min

Max

Card Input Clock

SD1 Clock Frequency Period SD2 Clock Low Time SD2 Clock High Time

tCLK tCL tCH

5.0 0.46 × tCLK 0.46 × tCLK

-- 0.54 × tCLK 0.54 × tCLK

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)

SD5 uSDHC Output Delay

tOD

­1.6

1

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1

SD8 Card Output Data Window 1HS200 is for 8 bits while SDR104 is for 4 bits.

tODW

0.5*tCLK

--

Unit
ns ns ns
ns
ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

75

Electrical characteristics
4.10.4.5 SDR50/SDR104 AC Timing The following figure depicts the timing of SDR50/SDR104, and Table 71 lists the SDR50/SDR104 timing characteristics.

SCK Output from uSDHC to card

SD1

SD2

SD3

SD5 SD4

SD6

SD7

Input from card to uSDHC

SD8
Figure 34. SDR50/SDR104 timing

Table 71. SDR50/SDR104 Interface Timing Specification

ID

Parameter

Symbols

Min

Max

Unit

Card Input Clock

SD1 SD2 SD3

Clock Frequency Period Clock Low Time Clock High Time

tCLK

4.8

--

ns

tCL

0.46 × tCLK 0.54 × tCLK

ns

tCH

0.46 × tCLK 0.54 × tCLK

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)

SD4 uSDHC Output Delay

tOD

­3

1

ns

uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)

SD5 uSDHC Output Delay

tOD

­1.6

1

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)

SD6 uSDHC Input Setup Time

tISU

2.5

--

ns

SD7 uSDHC Input Hold Time

tIH

1.5

--

ns

uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1

SD8 Card Output Data Window

tODW

0.5 × tCLK

--

ns

1Data window in SDR100 mode is variable.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

76

NXP Semiconductors

Electrical characteristics
4.10.4.6 Bus Operation Condition for 3.3 V and 1.8 V Signaling
Signaling level of SD/eMMC 5.1 and eMMC 5.1 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to those shown in "," and Table 33, "Dual-voltage 1.8 V GPIO DC parameters," on page 39Table 34, "Dual-voltage 3.3 V GPIO DC parameters," on page 39.
4.10.5 Ethernet Controller (ENET) AC Electrical Specifications
ENET interface supporting RGMII protocol in delay and non-delay mode. RGMII is used to support up to 1000 Mbps Ethernet as well as RMII protocol. RMII is used to support up to 100 Mbps Ethernet.
NOTE ENET1 supports RGMII at 1.8 V and 2.5 V, and RMII at 3.3 V. ENET0 supports RGMII at 1.8 V only and RMII at 3.3 V.

Pin name1 ENETx_RGMII_TXC

Table 72. RGMII/RMII pin mapping

RGMII RGMII_TXC

RMII RCLK50M

ENETx_RGMII_TX_CTL ENETx_RGMII_TXD0 ENETx_RGMII_TXD1 ENETx_RGMII_TXD2 ENETx_RGMII_TXD3 ENETx_RGMII_RXC ENETx_RGMII_RX_CTL ENETx_RGMII_RXD0 ENETx_RGMII_RXD1 ENETx_RGMII_RXD2

RGMII_TX_CTL RGMII_TXD0 RGMII_TXD1 RGMII_TXD2 RGMII_TXD3 RGMII_RXC RGMII_RX_CTL RGMII_RXD0 RGMII_RXD1 RGMII_RXD2

ENETx_RGMII_RXD3

RGMII_RXD3

ENETx_REFCLK_125M_25M RGMII_REF_CLK

RMII_TXEN RMII_TXD0 RMII_TXD1 N/A N/A N/A RMII_CRS_DV RMII_RXD0 RMII_RXD1 RMII_RXER
N/A N/A

ENETx_MDIO ENETx_MDC 1 x can be 0 or 1.

RGMII_MDIO RGMII_MDC

RMII_MDIO RMII_MDC

Comment2
RCLK50M can be an input or an output. It's using different Alternate pin muxing modes. Refer to pin muxing for details.
--
--
--
--
--
--
--
--
--
RMII_RXER is mapped on ALT1 mode of pin muxing.
--
RGMII_REF_CLK is optional for RGMII operation and dependent on the intended clock configuration.
--
--

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

77

Electrical characteristics 2 Except for RCLK50M and RMII_RXER, all other RMII functions are using the same pin muxing mode as RGMII.
4.10.5.1 RGMII 4.10.5.1.1 No-Internal-Delay mode This mode corresponds to the RGMIIv1.3 specification.

Figure 35. RGMII timing diagram--No-Internal-Delay mode

Table 73. RGMII timings--No-Internal-Delay mode

ID

Parameter

Min

Typ

Max

Unit

TXC / RXC frequency

--

125

--

MHz

t1 Clock cycle

7.2

8

8.8

ns

t2 Data to clock output skew

-500

--

500

ps

t3 Data to clock input skew1(1)

1

--

2.6

ns

1 This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns is added to the associated clock signal.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

78

NXP Semiconductors

Electrical characteristics
4.10.5.1.2 Internal-delay mode This mode corresponds to RGMIIv2.0 specification. The interface is still operating at 2.5 V. 1.5 V is not supported.

Figure 36. RGMII timing diagram--Internal-Delay mode

Table 74. RGMII timing--Internal-Delay mode

ID

Parameter

TXC / RXC frequency t1 Clock cycle t2 TXD setup time t3 TXD hold time t4 RXD setup time t5 RXD hold time

Min

Typ

Max

--

125

--

7.2

8

8.8

1.2

--

--

1.2

--

--

0

--

--

2.5

--

--

Unit MHz ns ns ns ns ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

79

Electrical characteristics
4.10.5.2 RMII
RMII interface is matching RMII v1.2 specification. In RMII mode, the reference clock can be generated internally and provided to the PHY through RCLK50M_OUT. Or, it come from and external 50MHz clock generator which is connected to the PHY and to i.MX8 through RCLK50M_IN pin.

Figure 37. RMII timing diagram
Timings in table below are covering both cases: reference clock generated internally or externally.

Table 75. RMII timing

ID

Parameter

t1 Reference clock Reference clock accuracy Reference clock duty-cycle
t2 RMII_TXEN, RMII_TXD output delay t3 RMII_CRS_DV, RMII_RXD setup time t4 RMII_CRS_DV, RMII_RXD hold time

Min

Typ

Max

Unit

--

50

--

MHz

--

--

50

ppm

35

--

65

%

2

--

12

ns

4

--

--

ns

2

--

--

ns

4.10.5.3 MDIO MDIO is the control link used to configure Ethernet PHY connected to i.MX8 device.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

80

NXP Semiconductors

Electrical characteristics

Figure 38. MDIO timing diagram

Table 76. MDIO timing

ID

Parameter

MDC frequency

t1 MDC high / low pulse width

t2 MDIO output delay

t3 MDIO setup time

t4 MDIO hold time

Min

Typ

Max

Unit

--

2.5

--

MHz

180

--

--

%

0

--

20

ns

10

--

--

ns

10

--

--

ns

4.10.6 CAN network AC Electrical Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol specification. The processor has three CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

4.10.7 HDMI Tx module timing parameters
See the following specifications: · DisplayPort 1.3 standard (VESA.org) · Embedded DisplayPort 1.4 standard (VESA.org)

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

81

Electrical characteristics
The DDC link requires external pull-up resistors to be connected to a 5 V supply. The following table provides the range for those pull-ups.

Table 77. HDMI--Pull-up resistors for DDC link

Ball name HDMI_TX0_DDC_SCL HDMI_TX0_DDC_SDA

Min

Typ

Max

Unit

1.5

--

1.5

--

2

k

2

k

4.10.8 HDMI Tx and Rx REXT reference resistor connection

Table 78. HDMI_REXT reference resistor connection

Name Min Typ Max Unit

Descriptions

REXT 497.50 500 502.50  REXT resistor is 500  ± 0.5%. It shall be connected to ground.

4.10.9 I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. The following figure depicts the timing of the I2C module, and Table 79 lists the I2C module timing characteristics.

I2Cx_SDA

IC10

IC11

IC2 I2Cx_SCL
START

IC8

IC4

IC7

IC10b IC6

IC5 IC1

IC11b

START

Figure 39. I2C bus timing

IC9

IC3

STOP

START

Table 79. I2C Module Timing Parameters

ID

Parameter

IC1 I2Cx_SCL cycle time IC2 Hold time (repeated) START condition IC3 Set-up time for STOP condition IC4 Data hold time

Standard Mode

Min

Max

10

--

4.0

--

4.0

--

01

3.452

Fast Mode

Unit

Min

Max

2.5

-- µs

0.6

-- µs

0.6

-- µs

01

0.92 µs

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

82

NXP Semiconductors

Electrical characteristics

Table 79. I2C Module Timing Parameters (continued)

Standard Mode

Fast Mode

ID

Parameter

Unit

Min

Max

Min

Max

IC5 HIGH Period of I2Cx_SCL Clock

4.0

--

0.6

-- µs

IC6 LOW Period of the I2Cx_SCL Clock

4.7

--

1.3

-- µs

IC7 Set-up time for a repeated START condition

4.7

--

0.6

-- µs

IC8 Data set-up time

250

--

1003

-- ns

IC9 Bus free time between a STOP and START condition

4.7

--

1.3

-- µs

IC10/IC10b Rise time of both I2Cx_SDA and I2Cx_SCL signals IC11/IC11b Fall time of both I2Cx_SDA and I2Cx_SCL signals

--

1000

20 + 0.1Cb4 300 ns

--

300

20 + 0.1Cb4 300 ns

IC12 Capacitive load for each bus line (Cb)

--

400

--

400 pF

1 A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal in order to bridge the undefined region of the falling edge of I2Cx_SCL.
2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released. 4 Cb = total capacitance of one bus line in pF.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

83

Electrical characteristics

Table 80. I2C timing

Fast Mode Plus

ID

Parameter

Min

Max

IC1 SCL clock frequency

--

1

IC2 Hold time (repeated) START condition

260

--

IC3 Set-up time for STOP condition

260

--

IC4 Data hold time

0

--

IC5 HIGH Period of I2Cx_SCL Clock

260

--

IC6 LOW Period of the I2Cx_SCL Clock

500

--

IC7 Set-up time for a repeated START condition

260

--

IC8 Data set-up time

50

--

IC9 Bus free time between a STOP and START condition

500

--

IC10 Rise time of I2Cx_SDA signals

--

120

IC11 Fall time of I2Cx_SDA signals

12 (@3.3 V)

120

6.5 (@1.8 V)

IC10b Rise time of I2Cx_SCL signals

--

120

IC11b Fall time of I2Cx_SCL signals

12 (@3.3 V)

120

6.5 (@1.8 V)

IC12 Capacitive load for each bus line (Cb)

--

550

1 High-speed mode is only available for I2C modules in DMA, SCU and Cortex-M4 subsystems.

4.10.10 LVDS and MIPI-DSI display output specifications
4.10.10.1 LVDS display bridge module parameters Maximum frequency support for dedicated LVDS channels on this device:

High Speed1 Unit
Min Max -- 3.4 MHz 160 -- ns 160 -- ns 0 70 ns 60 -- ns 160 -- ns 160 -- ns 10 -- ns 150 -- ns
10 80 ns 10 80 ns
10 40 ns 10 40 ns
-- 100 pF

Table 81. LVDS pins

Function1

Channel A

Channel B

Single channel

4 pairs LVDS up to 1.12 Gbps per pair

4 pairs LVDS up to 1.12 Gbps per pair

Dual channel

8 pairs LVDS up to 595 Mbps per pair

1 In single channel operation the maximum clock speed is 160 MHz; in dual channel operation with a single synchronized clock the maximum clock speed is 85 MHz.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

84

NXP Semiconductors

4.10.10.2 MIPI-DSI display bridge module parameters Maximum frequency support for dedicated MIPI-DSI channels on this device:

Electrical characteristics

Table 82. MIPI-DSI pins

Function1

Channel A

DSI

DSI up to 1.5 Gb/per lane

1 Maximum clock speed is 1.5 GHz.

4.10.10.3 LVDS display bridge (LDB) module electrical specifications
The LVDS interface is compatible with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Table 83. LVDS Display Bridge (LDB) Electrical Specifications

Parameter Differential Voltage Output Voltage Output Voltage High Output Voltage Low Offset Static Voltage
VOS Differential Output short-circuited to GND Output short current

Symbol VOD Voh Vol VOS
VOSDIFF ISA ISB
ISAB

Test Condition

Min

100  Differential load
100  differential load (0 V Diff--Output High Voltage static)
100  differential load (0 V Diff--Output Low Voltage static)
Two 49.9  resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.
Difference in VOS between a One and a Zero state
With the output common shorted to GND

0.25 -- 0.925 1.125
-- -- --

Max 0.4 1.475

Units V V

--

V

1.275 V

--

mV

40

mA

12

mA

4.10.10.4 MIPI-DSI HS-TX specifications

Symbol
VCMTX1 |VCMTX|(1,0) |VOD|1 |VOD|

Table 84. MIPI high-speed transmitter DC specifications

Parameter High Speed Transmit Static Common Mode Voltage VCMTX mismatch when Output is Differential-1 or Differential-0 High Speed Transmit Differential Voltage VOD mismatch when Output is Differential-1 or Differential-0

Min Typ Max Unit 150 200 250 mV -- -- 5 mV 140 200 270 mV -- -- 10 mV

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

85

Electrical characteristics

Table 84. MIPI high-speed transmitter DC specifications (continued)

Symbol

Parameter

VOHHS1

High Speed Output High Voltage

ZOS

Single Ended Output Impedance

ZOS

Single Ended Output Impedance Mismatch

1 Value when driving into load impedance anywhere in the ZID range.

Min Typ Max Unit -- -- 360 mV 40 50 62.5  -- -- 10 %

Table 85. MIPI high-speed transmitter AC specifications

Symbol

Parameter

VCMTX(HF)

Common-level variations above 450 MHz

VCMTX(LF)

Common-level variation between 50-450 MHz

tR and tF1

Rise Time and Fall Time (20% to 80%)

1 UI is the long-term average unit interval.

Min Typ ---- ---- 100 --

Max 15 25 0.35 UI

Unit mVRMS mVPEAK
ps

4.10.10.5 MIPI-DSI LP-TX specifications

Table 86. MIPI low-power transmitter DC specifications

Symbol

Parameter

Min Typ Max Unit

VOH1

Thevenin Output High Level

1.1

1.2

1.3

V

VOL

Thevenin Output Low Level

­50

--

50

mV

ZOLP2

Output Impedance of Low Power Transmitter

110

--

--



1 This specification can only be met when limiting the core supply variation from 1.1 V till 1.3 V. 2 Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification
is met.

Table 87. MIPI low-power transmitter AC specifications

Symbol

Parameter

Min Typ Max Unit

TRLP/TFLP1 15% to 85% Rise Time and Fall Time

-- -- 25 ns

TREOT1,2,3

30% to 85% Rise Time and Fall Time

-- -- 35 ns

TLP-PULSE-TX4 Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop 40 -- -- ns state or last pulse before Stop state

Pulse width of the LP exclusive-OR clock: All other pulses

20 -- -- ns

TLP-PER-TX Period of the LP exclusive-OR clock

90 -- -- ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

86

NXP Semiconductors

Electrical characteristics

Table 87. MIPI low-power transmitter AC specifications (continued)

Symbol

Parameter

Min Typ Max Unit

V/tSR1,5,6,7

Slew Rate @ CLOAD= 0 pF Slew Rate @ CLOAD= 5 pF

30 -- 500 mV/ns 30 -- 200 mV/ns

Slew Rate @ CLOAD= 20 pF

30 -- 150 mV/ns

Slew Rate @ CLOAD= 70 pF

30 -- 100 mV/ns

CLOAD

Load Capacitance

0 -- 70 pF

1 CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.
2 The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due to stopping the differential drive.
3 With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane. 4 This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches
between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section. 5 When the output voltage is between 15% and below 85% of the fully settled LP signal levels. 6 Measured as average across any 50 mV segment of the output signal transition. 7 This value represents a corner point in a piecewise linear curve.

4.10.10.6 MIPI-DSI LP-RX specifications

Table 88. MIPI low power receiver DC specifications

Symbol
VIH VIL VIL-ULPS VHYST

Parameter Logic 1 input voltage Logic 0 input voltage, not in ULP state Logic 0 input voltage, ULP state Input hysteresis

Min Typ Max Unit

880

--

1.3

mV

--

--

550

mV

--

--

300

mV

25

--

--

mV

Table 89. MIPI low power receiver AC specifications

Symbol

Parameter

Min Typ Max Unit

eSPIKE1,2 TMIN-RX3

Input pulse rejection Minimum pulse width response

--

--

20

--

VINT

Peak Interference amplitude

--

--

fINT

Interference frequency

450

--

1 Time-voltage integration of a spike above VIL when in LP-0 state or below VIH when in LP-1 state. 2 An impulse below this value will not change the receiver state. 3 An input pulse greater than this value shall toggle the output.

300

V.ps

--

ns

200

mV

--

MHz

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

87

Electrical characteristics
4.10.10.7 MIPI-DSI LP-CD specifications

Table 90. MIPI contention detector DC specifications

Symbol VIHCD VILCD

Parameter Logic 1 contention threshold Logic 0 contention threshold

Min Typ Max Unit

450

--

--

mV

--

--

200

mV

4.10.10.8 MIPI-DSI DC specifications

Table 91. MIPI input characteristics DC specifications

Symbol

Parameter

Min Typ Max Unit

VPIN ILEAK1

Pad signal voltage range Pin leakage current

­50

--

1350

mV

­10

--

10

A

VGNDSH

Ground shift

­50

--

50

mV

VPIN(absmax)2 Maximum pin voltage level

­0.15 --

1.45

V

TVPIN(absmax)3 Maximum transient time above VPIN(max) or below VPIN(min)

--

--

20

ns

1 When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is in LP receive mode.
2 This value includes ground shift. 3 The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1
transition or vice versa. For all other situations it must stay within the VPIN range.

4.10.11 PCIe PHY Parameters
The TX and RX eye diagrams specifications are per the template shown in the following figure. The summary of specifications is shown in Table 92 and Table 93. Note that the time closure (1­A OPENING) in the eye templates needs not match jitter specifications in the Standards Specifications, as there are such discrepancies in some Standards Specifications. The design meets the tightest of specifications in case of discrepancy.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

88

NXP Semiconductors

Electrical characteristics

Figure 40. TX and RX eye diagram template

Table 92. PCIe transmitter eye specifications for example standards

UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax

ps

UI

ps

mV

PCI Express Gen 1 Transition Bit

400 0.75

0

300

0

800

12001

PCI ExpressGen 1 De-emphasized Bit 400 0.75

0

300

0

PCI Express Gen 2 Transition Bit

200 0.75

0

150

0

PCI Express Gen 2 De-emphasized Bit 200 0.75

0

150

0

1 VDIFFp-p eye opening is limited to VDDIO under matched termination conditions.

505

757

800

12001

379

850

Table 93. PCIe receiver eye specifications for example standards

PCI Express Gen 1 Transition Bit PCI Express Gen 2 Transition Bit1 PCI Express Gen 3 Virtual EYE2

UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax

ps

UI

ps

mV

400 0.4

0

160

0

175

1200

200 0.32

0

64

0

100

1200

125 0.3

0

38

0

25

1300

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

89

Electrical characteristics
1 For a lossy channel, the default DFE setting may not work for PCIe Gen1 -3.5dB TX de-emphasis. It is recommended to use a higher DFE setting (reg241[7]=A1_force=1 and reg241[5:0]=A1_init) in this case.
2 PCIE 3.0 8 GT/s measured using PCIE reference equalizer + CDR per PCIE specification.PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your NXP representative.

Table 94. PCIe differential output driver characteristics (including board and load)

Parameter

Min

Typ

Max

Units Notes

Output Rise and fall time TR, TF Output Rise/Fall matching

175

--

350

ps

1

--

--

20

%

1, 2

Output skewTOSKEW Initialization time from assertion of TXOE

--

--

50

ps

--

100

--

--

ns

--

Initialization time from assertion of TXENA

--

10

--

s

--

Transmission line characteristic impedance (ZO)

--

Driver output impedance, single ended (small signal @

--

Vout=Vcm)

50 1000

--



--

--



--

Output single ended voltage (RS= 33, RT= 50 ) VOH IOH@ 6 * IR VOL

0.65 -13 -0.20

0.71 -14.2 0.00

0.85 -17 0.05

V

3, 4

mA

V

3

Output common mode voltage (RS = 33, RT= 50 ) |VOCM| VOCM (DC) VOCM (AC)
Buffer induced deterministic jitter (absolute, pk-pk)

0.25 -0.015 -0.050
--

0.375 --

0.55 0.015 0.050
4

V

5

6

ps

7,8

Reference Buffer Dynamic Power (Digital)

--

0.015

0.66

A

9

Reference Buffer Dynamic Power (Analog)

--

2.8

3.14

mA

9

Output Buffer Dynamic Power (Digital)

--

0.035

1.8

A

9

Output Buffer Dynamic Power (Analog)

--

18.9

22.11

mA

9

1 When the output is transitioning between logic 0 and logic 1, or logic 1 and logic 0, and driving a terminated transmission line, the outputs monotonically transition between VOL and VOH, VOH, and VOL respectively. Target rise and fall times observed at the receiver and are primarily set by board trace impedance and Load capacitance. Rise and fall times are defined by 25% and 75% crossing points.
2 Calculated as: 2 × (TR­TF) / (TR+ TF) 3 IR is proportional to the reference current. Measured across RT. The primary contributor to output voltage spread is
VDD spread, and so a VDD tighter than ±10% may be required to achieve this spread. 4 Higher output voltages may occur depending on load, power supply, and selected output drive. Higher output voltages may
transiently occur during initialization period following TXENA assertion. 5 Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under DC conditions. 6 Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under AC conditions. 7 Measured under "clean power supply and ground" conditions, and after de-embedding the jitter of the input, measured over a
time span of 1000 cycles 8 Power supply induced jitter is included under this category, and the power supply variation is to be less than 8mVpp.
Note that customer has to be uncommonly careful with power supply fidelity due to the small jitter numbers.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

90

NXP Semiconductors

9 Power consumption is simulated under the following conditions: Typ: TT, VDD=1.0 V, VD18=1.8 V, 25 °C Max: FF, VDD=1.1 V, VD18=1.98 V, 125 °C Dynamic: TXENA=1, TXOE=1 Static: TXENA=0, TXOE=1
4.10.11.1 PCIE_REXT reference resistor connection
The following figure shows the PCIE_REXT reference resistor connection.

Electrical characteristics

Figure 41. PCIE_REXT reference resistor connection
4.10.11.2 PCIE_REF_CLK Contact an NXP representative to obtain the hardware development guide for this device, which contains details on the PCIe reference clock requirements.
4.10.12 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. The following figure depicts the timing of the PWM, and Table 95 lists the PWM timing parameters.

PWMn_OUT

Figure 42. PWM Timing

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

91

Electrical characteristics

Table 95. PWM Output Timing Parameters

ID

Parameter

-- PWM Module Clock Frequency P1 PWM output pulse width high P2 PWM output pulse width low

Min

Max

0

ipg_clk

15

--

15

--

Unit MHz ns ns

4.10.13 FlexSPI (Quad SPI/Octal SPI) timing parameters
The FlexSPI interface can work in SDR or DDR modes. It can operate up to 60 MHz at 3.3 V, 166 MHz at 1.8 V SDR mode or 200 MHz at 1.8 V DDR mode. It supports single-ended and differential DQS signaling.
FlexSPI supports the following clocking scheme for a read data path:
· Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0)
· Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1). It means the I/O cannot be used for another feature.
· Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3)

4.10.13.1 SDR mode

4.10.13.1.1 SDR mode timing diagrams The following write timing diagram is valid for any FlexSPIn_MCR0[RXCLKSRC] value.

Figure 43. FlexSPI write timing diagram (SDR mode)

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

92

NXP Semiconductors

Electrical characteristics
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x0 or 0x1.
Figure 44. FlexSPI read timing diagram (SDR mode)
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x3.

Figure 45. FlexSPI read with DQS timing diagram (SDR mode)
4.10.13.1.2 SDR mode timing parameter tables

Table 96. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (SDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output Delay t6 QSPIx[A/B]_DATAy Setup Time t7 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

60

7.5

--

1

--

TCSS+0.5

--

TCSH

--

--

1

6

--

0

--

Unit MHz ns SCLK SCLK SCLK
ns ns ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

93

Electrical characteristics

Table 97. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (SDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output Delay t6 QSPIx[A/B]_DATAy Setup Time t7 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

166

2.7

--

1

--

TCSS+0.5

--

TCSH

--

--

1

1

--

2

--

Unit MHz ns SCLK SCLK SCLK
ns ns ns

Table 98. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (SDR mode)

ID

Parameter

-- QSPIx[A/B]_DQS Cycle frequency
t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width1 t3 QSPIx[A/B]_SSy_B Lead Time2 t4 QSPIx[A/B]_SSy_B Lag Time2
t5 QSPIx[A/B]_DATAy output Delay
t8 QSPIx[A/B]_DQS / QSPIx[A/B]_DATAy delta 1 Minimum is 2 SCLK cycles even if CSINTERVAL value is less than 2. 2 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

200

2.25

--

CSINTERVAL

--

TCSS+0.5

--

TCSH

--

--

1

-0.65

0.65

Unit MHz
ns SCLK SCLK SCLK
ns ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

94

NXP Semiconductors

4.10.13.2 DDR mode 4.10.13.2.1 DDR mode timing diagrams

Electrical characteristics

Figure 46. FlexSPI write timing diagram (DDR mode)

Figure 47. FlexSPI read timing diagram (DDR mode)

QSPIx[A/B]_DQS

QSPIx[A/B]_DATAy

t9

t10

Figure 48. FlexSPI read with DQS timing diagram (DDR mode)

Table 99. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time

Min

Max

Unit

--

30

MHz

15

--

ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

95

Electrical characteristics

Table 99. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode) (continued)

ID

Parameter

t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output valid time t6 QSPIx[A/B]_DATAy output hold time t7 QSPIx[A/B]_DATAy Setup Time t8 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

Unit

1

--

SCLK

(TCSS+0.5)/2

--

SCLK

TCSH/2

--

SCLK

6.5

--

ns

6.5

--

ns

6

--

ns

0

--

ns

Table 100. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (DDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output valid time t6 QSPIx[A/B]_DATAy output hold time t7 QSPIx[A/B]_DATAy Setup Time t8 QSPIx[A/B]_DATAy Hold Time 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

--

83

5.4

--

1

--

(TCSS+0.5)/2

--

TCSH/2

--

2

--

2

--

1

--

1

--

Unit MHz ns SCLK SCLK SCLK ns
ns ns ns

Table 101. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode)

ID

Parameter

-- QSPIx[A/B]_SCLK Cycle frequency t1 QSPIx[A/B]_SCLK High or Low Time t2 QSPIx[A/B]_SSy_B pulse width t3 QSPIx[A/B]_SSy_B Lead Time1 t4 QSPIx[A/B]_SSy_B Lag Time1 t5 QSPIx[A/B]_DATAy output valid time t6 QSPIx[A/B]_DATAy output hold time

Min

Max

--

200

2.25

--

1

--

(TCSS+0.5)/2

--

TCSH/2

--

0.65

--

0.65

--

Unit MHz
ns SCLK SCLK SCLK
ns ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

96

NXP Semiconductors

Electrical characteristics

Table 101. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode) (continued)

ID

Parameter

t9 QSPIx[A/B]_DATAy Setup Skew t10 QSPIx[A/B]_DATAy Hold Skew 1 Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Min

Max

Unit

--

0.65

ns

--

0.65

ns

4.10.14 Secure JTAG controller (SJC)

4.10.14.1 Internal pull-up/pull-down configuration
The following table describes the default configuration of internal pull-ups and pull-downs of the JTAG interface. External pull-ups and pull-downs are needed when this interface is routed to a connector.

Table 102. JTAG default configuration for internal pull-up/pull-down

Ball name

Internal pull setting1 Typical pull value

Unit

JTAG_TMS JTAG_TCK JTAG_TDI JTAG_TRST_B TEST_MODE_SELECT 1 PU = pull-up; PD = pull-down

PU

50

K

PD

PU

PU

PD

4.10.14.2 JTAG timing parameters Figure 49 depicts the SJC test clock input timing. Figure 50 depicts the SJC boundary scan timing. Figure 51 depicts the SJC test access port. Figure 52 depicts the JTAG_TRST_B timing. Signal parameters are listed in Table 103.

JTAG_TCK (Input)

VIH SJ3

SJ2
VM VIL

SJ1 SJ2 VM
SJ3

Figure 49. Test Clock Input Timing Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

97

Electrical characteristics

JTAG_TCK (Input)
Data Inputs
Data Outputs
Data Outputs
Data Outputs
JTAG_TCK (Input)
JTAG_TDI JTAG_TMS
(Input) JTAG_TDO
(Output) JTAG_TDO
(Output) JTAG_TDO
(Output)

VIL SJ6 SJ7

VIH

SJ4

SJ5

Input Data Valid

Output Data Valid

SJ6 Output Data Valid
Figure 50. Boundary system (JTAG) timing diagram

VIL SJ10 SJ11

VIH

SJ8

SJ9

Input Data Valid

Output Data Valid

SJ10

Output Data Valid

Figure 51. Test Access Port Timing Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

98

NXP Semiconductors

Electrical characteristics

JTAG_TCK (Input)
JTAG_TRST_B (Input)

SJ13
SJ12 Figure 52. JTAG_TRST_B Timing Diagram

Table 103. JTAG Timing

ID

Parameter1,2

SJ0

JTAG_TCK frequency of operation 1/(3xTDC)1

SJ1

JTAG_TCK cycle time in crystal mode

SJ2

JTAG_TCK clock pulse width measured at VM2

SJ3

JTAG_TCK rise and fall times

SJ4

Boundary scan input data set-up time

SJ5

Boundary scan input data hold time

SJ6

JTAG_TCK low to output data valid

SJ7

JTAG_TCK low to output high impedance

SJ8

JTAG_TMS, JTAG_TDI data set-up time

SJ9

JTAG_TMS, JTAG_TDI data hold time

SJ10

JTAG_TCK low to JTAG_TDO data valid

SJ11

JTAG_TCK low to JTAG_TDO high impedance

SJ12

JTAG_TRST_B assert time

SJ13

JTAG_TRST_B set-up time to JTAG_TCK low

1 TDC = target frequency of SJC 2 VM = mid-point voltage

All Frequencies

Min

Max

0.001

22

45

--

22.5

--

--

3

5

--

24

--

--

40

--

40

5

--

25

--

--

44

--

44

100

--

40

--

Unit
MHz ns ns ns ns ns ns ns ns ns ns ns ns ns

4.10.15 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 104, Figure 53, and Figure 54 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

99

Electrical characteristics

Table 104. SPDIF Timing Parameters

Parameter
SPDIF_IN Skew: asynchronous inputs, no specs apply
SPDIF_OUT output (Load = 50pf) · Skew · Transition rising · Transition falling
SPDIF_OUT output (Load = 30pf) · Skew · Transition rising · Transition falling
Modulating Rx clock (SPDIF_SR_CLK) period
SPDIF_SR_CLK high period
SPDIF_SR_CLK low period
Modulating Tx clock (SPDIF_ST_CLK) period
SPDIF_ST_CLK high period
SPDIF_ST_CLK low period

Timing Parameter Range

Symbol

Unit

Min

Max

--

--

0.7

ns

--

--

--

--

--

--

1.5

ns

24.2

31.3

-- -- --
srckp
srckph
srckpl
stclkp
stclkph
stclkpl

-- -- --
40.0
16.0
16.0
40.0
16.0
16.0

1.5

ns

13.6

18.0

--

ns

--

ns

--

ns

--

ns

--

ns

--

ns

SPDIF_SR_CLK (Output)

srckpl VM

srckp

srckph VM

Figure 53. SPDIF_SR_CLK Timing Diagram

SPDIF_ST_CLK (Input)

stclkpl VM

stclkp

stclkph VM

Figure 54. SPDIF_ST_CLK Timing Diagram

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

100

NXP Semiconductors

4.10.16 UART I/O configuration and timing parameters

Electrical characteristics

4.10.16.0.1 UART Transmitter The following figure depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 105 lists the UART RS-232 serial mode transmit timing characteristics.

UARTx_TX_DATA (output)

UA1
Start Bit

Bit 0

UA1 Bit 1 Bit 2 Bit 3 Bit 4

Bit 5

Bit 6

Bit 7

POSSIBLE PARITY BIT
Par Bit STOP
BIT

UA1 UA1
Figure 55. UART RS-232 Serial Mode Transmit Timing Diagram

NEXT START
BIT

Table 105. UART RS-232 Serial Mode Transmit Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA1 Transmit Bit Time

tTbit

1/Fbaud_rate1 ­ Tref_clk2 1/Fbaud_rate + Tref_clk

--

1 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).
2 Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).

4.10.16.0.2 UART Receiver The following figure depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 106 lists serial mode receive timing characteristics.

UARTx_RX_DATA (input)

UA2

UA2

POSSIBLE PARITY BIT

Start Bit

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4

Bit 5

Bit 6

Bit 7 Par Bit STOP
BIT

UA2 UA2

Figure 56. UART RS-232 Serial Mode Receive Timing Diagram

NEXT START
BIT

Table 106. RS-232 Serial Mode Receive Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA2

Receive Bit Time1

tRbit

1/Fbaud_rate2 ­ 1/(16 × Fbaud_rate)

1/Fbaud_rate +

--

1/(16 × Fbaud_rate)

1 The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit, but accumulation tolerance in one frame must not exceed 3/((OSR+1) × Fbaud_rate).
2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

101

Electrical characteristics
4.10.16.0.3 UART IrDA Mode Timing The following subsections give the UART transmit and receive timings in IrDA mode.

UART IrDA Mode Transmitter The following figure depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 107 lists the transmit timing characteristics.

UA3

UA3

UA4

UA3

UA3

UARTx_TX_DATA (output)
Start Bit

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Figure 57. UART IrDA Mode Transmit Timing Diagram

POSSIBLE PARITY BIT

STOP BIT

Table 107. IrDA Mode Transmit Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA3 Transmit Bit Time in IrDA mode tTIRbit

1/Fbaud_rate1 ­ Tref_clk2

1/Fbaud_rate + Tref_clk

--

UA4

Transmit IR Pulse Duration

tTIRpulse (TNP+1)/(OSR+1) × (1/Fbaud_rat (TNP+1)/(OSR+1) × (1/Fbaud_rat --

e) ­ Tref_clk

e) + Tref_clk

1 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).
2 Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).

UART IrDA Mode Receiver The following figure depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 108 lists the receive timing characteristics.

UA5

UA5

UA6

UA5

UA5

UARTx_RX_DATA (input)
Start Bit

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Figure 58. UART IrDA Mode Receive Timing Diagram

POSSIBLE PARITY BIT

STOP BIT

Table 108. IrDA Mode Receive Timing Parameters

ID

Parameter

Symbol

Min

Max

Unit

UA5 Receive Bit Time1 in IrDA mode tRIRbit

1/Fbaud_rate2 ­ 1/(16 × Fbaud_rate)

1/Fbaud_rate +

--

1/(16 × Fbaud_rate)

UA6 Receive IR Pulse Duration

tRIRpulse

1.41 s

(5/16) × (1/Fbaud_rate)

--

1 The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/((OSR+1) × Fbaud_rate).

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

102

NXP Semiconductors

Electrical characteristics
2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] × (OSR+1)).
4.10.17 USB HSIC Timings
This section describes the electrical information of the USB HSIC port. NOTE
HSIC is a DDR signal. The following timing specification is for both rising and falling edges.
4.10.17.1 USB HSIC Transmit Timing

USB_H_STROBE USB_H_DATA

Tstrobe

Todelay

Todelay

Figure 59. USB HSIC Transmit Waveform

Table 109. USB HSIC Transmit Parameters

Name

Parameter

Tstrobe Todelay Tslew

strobe period data output delay time strobe/data rising/falling time

Min 4.165 550
0.7

Max 4.168 1350
2

Unit ns ps V/ns

Comment --
Measured at 50% point Averaged from 30% ­ 70% points

4.10.17.2 USB HSIC Receive Timing

USB_H_STROBE USB_H_DATA

Tstrobe
Thold
Tsetup
Figure 60. USB HSIC Receive Waveform

Table 110. USB HSIC Receive Parameters1

Name

Parameter

Tstrobe Thold

strobe period data hold time

Min 4.165 300

Max 4.168
--

Unit

Comment

ns

--

ps

Measured at 50% point

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

103

Electrical characteristics

Table 110. USB HSIC Receive Parameters1 (continued)

Name

Parameter

Min

Max

Tsetup data setup time

300

--

Tslew strobe/data rising/falling time

0.7

2

1 The timings in the table are guaranteed when:
--AC I/O voltage is between 0.9× to 1× the I/O supply
--DDR_SEL configuration bits of the I/O are set to (10)b

Unit ps V/ns

Comment Measured at 50% point Averaged from 30% ­ 70% points

4.10.18 USB 2.0 PHY Parameters

4.10.18.1 USB 2.0 PHY Transmitter specifications This section describes the transmitter specifications for USB2.0 PHY.
4.10.18.1.1 USB 2.0 PHY full-speed/low-speed transmitter specifications The following table lists the full-speed/low-speed (FS/LS) transmitter specifications for USB2.0 PHY.

Table 111. USB 2.0 PHY FS/LS transmitter specifications

Symbol

Description

VOL Output Voltage Low VOH Output Voltage High (Driven) VOSE1 Single Ended One (SE1) VCRS Output Signal Cross Over Voltage TFR Driver Rise Time - FS TLR Driver Rise Time - LS TFF Driver Fall Time - FS TLF Driver Fall Time - LS TFRFM Differential Rise and Fall Time Matching - FS TLRFM Differential Rise and Fall Time Matching - LS ZHSDRV Driver Output Resistance (Also serves as HS Termination) TDJ1 Source Jitter (Next Transition) - FS TDJ2 Source Jitter (Paired Transition) - FS TFDEOP Source Jitter (Differential to SE0 transition) - FS TFEOPT Source SE0 interval of EOP - FS TDDJ1 Source Jitter in downstream direction (Next Transition) - LS TDDJ2 Source Jitter in downstream direction (Paired Transition) - LS TUDJ1 Source Jitter in upstream direction (Next Transition) - LS

Min Typ Max Units

0 -- 0.3

V

2.8 -- 3.6

V

0.8 --

--

V

1.3 -- 2.0

V

4--

20

ns

75 -- 300

ns

4--

20

ns

75 -- 300

ns

90 -- 111.11 %

80 -- 125

%

40.5 -- 49.5



-3.5 -- 3.5

ns

-4 --

4

ns

-2 --

5

ns

160 -- 175

ns

-25 --

25

ns

-14 --

14

ns

-95 --

95

ns

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

104

NXP Semiconductors

Electrical characteristics

Table 111. USB 2.0 PHY FS/LS transmitter specifications (continued)

Symbol

Description

TUDJ2 Source Jitter in upstream direction (Paired Transition) - LS TLDEOP Source Jitter in upstream direction (Differential to SE0 transition) - LS TLEOPT Source SE0 interval of EOP - LS

Min Typ -150 -- -40 -- 1.25 --

Max 150 100 1.5

Units ns ns s

4.10.18.2 USB 2.0 PHY high-speed transmitter specifications The following table lists the high-speed (HS) transmitter specifications for USB 2.0 PHY.

Table 112. USB 2.0 PHY HS transmitter specifications

Symbol/Parameter HSOI VHSTERM VHSOL VCHIRPJ VCHIRPK ZHSDRV THSR THSF HS Eye Opening: Template 1
HS Eye Opening: Template 2
HS Jitter: Template 1
HS Jitter: Template 2

Description

Min Typ Max Units

High Speed Idle Level

-10 --

10

mV

Termination Voltage in High Speed

-10 --

10

mV

High Speed Data Signaling Low

-10 --

10

mV

Chirp J (Differential Voltage)

700 -- 1100 mV

Chirp K (Differential Voltage)

-900 -- -500 mV

Driver Output Resistance

40.5 -- 49.5



Rise Time (10% to 90%)

100 --

--

ps

Fall Time (10% to 90%)

100 --

--

ps

Differential eye opening at 37.5% US and 62.5% UI for a -300 -- 300 mV hub measured at TP2 and for a device without a captive cable measured at TP3.

Differential eye opening at 37.5% US and 62.5% UI for a -175 -- 175 mV device with a captive cable measured at TP2.

Peak-Peak Jitter at Zero crossing for a hub measured at TP2 and for a device without captive cable measured at TP3.

----

15

%UI

-- -- 312.5 ps

Peak-Peak Jitter at Zero crossing for a device with captive --

cable measured at TP2.

--

--

25

%UI

-- 520.83 ps

4.10.18.3 USB 2.0 PHY receiver specifications This section describes the receiver specifications implemented in USB 2.0 PHY.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

105

Electrical characteristics
4.10.18.3.1 USB 2.0 PHY full-speed/low-speed (FS/LS) receiver specifications

Table 113. USB 2.0 PHY FS/LS receiver specifications

Symbol VIH VIHZ VIL VTH VCM TJR1 TJR2 TFEOPR TUJR1 TUJR2 TDJR1 TDJR2 TLEOPR

Description Input Voltage Level - High (Driven) Input Voltage Level - High (Floating) Input Voltage Level - Low Switching Threshold Common Mode Range Receiver Jitter Budget (Next Transition) - FS Receiver Jitter Budget (Paired Transition) - FS Receiver EOP Interval of EOP - FS US Port Differential Receiver Jitter (Next Transition) - LS US Port Differential Receiver Jitter (Paired Transition) - LS DS Port Differential Receiver Jitter (Next Transition) - LS DS Port Differential Receiver Jitter (Paired Transition) - LS Receiver EOP Interval of EOP - LS

Min Typ Max Units

2

----

V

2.7 -- 3.6

V

--

-- 0.8

V

0.8 -- 2.0

V

0.8 -- 2.5

V

-18.5 -- 18.5 ns

-9

--

9

ns

82

----

ns

-152 -- 152

ns

-200 -- 200

ns

-75 -- 75

ns

-45 -- 45

ns

670 -- --

ns

4.10.18.3.2 USB 2.0 PHY high-speed receiver specifications The following table lists the high-speed (HS) receiver specifications for USB 2.0 PHY.

Table 114. USB 2.0 PHY HS receiver specifications

Symbol/Parameter

Description

Min Typ Max Units

VHSCM

HS RX input common mode voltage range.

-50 -- 500 mV

ZHSDRV

HS RX input termination (Same as Driver output resistance).

40.5 -- 49.5 

HSRX Jitter: Template 3

HS RX Peak-Peak Jitter specification at differential zero crossing for a --

device with captive cable when signal applied at TP2.

--

-- 20 %UI -- 416.66 ps

HSRX Jitter: Template 4 HS RX Peak-Peak Jitter specification at differential zero crossing for a -- -- 30 %UI

device without captive cable at TP3 and for a hub at TP2.

-- -- 625 ps

HSRX Input Eye Opening: HS RX differential sensitivity specification at 40% and 60% UI for a -275 -- 275 mV

Template 3

device with captive cable when signal is applied at TP2.

HSRX Input Eye Opening: HS RX differential sensitivity specification at 35% and 65% UI for a -150 -- 150 mV

Template 4

device without captive cable when signal is applied at TP3 and for a

hub when a signal is applied at TP2.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

106

NXP Semiconductors

Electrical characteristics
4.10.18.3.3 USB 2.0 PHY high-speed envelope detector specifications The following table lists the high-speed (HS) Envelope Detector Specifications of USB 2.0 PHY.

Table 115. USB 2.0 PHY HS envelope detector specifications

Symbol VHSSQ VHSDSC

Description HS Squelch Detection threshold (differential signal amplitude) HS Disconnect Detection threshold (differential signal amplitude)

Min Typ Max Units 100 -- 150 mV 525 -- 625 mV

4.10.18.4 USB 2.0 PHY full-speed/high-speed terminations specification The following table lists the full-speed/low-speed (FS/LS) Terminations Specification of USB 2.0 PHY.

Table 116. USB 2.0 PHY FS/LS terminations specification

Symbol RPU
RPD VTERM

Description Bus Pull-Up resistor on US Port in IDLE State Bus Pull-Up resistor on US Port in ACTIVE State Bus Pull-Down resistor on DS Port Termination Voltage for US Port Pull-Up (RPU)

Min Typ

900

--

1425

--

14.25 --

3.0

--

Max 1575 3090 24.8 3.6

Units
  K V

4.10.18.5 Voltage threshold specification The following table lists the OTG Comparator Specifications of USB2.0 PHY.

Table 117. USB 2.0 PHY OTG comparator specifications

Symbol sessvld vbusvalid

Description B-Device Session Valid threshold VBUS Valid threshold

Min

Typ

Max

0.8

--

4.0

4.4

--

4.75

4.10.19 USB 3.0 PHY parameters
The following content is from the USB 3.0 PHY specifications.

Units V V

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

107

Electrical characteristics
4.10.19.1 USB 3.0 PHY external component

Table 118. USB 3.0 PHY external component specifications

Name Min Typ Max Units

Descriptions

rext 497.5 500 502.5  There needs to be an external resistor component connected at rext ball while the internal resistor or current is getting calibrated. Package routing from rext ball to its
respective bump should not contribute more than 0.05 .

4.10.19.2 USB 3.0 PHY transmitter module

Table 119. USB 3.0 PHY transmitter module electrical specifications

Symbol

Description

Min Typ

Max

Unit

VTX-DIFFp VTX-DIFFp-p VTX-DIFFp-p-LOW1 ITX-SHORT RLTX-DIFF
RLTX-CM ZTX-DIFF-DC
UI TTX-MAX-JITTER TTX-RJ-PLL-sigma LTLAT-10

Voltage/current parameters

Programmable output voltage

50 --

500

mV

swing (single-ended)

Programmable differential

100 --

1000

mV

peak-to-peak output voltage

Low power differential p-p TX

400 --

1200

mV

voltage swing

Transmit lane short-circuit current

----

100

mA

Transmitter differential return loss

----

0 < -20dB < 100Mhz

Db

100Mhz < -18dB < 300Mhz

300Mhz < -16dB < 600Mhz

600Mhz < -10dB < 2500Mhz

2500Mhz < -9dB < 4875Mhz

4875Mhz < -8dB < 11200Mhz

11200Mhz < -5dB < 16800Mhz

and -3dB beyond that

Transmitter common mode return

----

50Hz < -8dB < 15000Mhz

dB

loss

DC differential TX impedance

80 100

120



Unit Interval

199.94 --

200.06

ps

Transmitter total jitter

----

0.4

UI

(peak-to-peak) (Tj)

After application of TX jitter transfer -- --

2.42

ps

function

Transmitter data latency

----

210

UI

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

108

NXP Semiconductors

Electrical characteristics

Table 119. USB 3.0 PHY transmitter module electrical specifications (continued)

Symbol

Description

Min Typ

Max

Unit

Voltage parameters

VTX-CM-DC-ACTIVE-IDLE-DELTA

Absolute Delta of DC Common Mode Voltage during L0 and Electrical Idle.

0--

VTX-IDLE-DIFF-AC-p

Electrical Idle Differential Peak Output Voltage

0--

VTX-CM-DC-LINE-DELTA

Absolute Delta of DC Common

0--

Mode Voltage between D+ and D-

VTX-RCV-DETECT

The amount of voltage change

0--

allowed during Receiver Detection

TTX-IDLE-SET-TO-IDLE

Maximum time to transition to a

----

valid Electrical Idle after sending an

EIOS

TTX-IDLE-TO-DIFF-DATA

Maximum time to transition to valid -- -- diff signaling after leaving Electrical Idle

VTX-CM-AC-PP

Tx AC peak-peak common mode voltage (5.0 GT/s)

20 --

TEIExit

Time to exit Electrical Idle (L0s) state and to enter L0

----

Tx signal characteristics

ftol

TX Frequency Long Term Accuracy -300 --

fSSC

Spread-Spectrum Modulation

Frequency

t20-80TX

TX Rise/Fall Time

tskewTX

TX Differential Skew

1 For USB 3.0, no EQ is required

30 --
0.2 -- ----

100

mV

20

mV

25

mV

600

mV

8

ns

8

ns

150

mVpp

5

Txsysclk

300

ppm of

Fbaud

33

kHz

0.41

UI

20

ps

4.10.19.3 USB 3.0 PHY receiver module

Symbol VRX-DIFF(p-p)

Table 120. USB 3.0 PHY receiver module electrical specifications

Description

Min Typ Max Unit

Comments

Voltage Parameters

Differential input voltage

100 -- 1200 mV

--

(peak-to-peak) (that is, receiver

eye voltage opening)

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

109

Electrical characteristics

Table 120. USB 3.0 PHY receiver module electrical specifications (continued)

Symbol

Description

Min Typ Max Unit

Comments

VRX-IDLE-DET-DIFF(p-p Differential input threshold voltage 100 -- 300 mV USB3 LFPS

)

(peak-to-peak) to detect idle

(LFPS)

Vcm, acRX VRX-CM-AC

RX AC Common Mode Voltage
Receiver common-mode voltage for AC coupling

--

-- 100 mVp-p Simulated at 250 MHz

--

0 150 mV

--

ZRX-DIFF-DC RLRX-DIFF

Differential input impedance (DC)

80 100 120

Receiver differential return loss

Same as -- -- TX RL

W 100  ± 10%

dB

--

Jitter Parameters

TRX-MAX-JITTER

Receiver total jitter tolerance

0

-- 0.66 UI Incoming Jitter:

USB3 = 0.43UI DJ + 0.23UI RJ

USB3 numbers are with REFC-TLE

Table 121. PLL module electrical specifications

Parameter

Symbol

Description

Min

Typ

Max Units

Input Reference Clock

REF CLK Frequency
REF CLK Duty Cycle
REF CLK Frequency
REF CLK RJ Tolerance
REF CLK Duty Cycle
Divided Reference Frequency

REF CLK --
REF CLK --
-- --

--

19.2 19.2/24/25/26/38.4 38.4 MHz

--

47

--

53 MHz

--

40 40/48/50/52/100 100 MHz

Integrated jitter from 10 kHz to 16 MHz -- after applying appropriate PLL ref clock transfer function and the protocol JTF

--

37

--

0.5 ps

--

63 %

--

19.2

--

38.4 MHz

Dividers

Input division

IPDIV<7:0>

--

Feedback division pll_fbdiv_high<9:0>

--

pll_fbdiv_low<9:0>

--

Feedback fractional

--

--

division range

1

--

255 Counts

2

--

1025 Counts

2

--

1025 Counts

>-2

--

<2 Counts

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

110

NXP Semiconductors

Parameter
Number of fractional bits
Clock frequency VCO frequency Output clock frequency tolerance SSC modulation rate Output clock RJ sigma for TX Output clock RJ sigma for RX

Electrical characteristics

Table 121. PLL module electrical specifications (continued)

Symbol --

Description This includes one bit for sign

Min

Typ

Max Units

--

27

-- Bits

VCO

--

Output full rate clocks

--

VCO oscillation frequency

--

This includes SSC deviation

-- -- -5300

5000 5000
--

-- MHz -- MHz 300 ppm

--

As applicable for USB3.0

30

--

After application of TX jitter transfer

--

function

--

After application of RX jitter transfer

--

function

--

33 kHz

--

2.42 ps

--

1.40 ps

4.11 Analog-to-digital converter (ADC)
The following table shows the ADC electrical specifications for VREFH=VDD_ADC_1P8.

Symbol VADIN CADIN RADIN RAS fADCK Csample Ccompare Cconversion DNL INL ENOB
SINAD

Table 122. ADC electrical specifications (VREFH=VDD_ADC_1P8)

Description

Min

Typ1

Max

Input Voltage Input capacitance Input Resistance Analog Source Resistance ADC Conversion Clock Frequency Sample cycles Fixed compare cycles Conversion cycles Differential Non-Linearity Integral Non-Linearity Effective Number of Bits Avg = 1 Avg = 2 Avg = 16 Signal to Noise plus Distortion

VREFL

--

VREFH

--

4.5

--

--

500

--

--

--

5

--

24

--

3.5

--

131.5

--

17.5

--

Cconversion = Csample + Ccompare

--

± 0.6

-0.5 to +1.1

--

± 0.9

±1.1

--

--

--

10.1

10.4

--

10.5

10.7

--

11.1

11.3

--

SINAD=6.02 x ENOB + 1.76

Unit V pF  k
MHz --
cycles cycles LSB LSB
-- Bits Bits Bits dB

Notes -- -- --
2
--
3
-- --
4 4 5,6,7
--

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

111

Electrical characteristics

Table 122. ADC electrical specifications (VREFH=VDD_ADC_1P8) (continued)

Symbol

Description

Min

Typ1

Max

Unit Notes

EG EO IVDDA18

Gain error Offset error Supply Current

--

-0.29

--

%FSV

8

--

0.01

--

%FSV

9

--

480

--

A

10

Iin,ext,leak

External Channel Leakage Current

--

30

500

nA

--

EIL

Input leakage error

RAS * Iin

mV

--

1 Typical values assume VDD_ADC_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.
2 This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15  analog source resistance. The RAS/CAS (analog source capacitance) time constant should be kept to < 1 ns.
3 See Figure 61. 4 ADC conversion clock at max frequency and using linear histogram. 5 Input data used for test was 1 kHz sine wave. 6 Measured at VREFH = 1.8 V and pwrsel = 2. 7 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 8 Error measured at fullscale at 1.8 V. 9 Error measured at zero scale at 0 V. 10 Power Configuration Select, PWRSEL, is set to 10 binary.

The following table shows the ADC electrical specifications for 1VVREFH<VDD_ADC_1P8.

Symbol
VADIN CADIN RADIN RAS fADCK Csample Ccompare Cconversion DNL INL

Table 123. ADC electrical specifications (1VVREFH<VDD_ADC_1P8)

Description

Min

Typ1

Max

Input Voltage

VREFL

--

VREFH

Input capacitance

--

4.5

--

Input Resistance

--

500

--

Analog Source Resistance

--

--

5

ADC Conversion Clock Frequency

--

24

--

Sample cycles

3.5

--

131.5

Fixed compare cycles

--

17.5

--

Conversion cycles Differential Non-Linearity

Cconversion = Csample + Ccompare

--

± 0.6

-0.5 to +1.1

Integral Non-Linearity

--

± 0.9

±1.1

Unit V pF  k
MHz --
cycles cycles LSB LSB

Notes -- -- --
2
--
3
-- --
4 4

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

112

NXP Semiconductors

Electrical characteristics

Table 123. ADC electrical specifications (1VVREFH<VDD_ADC_1P8) (continued)

Symbol

Description

Min

Typ1

Max

Unit Notes

ENOB

Effective Number of Bits

--

--

--

--

5,6,7

Avg = 1

9.5

9.7

--

Bits

Avg = 2

9.9

10.1

--

Bits

Avg = 16

10.8

11

--

Bits

SINAD

Signal to Noise plus Distortion

SINAD=6.02 x ENOB + 1.76

dB

--

EG EO IVDDA18

Gain error Offset error Supply Current

--

0.29

--

0.01

--

480

--

%FSV

8

--

%FSV

9

--

A

10

Iin,ext,leak

External Channel Leakage Current

--

30

500

nA

--

EIL

Input leakage error

RAS * Iin

mV

--

1 Typical values assume VDD_ANA_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.
2 This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15  analog source resistance. The RAS/CAS (analog source capacitance) time constant should be kept to < 1 ns.
3 See Figure 61. 4 ADC conversion clock at max frequency and using linear histogram. 5 Input data used for test was 1 kHz sine wave. 6 Measured at VREFH = 1 V and pwrsel = 2. 7 ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content. 8 Error measured at fullscale at 1.0 V. 9 Error measured at zero scale at 0 V. 10 Power Configuration Select, PWRSEL, is set to 10 binary.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

113

Electrical characteristics
The following figure shows a plot of the ADC sample time versus RAS.
Figure 61. Sample time vs. RAS

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

114

NXP Semiconductors

Boot mode configuration
5 Boot mode configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation.
5.1 Boot mode configuration inputs
The following table lists boot option dedicated inputs. These inputs are sampled at reset and can be used to override fuse values, depending on the value of FORCE_BOOT_FROM_FUSE. After this fuse is blown, the Boot mode inputs are ignored by ROM; ROM receives 'boot mode' from the BT_MODE_FUSES fuse. The boot option inputs are in effect when BT_FUSE_SEL fuse is `0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the Boot mode pins, see the "System Boot, Fusemap, and eFuse" chapter of the device reference manual.

Interface BOOT_MODE[0] BOOT_MODE[1] BOOT_MODE[2] BOOT_MODE[3] BOOT_MODE[4] BOOT_MODE[5]

Table 124. Boot options and associated inputs used for Boot

IP Instance Input Input Input Input Input Input

Allocated Pads During Boot SCU_BOOT_MODE0 SCU_BOOT_MODE1 SCU_BOOT_MODE2 SCU_BOOT_MODE3 SCU_BOOT_MODE4 SCU_BOOT_MODE5

Comment Boot mode selection

5.2 Boot devices interfaces allocation
The following table lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate.

Interface MMC
SD/MMC

Table 125. Interface allocation during boot

IP Instance

Allocated Pads During Boot

USDHC-0 USDHC-1

EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0, EMMC0_DATA1, EMMC0_DATA2, EMMC0_DATA3, EMMC0_DATA4, EMMC0_DATA5, EMMC0_DATA6, EMMC0_DATA7, EMMC0_RESET_B

4 or 8 bit

USDHC1_CLK, USDHC1_CMD, USDHC1_DATA0, USDHC1_DATA1, USDHC1_DATA2, USDHC1_DATA3, USDHC1_DATA4, USDHC1_DATA5, USDHC1_DATA6, USDHC1_DATA7, USDHC1_VSELECT, USDHC1_RESET_B

4 or 8 bit

Comment

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

115

Boot mode configuration

Table 125. Interface allocation during boot (continued)

Interface SD QSPI NAND
USB

IP Instance

Allocated Pads During Boot

Comment

USDHC-2 QSPI0
GPMI
USB-OTG PHY

USDHC2_CLK, USDHC2_CMD,

4 bit

USDHC2_DATA0, USDHC2_DATA1,

USDHC2_DATA2, USDHC2_DATA3,

USDHC2_RESET_B, USDHC2_VSELECT,

USDHC2_CD_B

QSPI0A_DATA0, QSPI0A_DATA1, QSPI0A_DATA2, QSPI0A_DATA3, QSPI0A_DQS, QSPI0A_SS0_B, QSPI0A_SS1_B, QSPI0A_SCLK, QSPI0B_SCLK, QSPI0B_DATA0, QSPI0B_DATA1, QSPI0B_DATA2, QSPI0B_DATA3, QSPI0B_DQS, QSPI0B_SS0_B, QSPI0B_SS1_B

4, dual-4, or 8 bit
During boot, QSPI0B can only be used in combination with QSPI0A, i.e. booting with 4-bit QSPI0B is not supported.

EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0, EMMC0_DATA1, EMMC0_DATA2, EMMC0_DATA3, EMMC0_DATA4, EMMC0_DATA5, EMMC0_DATA6, EMMC0_DATA7, EMMC0_STROBE, EMMC0_RESET_B,, USDHC1_DATA0, USDHC1_DATA1 USDHC1_DATA2, USDHC1_DATA3, USDHC1_DATA4, USDHC1_DATA5 USDHC1_DATA6, USDHC1_DATA7 USDHC1_STROBE

8 bit Boot from CS0 only, but will drive CS1to high when booting if specified in fuse, this is for Multi-CS NAND chip. · Single-ended DQS--use EMMC0_CMD · Single-ended RE--use USDHC1_DATA5 · Differential DQS--
· _N use USDHC1_DATA2 · _P use USDHC1_DATA3 · Differential RE-- · _N use USDHC1_DATA0 · _P use USDHC1_DATA1

USB_OTG1_VBUS, USB_OTG1_DP,

--

USB_OTG1_DN, USB_OTG2_VBUS,

USB_OTG2_DP, USB_OTG2_DN

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

116

NXP Semiconductors

Package information and contact assignments
6 Package information and contact assignments
This section contains package information and contact assignments for the following package(s): · FCPBGA, 29 x 29 mm, 0.75 mm pitch
6.1 FCPBGA, 29 x 29 mm, 0.75 mm pitch
This section includes the following information for the 29 x 29 mm, 0.75 mm pitch package: · Mechanical package drawing · Ball map · Contact assignments

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

117

Package information and contact assignments
6.1.1 29 x 29 mm package case outline
The following figure shows the top, bottom, and side views of the 29 × 29 mm package.

Figure 62. 29 x 29 mm Package Top, Bottom, and Side Views

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

118

NXP Semiconductors

Package information and contact assignments
The notes in the following figure pertain to the preceding figure., "29 x 29 mm Package Top, Bottom, and Side Views."

Figure 63. Notes on 29 x 29 mm Package Top, Bottom, and Side Views

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

119

Package information and contact assignments
6.1.2 29 x 29 mm, 0.75 mm pitch ball map
The following page shows the 29 x 29 mm, 0.75 mm pitch ball map.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

120

NXP Semiconductors

29 x 29 mm, 0.75 pitch ballmap

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

A

VSS_MAI N

USDHC1_ RESET_B

USDHC2_ VSELECT

ENET0_MD C

ENET1_RE FCLK_125
M_25M

ENET1_MD C

PCIE_CTR L0_WAKE
_B

PCIE_CTR L0_CLKRE
Q_B

PCIE_SAT A0_RX0_P

PCIE1_RX 0_P

VSS_MAI N

PCIE_CTR L1_CLKRE
Q_B

PCIE_CTR L1_WAKE
_B

PCIE0_RX 0_P

VSS_MAI N

USB_SS3 _TX_P

USB_OTG 2_VBUS

USB_OTG 1_ID

USB_OTG 1_VBUS

ENET0_RG MII_TXC

ENET0_RG MII_TXD0

ENET0_RG MII_TXD2

ENET0_RG MII_RXD0

ENET1_RG MII_TXD0

VSS_MAI N

B

USDHC1_ VSELECT

VSS_MAI N

USDHC2_ CD_B

ENET0_RE FCLK_125
M_25M

VSS_MAI N

VSS_MAI N

PCIE_SAT A0_TX0_P

VSS_MAI N

PCIE_SAT A0_RX0_
N

PCIE1_RX 0_N

PCIE1_TX0 _P

PCIE0_TX0 _P

VSS_MAI N

PCIE0_RX 0_N

USB_SS3 _TX_N

USB_SS3 _RX_N

VSS_MAI N

USB_OTG 2_DP

USB_OTG 1_DP

ENET0_RG MII_TXD1

ENET0_RG MII_RXC

VSS_MAI N

ENET1_RG MII_TX_CT
L

ENET1_RG MII_RXC

C

VSS_MAI N

FLEXCAN 2_RX

FLEXCAN 0_RX

USDHC2_ RESET_B

VSS_MAI N

VSS_MAI N

ENET1_MD IO

VSS_MAI N

PCIE_SAT A0_TX0_N

VSS_MAI N

VSS_MAI N

VSS_MAI N

PCIE1_TX0 _N

PCIE0_TX0 _N

VSS_MAI N

VSS_MAI N

VSS_MAI N

USB_SS3 _RX_P

USB_OTG 2_DN

USB_OTG 1_DN

VSS_MAI N

VSS_MAI N

ENET0_RG MII_RXD2

ENET1_RG MII_TXD1

VSS_MAI N

ENET1_RG MII_RXD1

VSS_MAI N

D

MLB_CLK

VSS_MAI N

USDHC2_ WP

ENET0_MD IO

QSPI1A_D ATA0

QSPI1A_D ATA1

VSS_MAI N

VSS_MAI N

PCIE_CTR L0_PERST
_B

PCIE_REX T

VSS_MAI N

VSS_MAI N

VSS_MAI N

MLB_SIG_ P

MLB_CLK _P

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

ENET0_RG MII_TXD3

ENET0_RG MII_RXD1

ENET1_RG MII_TXC

ENET1_RG MII_TXD3

ENET1_RG MII_RXD2

E

MLB_SIG

MLB_DAT A

FLEXCAN 1_RX

FLEXCAN 2_TX

VSS_MAI N

QSPI1A_D ATA3

QSPI1A_D ATA2

QSPI0A_S S0_B

QSPI0A_S CLK

VSS_MAI N

VSS_MAI N

PCIE_REF_ QR

PCIE_SAT A_REFCL K100M_N

USB_SS3 _REXT

USB_OTG 2_REXT

MLB_SIG_ N

MLB_CLK _N

MLB_DAT A_N

USDHC1_ DATA0

USDHC1_ DATA2

ENET0_RG MII_TX_CT
L

ENET0_RG MII_RX_CT
L

ENET0_RG MII_RXD3

VSS_MAI N

ENET1_RG MII_RX_CT
L

ENET1_RG MII_RXD0

ENET1_RG MII_RXD3

F

VSS_MAI N

VSS_MAI N

USB_SS3 _TC2

QSPI1A_S CLK

VSS_MAI N

QSPI0A_D ATA1

QSPI0A_S S1_B

QSPI0B_S CLK

QSPI0B_D ATA3

QSPI0B_S S0_B

VSS_MAI N

PCIE_SAT A_REFCL K100M_P

USB_HSIC 0_STROB
E

USB_OTG 2_ID

VSS_MAI N

MLB_DAT A_P

VSS_MAI N

USDHC1_ DATA1

USDHC1_ DATA3

USDHC1_ DATA6

VSS_MAI N

USDHC2_ CLK

VSS_MAI N

VSS_MAI N

G

DDR_CH1 _DQ05

DDR_CH1 _DQ06

VSS_MAI N

FLEXCAN 1_TX

VSS_MAI N

QSPI1A_S S1_B

QSPI0A_D ATA0

VSS_MAI N

QSPI0A_D QS

QSPI0B_D ATA2

VSS_MAI N

VSS_MAI N

PCIE_CTR L1_PERST
_B

VSS_MAI N

EMMC0_D ATA0

EMMC0_D ATA2

VSS_MAI N

EMMC0_D ATA7

EMMC0_S TROBE

VSS_MAI N

USDHC1_ CMD

USDHC1_ DATA5

USDHC2_ DATA1

ENET1_RG MII_TXD2

VSS_MAI N

DDR_CH0 _DQ06

DDR_CH0 _DQ05

H

DDR_CH1 _DM0

DDR_CH1 _DQ04

FLEXCAN 0_TX

USB_SS3 _TC3

QSPI1A_D QS

QSPI0A_D ATA2

QSPI0A_D ATA3

QSPI0B_D ATA0

QSPI0B_D ATA1

QSPI0B_D QS

QSPI0B_S S1_B

USB_HSIC 0_DATA

EMMC0_C LK

EMMC0_D ATA1

EMMC0_D ATA3

EMMC0_D ATA5

EMMC0_D ATA6

EMMC0_R ESET_B

USDHC1_ DATA4

USDHC1_ DATA7

USDHC2_ CMD

USDHC2_ DATA0

DDR_CH0 _DQ04

DDR_CH0 _DM0

J

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

USB_SS3 _TC0

QSPI1A_S S0_B

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

EMMC0_C MD

VSS_MAI N

VSS_MAI N

EMMC0_D ATA4

VSS_MAI N

VSS_MAI N

USDHC1_ CLK

VSS_MAI N

USDHC1_ STROBE

USDHC2_ DATA3

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

K

DDR_CH1 _DQS0_P

DDR_CH1 _DQ09

DDR_CH1 _DQ03

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_CH0 _DQ03

DDR_CH0 _DQ09

DDR_CH0 _DQS0_P

L

DDR_CH1 _DQS0_N

DDR_CH1 _DQ11

DDR_CH1 _DQ08

DDR_CH1 _DQ02

USB_SS3 _TC1

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

USDHC2_ DATA2

DDR_CH0 _DQ02

DDR_CH0 _DQ08

DDR_CH0 _DQ11

DDR_CH0 _DQS0_N

M

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

N

DDR_CH1 _DQS1_P

DDR_CH1 _DQ10

DDR_CH1 _DQ13

DDR_CH1 _DM1

DDR_CH1 _DQ01

DDR_CH1 _DQ07

VSS_MAI N

VDD_MLB _DIG_1P8
_3P3

VDD_FLE XCAN_1P
8_3P3

VDD_USB _SS3_TC_
3P3

VDD_QSPI 1A_1P8_3
P3

VDD_ENE T_MDIO_1 P8_2P5_3
P3

VDD_QSPI 0_1P8_3P
3

PCIE_SAT A0_PHY_ PLL_REF_ RETURN

VDD_PCIE _SATA0_ PLL_1P8

VDD_PCIE 1_PLL_1P
8

VDD_PCIE _SATA0_
1P0

PCIE1_PH Y_PLL_RE F_RETURN

VDD_PCIE 1_1P0

VDD_PCIE 0_1P0
VDD_PCIE 0_PLL_1P
8

PCIE0_PH Y_PLL_RE F_RETURN

VDD_USB _SS3_LD O_1P0_C
AP

VDD_PCIE _LDO_1P0
_CAP

VDD_USB _OTG1_1P
0

VDD_USB _OTG2_3P
3

VDD_USD HC1_1P8_
3P3

VDD_USD HC2_1P8_
3P3

VDD_USB _OTG2_1P
0

VDD_USB _OTG1_3P
3

VDD_EMM C0_1P8_3
P3

VDD_USD HC1_1P8_
3P3

VDD_ENE T0_1P8_3
P3

VDD_ENE T0_1P8_3
P3

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_CH0 _DQ07

DDR_CH0 _DQ01

DDR_CH0 _DM1

DDR_CH0 _DQ13

DDR_CH0 _DQ10

DDR_CH0 _DQS1_P

P

DDR_CH1 _DQS1_N

DDR_CH1 _DQ14

DDR_CH1 _DQ15

DDR_CH1 _DQ12

DDR_CH1 _DQ00

VSS_MAI N

VSS_MAI N

DDR_CH0 _DQ00

DDR_CH0 _DQ12

DDR_CH0 _DQ15

DDR_CH0 _DQ14

DDR_CH0 _DQS1_N

R

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

T

DDR_CH1 _DCF09

DDR_CH1 _DCF10

DDR_CH1 _DCF08

DDR_CH1 _DCF13

DDR_CH1 _DTO1

VSS_MAI N

U

DDR_CH1 _DCF16

DDR_CH1 _DCF11

DDR_CH1 _DCF12

DDR_CH1 _DCF00

DDR_CH1 _DTO0

DDR_CH1 _VREF

V

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

W

DDR_CH1 _DCF14

DDR_CH1 _DCF07

DDR_CH1 _CK0_P

DDR_CH1 _DCF01

DDR_CH1 _DCF06

DDR_CH1 _DCF04

Y

DDR_CH1 _DCF15

DDR_CH1 _CK0_N

DDR_CH1 _DCF02

DDR_CH1 _DCF03

DDR_CH1 _DCF05

VSS_MAI N

AA

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

AB

DDR_CH1 _DCF31

DDR_CH1 _CK1_N

DDR_CH1 _DCF18

DDR_CH1 _DCF19

DDR_CH1 _DCF24

VSS_MAI N

AC

DDR_CH1 _DCF30

DDR_CH1 _DCF22

DDR_CH1 _CK1_P

DDR_CH1 _DCF17

DDR_CH1 _DCF23

DDR_CH1 _DCF20

VSS_MAI N

AD

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

AE

DDR_CH1 _DCF32

DDR_CH1 _DCF27

DDR_CH1 _DCF29

DDR_CH1 _DCF26

DDR_CH1 _DCF21

VDD_DDR _CH1_VD DA_PLL_1
P8

VSS_MAI N

AF

DDR_CH1 _DCF25

DDR_CH1 _DCF28

DDR_CH1 _DCF33

DDR_CH1 _ATO

DDR_CH1 _ZQ

VSS_MAI N

AG

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

AH

DDR_CH1 _DQS2_N

DDR_CH1 _DQ23

DDR_CH1 _DQ22

DDR_CH1 _DQ21

DDR_CH1 _DQ25

VSS_MAI N

AJ

DDR_CH1 _DQS2_P

DDR_CH1 _DQ19

DDR_CH1 _DQ20

DDR_CH1 _DM2

DDR_CH1 _DQ24

DDR_CH1 _DQ30

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N
VDD_DDR _CH1_VD
DQ

VSS_MAI N

VDD_USD HC_VSEL ECT_1P8_
3P3
VDD_MAI N

VSS_MAI N

VSS_MAI N

VDD_PCIE _DIG_1P8
VDD_MAI N

VSS_MAI N

VDD_PCIE _IOB_1P8

VSS_MAI N

VDD_MLB _1P8

VSS_MAI N

VDD_ANA 1_1P8

VDD_PCIE _LDO_1P8

VDD_ANA 0_1P8

VDD_ANA 0_1P8

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_ENE T1_1P8_2 P5_3P3
VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VDD_USB _HSIC0_1
P2

VDD_USB _HSIC0_1
P8

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VDD_MEM C

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_MEM C

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VDD_GPU 0

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD DQ_CKE

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_GPU 1

VDD_DDR _CH0_VD DQ_CKE

VDD_DDR _CH1_VD DQ_CKE

VDD_MEM C

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_MEM C

VDD_DDR _CH0_VD DQ_CKE

VDD_DDR _CH1_VD DQ_CKE

VDD_GPU 0

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_DDR _CH0_VD DQ_CKE

VDD_DDR _CH1_VD
DQ

VSS_MAI N

VDD_GPU 0

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_GPU 1

VSS_MAI N

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VDD_MEM C

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MEM C

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VDD_MAI N

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_DDR _CH0_VD
DQ

VDD_DDR _CH1_VD
DQ

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_ANA 2_1P8

VSS_MAI N

VDD_DDR _CH0_VD
DQ

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_CH0 _DTO1

DDR_CH0 _DCF13

DDR_CH0 _DCF08

DDR_CH0 _DCF10

DDR_CH0 _DCF09

DDR_CH0 _VREF

DDR_CH0 _DTO0

DDR_CH0 _DCF00

DDR_CH0 _DCF12

DDR_CH0 _DCF11

DDR_CH0 _DCF16

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_CH0 _DCF04

DDR_CH0 _DCF06

DDR_CH0 _DCF01

DDR_CH0 _CK0_P

DDR_CH0 _DCF07

DDR_CH0 _DCF14

VSS_MAI N

DDR_CH0 _DCF05

DDR_CH0 _DCF03

DDR_CH0 _DCF02

DDR_CH0 _CK0_N

DDR_CH0 _DCF15

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_CH0 _DCF24

DDR_CH0 _DCF19

DDR_CH0 _DCF18

DDR_CH0 _CK1_N

DDR_CH0 _DCF31

VSS_MAI N

DDR_CH0 _DCF20

DDR_CH0 _DCF23

DDR_CH0 _DCF17

DDR_CH0 _CK1_P

DDR_CH0 _DCF22

DDR_CH0 _DCF30

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VDD_DDR _CH0_VD DA_PLL_1
P8

DDR_CH0 _DCF21

DDR_CH0 _DCF26

DDR_CH0 _DCF29

DDR_CH0 _DCF27

DDR_CH0 _DCF32

VSS_MAI N

DDR_CH0 _ZQ

DDR_CH0 _ATO

DDR_CH0 _DCF33

DDR_CH0 _DCF28

DDR_CH0 _DCF25

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

DDR_CH0 _DQ25

DDR_CH0 _DQ21

DDR_CH0 _DQ22

DDR_CH0 _DQ23

DDR_CH0 _DQS2_N

VSS_MAI N

DDR_CH0 _DQ30

DDR_CH0 _DQ24

DDR_CH0 _DM2

DDR_CH0 _DQ20

DDR_CH0 _DQ19

DDR_CH0 _DQS2_P

AK

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

AL

DDR_CH1 _DQS3_N

DDR_CH1 _DQ18

DDR_CH1 _DQ17

DDR_CH1 _DQ27

ADC_IN6

VREFH_A DC

VSS_MAI N

AM

DDR_CH1 _DQS3_P

DDR_CH1 _DQ16

DDR_CH1 _DQ26

VSS_MAI N

VREFL_A DC

VSS_MAI N

AN

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

ADC_IN4

ADC_IN1

VSS_MAI N

AP

DDR_CH1 _DM3

DDR_CH1 _DQ29

ADC_IN7

ADC_IN2

ADC_IN0

VSS_MAI N

AR

DDR_CH1 _DQ28

DDR_CH1 _DQ31

VSS_MAI N

ADC_IN5

ADC_IN3

VSS_MAI N

VDD_ADC _DIG_1P8

VSS_MAI N

VDD_ANA 3_1P8

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MEM C

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_ADC _1P8

VDD_MAI N

VDD_SPI_ SAI_1P8_
3P3

VDD_SPI_ SAI_1P8_
3P3

VSS_MAI N

VDD_MAI N

VSS_MAI N
VDD_MAI N

VSS_MAI N

VDD_MAI N
VDD_A53
VSS_MAI N

VSS_MAI N
VDD_A53

VSS_MAI N

VDD_MAI N
VDD_A53
VSS_MAI N

VSS_MAI N
VDD_A72

VSS_MAI N

VDD_A72
VSS_MAI N

VDD_A72

VSS_MAI N
VDD_A72

VSS_MAI N

VDD_A72
VSS_MAI N

VDD_A72

VSS_MAI N
VDD_A72

VSS_MAI N

VDD_MAI N

VDD_M4_ GPT_UAR T_1P8_3P
3

VDD_M4_ GPT_UAR T_1P8_3P
3

VDD_CP_ 1P8

VDD_SCU _1P8

VDD_ESAI 0_MCLK_1
P8_3P3

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_A53

VSS_MAI N

VDD_A72

VSS_MAI N

VDD_A72

VSS_MAI N

VDD_MAI N

VDD_SCU _1P8

VDD_ESAI 0_MCLK_1
P8_3P3

VDD_MAI N

VSS_MAI N

VDD_A53

VSS_MAI N

VDD_A53

VSS_MAI N

VDD_A72

VSS_MAI N

VDD_A72

VSS_MAI N

VDD_MAI N

VDD_SCU _ANA_1P
8

VDD_SIM0 _1P8_3P3

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SIM0_PD

SIM0_CLK

DDR_CH0 _DQ27

DDR_CH0 _DQ17

DDR_CH0 _DQ18

DDR_CH0 _DQS3_N

VSS_MAI N

M40_I2C0 _SCL

VSS_MAI N

DDR_CH0 _DQ26

DDR_CH0 _DQ16

DDR_CH0 _DQS3_P

VSS_MAI N

VSS_MAI N

SIM0_IO

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VDD_M1P 8_CAP

M41_GPIO 0_00

SIM0_GPI O0_00

SIM0_RST

DDR_CH0 _DQ29

DDR_CH0 _DM3

UART1_R TS_B

M41_I2C0 _SCL

M40_GPIO 0_00

VSS_MAI N

DDR_CH0 _DQ31

DDR_CH0 _DQ28

AT

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

ESAI1_TX 5_RX0

VSS_MAI N

AU

SAI1_TXD

SAI1_RXF S

SAI1_TXC

ESAI0_TX 5_RX0

ESAI0_TX 2_RX3

ESAI1_TX 2_RX3

AV

SAI1_TXF S

SAI1_RXD

SAI1_RXC

ESAI0_TX 4_RX1

ESAI1_TX 3_RX2

VSS_MAI N

AW

SPI2_CS0

VSS_MAI N

SPI2_SCK

VSS_MAI N

ESAI0_FS R

VSS_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_A53

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_MAI N

VSS_MAI N

VDD_A72

VSS_MAI N

VDD_SNV S_4P2

VDD_ESAI 1_SPDIF_ SPI_1P8_3
P3

VSS_MAI N

VDD_HDMI _TX0_1P0

VDD_HDMI _RX0_LD O0_1P0_C
AP

VDD_HDMI _RX0_LD O1_1P0_C
AP

VDD_MIPI_ CSI1_1P8

VSS_MAI N

VDD_HDMI _RX0_1P8

VDD_HDMI _RX0_VH _RX_3P3

VDD_MIPI_ CSI_DIG_1
P8

VDD_MIPI_ CSI0_1P8

VDD_MIPI_ DSI_DIG_1
P8_3P3

VDD_MIPI_ DSI0_1P0

VSS_MAI N

VDD_MIPI_ CSI0_1P0

VDD_MIPI_ DSI1_1P0

VDD_MIPI_ DSI1_1P8

VSS_MAI N
VDD_LVD S_DIG_1P
8_3P3

VDD_LVD S0_1P8

VDD_MAI N
VDD_LVD S0_1P0

VSS_MAI N

VSS_MAI N

VDD_SCU _XTAL_1P
8

VDD_HDMI _TX0_LDO _1P0_CAP

VDD_HDMI _TX0_1P8

VSS_MAI N

VDD_HDMI _TX0_DIG
_3P3

VSS_MAI N

VDD_MIPI_ CSI1_1P0

VDD_MIPI_ DSI1_PLL_
1P0

VDD_MIPI_ DSI0_PLL_
1P0

VDD_MIPI_ DSI0_1P8

VDD_LVD S1_1P8

VDD_LVD S1_1P0

VSS_MAI N

VDD_SNV S_LDO_1P
8_CAP

VSS_MAI N

UART1_R X

VSS_MAI N

SIM0_PO WER_EN

VSS_MAI N

VSS_MAI N

SCU_GPIO 0_00

UART0_R TS_B

M41_GPIO 0_01

M41_I2C0 _SDA

M40_I2C0 _SDA

M40_GPIO 0_01

VSS_MAI N

SCU_GPIO 0_01

UART1_C TS_B

UART0_T X

UART0_R X

GPT0_CA PTURE

VSS_MAI N

SCU_GPIO 0_02

VSS_MAI N

UART0_C TS_B

VSS_MAI N

GPT0_CO MPARE

AY

SPI2_CS1

SPI2_SDI

SPI0_SDO

ESAI0_SC KT

ESAI1_SC KT

ESAI1_TX 4_RX1

SCU_BOO T_MODE4

SCU_GPIO 0_05

PMIC_I2C_ SCL

UART1_T X

GPT1_CA PTURE

GPT0_CLK

BA

SPI2_SDO

SPI0_CS1

SPI0_SDI

ESAI0_TX 1

ESAI0_TX 0

ESAI1_TX 1

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SCU_BOO T_MODE3

VSS_MAI N

SCU_PMIC _STANDB
Y

JTAG_TM S

GPT1_CO MPARE

GPT1_CLK

BB

VSS_MAI N

SPI0_SCK

VSS_MAI N

ESAI0_SC KR

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SCU_BOO T_MODE0

SCU_GPIO 0_03

VSS_MAI N

SCU_WDO G_OUT

VSS_MAI N

BC

SPI0_CS0

MCLK_IN0

ESAI0_TX 3_RX2

SPDIF0_R X

SPDIF0_T X

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SCU_BOO T_MODE1

SCU_GPIO 0_04

TEST_MO DE_SELEC
T

JTAG_TC K

SCU_PMIC _MEMC_O
N

BD

ANA_TES T_OUT1_N

MCLK_OU T0

SPDIF0_E XT_CLK

SPI3_CS1

ESAI1_SC KR

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

MIPI_DSI0_ GPIO0_01

MIPI_DSI0_ GPIO0_00

LVDS1_I2 C1_SCL

LVDS1_G PIO00

LVDS0_I2 C0_SDA

LVDS0_I2 C0_SCL

LVDS0_G PIO01

SNVS_TA MPER_OU
T1

SNVS_TA MPER_OU
T0

VSS_MAI N

VSS_MAI N

JTAG_TD O

BE

ANA_TES T_OUT1_P

VSS_MAI N

SPI3_SDI

VSS_MAI N

VSS_MAI N

ESAI1_FS R

HDMI_RX0 _DDC_SD
A

MIPI_CSI1_ I2C0_SDA

MIPI_CSI0_ DATA3_N

MIPI_CSI0_ DATA1_N

MIPI_CSI0_ CLK_N

MIPI_CSI0_ DATA0_N

MIPI_CSI0_ DATA2_N

MIPI_DSI1_ I2C0_SCL

MIPI_DSI0_ I2C0_SCL

MIPI_DSI0_ I2C0_SDA

LVDS1_I2 C0_SDA

LVDS0_I2 C1_SDA

LVDS0_I2 C1_SCL

LVDS0_G PIO00

SNVS_TA MPER_IN0

SNVS_TA MPER_IN1

VSS_MAI N

ON_OFF_ BUTTON

POR_B

JTAG_TDI

JTAG_TR ST_B

BF

SPI3_SDO

VSS_MAI N

SPI3_SCK

ESAI1_TX 0

ESAI1_FS T

HDMI_RX0 _HPD

MIPI_CSI0_ DATA3_P

MIPI_CSI0_ DATA1_P

MIPI_CSI0_ CLK_P

MIPI_CSI0_ DATA0_P

MIPI_CSI0_ DATA2_P

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SCU_GPIO 0_07

PMIC_EAR LY_WARN
ING

VSS_MAI N

HDMI_TX0

BG

_DDC_SC

L

HDMI_TX0 _AUX_N

SPI3_CS0

VSS_MAI N

ESAI0_FS T

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

MIPI_DSI1_ I2C0_SDA

MIPI_DSI1_ DATA3_P

MIPI_DSI1_ DATA1_P

MIPI_DSI1_ CLK_P

MIPI_DSI1_ DATA0_P

MIPI_DSI1_ DATA2_P

LVDS0_C H1_TX3_N

LVDS0_C H1_TX2_N

LVDS0_C H1_TX1_N

LVDS0_C H1_TX0_N

LVDS0_C H1_CLK_N

VSS_MAI N

SCU_GPIO 0_06

PMIC_I2C_ SDA

ANA_TES T_OUT0_P

BH

HDMI_TX0 _AUX_P

VSS_MAI N

HDMI_TX0 _HPD

HDMI_RX0 _DDC_SC
L

MIPI_CSI1_ DATA3_N

MIPI_CSI1_ DATA1_N

MIPI_CSI1_ CLK_N

MIPI_CSI1_ DATA0_N

MIPI_CSI1_ DATA2_N

VSS_MAI N

MIPI_CSI0_ I2C0_SCL

MIPI_DSI1_ DATA3_N

MIPI_DSI1_ DATA1_N

MIPI_DSI1_ CLK_N

MIPI_DSI1_ DATA0_N

MIPI_DSI1_ DATA2_N

LVDS1_G PIO01

LVDS0_C H1_TX3_P

LVDS0_C H1_TX2_P

LVDS0_C H1_TX1_P

LVDS0_C H1_TX0_P

LVDS0_C H1_CLK_P

PMIC_INT_ B

ANA_TES T_OUT0_N

BJ

HDMI_TX0 _CEC

VSS_MAI N

VSS_MAI N

HDMI_TX0 _REXT

HDMI_RX0 _CEC

HDMI_RX0 _REXT

MIPI_CSI1_ DATA3_P

MIPI_CSI1_ DATA1_P

MIPI_CSI1_ CLK_P

MIPI_CSI1_ DATA0_P

MIPI_CSI1_ DATA2_P

MIPI_CSI0_ MCLK_OU
T

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

SCU_BOO T_MODE2

HDMI_TX0

BK

_CLK_EDP

3_N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

VSS_MAI N

MIPI_DSI1_ GPIO0_01

MIPI_DSI0_ DATA1_P

MIPI_DSI0_ DATA0_P

LVDS1_C H1_TX3_N

LVDS1_C H1_TX1_N

LVDS1_C H1_CLK_N

LVDS1_C H0_CLK_N

LVDS1_C H0_TX1_N

LVDS1_C H0_TX3_N

LVDS0_C H0_TX0_N

LVDS0_C H0_TX2_N

VSS_MAI N

VSS_SCU _XTAL

SCU_BOO T_MODE5

BL

VSS_MAI N

HDMI_TX0 _CLK_EDP
3_P

HDMI_TX0 _DATA0_
EDP2_P

HDMI_TX0 _DATA1_
EDP1_P

HDMI_TX0 _DATA2_
EDP0_P

HDMI_RX0 _CLK_N

HDMI_RX0 _ARC_N

HDMI_RX0 _DATA0_
N

HDMI_RX0 _DATA1_
N

HDMI_RX0 _DATA2_
N

VSS_MAI N

MIPI_CSI0_ GPIO0_00

MIPI_DSI0_ DATA3_P

MIPI_DSI0_ CLK_P

MIPI_DSI0_ DATA2_P

LVDS1_C H1_TX2_N

LVDS1_C H1_TX0_N

LVDS1_I2 C0_SCL

LVDS1_C H0_TX0_N

LVDS1_C H0_TX2_N

LVDS0_C H0_CLK_N

LVDS0_C H0_TX1_N

LVDS0_C H0_TX3_N

RTC_XTA LO

XTALO

PMIC_ON_ REQ

VSS_MAI N

BM

HDMI_TX0 _DATA0_ EDP2_N

HDMI_TX0 _DATA1_ EDP1_N

HDMI_TX0 _DATA2_ EDP0_N

VSS_MAI N

HDMI_RX0 _CLK_P

HDMI_RX0 _ARC_P

HDMI_RX0 _DATA0_
P

HDMI_RX0 _DATA1_
P

HDMI_RX0 _DATA2_
P

MIPI_CSI0_ GPIO0_01

MIPI_DSI1_ GPIO0_00

MIPI_DSI0_ DATA1_N

MIPI_DSI0_ DATA0_N

LVDS1_C H1_TX3_P

LVDS1_C H1_TX1_P

LVDS1_C H1_CLK_P

LVDS1_C H0_CLK_P

LVDS1_C H0_TX1_P

LVDS1_C H0_TX3_P

LVDS0_C H0_TX0_P

LVDS0_C H0_TX2_P

VSS_MAI N

VSS_SCU _XTAL

VSS_SCU _XTAL

BN

VSS_MAI N

HDMI_TX0 _DDC_SD
A

HDMI_TX0 _TS_SDA

HDMI_TX0 _TS_SCL

HDMI_RX0 _MON_5V

MIPI_CSI1_ GPIO0_01

MIPI_CSI1_ GPIO0_00

MIPI_CSI1_ I2C0_SCL

MIPI_CSI0_ I2C0_SDA

VSS_MAI N

MIPI_CSI1_ MCLK_OU
T

MIPI_DSI0_ DATA3_N

MIPI_DSI0_ CLK_N

MIPI_DSI0_ DATA2_N

LVDS1_C H1_TX2_P

LVDS1_C H1_TX0_P

LVDS1_I2 C1_SDA

LVDS1_C H0_TX0_P

LVDS1_C H0_TX2_P

LVDS0_C H0_CLK_P

LVDS0_C H0_TX1_P

LVDS0_C H0_TX3_P

RTC_XTA LI

XTALI

VSS_SCU _XTAL

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

121

Package information and contact assignments
6.1.3 29 x 29 mm power supplies and functional contact assignments
The following table shows power supplies contact assignments for the 29 × 29 mm package.

Table 126. 29 x 29 mm power supplies contact assignments

Power rail
VDD_A53 VDD_A72 VDD_ADC_1P8 VDD_ADC_DIG_1P8 VDD_ANA0_1P8 VDD_ANA1_1P8 VDD_ANA2_1P8 VDD_ANA3_1P8 VDD_CP_1P8 VDD_DDR_CH0_VDDA_PLL_1P8 VDD_DDR_CH0_VDDQ VDD_DDR_CH0_VDDQ_CKE VDD_DDR_CH1_VDDA_PLL_1P8 VDD_DDR_CH1_VDDQ VDD_DDR_CH1_VDDQ_CKE VDD_EMMC0_1P8_3P3 VDD_ENET_MDIO_1P8_3P3 VDD_ENET0_1P8_3P3 VDD_ENET1_1P8_2P5_3P3 VDD_ESAI0_MCLK_1P8_3P3 VDD_ESAI1_SPDIF_SPI_1P8_3P3 VDD_FLEXCAN_1P8_3P3 VDD_GPU0 VDD_GPU1 VDD_HDMI_RX0_LDO0_1P0_CAP1 VDD_HDMI_RX0_LDO1_1P0_CAP1 VDD_HDMI_RX0_VH_RX_3P31 VDD_HDMI_TX0_1P0 VDD_HDMI_TX0_1P8

Ball reference AM22, AM26, AN23, AP24, AR21, AR25, AT22 AL29, AL33, AM30, AM34, AN27, AN31, AN35, AP28, AP32, AR29, AR33, AT34
AL15 AK16 U29, U31 U25 AJ35 AK20 AN37 AE43 AA39, AE39, AF38, AG39, AH38, AJ39, U39, V38, W39, Y38 AB38, AC39, AD38 AE11 AA15, AE15, AF16, AG15, AH16, AJ15, U15, V16, W15, Y16 AB16, AC15, AD16 N35 N17 M40, N39 T38 AP16, AR15 AU15 N15 AA19, AB20, AC21, AD18, AD22, AE19, V20, W21, Y18, Y22 AA35, AB32, AB36, AC33, AD34, AE35, U35, V36, W33, Y34 AU19 AU21 AV20 AV16 AW17

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

122

NXP Semiconductors

Package information and contact assignments

Table 126. 29 x 29 mm power supplies contact assignments (continued)

Power rail VDD_HDMI_TX0_DIG_3P3 VDD_HDMI_TX0_LDO_1P0_CAP VDD_LVDS_DIG_1P8_3P3 VDD_LVDS0_1P0 VDD_LVDS0_1P8 VDD_LVDS1_1P0 VDD_LVDS1_1P8 VDD_M1P8_CAP VDD_M4_GPT_UART_1P8_3P3 VDD_MAIN
VDD_MEMC
VDD_MIPI_CSI_DIG_1P8 VDD_MIPI_CSI0_1P0 VDD_MIPI_CSI0_1P8 VDD_MIPI_CSI1_1P0 VDD_MIPI_CSI1_1P8 VDD_MIPI_DSI_DIG_1P8_3P3 VDD_MIPI_DSI0_1P0 VDD_MIPI_DSI0_1P8 VDD_MIPI_DSI0_PLL_1P0 VDD_MIPI_DSI1_1P0 VDD_MIPI_DSI1_1P8 VDD_MIPI_DSI1_PLL_1P0 VDD_MLB_1P82 VDD_MLB_DIG_1P8_3P33 VDD_PCIE_DIG_1P8_3P3 VDD_PCIE_IOB_1P8 VDD_PCIE_LDO_1P0_CAP VDD_PCIE_LDO_1P8 VDD_PCIE_SATA0_1P01

Ball reference
AW21 AW15 AV32 AV36 AV34 AW35 AW33 AP42 AL39, AM38 AA23, AA27, AA31, AB24, AB28, AC25, AC29, AD26, AD30, AE23, AE27, AE31, AF20, AF24, AF28, AF32, AF36, AG21, AG33, AH18, AH34, AJ19, AJ31, AK32, AK36, AL17, AL21, AL25, AL37, AM18, AN19, AP20, AP36, AR17, AR37, AT18, AT26, AT30, AU35, T34, U19, U23, V24, V32, W25, W29, Y26, Y30 AC17, AC37, AG17, AG25, AG29, AG37, AH22, AH26, AH30, AJ23, AJ27, AK24, AK28, W17, W37 AV22 AV26 AV24 AW25 AU23 AU27 AU29 AW31 AW29 AV28 AV30 AW27 T30 M14 T22 T26 N29 U27 M24

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

123

Package information and contact assignments

Table 126. 29 x 29 mm power supplies contact assignments (continued)

Power rail VDD_PCIE_SATA0_PLL_1P81 VDD_PCIE0_1P0 VDD_PCIE0_PLL_1P8 VDD_PCIE1_1P0 VDD_PCIE1_PLL_1P8 VDD_QSPI0_1P8_3P3 VDD_QSPI1A_1P8_3P3 VDD_SCU_1P8 VDD_SCU_ANA_1P8 VDD_SCU_XTAL_1P8 VDD_SIM0_1P8_3P3 VDD_SNVS_4P2 VDD_SNVS_LDO_1P8_CAP VDD_SPI_SAI_1P8_3P3 VDD_USB_HSIC0_1P2 VDD_USB_HSIC0_1P8 VDD_USB_OTG1_1P0 VDD_USB_OTG1_3P3 VDD_USB_OTG2_1P0 VDD_USB_OTG2_3P3 VDD_USB_SS3_LDO_1P0_CAP VDD_USB_SS3_TC_3P3 VDD_USDHC_VSELECT_1P8_3P3 VDD_USDHC1_1P8_3P3 VDD_USDHC2_1P8_3P3 VREFH_ADC VREFL_ADC

Ball reference N21 M26 N27 N25 M22 N19 M18
AN39, AP38 AR39 AU39 AK42 AT38 AW39
AM16, AN15 V26 V28 M32 N33 N31 M34 M30 M16 T18
M36, N37 M38 AL11 AM10

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

124

NXP Semiconductors

Package information and contact assignments

Table 126. 29 x 29 mm power supplies contact assignments (continued)

Power rail

Ball reference

VSS_MAIN

A23, A3, A31, A51, AA1, AA11, AA13, AA17, AA21, AA25, AA29, AA3, AA33, AA37, AA41, AA43, AA45, AA47, AA49, AA5, AA51, AA53, AA7, AA9, AB12, AB18, AB22, AB26, AB30, AB34, AB42, AC13, AC19, AC23, AC27, AC31, AC35, AC41, AD10, AD12, AD2, AD20, AD24, AD28, AD32, AD36, AD4, AD42, AD44, AD46, AD48, AD50, AD52, AD6, AD8, AE13, AE17, AE21, AE25, AE29, AE33, AE37, AE41, AF12, AF18, AF22, AF26, AF30, AF34, AF42, AG1, AG11, AG13, AG19, AG23, AG27, AG3, AG31, AG35, AG41, AG43, AG45, AG47, AG49, AG5, AG51, AG53, AG7, AG9, AH12, AH20, AH24, AH28, AH32, AH36, AH42, AJ13, AJ17, AJ21, AJ25, AJ29, AJ33, AJ37, AJ41, AK10, AK12, AK18, AK2, AK22, AK26, AK30, AK34, AK38, AK4, AK44, AK46, AK48, AK50, AK52, AK6, AK8, AL13, AL19, AL23, AL27, AL31, AL35, AL41, AM12, AM20, AM24, AM28, AM32, AM36, AM42, AM46, AM8, AN1, AN13, AN17, AN21, AN25, AN29, AN3, AN33, AN41, AN43, AN47, AN49, AN5, AN51, AN53, AN7, AP12, AP18, AP22, AP26, AP30, AP34, AR11, AR19, AR23, AR27, AR31, AR35, AR49, AR5, AT12, AT16, AT2, AT20, AT24, AT28, AT32, AT36, AT4, AT42, AT46, AT50, AT52, AT6, AT8, AU17, AU25, AU31, AU33, AU37, AV12, AV38, AV42, AW11, AW19, AW23, AW3, AW37, AW43, AW47, AW51, AW7, B12, B14, B18, B28, B36, B46, B6, BA13, BA15, BA17, BA19, BA21, BA23, BA25, BA27, BA29, BA31, BA33, BA35, BA37, BA39, BA41, BA45, BB10, BB14, BB16, BB18, BB2, BB20, BB22, BB24, BB26, BB28, BB30, BB32, BB34, BB36, BB38, BB40, BB48, BB52, BB6, BC11, BC13, BC15, BC17, BC19, BC21, BC23, BC25, BC27, BC29, BC31, BC33, BC35, BC37, BC39, BC41, BC43, BD14, BD16, BD18, BD20, BD22, BD24, BD26, BD48, BD50, BE3, BE45, BE7, BE9, BF26, BF28, BF30, BF32, BF34, BF36, BF38, BF4, BF40, BF42, BF44, BF52, BG11, BG13, BG15, BG17, BG19, BG21, BG23, BG47, BG7, BH22, BH4, BJ25, BJ27, BJ29, BJ3, BJ31, BJ33, BJ35, BJ37, BJ39, BJ41, BJ43, BJ45, BJ47, BJ49, BJ5, BJ51, BK10, BK12, BK14, BK16, BK18, BK20, BK22, BK46, BK6, BK8, BL1, BL21, BL53, BM10, BM46, BN21, BN3, C1, C11, C15, C19, C21, C23, C29, C31, C33, C41, C43, C49, C53, C9, D16, D18, D24, D26, D28, D34, D36, D38, D40, D6, E19, E21, E47, E9, F12, F2, F24, F32, F36, F4, F44, F50, F52, G15, G21, G23, G27, G33, G39, G49, G5, G9, J1, J13, J15, J17, J19, J21, J23, J25, J29, J3, J31, J35, J37, J41, J47, J49, J5, J51, J53, J7, K12, K14, K16, K18, K20, K22, K24, K26, K28, K30, K32, K34, K36, K38, K40, K42, K46, K8, L11, L13, L15, L17, L19, L21, L23, L25, L27, L29, L31, L33, L35, L37, L39, L41, L43, M10, M2, M4, M44, M46, M48, M50, M52, M6, M8, N13, N41, P12, P42, R1, R11, R15, R17, R19, R21, R23, R25, R27, R29, R3, R31, R33, R35, R37, R39, R43, R45, R47, R49, R5, R51, R53, R7, R9, T12, T16, T20, T24, T28, T32, T36, T42, U17, U21, U33, U37, V10, V12, V18, V2, V22, V30, V34, V4, V42, V44, V46, V48, V50, V52, V6, V8, W19, W23, W27, W31, W35, Y12, Y20, Y24, Y28, Y32, Y36, Y42

VSS_SCU_XTAL

BK48, BM48, BM50, BN51

1 HDMI-RX is not currently supported, the related power and signal connections are provided for future use when it is expected HDMI-RX support will be enabled.
2 MLB is not supported on this product. The MLB power rail must be tied to the voltage specified in Table 8 or may be terminated, per the Hardware Developer's Guide power supplies of unused functions.
3 MLB is not supported on this product. This MLB power rail must be tied to the voltage specified in Table 8 if other I/O functions are used, as determined by IOMUX selection. Alternately, terminate the MLB supply, per the Hardware Developer's Guide power supplies of unused functions.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

125

Package information and contact assignments
The following table shows functional contact assignments for the 29 × 29 mm package.

Ball
AP10 AN11 AP8 AR9 AN9 AR7 AL9 AP6 BH52 BG53 BD2 BE1 H28 J27 G29 H30 G31 H32 J33 H34 H36 G35 H38 G37
A9 D10 B10 E43 B44 A47

Table 127. 29 × 29 mm functional contact assignments

Ball Name
ADC_IN0 ADC_IN1 ADC_IN2 ADC_IN3 ADC_IN4 ADC_IN5 ADC_IN6 ADC_IN7 ANA_TEST_OUT0_N ANA_TEST_OUT0_P ANA_TEST_OUT1_N ANA_TEST_OUT1_P EMMC0_CLK EMMC0_CMD EMMC0_DATA0 EMMC0_DATA1 EMMC0_DATA2 EMMC0_DATA3 EMMC0_DATA4 EMMC0_DATA5 EMMC0_DATA6 EMMC0_DATA7 EMMC0_RESET_B EMMC0_STROBE ENET0_MDC ENET0_MDIO ENET0_REFCLK_125M_25M ENET0_RGMII_RX_CTL ENET0_RGMII_RXC ENET0_RGMII_RXD0

Power Domain
VDD_ADC_3P3
VDD_SCU_ANA_1P8 VDD_SCU_ANA_1P8

Ball Type1 Default
mode GPIO ALT0
ANA

Reset Condition
Default function
ADC_IN0 ADC_IN1 ADC_IN2 ADC_IN3 ADC_IN4 ADC_IN5 ADC_IN6 ADC_IN7 NXP Internal Use Only (Leave Unconnected)

VDD_EMMC0_1P8_3P3
VDD_ENET_MDIO_1P8_3P3 VDD_ENET0_1P8_3P3

FASTD ALT1 ALT0
GPIO ALT3 FASTD ALT0 GPIO ALT3
ALT0 ALT3 FASTD ALT0

NAND_READY_B EMMC0_CMD EMMC0_DATA0 EMMC0_DATA1 EMMC0_DATA2 EMMC0_DATA3 EMMC0_DATA4 EMMC0_DATA5 EMMC0_DATA6 EMMC0_DATA7
LSIO.GPIO5.IO13 EMMC0_STROBE LSIO.GPIO4.IO14
ENET0_MDIO LSIO.GPIO4.IO15 ENET0_RGMII_RX_CTL ENET0_RGMII_RXC ENET0_RGMII_RXD0

State2 PD
PU PD
PU PD PD PU PD PD

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

126

NXP Semiconductors

Ball
D44 C45 E45 E41 A41 A43 B42 A45 D42 A13 C13 A11 E49 B50 E51 C51 D52 E53 B48 D46 A49 C47 G47 D48 AW9 BG9 BB8 AY8 BA9 BA7 AU9 BC5

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball Name
ENET0_RGMII_RXD1 ENET0_RGMII_RXD2 ENET0_RGMII_RXD3 ENET0_RGMII_TX_CTL ENET0_RGMII_TXC ENET0_RGMII_TXD0 ENET0_RGMII_TXD1 ENET0_RGMII_TXD2 ENET0_RGMII_TXD3
ENET1_MDC ENET1_MDIO ENET1_REFCLK_125M_25M ENET1_RGMII_RX_CTL ENET1_RGMII_RXC ENET1_RGMII_RXD0 ENET1_RGMII_RXD1 ENET1_RGMII_RXD2 ENET1_RGMII_RXD3 ENET1_RGMII_TX_CTL ENET1_RGMII_TXC ENET1_RGMII_TXD0 ENET1_RGMII_TXD1 ENET1_RGMII_TXD2 ENET1_RGMII_TXD3
ESAI0_FSR ESAI0_FST ESAI0_SCKR ESAI0_SCKT ESAI0_TX0 ESAI0_TX1 ESAI0_TX2_RX3 ESAI0_TX3_RX2

Power Domain
VDD_ENET0_1P8_3P3
VDD_ENET_MDIO_1P8_3P3 VDD_ENET1_1P8_2P5_3P3
VDD_ESAI0_MCLK_1P8_3P3

Ball Type1 Default
mode FASTD ALT0
ALT3
GPIO ALT3 ALT0 ALT3
FASTD ALT0
ALT3
GPIO ALT0

Reset Condition
Default function
ENET0_RGMII_RXD1 ENET0_RGMII_RXD2 ENET0_RGMII_RXD3
LSIO.GPIO5.IO31 LSIO.GPIO5.IO30 LSIO.GPIO6.IO00 LSIO.GPIO6.IO01 LSIO.GPIO6.IO02 LSIO.GPIO6.IO03 LSIO.GPIO4.IO18
ENET1_MDIO LSIO.GPIO4.IO16 ENET1_RGMII_RX_CTL ENET1_RGMII_RXC ENET1_RGMII_RXD0 ENET1_RGMII_RXD1 ENET1_RGMII_RXD2 ENET1_RGMII_RXD3 LSIO.GPIO6.IO11 LSIO.GPIO6.IO10 LSIO.GPIO6.IO12 LSIO.GPIO6.IO13 LSIO.GPIO6.IO14 LSIO.GPIO6.IO15
ESAI0_FSR ESAI0_FST ESAI0_SCKR ESAI0_SCKT ESAI0_TX0 ESAI0_TX1 ESAI0_TX2_RX3 ESAI0_TX3_RX2

State2 PD PD
PD PU PD PD
PD
PD

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

127

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball
AV8 AU7 BE11 BF12 BD12 AY10 BF10 BA11 AU11 AV10 AY12 AT10 C5 H6 E5 G7 C3 E7 AV52 AY52 AW53 AY50 BA53 BA51 BL13 BM14 BJ9 BL11 BM12 BL15 BM16 BL17 BM18

Ball Name
ESAI0_TX4_RX1 ESAI0_TX5_RX0
ESAI1_FSR ESAI1_FST ESAI1_SCKR ESAI1_SCKT ESAI1_TX0 ESAI1_TX1 ESAI1_TX2_RX3 ESAI1_TX3_RX2 ESAI1_TX4_RX1 ESAI1_TX5_RX0 FLEXCAN0_RX FLEXCAN0_TX FLEXCAN1_RX FLEXCAN1_TX FLEXCAN2_RX FLEXCAN2_TX GPT0_CAPTURE GPT0_CLK GPT0_COMPARE GPT1_CAPTURE GPT1_CLK GPT1_COMPARE HDMI_RX0_ARC_N3 HDMI_RX0_ARC_P3 HDMI_RX0_CEC3 HDMI_RX0_CLK_N3 HDMI_RX0_CLK_P3 HDMI_RX0_DATA0_N3 HDMI_RX0_DATA0_P3 HDMI_RX0_DATA1_N3 HDMI_RX0_DATA1_P3

Power Domain
VDD_ESAI0_MCLK_1P8_3P3

Ball Type1 Default
mode
GPIO ALT0

VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO ALT0

VDD_FLEXCAN_1P8_3P3 VDD_M4_GPT_UART_1P8_3P3

GPIO GPIO

ALT0 ALT3 ALT0 ALT3 ALT0 ALT3 ALT0

VDD_HDMI_RX0_1P8

HDMI

Reset Condition
Default function
ESAI0_TX4_RX1 ESAI0_TX5_RX0
ESAI1_FSR ESAI1_FST ESAI1_SCKR ESAI1_SCKT ESAI1_TX0 ESAI1_TX1 ESAI1_TX2_RX3 ESAI1_TX3_RX2 ESAI1_TX4_RX1 ESAI1_TX5_RX0 FLEXCAN0_RX LSIO.GPIO3.IO30 FLEXCAN1_RX LSIO.GPIO4.IO00 FLEXCAN2_RX LSIO.GPIO4.IO02 GPT0_CAPTURE GPT0_CLK GPT0_COMPARE GPT1_CAPTURE GPT1_CLK GPT1_COMPARE Not muxed

State2 PD PD
PD PD PD PD PD PD PD

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

128

NXP Semiconductors

Ball
BL19 BM20 BH10 BE13 BF14 BN11 BJ11 BG3 BH2 BJ1 BK2 BL3 BM4 BL5 BM6 BL7 BM8 BL9 BG1 BN5 BH8 BJ7 BN9 BN7 BC51 BE51 BD52
BA49 BE53

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball Name
HDMI_RX0_DATA2_N3 HDMI_RX0_DATA2_P3 HDMI_RX0_DDC_SCL3 HDMI_RX0_DDC_SDA3
HDMI_RX0_HPD3 HDMI_RX0_MON_5V3
HDMI_RX0_REXT3 HDMI_TX0_AUX_N HDMI_TX0_AUX_P
HDMI_TX0_CEC HDMI_TX0_CLK_EDP3_N HDMI_TX0_CLK_EDP3_P HDMI_TX0_DATA0_EDP2_N HDMI_TX0_DATA0_EDP2_P HDMI_TX0_DATA1_EDP1_N HDMI_TX0_DATA1_EDP1_P HDMI_TX0_DATA2_EDP0_N HDMI_TX0_DATA2_EDP0_P
HDMI_TX0_DDC_SCL HDMI_TX0_DDC_SDA
HDMI_TX0_HPD HDMI_TX0_REXT HDMI_TX0_TS_SCL HDMI_TX0_TS_SDA
JTAG_TCK JTAG_TDI JTAG_TDO
JTAG_TMS JTAG_TRST_B

Power Domain
VDD_HDMI_RX0_1P8

Ball Type1 Default
mode
HDMI

Reset Condition
Default function Not muxed

State2

VDD_HDMI_TX0_1P8

HDMI

Not muxed

VDD_HDMI_TX0_DIG_3P3

GPIO ALT0

VDD_SCU_1P8

TEST

HDMI_TX0_TS_SCL HDMI_TX0_TS_SDA Not muxed

PU
PD PU Drive0 PU

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

129

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball
BL41 BN41 BK42 BM42 BL43 BN43 BK44 BM44 BL45 BN45 BG45 BH46 BG43 BH44 BG41 BH42 BG39 BH40 BG37 BH38 BE39 BD40 BD38 BD36 BE37 BE35

Ball Name
LVDS0_CH0_CLK_N LVDS0_CH0_CLK_P LVDS0_CH0_TX0_N LVDS0_CH0_TX0_P LVDS0_CH0_TX1_N LVDS0_CH0_TX1_P LVDS0_CH0_TX2_N LVDS0_CH0_TX2_P LVDS0_CH0_TX3_N LVDS0_CH0_TX3_P LVDS0_CH1_CLK_N LVDS0_CH1_CLK_P LVDS0_CH1_TX0_N LVDS0_CH1_TX0_P LVDS0_CH1_TX1_N LVDS0_CH1_TX1_P LVDS0_CH1_TX2_N LVDS0_CH1_TX2_P LVDS0_CH1_TX3_N LVDS0_CH1_TX3_P
LVDS0_GPIO00 LVDS0_GPIO01 LVDS0_I2C0_SCL LVDS0_I2C0_SDA LVDS0_I2C1_SCL LVDS0_I2C1_SDA

Power Domain
VDD_LVDS0_1P8

Ball Type1 Default
mode
LVDS

Reset Condition
Default function Not muxed

VDD_LVDS0_1P8

LVDS

Not muxed

VDD_LVDS_DIG_1P8_3P3

GPIO ALT0

LVDS0_GPIO00 LVDS0_GPIO01 LVDS0_I2C0_SCL LVDS0_I2C0_SDA LVDS0_I2C1_SCL LVDS0_I2C1_SDA

State2
PD PU

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

130

NXP Semiconductors

Ball
BK36 BM36 BL37 BN37 BK38 BM38 BL39 BN39 BK40 BM40 BK34 BM34 BL33 BN33 BK32 BM32 BL31 BN31 BK30 BM30 BD34 BH36 BL35 BE33 BD32 BN35

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball Name
LVDS1_CH0_CLK_N LVDS1_CH0_CLK_P LVDS1_CH0_TX0_N LVDS1_CH0_TX0_P LVDS1_CH0_TX1_N LVDS1_CH0_TX1_P LVDS1_CH0_TX2_N LVDS1_CH0_TX2_P LVDS1_CH0_TX3_N LVDS1_CH0_TX3_P LVDS1_CH1_CLK_N LVDS1_CH1_CLK_P LVDS1_CH1_TX0_N LVDS1_CH1_TX0_P LVDS1_CH1_TX1_N LVDS1_CH1_TX1_P LVDS1_CH1_TX2_N LVDS1_CH1_TX2_P LVDS1_CH1_TX3_N LVDS1_CH1_TX3_P
LVDS1_GPIO00 LVDS1_GPIO01 LVDS1_I2C0_SCL LVDS1_I2C0_SDA LVDS1_I2C1_SCL LVDS1_I2C1_SDA

Power Domain
VDD_LVDS1_1P8

Ball Type1 Default
mode
LVDS

Reset Condition
Default function Not muxed

State2

VDD_LVDS1_1P8

LVDS

Not muxed

VDD_LVDS_DIG_1P8_3P3

GPIO ALT0

LVDS1_GPIO00

PD

LVDS1_GPIO01

LVDS1_I2C0_SCL

PU

LVDS1_I2C0_SDA

LVDS1_I2C1_SCL

LVDS1_I2C1_SDA

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

131

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball
AR47 AU53 AM44 AU51 AP44 AU47 AR45 AU49 BC3 BD4 BE21 BF20 BE23 BF22 BE19 BF18 BE25 BF24 BE17 BF16 BL23 BM22 BH24 BN19 BJ23

Ball Name
M40_GPIO0_00 M40_GPIO0_01 M40_I2C0_SCL M40_I2C0_SDA M41_GPIO0_00 M41_GPIO0_01 M41_I2C0_SCL M41_I2C0_SDA
MCLK_IN0 MCLK_OUT0 MIPI_CSI0_CLK_N MIPI_CSI0_CLK_P MIPI_CSI0_DATA0_N MIPI_CSI0_DATA0_P MIPI_CSI0_DATA1_N MIPI_CSI0_DATA1_P MIPI_CSI0_DATA2_N MIPI_CSI0_DATA2_P MIPI_CSI0_DATA3_N MIPI_CSI0_DATA3_P MIPI_CSI0_GPIO0_00 MIPI_CSI0_GPIO0_01 MIPI_CSI0_I2C0_SCL MIPI_CSI0_I2C0_SDA MIPI_CSI0_MCLK_OUT

Power Domain
VDD_M4_GPT_UART_1P8_3P3

Ball Type1 Default
mode
GPIO ALT0

VDD_ESAI0_MCLK_1P8_3P3 VDD_MIPI_CSI0_1P8

GPIO CSI

ALT0 ALT3

Reset Condition
Default function
M40_GPIO0_00 M40_GPIO0_01 M40_I2C0_SCL M40_I2C0_SDA M41_GPIO0_00 M41_GPIO0_01 M41_I2C0_SCL M41_I2C0_SDA
MCLK_IN0 LSIO.GPIO3.IO01
Not muxed

VDD_MIPI_CSI0_1P8 VDD_MIPI_CSI_DIG

CSI

Not muxed

GPIO ALT0 ALT3

MIPI_CSI0_GPIO0_00 MIPI_CSI0_GPIO0_01 MIPI_CSI0_I2C0_SCL MIPI_CSI0_I2C0_SDA
LSIO.GPIO1.IO29

State2 PD PU PD PU PD PD
PD PU PD

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

132

NXP Semiconductors

Ball
BH16 BJ17 BH18 BJ19 BH14 BJ15 BH20 BJ21 BH12 BJ13 BN15 BN13 BN17 BE15 BN23 BN27 BL27 BM28 BK28 BM26 BK26 BN29 BL29 BN25 BL25 BD30 BD28 BE29 BE31

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball Name
MIPI_CSI1_CLK_N MIPI_CSI1_CLK_P MIPI_CSI1_DATA0_N MIPI_CSI1_DATA0_P MIPI_CSI1_DATA1_N MIPI_CSI1_DATA1_P MIPI_CSI1_DATA2_N MIPI_CSI1_DATA2_P MIPI_CSI1_DATA3_N MIPI_CSI1_DATA3_P MIPI_CSI1_GPIO0_00 MIPI_CSI1_GPIO0_01 MIPI_CSI1_I2C0_SCL MIPI_CSI1_I2C0_SDA MIPI_CSI1_MCLK_OUT MIPI_DSI0_CLK_N MIPI_DSI0_CLK_P MIPI_DSI0_DATA0_N MIPI_DSI0_DATA0_P MIPI_DSI0_DATA1_N MIPI_DSI0_DATA1_P MIPI_DSI0_DATA2_N MIPI_DSI0_DATA2_P MIPI_DSI0_DATA3_N MIPI_DSI0_DATA3_P MIPI_DSI0_GPIO0_00 MIPI_DSI0_GPIO0_01 MIPI_DSI0_I2C0_SCL MIPI_DSI0_I2C0_SDA

Power Domain
VDD_MIPI_CSI1_1P8

Ball Type1 Default
mode
CSI

Reset Condition
Default function Not muxed

State2

VDD_MIPI_CSI_DIG VDD_MIPI_DSI0_1P8

GPIO ALT0

MIPI_CSI1_GPIO0_00

PD

MIPI_CSI1_GPIO0_01

MIPI_CSI1_I2C0_SCL

PU

MIPI_CSI1_I2C0_SDA

ALT3

LSIO.GPIO1.IO29

PD

DSI

Not muxed

VDD_MIPI_DSI_DIG_1P8_3P3 GPIO ALT0

MIPI_DSI0_GPIO0_00

PD

VDD_MIPI_DSI_DIG_1P8_3P3 GPIO ALT0

MIPI_DSI0_GPIO0_01

PD

MIPI_DSI0_I2C0_SCL

PU

MIPI_DSI0_I2C0_SDA

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

133

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball
BH30 BG31 BH32 BG33 BH28 BG29 BH34 BG35 BH26 BG27 BM24 BK24 BE27 BG25
D2 E3 E1 E33 D32 E35 F34 E31 D30 BE47 A17 D20 A15 A25 G25 A27

Ball Name
MIPI_DSI1_CLK_N MIPI_DSI1_CLK_P MIPI_DSI1_DATA0_N MIPI_DSI1_DATA0_P MIPI_DSI1_DATA1_N MIPI_DSI1_DATA1_P MIPI_DSI1_DATA2_N MIPI_DSI1_DATA2_P MIPI_DSI1_DATA3_N MIPI_DSI1_DATA3_P MIPI_DSI1_GPIO0_00 MIPI_DSI1_GPIO0_01 MIPI_DSI1_I2C0_SCL MIPI_DSI1_I2C0_SDA
MLB_CLK4 MLB_DATA4 MLB_SIG4 MLB_CLK_N5 MLB_CLK_P5 MLB_DATA_N5 MLB_DATA_P5 MLB_SIG_N5 MLB_SIG_P5 ON_OFF_BUTTON PCIE_CTRL0_CLKREQ_B PCIE_CTRL0_PERST_B PCIE_CTRL0_WAKE_B PCIE_CTRL1_CLKREQ_B PCIE_CTRL1_PERST_B PCIE_CTRL1_WAKE_B

Power Domain
VDD_MIPI_DSI1_1P8

Ball Type1 Default
mode
DSI

Reset Condition
Default function Not muxed

State2

VDD_MIPI_DSI_DIG_1P8_3P3 GPIO ALT0

MIPI_DSI1_GPIO0_00

PD

MIPI_DSI1_GPIO0_01

MIPI_DSI1_I2C0_SCL

PU

MIPI_DSI1_I2C0_SDA

VDD_MLB_DIG_1P8_3P3

GPIO ALT0

MLB_CLK

PD

MLB_DATA

MLB_SIG

VDD_MLB_1P8

MLB

Not muxed

PD

VDD_SNVS_LDO_1P8_CAP VDD_PCIE_DIG_1P8_3P3

ANA

Not muxed

PU

GPIO ALT0 PCIE_CTRL0_CLKREQ_B PD

PCIE_CTRL0_PERST_B

PCIE_CTRL0_WAKE_B

PU

PCIE_CTRL1_CLKREQ_B PD

PCIE_CTRL1_PERST_B

PCIE_CTRL1_WAKE_B

PU

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

134

NXP Semiconductors

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball

Ball Name

E23

PCIE_REF_QR

D22

PCIE_REXT

M20 PCIE_SATA0_PHY_PLL_REF_RETURN3

M28

PCIE0_PHY_PLL_REF_RETURN

N23

PCIE1_PHY_PLL_REF_RETURN

E25

PCIE_SATA_REFCLK100M_N3

F26

PCIE_SATA_REFCLK100M_P3

B20

PCIE_SATA0_RX0_N3

A19

PCIE_SATA0_RX0_P3

C17

PCIE_SATA0_TX0_N3

B16

PCIE_SATA0_TX0_P3

B30

PCIE0_RX0_N

A29

PCIE0_RX0_P

C27

PCIE0_TX0_N

B26

PCIE0_TX0_P

B22

PCIE1_RX0_N

A21

PCIE1_RX0_P

C25

PCIE1_TX0_N

B24

PCIE1_TX0_P

BF50

PMIC_EARLY_WARNING

AY46

PMIC_I2C_SCL

BG51

PMIC_I2C_SDA

BH50

PMIC_INT_B

BL51

PMIC_ON_REQ

BE49

POR_B

Power Domain
VDD_PCIE_LDO_1P8 VDD_PCIE_LDO_1P0_CAP
VDD_SCU_1P8 VDD_SNVS_LDO_1P8_CAP
VDD_SCU_1P8

Ball Type1 Default
mode
PCIE

Reset Condition
Default function Not muxed

State2

PCIE

HCSL compatiable clock Not muxed
Not muxed

SCU ALT0
ANA SCU

PMIC_EARLY_WARNING PMIC_I2C_SCL PMIC_I2C_SDA PMIC_INT_B
Not muxed

PD PU
Drive1 PU

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

135

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball
G13 F14 H14 H16 G17 E17 E15 F16 H18 H20 G19 F20 H22 F18 F22 H24 D12 D14 E13 E11 H12 F10 J11 G11 BN47 BL47 AV6 AV4 AU3 AU5 AU1 AV2

Ball Name
QSPI0A_DATA0 QSPI0A_DATA1 QSPI0A_DATA2 QSPI0A_DATA3 QSPI0A_DQS QSPI0A_SCLK QSPI0A_SS0_B QSPI0A_SS1_B QSPI0B_DATA0 QSPI0B_DATA1 QSPI0B_DATA2 QSPI0B_DATA3 QSPI0B_DQS QSPI0B_SCLK QSPI0B_SS0_B QSPI0B_SS1_B QSPI1A_DATA0 QSPI1A_DATA1 QSPI1A_DATA2 QSPI1A_DATA3 QSPI1A_DQS QSPI1A_SCLK QSPI1A_SS0_B QSPI1A_SS1_B
RTC_XTALI RTC_XTALO SAI1_RXC SAI1_RXD SAI1_RXFS
SAI1_TXC SAI1_TXD SAI1_TXFS

Power Domain
VDD_QSPI0_1P8_3P3

Ball Type1 Default
mode
FASTD ALT0

VDD_QSPI0_1P8_3P3

FASTD ALT0

VDD_QSPI1A_1P8_3P3

FASTD ALT0

VDD_SNVS_LDO_1P8_CAP

ANA

Reset Condition
Default function
QSPI0A_DATA0 QSPI0A_DATA1 QSPI0A_DATA2 QSPI0A_DATA3 QSPI0A_DQS QSPI0A_SCLK QSPI0A_SS0_B QSPI0A_SS1_B QSPI0B_DATA0 QSPI0B_DATA1 QSPI0B_DATA2 QSPI0B_DATA3 QSPI0B_DQS QSPI0B_SCLK QSPI0B_SS0_B QSPI0B_SS1_B QSPI1A_DATA0 QSPI1A_DATA1 QSPI1A_DATA2 QSPI1A_DATA3 QSPI1A_DQS QSPI1A_SCLK QSPI1A_SS0_B QSPI1A_SS1_B
Not muxed

VDD_SPI_SAI_1P8_3P3

GPIO ALT0

SAI1_RXC SAI1_RXD SAI1_RXFS SAI1_TXC SAI1_TXD SAI1_TXFS

State2 PD
PD
PU PD
PU PD

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

136

NXP Semiconductors

Ball
BB44 BC45 BJ53 BA43 AY42 BK52 AU43 AV44 AW45 BB46 BC47 AY44 BG49 BF48 BC53 BA47 BB50 AL45 AP46 AN45 AL43 AT48 AP48 BE41 BE43 BD46 BD42 BD6 BC7 BC9

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball Name
SCU_BOOT_MODE0 SCU_BOOT_MODE1 SCU_BOOT_MODE2 SCU_BOOT_MODE3 SCU_BOOT_MODE4 SCU_BOOT_MODE5
SCU_GPIO0_00 SCU_GPIO0_01 SCU_GPIO0_02 SCU_GPIO0_03 SCU_GPIO0_04 SCU_GPIO0_05 SCU_GPIO0_06 SCU_GPIO0_07 SCU_PMIC_MEMC_ON SCU_PMIC_STANDBY SCU_WDOG_OUT
SIM0_CLK SIM0_GPIO0_00
SIM0_IO SIM0_PD SIM0_POWER_EN SIM0_RST SNVS_TAMPER_IN0 SNVS_TAMPER_IN1 SNVS_TAMPER_OUT0 SNVS_TAMPER_OUT1 SPDIF0_EXT_CLK SPDIF0_RX SPDIF0_TX

Power Domain
VDD_SCU_1P8

Ball Type1 Default
mode
SCU

Reset Condition
Default function Not muxed

State2 PD

VDD_SCU_1P8

ALT0 GPIO ALT0

VDD_SCU_1P8

GPIO ALT0

VDD_SCU_1P8

SCU

VDD_SIM0_1P8_3P3

GPIO ALT3

VDD_SNVS_LDO_1P8_CAP

ANA

SCU_BOOT_MODE4 SCU_BOOT_MODE5
SCU_GPIO0_00 SCU_GPIO0_01 SCU_GPIO0_02 SCU_GPIO0_03 SCU_GPIO0_04 SCU_GPIO0_05 SCU_GPIO0_06 SCU_GPIO0_07 Not muxed
LSIO.GPIO0.IO00 LSIO.GPIO0.IO05 LSIO.GPIO0.IO02
SIM0_PD LSIO.GPIO0.IO04
SIM0_RST Not muxed

PD PU PD PD
PD Drive-
0 PD
PD PD
Hi-Z

VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO ALT0

SPDIF0_EXT_CLK

PD

SPDIF0_RX

ALT3

LSIO.GPIO2.IO15

PD

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

137

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball
BC1 BA3 BB4 BA5 AY6 AW1 AY2 AW5 AY4 BA1 BG5 BD8 BF6 BE5 BF2 BC49 AW49 AU45 AV50 AV48 AV46 AR43 AT44 AY48 H26 F28 C39 B40 A37 A39

Ball Name
SPI0_CS0 SPI0_CS1 SPI0_SCK SPI0_SDI SPI0_SDO SPI2_CS0 SPI2_CS1 SPI2_SCK SPI2_SDI SPI2_SDO SPI3_CS0 SPI3_CS1 SPI3_SCK SPI3_SDI SPI3_SDO TEST_MODE_SELECT UART0_CTS_B UART0_RTS_B UART0_RX UART0_TX UART1_CTS_B UART1_RTS_B UART1_RX UART1_TX USB_HSIC0_DATA USB_HSIC0_STROBE USB_OTG1_DN USB_OTG1_DP USB_OTG1_ID USB_OTG1_VBUS

Power Domain
VDD_SPI_SAI_1P8_3P3

Ball Type1 Default
mode
GPIO ALT0

ALT3 ALT0

VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO

ALT3 ALT0

VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO ALT0

VDD_SCU_1P8 VDD_M4_GPT_UART_1P8_3P3
VDD_USB_HSIC0_1P2

ALT3 SCU GPIO ALT0
ALT3 ALT0 ALT3 ALT0 ALT3 ALT0 ALT3 FASTD ALT0

VDD_USB_OTG1_3P3

OTG

Reset Condition
Default function
SPI0_CS0 SPI0_CS1 SPI0_SCK SPI0_SDI LSIO.GPIO3.IO03 SPI2_CS0 SPI2_CS1 SPI2_SCK SPI2_SDI LSIO.GPIO3.IO08 SPI3_CS0 SPI3_CS1 SPI3_SCK SPI3_SDI LSIO.GPIO2.IO18 Not muxed UART0_CTS_B
LSIO.GPIO0.IO22
UART0_RX
LSIO.GPIO0.IO21
UART1_CTS_B
LSIO.GPIO0.IO26
UART1_RX
LSIO.GPIO0.IO24
USB_HSIC0_DATA USB_HSIC0_STROBE
Not muxed

State2 PD
PD PD
PD PD
PD
PD PD PD PD PD PD PD PD PD PD Hi-Z

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

138

NXP Semiconductors

Ball
C37 B38 F30 E29 A35 E27 B34 C35 B32 A33 J9 L9 F8 H10 J39
G41 E37 F38 E39 F40 H40 G43 F42 H42 J43 A5 B4 B8

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball Name
USB_OTG2_DN USB_OTG2_DP USB_OTG2_ID USB_OTG2_REXT USB_OTG2_VBUS USB_SS3_REXT USB_SS3_RX_N USB_SS3_RX_P USB_SS3_TX_N USB_SS3_TX_P USB_SS3_TC0 USB_SS3_TC1 USB_SS3_TC2 USB_SS3_TC3 USDHC1_CLK
USDHC1_CMD USDHC1_DATA0 USDHC1_DATA1 USDHC1_DATA2 USDHC1_DATA3 USDHC1_DATA4 USDHC1_DATA5 USDHC1_DATA6 USDHC1_DATA7 USDHC1_STROBE USDHC1_RESET_B USDHC1_VSELECT USDHC2_CD_B

Power Domain
VDD_USB_OTG2_3P3

Ball Type1 Default
mode
OTG

Reset Condition
Default function Not muxed

State2

VDD_USB_SS3_LDO_1P0_CAP USB3

Not muxed

VDD_USB_SS3_TC_3P3

GPIO ALT0

VDD_USDHC1_1P8_3P3 VDD_USDHC1_1P8_3P3

FASTD ALT0 FASTD ALT0

VDD_USDHC_VSELECT_1P8_3P3 GPIO ALT3 ALT0

USB_SS3_TC0 USB_SS3_TC1 USB_SS3_TC2 USB_SS3_TC3 USDHC1_CLK
USDHC1_CMD USDHC1_DATA0 USDHC1_DATA1 USDHC1_DATA2 USDHC1_DATA3 USDHC1_DATA4 USDHC1_DATA5 USDHC1_DATA6 USDHC1_DATA7 USDHC1_STROBE LSIO.GPIO4.IO07 LSIO.GPIO4.IO07 USDHC2_CD_B

PU
Drive0 PD PU
PU PU

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

139

Package information and contact assignments

Table 127. 29 × 29 mm functional contact assignments (continued)

Ball

Ball Name

Power Domain

Ball Type1 Default
mode

Reset Condition
Default function

State2

F46

USDHC2_CLK

VDD_USDHC2_1P8_3P3

FASTD ALT3

LSIO.GPIO5.IO24

PD

H44

USDHC2_CMD

ALT0

USDHC2_CMD

PD

H48

USDHC2_DATA0

USDHC2_DATA0

PU

G45

USDHC2_DATA1

USDHC2_DATA1

L45

USDHC2_DATA2

USDHC2_DATA2

J45

USDHC2_DATA3

USDHC2_DATA3

C7

USDHC2_RESET_B

VDD_USDHC_VSELECT_1P8_3P3 GPIO ALT3

LSIO.GPIO4.IO09

PU

A7

USDHC2_VSELECT

LSIO.GPIO4.IO10

D8

USDHC2_WP

ALT0

USDHC2_WP

PD

BN49

XTALI

VDD_SCU_XTAL_1P8

ANA

Not muxed

BL49

XTALO

1 FASTD are GPIO balls configured for high speed operation using the FASTFRZ control. 2 Reset condition shown is before boot code execution. For pad changes after boot code execution, see the "System Boot" chapter of
the device reference manual, 3 HDMI-RX is not currently supported, the related power and signal connections are provided for future use when it is expected
HDMI-RX support will be enabled. 4 MLB is not supported on this device. Users may choose alternate functions as determined by the IOMUX. 5 MLB is not supported on this device. Terminate these outputs per the Hardware Developer's Guide for unused I/O signals.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

140

NXP Semiconductors

Package information and contact assignments
The following table shows the DRAM pin function for the 29 x 29 mm package.

Ball Name DDR_CHx_ATO DDR_CHx_CK0_N DDR_CHx_CK0_P DDR_CHx_CK1_N DDR_CHx_CK1_P DDR_CHx_DCF00 DDR_CHx_DCF01 DDR_CHx_DCF02 DDR_CHx_DCF03 DDR_CHx_DCF04 DDR_CHx_DCF05 DDR_CHx_DCF06 DDR_CHx_DCF07 DDR_CHx_DCF08 DDR_CHx_DCF09 DDR_CHx_DCF10 DDR_CHx_DCF11 DDR_CHx_DCF12 DDR_CHx_DCF13 DDR_CHx_DCF14 DDR_CHx_DCF15 DDR_CHx_DCF16 DDR_CHx_DCF17 DDR_CHx_DCF18 DDR_CHx_DCF19 DDR_CHx_DCF20 DDR_CHx_DCF21 DDR_CHx_DCF22 DDR_CHx_DCF23 DDR_CHx_DCF24

Table 128. 29 x 29 mm DRAM pin function

x=0 x=1 AF46 AF8 Y50 Y4 W49 W5 AB50 AB4 AC49 AC5 U47 U7 W47 W7 Y48 Y6 Y46 Y8 W43 W11 Y44 Y10 W45 W9 W51 W3 T48 T6 T52 T2 T50 T4 U51 U3 U49 U5 T46 T8 W53 W1 Y52 Y2 U53 U1 AC47 AC7 AB48 AB6 AB46 AB8 AC43 AC11 AE45 AE9 AC51 AC3 AC45 AC9 AB44 AB10

LPDDR4 Function --
CK_c_A CK_t_A CK_c_B CK_t_B CA2_A CA4_A
-- CA5_A
-- -- -- -- CA3_A -- CS0_A CA0_A CS1_A -- CKE0_A CKE1_A CA1_A CA4_B RESET_N CA5_B -- -- -- -- --

Notes
NXP Internal Use Only (Leave Unconnected)
The exact clock and control line connections will be dependent on the memory configuration in use. Refer to the Hardware Developers Guide (HDG) for further details.

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

141

Package information and contact assignments

Table 128. 29 x 29 mm DRAM pin function (continued)

Ball Name DDR_CHx_DCF25 DDR_CHx_DCF26 DDR_CHx_DCF27 DDR_CHx_DCF28 DDR_CHx_DCF29 DDR_CHx_DCF30 DDR_CHx_DCF31 DDR_CHx_DCF32 DDR_CHx_DCF33 DDR_CHx_DM0 DDR_CHx_DM1 DDR_CHx_DM2 DDR_CHx_DM3 DDR_CHx_DQ00 DDR_CHx_DQ01 DDR_CHx_DQ02 DDR_CHx_DQ03 DDR_CHx_DQ04 DDR_CHx_DQ05 DDR_CHx_DQ06 DDR_CHx_DQ07 DDR_CHx_DQ08 DDR_CHx_DQ09 DDR_CHx_DQ10 DDR_CHx_DQ11 DDR_CHx_DQ12 DDR_CHx_DQ13 DDR_CHx_DQ14 DDR_CHx_DQ15 DDR_CHx_DQ16 DDR_CHx_DQ17 DDR_CHx_DQ18 DDR_CHx_DQ19

x=0 x=1 AF52 AF2 AE47 AE7 AE51 AE3 AF50 AF4 AE49 AE5 AC53 AC1 AB52 AB2 AE53 AE1 AF48 AF6 H52 H2 N47 N7 AJ47 AJ7 AP52 AP2 P44 P10 N45 N9 L47 L7 K48 K6 H50 H4 G53 G1 G51 G3 N43 N11 L49 L5 K50 K4 N51 N3 L51 L3 P46 P8 N49 N5 P50 P4 P48 P6 AM50 AM4 AL49 AL5 AL51 AL3 AJ51 AJ3

LPDDR4 Function --
CA3_B CA0_B CS0_B CS1_B CKE0_B CKE1_B CA1_B CA2_B DMI[3..0]
DQ[31..0]

Notes The exact clock and control line connections will be dependent on the memory configuration in use. Refer to the Hardware Developers Guide (HDG) for further details.
The exact mask, strobe and data connections to memory are flexible as long as the correct byte mapping is used, there is no restriction on the bit connections within each byte. DM0 -> DQS0(_N/P) -> DQ[7..0] DM1 -> DQS1(_N/P) -> DQ[15..8] DM2 -> DQS2(_N/P) -> DQ[23..16] DM3 -> DQS3(_N/P) -> DQ[31..24]

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

142

NXP Semiconductors

Package information and contact assignments

Table 128. 29 x 29 mm DRAM pin function (continued)

Ball Name

x=0 x=1

LPDDR4 Function

Notes

DDR_CHx_DQ20 DDR_CHx_DQ21 DDR_CHx_DQ22 DDR_CHx_DQ23 DDR_CHx_DQ24 DDR_CHx_DQ25 DDR_CHx_DQ26 DDR_CHx_DQ27 DDR_CHx_DQ28 DDR_CHx_DQ29 DDR_CHx_DQ30 DDR_CHx_DQ31 DDR_CHx_DQS0_N DDR_CHx_DQS0_P DDR_CHx_DQS1_N DDR_CHx_DQS1_P DDR_CHx_DQS2_N DDR_CHx_DQS2_P DDR_CHx_DQS3_N DDR_CHx_DQS3_P DDR_CHx_DTO0 DDR_CHx_DTO1 DDR_CHx_VREF DDR_CHx_ZQ

AJ49 AJ5 AH46 AH8 AH48 AH6

DQ[31..0]

The exact mask, strobe and data connections to memory are flexible as long as the correct byte mapping is used, there is no restriction on the bit connections within each byte.

AH50 AH4 AJ45 AJ9 AH44 AH10

DM0 -> DQS0(_N/P) -> DQ[7..0] DM1 -> DQS1(_N/P) -> DQ[15..8] DM2 -> DQS2(_N/P) -> DQ[23..16] DM3 -> DQS3(_N/P) -> DQ[31..24]

AM48 AM6

AL47 AL7

AR53 AR1

AP50 AP4

AJ43 AJ11

AR51 AR3

L53 L1 DQS[3..0]_c maps to _N K52 K2 DQS[3..0]_t maps to _P

P52 P2

N53 N1

AH52 AH2

AJ53 AJ1

AL53 AL1

AM52 AM2

U45 U9

--

NXP Internal Use Only (Leave Unconnected)

T44 T10

--

U43 U11

--

--

AF44 AF10

--

--

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

NXP Semiconductors

143

Release Notes
7 Release Notes
This table provides release notes for the data sheet.

Table 129. Data sheet release notes

Rev. Number

Date

Substantive Change(s)

2 05/2021 · Clarified LVDS Tx port information in Table 1, "i.MX 8QuadPlus advanced features" under Display I/O. · Updated Table 2, "i.MX 8QuadPlus Orderable part numbers" information. · Updated the example in Section 1.2, "System Controller Firmware (SCFW) Requirements". · Corrected document IDs in Table 3, "Related resources". · Updated LVDS information and clarified KHz for XTAL OSC32K in Table 4, "i.MX 8QuadPlus modules list". · In Table 8, "Operating ranges", added min frequency for VDD_A72 and VDD_A53. · Updated note in Section 4.1.5, "Maximum Supply Currents". · Updated the value ranges in Table 26, "LVDS PHY PLL". · Updated footnotes pointing to Section 4.6.2, "Input Signal Monotonic Requirements" in Table 30, Table 31, Table 32, Table 33, Table 34, Table 35, and Table 36. · Corrected test conditions in Table 38, "LPDDR4 DC parameters". · Added Section 4.6.2, "Input Signal Monotonic Requirements". · Corrected maximum frequency test conditions and footnotes 2 and 3 in Table 40, "General Purpose I/O AC Parameters". · In Table 81, "LVDS pins", updated single channel values. · Updated PCI Express Gen 2 values for AOPENING and added footnote to Table 93, "PCIe receiver eye specifications for example standards". · Rewrote introductory paragraph for Section 5.1, "Boot mode configuration inputs". · Clarified QSPI information in Table 125, "Interface allocation during boot". · Corrected default function for Ball AP46 in Table 127, "29 × 29 mm functional contact assignments". · Corrected x=0 column value for DDR_CHx_DTO1 in Table 128, "29 x 29 mm DRAM pin function".

i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021

144

NXP Semiconductors

How To Reach Us Home Page: nxp.com Web Support: nxp.com/support

Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Security -- Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.
Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Suitability for use in automotive applications -- This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.
Table continues on the next page...

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.
Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.
Terms and conditions of commerical sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.
No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Bare die -- All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.
NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.
Quick reference data -- The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.
Translations -- A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MANTIS, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2020-2021.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 05/2021 Document identifier: IMX8QPAEC


Acrobat Distiller 21.0 (Windows)