
SMRT® Tools Reference Guide
 Introduction
This document describes the command-line tools included with SMRT® Link
v10.2. These tools are for use by bioinformaticians working with secondary
analysis results.

• The command-line tools are located in the $SMRT_ROOT/smrtlink/
smrtcmds/bin subdirectory.

Installation
The command-line tools are installed as an integral component of the SMRT
Link software. For installation details, see SMRT Link Software
Installation (v10.2).

• To install only the command-line tools, use the --smrttools-only
option with the installation command, whether for a new installation or
an upgrade. Examples:

smrtlink-*.run --rootdir smrtlink --smrttools-only
smrtlink-*.run --rootdir smrtlink --smrttools-only --upgrade

Supported Chemistry
SMRT Link v10.2 supports all chemistry versions for Sequel® II Systems
and chemistry v2.1 and later for Sequel Systems.

Pacific Biosciences Command-Line Tools
Following is information on the Pacific Biosciences-supplied command-line
tools included in the installation. Third-party tools installed are described at
the end of the document.

Tool Description

bam2fasta/
bam2fastq

Converts PacBio® BAM files into gzipped FASTA and FASTQ files. See
“bam2fasta/bam2fastq” on page 2.

bamsieve Generates a subset of a BAM or PacBio Data Set file based on either a list of hole
numbers, or a percentage of reads to be randomly selected.
See “bamsieve” on page 3.

ccs Calculates consensus sequences from multiple “passes” around a circularized
single DNA molecule (SMRTbell® template). See “ccs” on page 6.

dataset Creates, opens, manipulates and writes Data Set XML files.
See “dataset” on page 14.

Demultiplex
Barcodes

Identifies barcode sequences in PacBio single-molecule sequencing data.
See “Demultiplex Barcodes” on page 20.
Page 1

bam2fasta/
bam2fastq

The bam2fasta and bam2fastq tools convert PacBio BAM or Data Set
files into gzipped FASTA and FASTQ files, including demultiplexing of
barcoded data.

export-datasets Takes one or more PacBio dataset XML files and packages all contents into a
single ZIP archive. See “export-datasets” on page 32.

export-job Takes one SMRT Link Analysis job and packages all contents into a single ZIP
archive. See“export-job” on page 33.

gcpp Variant-calling tool which provides several variant-calling algorithms for PacBio
sequencing data. See “gcpp” on page 34.

Genome Assembly Generates de novo assemblies using HiFi Reads. See “Genome Assembly” on
page 36.

HiFiViral SARS-
CoV-2 Analysis

Analyzes multiplexed viral surveillance samples for SARS-CoV-2. See “HiFiViral
SARS-CoV-2 Analysis” on page 43.

ipdSummary Detects DNA base-modifications from kinetic signatures. See “ipdSummary” on
page 46.

isoseq3 Characterizes full-length transcripts and generates full-length transcript isoforms,
eliminating the need for computational reconstruction. See “isoseq3” on page 50.

juliet A general-purpose minor variant caller that identifies and phases minor single
nucleotide substitution variants in complex populations. See “juliet” on page 55.

laa Finds phased consensus sequences from a pooled set of amplicons sequenced
with Pacific Biosciences’ SMRT technology. See “laa” on page 62.

Microbial
Assembly

Generates de novo assemblies of small prokaryotic genomes between 1.9-10 Mb
and companion plasmids between 2 – 220 kb, using HiFi Reads. See “Microbial
Assembly” on page 68.

motifMaker Identifies motifs associated with DNA modifications in prokaryotic genomes. See
“motifMaker” on page 72.

pbcromwell Pacific Biosciences’ wrapper for the cromwell scientific workflow engine used to
power SMRT Link. For details on how to use pbcromwell to run workflows, see
“pbcromwell” on page 74.

pbindex Creates an index file that enables random access to PacBio-specific data in BAM
files. See “pbindex” on page 78.

pbmarkdup Marks or removes duplicates reads from CCS Reads. See “pbmarkdup” on page
78.

pbmm2 Aligns PacBio reads to reference sequences; a SMRT wrapper for minimap2.
See “pbmm2” on page 80.

pbservice Performs a variety of useful tasks within SMRT Link. See “pbservice” on page 87.

pbsv Structural variant caller for PacBio reads. See “pbsv” on page 91.

pbvalidate Validates that files produced by PacBio software are compliant with Pacific
Biosciences’ own internal specifications. See “pbvalidate” on page 95.“runqc-
reports” on page 97

runqc-reports Generates Run QC reports. See .

summarizeModifi
cations

Generates a GFF summary file from the output of base modification analysis
combined with the coverage summary GFF generated by resequencing pipelines.
See “summarize Modifications” on page 98.

Tool Description
Page 2

Usage
Both tools have an identical interface and take BAM and/or Data Set files
as input.

bam2fasta [options] <input>
bam2fastq [options] <input>

Examples
bam2fasta -o projectName m54008_160330_053509.subreads.bam

bam2fastq -o myEcoliRuns m54008_160330_053509.subreads.bam
m54008_160331_235636.subreads.bam

bam2fasta -o myHumanGenomem54012_160401_000001.subreadset.xml

Input Files
• One or more *.bam files
• *.subreadset.xml file (Data Set file)

Output Files
• *.fasta.gz
• *.fastq.gz

bamsieve The bamsieve tool creates a subset of a BAM or PacBio Data Set file
based on either a list of hole numbers to include or exclude, or a
percentage of reads to be randomly selected, while keeping all subreads
within a read together. Although bamsieve is BAM-centric, it has some
support for dataset XML and will propagate metadata, as well as scraps
BAM files in the special case of SubreadSets. bamsieve is useful for
generating minimal test Data Sets containing a handful of reads.

 Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

-o,--output Specifies the prefix of the output file names. - implies streaming.
Note: Streaming is not supported with compression or with the split_barcodes
option.

-c Specifies the Gzip compression level. Values are [1,2,3,4,5,6,7,8,9].
(Default = 1)

-u Specifies that the output FASTA/FASTQ files are not compressed. .gz is not
added to the output file names, and -c settings are ignored.

--split-barcodes Splits the output into multiple FASTA /FASTQ files, by barcode pairs.
Note: The bam2fasta/bam2fastq tools inspect the bc tag in the BAM file to
determine the 0-based barcode indices from their respective positions in the
barcode FASTA file.

-p,--seqid-prefix Specifies the prefix for the sequence IDs used in the FAST/FASTQ file headers.
Page 3

bamsieve operates in two modes: list mode where the ZMWs to keep or
discard are explicitly specified, or percentage/count mode, where a
fraction of the ZMWs is randomly selected.

ZMWs may be listed in one of several ways:

• As a comma-separated list on the command line.
• As a flat text file, one ZMW per line.
• As another PacBio BAM or Data Set of any type.

Usage
bamsieve [-h] [--version] [--log-file LOG_FILE]
 [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL} | --debug | --quiet
 | -v]
 [--show-zmws][--include INCLUDE LIST] [--exclude EXCLUDE LIST]
 [--percentage PERCENTAGE] [-n COUNT] [-s SEED]
 [--ignore-metadata][--barcodes]
 input_bam [output_bam]

Required Description

input_bam The name of the input BAM file or Data Set from which reads will be read.

output_bam The name of the output BAM file or Data Set where filtered reads will be written to.
(Default = None)

 Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file LOG_FILE Writes the log to file. (Default = None, writes to stdout.)

--log-level Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR, CRITICAL].
(Default = WARNING)

--debug Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to CRITICAL to suppress output. (Default = False)

-v, --verbose Sets the verbosity level. (Default = NONE)

--show-zmws Prints a list of ZMWs and exits. (Default = False)

--include INCLUDE LIST Specifies the ZMWs to include in the output. This can be a comma-separated list
of ZMWs, or a file containing a list of ZMWs (one hole number per line), or a BAM/
Data Set file. (Default = NONE)

--exclude EXCLUDE LIST Specifies the ZMWs to exclude from the output. This can be a comma-separated
list of ZMWs, or a file containing a list of ZMWs (one hole number per line), or a
BAM/Data Set file that specifies ZMWs. (Default = NONE)

--percentage PERCENTAGE Specifies a percentage of a SMRT® Cell to recover (Range = 1-100) rather than a
specific list of reads. (Default = NONE)

-n COUNT, --count COUNT Specifies a specific number of ZMWs picked at random to recover. (Default =
NONE)

-s SEED, --seed SEED Specifies a random seed for selecting a percentage of reads. (Default = NONE)

--ignore-metadata Discard the input Data Set metadata. (Default = False)
Page 4

Examples
Pulling out two ZMWs from a BAM file:

bamsieve --include 111111,222222 full.subreads.bam sample.subreads.bam

Pulling out two ZMWs from a Data Set file:

bamsieve --include 111111,222222 full.subreadset.xml sample.subreadset.xml

Using a text list:

bamsieve --include zmws.txt full.subreads.bam sample.subreads.bam

Using another BAM or Data Set as a list:

bamsieve --include mapped.alignmentset.xml full.subreads.bam mappable.subreads.bam

Generating a list of ZMWs from a Data Set:

bamsieve --show-zmws mapped.alignmentset.xml > mapped_zmws.txt

Anonymizing a Data Set:

bamsieve --include zmws.txt --ignore-metadata --anonymize full.subreadset.xml
anonymous_sample.subreadset.xml

Removing a read:

bamsieve --exclude 111111 full.subreadset.xml filtered.subreadset.xml

Selecting 0.1% of reads:

bamsieve --percentage 0.1 full.subreads.bam random_sample.subreads.bam

Selecting a different 0.1% of reads:

bamsieve --percentage 0.1 --seed 98765 full.subreads.bam random_sample.subreads.bam

Selecting just two ZMWs/reads at random:

bamsieve --count 2 full.subreads.bam two_reads.subreads.bam

Selecting by barcode:

bamsieve --barcodes --include 4,7 full.subreads.bam two_barcodes.subreads.bam

Generating a tiny BAM file that contains only mappable reads:

--barcodes Specifies that the include/exclude list contains barcode indices instead of ZMW
numbers. (Default = False)

 Options Description
Page 5

bamsieve --include mapped.subreads.bam full.subreads.bam mappable.subreads.bam
bamsieve --count 4 mappable.subreads.bam tiny.subreads.bam

Splitting a Data Set into two halves:

bamsieve --percentage 50 full.subreadset.xml split.1of2.subreadset.xml
bamsieve --exclude split.1of2.subreadset.xml full.subreadset.xml
split.2of2.subreadset.xml

Extracting Unmapped Reads:

bamsieve --exclude mapped.alignmentset.xml movie.subreadset.xml unmapped.subreadset.xml

ccs Circular Consensus Sequencing (CCS) Analysis computes consensus
sequences from multiple “passes” around a circularized single DNA
molecule (SMRTbell® template). CCS Analysis uses the Arrow framework
to achieve optimal consensus results given the number of passes
available.

CCS Analysis Workflow
1. Initial Filtering

– Filter ZMWs: Remove ZMWs with signal-to-noise ratio (SNR) below
--min-snr.

– Filter subreads: Remove subreads with lengths <50% or >200% of
the median subread length. Stop if the number of full-length
subreads is fewer than --min-passes.

2. Generate Draft
– The polish stage iteratively improves upon a candidate template

sequence. Because polishing is very compute-intensive, it is
desirable to start with a template that is as close as possible to the
true sequence of the molecule to reduce the number of iterations
until convergence. The ccs software does not pick a full-length
subread as the initial template to be polished, but instead generates
an approximate draft consensus sequence using our improved
Page 6

implementation of the Sparc graph consensus algorithm. This
algorithm depends on a subread-to-backbone alignment that is
generated by the pancake mapper developed by PacBio, using
edlib as the core aligner. Typically, subreads have accuracy of
around 90% and the draft consensus has a higher accuracy, but is
still below 99%.

– Stop if the draft length is shorter than --min-length and longer than
--max-length.

3. Alignment:
– Align subreads to the draft consensus using pancake with KSW2 for

downstream windowing and filtering.
4. Windowing

– Divide the subread-to-draft alignment into overlapping windows with
a target size of 22 bp with ±2 bp overlap. Avoid breaking windows at
simple repeats (homopolymers to 4-mer repeats) to reduce edge
cases at window borders. Windowing reduces the algorithm run time
from quadratic to linear in the insert size.

5. Single-Strand Artifacts
– Identify heteroduplexes, where one strand of the SMRTbell differs

significantly from the reverse complement of the other strand.
Subread orientation is inferred from the alignment. Small
heteroduplexes, such as single base A paired with a matching G, are
retained and the ambiguity is reflected in base quality. Molecules
with a single difference longer than 20 bp between the strands are
removed and recorded as heteroduplexes in the
<outputPrefix>.ccs_report.txt file.

6. Trim Large Insertions
– Insertions in the subreads relative to the draft that are longer than
--max-insertion-size, default 30 bp, are trimmed since they
typically represented spurious sequencing activity.

7. Filter Candidates
– For each window, a heuristic is used to find those positions that likely

need polishing. In addition, homopolymers are always polished.
Skipping unambiguous positions makes the polishing at least twice
as fast.

8. Polishing
– The core polishing uses the arrow algorithm, a left-right Hidden

Markov-Model (HMM) that models the enzymatic and photophysical
events in SMRT Sequencing. Emission and transition parameters
are estimated by a dinucleotide template context. Transition
parameters form a homogeneous Markov chain. The transition
parameters do not depend on the position within the template, only
the pulse width of a base call, the dinucleotide context of the
template, and the SNR of the ZMW. Arrow computes the log-
likelihood that the subread originates from the template,
marginalizing over all possible alignments of the subread to the
template. For every position in the template that is a candidate for
polishing, arrow tests if the log-likelihood is improved by substituting
Page 7

one of the other three nucleotides, inserting one of the four
nucleotides after the position, or deleting the position itself. Once
arrow does not find any further beneficial mutations to the template
in an iteration, it stops.

9. QV Calculation
– The log-likelihood ratio between the most likely template sequence

and all of its mutated counterparts is used to calculate a quality for
each base in the final consensus. The average of the per-base
qualities is the read accuracy, rq.

10. Final Steps
– The per-window consensus template sequences and base qualities

are concatenated and overhangs (overlaps between adjacent
windows) are trimmed. If the predicted read accuracy is at least
--min-rq, then the consensus read is written to the output.

Input Files
• One .subreads.bam file containing the subreads for each SMRTbell®

template sequenced.

Output Files
• A BAM file with one entry for each consensus sequence derived from a

productive ZMW. BAM is a general file format for storing sequence
data, which is described fully by the SAM/BAM working group. The
CCS Analysis output format is a version of this general format, where
the consensus sequence is represented by the "Query Sequence".
Several tags were added to provide additional meta information. An
example BAM entry for a consensus as seen by samtools is shown
below.

m64009_201008_223950/1/ccs 4 * 0 255 * * 0 0 ATCGCCTACC
~|~t~R~~r~ RG:Z:a773c1f2 fi:B:C,26,60,21,41,33,26,63,45,73,33 fn:i:6
fp:B:C,11,18,21,35,8,18,31,8,23,11 np:i:12
ri:B:C,17,37,24,4,70,21,12,44,21,32 rn:i:6 rp:B:C,16,56,17,9,23,19,10,10,23,12
 rq:f:0.999651 sn:B:f,10.999,16.2603,3.964,7.17746 we:i:9816064 ws:i:20
zm:i:1

Following are some of the common fields contained in the output BAM file:

Field Description

Query Name Movie Name / ZMW # /ccs

FLAG Required by the format but meaningless in this context. Always set to 4 to indicate the
read is unmapped.

Reference Name Required by the format but meaningless in this context. Always set to *.

Mapping Start Required by the format but meaningless in this context. Always set to 0.

Mapping Quality Required by the format but meaningless in this context. Always set to 255.

CIGAR Required by the format but meaningless in this context. Always set to *.

RNEXT Required by the format but meaningless in this context. Always set to *.

PNEXT Required by the format but meaningless in this context. Always set to 0.
Page 8

Usage
ccs [OPTIONS] INPUT OUTPUT

Example
ccs --all myData.subreads.bam myResult.bam

TLEN Required by the format but meaningless in this context. Always set to 0.

Consensus Sequence The consensus sequence generated.

Quality Values The per-base parametric quality metric. For details see “Interpreting QUAL Values” on
page 11.

RG Tag The read group identifier.

bc Tag A 2-entry array of upstream-provided barcode calls for this ZMW.

bq Tag The quality of the barcode call. (Optional: Depends on barcoded inputs.)

np Tag The number of full passes that went into the subread. (Optional: Depends on barcoded
inputs.)

rq Tag The predicted read quality.

zm Tag The ZMW hole number.

Field Description

Required Description

Input File Name The name of a single subreads.bam or a subreadset.xml file to be processed.
(Example = myData.subreads.bam)

Output File Name The name of the output BAM file; comes after all other options listed. Valid output
files are the BAM and the Dataset .xml formats. (Example = myResult.bam)

Options Description

--version Prints the version number.

--report-file Contains a result tally of the outcomes for all ZMWs that were processed. If no file
name is given, the report is output to the file ccs_report.txt. In addition to the
count of successfully-produced consensus sequences, this file lists how many
ZMWs failed various data quality filters (SNR too low, not enough full passes, and
so on) and is useful for diagnosing unexpected drops in yield.

--min-snr Removes data that is likely to contain deletions. SNR is a measure of the strength
of signal for all 4 channels (A, C, G, T) used to detect base pair incorporation. This
value sets the threshold for minimum required SNR for any of the four channels.
Data with SNR < 2.5 is typically considered lower quality. (Default = 2.5)

--min-length Specifies the minimum length requirement for the minimum length of the draft
consensus to be used for further polishing. If the targeted template is known to be a
particular size range, this can filter out alternative DNA templates. (Default = 10)

--max-length Specifies the maximum length requirement for the maximum length of the draft
consensus to be used for further polishing. For robust results while avoiding
unnecessary computation on unusual data, set to ~20% above the largest expected
insert size. (Default = 50000)

--min-passes Specifies the minimum number of passes for a ZMW to be emitted. This is the
number of full passes. Full passes must have an adapter hit before and after the
insert sequence and so do not include any partial passes at the start and end of the
sequencing reaction. It is computed as the number of passes mode across all
windows. (Default = 3)
Page 9

--min-rq Specifies the minimum predicted accuracy of a read. CCS Analysis generates an
accuracy prediction for each read, defined as the expected percentage of matches
in an alignment of the consensus sequence to the true read. A value of 0.99
indicates that only reads expected to be 99% accurate are emitted.
(Default = 0.99)

--num-threads Specifies how many threads to use while processing. By default, CCS Analysis
uses as many threads as there are available cores to minimize processing time, but
fewer threads can be specified here.

--log-file The name of a log file to use. If none is given, the logging information is printed to
STDERR. (Example: mylog.txt)

--log-level Specifies verbosity of log data to produce. By setting --logLevel=DEBUG, you can
obtain detailed information on what ZMWs were dropped during processing, as well
as any errors which may have appeared. (Default = INFO)

--skip-polish After constructing the draft consensus, do not proceed with the polishing steps.
This is significantly faster, but generates less accurate data with no RQ or QUAL
values associated with each base.

--by-strand Separately generates a consensus sequence from the forward and reverse strands.
Useful for identifying heteroduplexes formed during sample preparation.

--chunk Operates on a single chunk. Format i/N, where i in [1,N]. Examples: 3/24 or 9/9.

--max-chunks Determines the maximum number of chunks, given an input file.

--model-path Specifies the path to a model file or directory containing model files.

--model-spec Specifies the name of the chemistry or model to use, overriding the default
selection.

--all Generates one representative sequence per ZMW, irrespective of quality and
passes. --min-passes 0 --min-rq 0 --max-length 0 are set implicitly and
cannot be changed; --all also deactivates the maximum draft length filter.
Filtering has to be performed downstream.
The ccs --all option changes the workflow as follows:
1. There is special behavior for low-pass ZMWs. If a ZMW has fewer than 2 full-

length subreads, use the subread of median length as representative
consensus, optionally with its kinetic information as forward orientation using
--all-kinetics, and do not polish.

2. Only polish ZMWs with at least two full-length subreads mapping back to the
draft. Otherwise, set predicted accuracy rq tag to -1 to indicate that the
predicted accuracy was not calculated, and populate per-base QVs with + (QV
10) the approximate raw accuracy. Kinetic information is not available for
unpolished drafts.

3. Instead of using an unpolished draft without kinetic information as a
representative consensus sequence, if --subread-fallback is used, fall
back to a representative subread with kinetic information.

How is --all different from explicitly setting --min-passes 0 --min-rq 0?
• Setting --min-passes 0 --min-rq 0 is a brute-force combination that

polishes every ZMW, even those that only have one partial subread, with
polishing making no difference. In contrast, --all is a bit smarter and only
polishes ZMWs with at least one full-length subread and one additional partial
subread.

Options Description
Page 10

Interpreting QUAL Values
The QUAL value of a read is a measure of the posterior likelihood of an
error at a particular position. Increasing QUAL values are associated with
a decreasing probability of error. For indels and homopolymers, there is
ambiguity as to which QUAL value is associated with the error probability.
Shown below are different types of alignment errors, with an * indicating
which sequence BP should be associated with the alignment error.

Mismatch
 *
 ccs: ACGTATA
 ref: ACATATA

Deletion
 *
ccs: AC-TATA
ref: ACATATA

Insertion
 *
ccs: ACGTATA
ref: AC-TATA

Homopolymer Insertion or Deletion
Indels should always be left-aligned, and the error probability is only given
for the first base in a homopolymer.

 * *
ccs: ACGGGGTATA ccs: AC-GGGTATA
ref: AC-GGGTATA ref: ACGGGGTATA

--hifi-kinetics Generates averaged kinetic information for polished reads, independently for both
strands of the insert. Forward is defined with respect to the orientation represented
in SEQ and is considered to be the native orientation. As with other PacBio-specific
tags, aligners will not re-orient these fields.
Base modifications can be inferred from per-base pulse width (PW) and inter-pulse
duration (IPD) kinetics.
Minor cases exist where a certain orientation may get filtered out entirely from a
ZMW, preventing valid values from being passed for that record. In these cases,
empty lists are passed for the respective record/orientation, and number of passes
are set to zero.
To facilitate the use of HiFi Reads with base modifications workflows, we added an
executable in pbbam called ccs-kinetics-bystrandify which creates a
pseudo --by-strand BAM with corresponding pw and ip tags that imitates a
normal, unaligned subreads BAM.

--all-kinetics Adds kinetic information for all ZMWs, except for unpolished draft consensus.

--subread-fallback When combined with --all, uses a subread instead of a draft as representative
consensus.

--suppress-reports Suppresses the generation of default reports and metric files.

Options Description
Page 11

CCS Analysis Yield Report
The CCS Analysis Yield Report specifies the number of ZMWs that
successfully produced consensus sequences, as well as a count of how
many ZMWs did not produce a consensus sequence for various reasons.
The entries in this report, as well as parameters used to increase or
decrease the number of ZMWs that pass various filters, are shown in the
table below.

 The first part is a summary of inputs and outputs:

The second part explains in detail the exclusive ZMW count for those
ZMWs that were filtered:

ZMW Results Parameters Affecting
Results Description

ZMWs input None The number of input ZMWs.

ZMWs pass filters All custom processing settings The number of CCS Reads successfully produced
on the first attempt, using the fast windowed
approach.

ZMWs fail filters All custom processing settings The number of ZMWs reads that failed to produce a
CCS Read.

ZMWs shortcut filters -all The number of ZMWs having fewer than 2 full-length
subreads.

ZMWs with tandem
repeats

--min-tandem-repeat-
length

The number of ZMWs with repeats larger than the
specified threshold.

ZMW Results Parameters Affecting
Results Description

No usable subreads None The ZMW had no usable subreads. Either there were no
subreads, or all subreads had lengths outside the range
<50% or >200% of the median subread length.

Below SNR threshold --min-snr The ZMW had at least one channel's SNR below the
minimum threshold.

Lacking full passes --min-passes There were not enough subreads that had an adapter at
the start and end of the subread (a "full pass").

Heteroduplexes None The SMRTbell contains a heteroduplex. In this case, it is
not clear what the consensus should be and so the ZMW is
dropped.

Min coverage violation None The ZMW is damaged on one strand and cannot be
polished reliably.

Draft generation error None Subreads do not match the generated draft sequence,
even after multiple tries.

Draft above
--max-length

--max-length The draft sequence was above the maximum length
threshold.

Draft below
--min-length

--min-length The draft sequence was below the minimum length
threshold.

Lacking usable
subreads

None Too many subreads were dropped while polishing.
Page 12

How do I read the ccs_report.txt file?

By default, each CCS Analysis generates a ccs_report.txt file. This file
summarizes how many ZMWs generated HiFi Reads and how many
ZMWs failed CCS Reads generation because of the listed causes. For
those failing, each ZMW contributes to exactly one reason of failure;
percentages are with respect to number of failed ZMWs.

Does CCS Analysis dislike low-complexity regions?

Low-complexity comes in many shapes and forms. A particular challenge
for CCS Analysis are highly-enriched tandem repeats, such as hundreds
of copies of AGGGGT. Prior to ccs v5.0, inserts with many copies of a
small repeat likely did not generate a consensus sequence. Since ccs
v5.0, every ZMW is tested if it contains a tandem repeat of length
--min-tandem-repeat-length 1000. For this, we use symmetric DUST,
specifically this sdust implementation, but slightly modified. If a ZMW is
flagged as a tandem repeat, internally --disable-heuristics is
activated for only this ZMW, and various filters that are known to exclude
low-complexity sequences are disabled. This recovers most of the low-
complexity consensus sequences, without impacting run time
performance.

Can I produce one consensus sequence for each strand of a
molecule?

Yes, use --by-strand. Make sure that you have sufficient coverage, as
--min-passes are per strand in this case. For each strand, CCS Analysis
generates one consensus read that has to pass all filters. Read name
suffix indicates strand. Example:

m64011_190714_120746/14/ccs/rev
m64011_190714_120746/35/ccs/fwd

How does --by-strand work? For each ZMW:

• Determine orientation of reads with respect to the one closest to the
median length.

• Sort reads into two buckets, forward and reverse strands.
• Treat each strand as an individual entity as we do with ZMWs:

CCS Analysis did not
converge

None The consensus sequence did not converge after the
maximum number of allowed rounds of polishing.

CCS Read below
minimum predicted
accuracy

--min-rq Each CCS Read has a predicted level of accuracy
associated with it. Reads that are below the minimum
specified threshold are removed.

Unknown error during
processing

None These should not occur.

ZMW Results Parameters Affecting
Results Description
Page 13

https://github.com/lh3/sdust

– Apply all filters per strand individually.
– Create a draft for each strand.
– Polish each strand.
– Write out each polished strand consensus.

BAM Tags Generated

dataset The dataset tool creates, opens, manipulates and writes Data Set XML
files. The commands allow you to perform operations on the various types
of data held by a Data Set XML: Merge, split, write, and so on.

Usage
dataset [-h] [--version] [--log-file LOG_FILE]
 [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL} | --debug | --quiet | -v]
 [--strict] [--skipCounts]

{create,filter,merge,split,validate,summarize,consolidate,loadstats,newuuid,loadmetada
ta,copyto,absolutize,relativize}

Tag Type Description

ec f Effective coverage

fi B,C Forward IPD (Codec V1)

fn i Forward number of complete passes (zero or more)

fp B,C Forward PulseWidth (Codec V1)

np i Number of full-length subreads

ri B,C Reverse IPD (Codec V1)

rn i Reverse number of complete passes (zero or more)

rp B,C Reverse PulseWidth (Codec V1)

rq f Predicted average read accuracy

sn B,F Signal-to-noise ratios for each nucleotide

zm i ZMW hole number

RG z Read group

Options Description

-h, --help Displays help information and exits.

<Command> -h Displays help for a specific command.

-v, --version Displays program version number and exits.

--log-file LOG_FILE Writes the log to file. (Default = None, writes to stdout.)

--log-level Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR,
CRITICAL]. (Default = INFO)

--debug Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to CRITICAL to suppress output.
(Default = False)
Page 14

create Command: Create an XML file from a fofn (file-of-file names) or
BAM file. Possible types: SubreadSet, AlignmentSet, ReferenceSet,
HdfSubreadSet, BarcodeSet, ConsensusAlignmentSet,
ConsensusReadSet, ContigSet.

 dataset create [-h] [--type DSTYPE] [--name DSNAME] [--generateIndices]
 [--metadata METADATA] [--novalidate] [--relative]
 outfile infile [infile ...]

Example
The following example shows how to use the dataset create command
to create a barcode file:

dataset create --generateIndices --name my_barcodes --type BarcodeSet
my_barcodes.barcodeset.xml my_barcodes.fasta

filter Command: Filter an XML file using filters and threshold values.

• Suggested filters: alignedlength, as, astart, bc, bcf, bcq,
bcr, bq, cx, length, mapqv, movie, n_subreads, pos, qend,
qid, qname, qstart, readstart, rname, rq, tend, tstart,
zm

• More resource-intensive filter: [qs]

-v Sets the verbosity level. (Default = NONE)

--strict Turns on strict tests and display all errors. (Default = False)

--skipCounts Skips updating NumRecords and TotalLength counts.
(Default = False)

Options Description

Required Description

outfile The name of the XML file to create.

infile The fofn (file-of-file-names) or BAM file(s) to convert into an XML file.

Options Description

--type DSTYPE Specifies the type of XML file to create. (Default = NONE)

--name DSNAME The name of the new Data Set XML file.

--generateIndices Generates index files (.pbi and .bai for BAM, .fai for FASTA). Requires
samtools/pysam and pbindex. (Default = FALSE)

--metadata METADATA A metadata.xml file (or Data Set XML) to supply metadata.
(Default = NONE)

--novalidate Specifies not to validate the resulting XML. Leaves the paths as they are.

--relative Makes the included paths relative instead of absolute. This is not
compatible with --novalidate.
Page 15

Note: Multiple filters with different names are ANDed together. Multiple
filters with the same name are ORed together, duplicating existing
requirements. The filter string should be enclosed in single quotes.

dataset filter [-h] infile outfile filters [filters ...]

Examples
Filter on read quality > 0.99 (Q20):

% dataset filter in.consensusreadset.xml hifi.consensusreadset.xml 'rq >= 0.99'

Filter on read quality and length:

% dataset filter in.consensusreadset.xml filtered.consensusreadset.xml 'rq >= 0.99 AND
length >= 10000'

Filter for very long and very short reads:

% dataset filter in.consensusreadset.xml filtered.consensusreadset.xml 'length >=
40000; length <= 400'

Filter for specific high-quality barcodes:

% dataset filter mixed.consensusreadset.xml samples1-3.consensusreadset.xml 'bc =
[0,1,2] AND bq >= 26'

merge Command: Combine XML files.

dataset merge [-h] outfile infiles [infiles ...]

split Command: Split a Data Set XML file.

dataset split [-h] [--contigs] [--barcodes] [--zmws] [--byRefLength]
 [--noCounts] [--chunks CHUNKS] [--maxChunks MAXCHUNKS]
 [--targetSize TARGETSIZE] [--breakContigs]
 [--subdatasets] [--outdir
 infile [outfiles...]

Required Description

infile The name of the XML file to filter.

outfile The name of the output filtered XML file.

filters The values to filter on. (Example: rq>0.85)

Required Description

infiles The names of the XML files to merge.

outfile The name of the output XML file.

Required Description

infile The name of the XML file to split.
Page 16

validate Command: Validate XML and ResourceId files. (This is an
internal testing functionality that may be useful.)

Note: This command requires that pyxb (not distributed with SMRT Link)
be installed. If not installed, validate simply checks that the files pointed
to in ResourceIds exist.

dataset validate [-h] [--skipFiles] infile

summarize Command: Summarize a Data Set XML file.

dataset summarize [-h] infile

consolidate Command: Consolidate XML files.

dataset consolidate [-h] [--numFiles NUMFILES] [--noTmp]

Options Description

outfiles The names of the resulting XML files.

--contigs Splits the XML file based on contigs. (Default = FALSE)

--barcodes Splits the XML file based on barcodes. (Default = FALSE)

--zmws Splits the XML file based on ZMWs. (Default = FALSE)

--byRefLength Splits contigs by contig length. (Default = TRUE)

--noCounts Updates the Data Set counts after the split. (Default = FALSE)

--chunks x Splits contigs into x total windows. (Default = 0)

--maxChunks x Splits the contig list into at most x groups. (Default = 0)

--targetSize x Specifies the minimum number of records per chunk. (Default = 5000)

--breakContigs Breaks contigs to get closer to maxCounts. (Default = False)

--subdatasets Splits the XML file based on sub-datasets. (Default = False)

--outdir OUTDIR Specifies an output directory for the resulting XML files.
(Default = <in-place>, not the current working directory.)

Required Description

infile The name of the XML file to validate.

Options Description

--skipFiles Skips validating external resources. (Default = False)

Required Description

infile The name of the XML file to summarize.
Page 17

 infile datafile xmlfile

loadstats Command: Load an sts.xml file containing pipeline statistics
into a Data Set XML file.

dataset loadstats [-h] [--outfile OUTFILE] infile statsfile

newuuid Command: Refresh a Data Set's Unique ID.

dataset newuuid [-h] [--random] infile

loadmetadata Command: Load a .metadata.xml file into a Data Set
XML file.

dataset loadmetadata [-h] [--outfile OUTFILE] infile metadata

Required Description

infile The name of the XML file to consolidate.

datafile The name of the resulting data file.

xmlfile The name of the resulting XML file.

Options Description

--numFiles x Specifies the number of data files to produce. (Default = 1)

--noTmp Do not copy to a temporary location to ensure local disk use.
(Default = False)

Required Description

infile The name of the Data Set XML file to modify.

statsfile The name of the .sts.xml file to load.

Options Description

--outfile OUTFILE The name of the XML file to output. (Default = None)

Required Description

infile The name of the XML file to refresh.

Options Description

--random Generates a random UUID, instead of a hash. (Default = False)

Required Description

infile The name of the Data Set XML file to modify.

metadata The .metadata.xml file to load, or Data Set to borrow from.
Page 18

copyto Command: Copy a Data Set and resources to a new location.

dataset copyto [-h] [--relative] infile outdir

absolutize Command: Make the paths in an XML file absolute.

dataset absolutize [-h] [--outdir OUTDIR] infile

relativize Command: Make the paths in an XML file relative.

dataset relativize [-h] infile

Examples - Filter Reads
To filter one or more BAM file’s worth of subreads, aligned or otherwise,
and then place them into a single BAM file:

usage: dataset filter <in_fn.xml> <out_fn.xml> <filters>
dataset filter in_fn.subreadset.xml filtered_fn.subreadset.xml 'rq>0.85'

usage: dataset consolidate <in_fn.xml> <out_data_fn.bam> <out_fn.xml>
dataset consolidate filtered_fn.subreadset.xml consolidate.subreads.bam
out_fn.subreadset.xml

The filtered Data Set and the consolidated Data Set should be read-for-
read equivalent when used with SMRT® Analysis software.

Options Description

--outfile OUTFILE Specifies the XML file to output. (Default = None)

Required Description

infile The name of the XML file to copy.

outdir The directory to copy to.

Options Description

--relative Makes the included paths relative instead of absolute. (Default = False)

Required Description

infile The name of the XML file whose paths should be absolute.

Options Description

--outdir OUTDIR Specifies an optional output directory. (Default = None)

Required Description

infile The name of the XML file whose paths should be relative.
Page 19

Example - Resequencing Pipeline
• Align two movie’s worth of subreads in two SubreadSets to a

reference.
• Merge the subreads together.
• Split the subreads into Data Set chunks by contig.
• Process using gcpp on a chunkwise basis (in parallel).

1. Align each movie to the reference, producing a Data Set with one BAM
file for each execution:

pbalign movie1.subreadset.xml referenceset.xml movie1.alignmentset.xml
pbalign movie2.subreadset.xml referenceset.xml movie2.alignmentset.xml

2. Merge the files into a FOFN-like Data Set; BAMs are not touched:

dataset merge <out_fn> <in_fn> [<in_fn> <in_fn> ...]
dataset merge merged.alignmentset.xml movie1.alignmentset.xml movie2.alignmentset.xml

3. Split the Data Set into chunks by contig name; BAMs are not touched:
– Note that supplying output files splits the Data Set into that many

output files (up to the number of contigs), with multiple contigs per
file.

– Not supplying output files splits the Data Set into one output file per
contig, named automatically.

– Specifying a number of chunks instead will produce that many files,
with contig or even subcontig (reference window) splitting.

dataset split --contigs --chunks 8 merged.alignmentset.xml

4. Process the chunks:

gcpp --reference referenceset.xml --output
chunk1consensus.fasta,chunk1consensus.fastq,chunk1consensus.vcf,chunk1consensus.gff
chunk1contigs.alignmentset.xml

The chunking works by duplicating the original merged Data Set (no BAM
duplication) and adding filters to each duplicate such that only reads
belonging to the appropriate contigs are emitted. The contigs are
distributed among the output files in such a way that the total number of
records per chunk is about even.

Demultiplex
Barcodes

The Demultiplex Barcodes application identifies barcode sequences in
PacBio single-molecule sequencing data. It replaced pbbarcode and
bam2bam for demultiplexing, starting with SMRT® Analysis v5.1.0.

Demultiplex Barcodes can demultiplex samples that have a unique per-
sample barcode pair and were pooled and sequenced on the same
SMRT® Cell. There are four different methods for barcoding samples with
PacBio technology:
Page 20

1. Sequence-specific primers
2. Barcoded universal primers
3. Barcoded adapters
4. Linear Barcoded Adapters for Probe-based Captures

In addition, there are three different barcode library designs. As
Demultiplex Barcodes supports raw subread and CCS Reads
demultiplexing, the following terminology is based on the per (sub-) read
view.
Page 21

In the overview above, the input sequence is flanked by adapters on both
sides. The bases adjacent to an adapter are barcode regions. A read can
have up to two barcode regions, leading and trailing. Either or both adapt-
ers can be missing and consequently the leading and/or trailing region is
not being identified.

For symmetric and tailed library designs, the same barcode is attached
to both sides of the insert sequence of interest. The only difference is the
orientation of the trailing barcode. For barcode identification, one read with
a single barcode region is sufficient.

For the asymmetric design, different barcodes are attached to the sides
of the insert sequence of interest. To identify the different barcodes, a read
with leading and trailing barcode regions is required.

Output barcode pairs are generated from the identified barcodes. The bar-
code names are combined using “--“, for example bc1002--bc1054. The
sort order is defined by the barcode indices, starting with the lowest.

Workflow
By default, Demultiplex Barcodes processes input reads grouped by
ZMW, except if the --per-read option is used. All barcode regions along
the read are processed individually. The final per-ZMW result is a
summary over all barcode regions. Each ZMW is assigned to a pair of
selected barcodes from the provided set of candidate barcodes. Subreads
from the same ZMW will have the same barcode and barcode quality. For
a particular target barcode region, every barcode sequence gets aligned
as given and as reverse-complement, and higher scoring orientation is
chosen. This results in a list of scores over all candidate barcodes.

• If only same barcode pairs are of interest (symmetric/tailed), use the
 --same option to filter out different barcode pairs.

• If only different barcode pairs are of interest (asymmetric), use the
--different option to require at least two barcodes to be read, and
remove pairs with the same barcode.

Page 22

Parameter Presets

Recommended parameter combinations are available using --preset for
HiFi input:

• HIFI-SYMMETRIC
--ccs --min-score 80 --min-end-score 50 --min-ref-span 0.75
--same

• HIFI-ASYMMETRIC
--ccs --min-score 80 --min-end-score 50 --min-ref-span 0.75
--different --min-scoring-regions 2

• NONE (Default)

Half Adapters
For an adapter call with only one barcode region, the high-quality region
finder cuts right through the adapter. The preceding or succeeding
subread was too short and was removed, or the sequencing reaction
started/stopped there. This is called a half adapter. Thus, there are also
1.5, 2.5, N+0.5 adapter calls.

ZMWs with half or only one adapter can be used to identify the same
barcode pairs; positive-predictive value might be reduced compared to
high adapter calls. For asymmetric designs with different barcodes in a
pair, at least a single full-pass read is required; this can be two adapters,
two half adapters, or a combination.

Usage:
• Any existing output files are overwritten after execution.
• Always use --peek-guess to remove spurious barcode hits.

Analysis of subread data:
lima movie.subreads.bam barcodes.fasta prefix.bam
lima movie.subreadset.xml barcodes.barcodeset.xml prefix.subreadset.xml

Analysis of CCS Reads:
lima --css movie.ccs.bam barcodes.fasta prefix.bam
lima --ccs movie.consensusreadset.xml barcodes.barcodeset.xml
prefix.consensusreadset.xml

If you do not need to import the demultiplexed data into SMRT Link, use
the --no-pbi option to minimize memory consumption and run time.

Symmetric or Tailed options:
Raw: --same
CCS Reads: --same --ccs

Asymmetric options:
Raw: --different
CCS Reads: --different --ccs
Page 23

Example Execution:
lima m54317_180718_075644.subreadset.xml \
Sequel_RSII_384_barcodes_v1.barcodeset.xml \
m54317_180718_075644.demux.subreadset.xml \
--different --peek-guess

Options Description

--same Retains only reads with the same barcodes on both ends of the insert
sequence, such as symmetric and tailed designs.

--different Retains only reads with different barcodes on both ends of the insert
sequence, asymmetric designs. Enforces --min-passes ≥ 1.

--min-length n Omits reads with lengths below n base pairs after demultiplexing. ZMWs
with no reads passing are omitted. (Default = 50)

--max-input-length n Omits reads with lengths above n base pairs for scoring in the
demultiplexing step. (Default = 0, deactivated)

--min-score n Omits ZMWs with average barcode scores below n. A barcode score
measures the alignment between a barcode attached to a read and an
ideal barcode sequence, and is an indicator how well the chosen barcode
pair matches. It is normalized to a range between 0 (no hit) and 100 (a
perfect match).
(Default = 0, Pacific Biosciences recommends setting it to 26.)

--min-end-score n Specifies the minimum end barcode score threshold applied to the
individual leading and trailing ends. (Default = 0)

--min-passes n Omits ZMWs with less than n full passes, a read with a leading and trailing
adapter. (Default = 0, no full-pass needed) Example:
0 pass : insert - adapter - insert
1 pass : insert - adapter - INSERT - adapter - insert
2 passes: insert - adapter - INSERT - adapter - INSERT -
adapter - insert

--score-full-pass Uses only reads flanked by adapters on both sides (full-pass reads) for
barcode identification.

--min-ref-span Specifies the minimum reference span relative to the barcode length.
(Default = 0.5)

--per-read Scores and tags per subread, instead of per ZMW.

--ccs Sets defaults to -A 1 -B 4 -D 3 -I 3 -X 1.

--peek n Looks at the first n ZMWs of the input and return the mean. This lets you
test multiple test barcode.fasta files and see which set of barcodes
was used.

--guess n This performs demultiplexing twice. In the first iteration, all barcodes are
tested per ZMW. Afterwards, the barcode occurrences are counted and
their mean is tested against the threshold n; only those barcode pairs that
pass this threshold are used in the second iteration to produce the final
demultiplexed output. A prefix.lima.guess file shows the decision
process; --same is being respected.

--guess-min-count Specifies the minimum ZMW count to whitelist a barcode. This filter is
ANDed with the minimum barcode score specified by --guess.
(Default = 0)
Page 24

Input Files
Input data in PacBio-enhanced BAM format is either:

• Sequence data - Unaligned subreads, directly from Sequel Systems.
• Unaligned CCS Reads, generated by CCS Analysis.

Barcodes are provided as a FASTA file or BarcodeSet file:

• One entry per barcode sequence.
• No duplicate sequences.
• All bases must be in upper-case.

--peek-guess Sets the following options:
--peek 50000 --guess 45 --guess-min-count 10.
Demultiplex Barcodes will run twice on the input data. For the first 50,000
ZMWs, it will guess the barcodes and store the mask of identified
barcodes. In the second run, the barcode mask is used to demultiplex all
ZMWs.
If combined with --ccs then the barcode score threshold is increased by
--guess 75.

--single-side Identifies barcodes in molecules that only have barcodes adjacent to one
adapter.

--window-size-mult
--window-size-bp

The candidate region size multiplier: barcode_length *
multiplier. (Default = 3)
Optionally, you can specify the region size in base pairs using
 --window-size-bp. If set, --window-size-mult is ignored.

--num-threads n Spawns n threads; 0 means use all available cores. This option also
controls the number of threads used for BAM and PBI compression.
(Default = 0)

--chunk-size n Specifies that each thread consumes n ZMWs per chunk for processing.
(Default = 10).

--no-bam Does not produce BAM output. Useful if only reports are of interest, as run
time is shorter.

--no-pbi Does not produce a .bam.pbi index file. The on-the-fly .bam.pbi file
generation buffers the output data. If you do not need a .bam.pbi index
file for SMRT Link import, use this option to decrease memory usage to a
minimum and shorten the run time.

--no-reports Does not produce any reports. Useful if only demultiplexed BAM files are
needed.

--dump-clips Outputs all clipped barcode regions generated to the
<prefix>.lima.clips file.

--dump-removed Outputs all records that did not pass the specified thresholds, or are
without barcodes, to the <prefix>.lima.removed.bam file.

--split-bam
--split-bam-named

Specifies that each barcode has its own BAM file called
prefix.idxBest-idxCombined.bam, such as prefix.0-0.bam.
Optionally ,--split-bam-named names the files by their barcode
names instead of their barcode indices.

--isoseq Removes primers as part of the Iso-Seq® pipeline.
See “Demultiplexing Iso-Seq® Data” on page 30 for details.

--bad-adapter-ratio n Specifies the maximum ratio of bad adapters. (Default = 0).

Options Description
Page 25

• Orientation-agnostic (forward or reverse-complement, but not
reversed.)

Example:

>bc1000
CTCTACTTACTTACTG
>bc1001
GTCGTATCATCATGTA
>bc1002
AATATACCTATCATTA

Note: Name barcodes using an alphabetic character prefix to avoid later
barcode name/index confusion.

Output Files
Demultiplex Barcodes generates multiple output files by default, all
starting with the same prefix as the output file, using the suffixes .bam,
.subreadset.xml, and .consensusreadset.xml. The report prefix is
lima. Example:

lima m54007_170702_064558.subreads.bam barcode.fasta /my/path/
m54007_170702_064558_demux.subreadset.xml

For all output files, the prefix is
/my/path/m54007_170702_064558_demux.

• <prefix>.bam: Contains clipped records, annotated with barcode
tags, that passed filters and respect the --same option.

• <prefix>.lima.report: A tab-separated file describing each ZMW,
unfiltered. This is useful information for investigating the demultiplexing
process and the underlying data. A single row contains all reads from
a single ZMW. For --per-read, each row contains one subread, and
ZMWs might span multiple rows.

• <prefix>.lima.summary: Lists how many ZMWs were filtered, how
many ZMWs are the same or different, and how many reads were
filtered.

(1)
ZMWs input (A): 213120
ZMWs above all thresholds (B): 176356 (83%)
ZMWs below any threshold (C): 36764 (17%)

(2)
ZMW Marginals for (C):
Below min length : 26 (0%)
Below min score : 0 (0%)
Below min end score : 5138 (13%)
Below min passes : 0 (0%)
Below min score lead : 11656 (32%)
Below min ref span : 3124 (8%)
Without adapter : 25094 (68%)
With bad adapter : 10349 (28%) <- Only with --bad-adapter-ratio
Undesired hybrids : xxx (xx%) <- Only with --peek-guess
Page 26

Undesired same barcode pairs : xxx (xx%) <- Only with --different
Undesired diff barcode pairs : xxx (xx%) <- Only with --same
Undesired 5p--5p pairs : xxx (xx%) <- Only with --isoseq
Undesired 3p--3p pairs : xxx (xx%) <- Only with --isoseq
Undesired single side : xxx (xx%) <- Only with --isoseq
Undesired no hit : xxx (xx%) <- Only with --isoseq

(3)
ZMWs for (B):
With same barcode : 162244 (92%)
With different barcodes : 14112 (8%)
Coefficient of correlation : 32.79%

(4)
ZMWs for (A):
Allow diff barcode pair : 157264 (74%)
Allow same barcode pair : 188026 (88%)
Bad adapter yield loss : 10112 (5%) <- Only with --bad-adapter-ratio
Bad adapter impurity : 10348 (5%) <- Only without --bad-adapter-ratio

(5)
Reads for (B):
Above length : 1278461 (100%)
Below length : 2787 (0%)

Explanation of each block:
1. Number of ZMWs that went into lima, how many ZMWs were passed

to the output file, and how many did not qualify.
2. For those ZMWs that did not qualify: The marginal counts of each filter.

(Filter are described in the Options table.)
When running with --peek-guess or similar manual option combina-
tion and different barcode pairs are found during peek, the full SMRT
Cell may contain low-abundant different barcode pairs that were identi-
fied during peek individually, but not as a pair. Those unwanted
barcode pairs are called hybrids.

3. For those ZMWs that passed: How many were flagged as having the
same or different barcode pair, as well as the coefficient of variation for
the barcode ZMW yield distribution in percent.

4. For all input ZMWs: How many allow calling the same or different bar-
code pair. This is a simplified version of how many ZMW have at least
one full pass to allow a different barcode pair call and how many
ZMWs have at least half an adapter, allowing the same barcode pair
call.

5. For those ZMWs that qualified: The number of reads that are above
and below the specified --min-length threshold.

• <prefix>.lima.counts: A .tsv file listing the counts of each
observed barcode pair. Only passing ZMWs are counted.
Example: column -t prefix.lima.count

IdxFirst IdxCombined IdxFirstNamed IdxCombinedNamed Counts MeanScore

0 0 bc1001 bc1001 1145 68
1 1 bc1002 bc1002 974 69
Page 27

• <prefix>.lima.clips: Contains clipped barcode regions generated
using the --dump-clips option. Example:
head -n 6 prefix.lima.clips
>m54007_170702_064558/4850602/6488_6512 bq:34 bc:11
CATGTCCCCTCAGTTAAGTTACAA
>m54007_170702_064558/4850602/6582_6605 bq:37 bc:11
TTTTGACTAACTGATACCAATAG
>m54007_170702_064558/4916040/4801_4816 bq:93 bc:10

• <prefix>.lima.removed.bam: Contains records that did not pass the
specified thresholds, or are without barcodes, using the option
--dump-removed.
lima does not generate a .pbi, nor Data Set for this file. This option
cannot be used with any splitting option.

• <prefix>.lima.guess: A .tsv file that describes the barcode
subsetting process activated using the --peek and --guess options.

• One DataSet,.subreadset.xml, or .consensusreadset.xml file is
generated per output BAM file.

• .pbi: One PBI file is generated per output BAM file.

What is a universal spacer sequence and how does it affect
demultiplexing?

For library designs that include an identical sequence between adapter
and barcode, such as probe-based linear barcoded adapters samples,
Demultiplex Barcodes offers a special mode that is activated if it finds a
shared prefix sequence among all provided barcode sequences.

Example:

>custombc1
ACATGACTGTGACTATCTCACACATATCAGAGTGCG
>custombc2
ACATGACTGTGACTATCTCAACACACAGACTGTGAG

In this case, Demultiplex Barcodes detects the shared prefix
ACATGACTGTGACTATCTCA and removes it internally from all barcodes.
Subsequently, it increases the window size by the length L of the prefix
sequence.

• If --window-size-bp N is used, the actual window size is L + N.

2 2 bc1003 bc1003 1087 68

IdxFirst IdxCombined IdxFirstNamed IdxCombinedNamed NumZMWs MeanScore Picked

0 0 bc1001t bc1001t 1008 50 1
1 1 bc1002t bc1002t 1005 60 1
2 2 bc1003t bc1003t 5 24 0
3 3 bc1004t bc1004t 555 61 1
Page 28

• If --window-size-mult M is used, the actual window size is
(L + |bc|) * M.

Because the alignment is semi-global, a leading reference gap can be
added without any penalty to the barcode score.

What are bad adapters?

In the subreads.bam file, each subread has a context flag cx. The flag
specifies, among other things, whether a subread has flanking adapters,
before and/or after. Adapter-finding was improved and can also find
molecularly-missing adapters, or those obscured by a local decrease in
accuracy. This may lead to missing or obscured bases in the flanking
barcode. Such adapters are labelled "bad", as they don't align with the
adapter reference sequence(s). Regions flanking those bad adapters are
problematic, because they can fully or partially miss the barcode bases,
leading to wrong classification of the molecule. lima can handle those
adapters by ignoring regions flanking bad adapters. For this, lima
computes the ratio of number of bad adapters divided by number of all
adapters.

By default, --bad-adapter-ratio is set to 0 and does not perform any
filtering. In this mode, bad adapters are handled just like good adapters.

But the *.lima.summary file contains one row with the number of ZMWs
that have at least 25% bad adapters, but otherwise pass all other filters.
This metric can be used as a diagnostic to assess library preparation.

If --bad-adapter-ratio is set to non-zero positive (0,1), bad adapter
flanking barcode regions are treated as missing. If a ZMW has a higher
ratio of bad adapters than provided, the ZMW is filtered and consequently
removed from the output. The *.lima.summary file contains two
additional rows.

 With bad adapter : 10349 (28%)
 Bad adapter yield loss : 10112 (5%)

The first row counts the number of ZMWs that have bad adapter ratios that
are too high; the percentage is with respect to the number of all ZMW not
passing. The second row counts the number of ZMWs that are removed
solely due to bad adapter ratios that are too high; the percentage is with
respect the number of all input ZMWs and consequently is the effective
yield loss caused by bad adapters.

If a ZMW has ~50% bad adapters, one side of the molecule is molecularly-
missing an adapter. For 100% bad adapter, both sides are missing
adapters. A lower than ~40% percentage indicates decreased local
accuracy during sequencing leading to adapter sequences not being
found. If a high percentage of ZMWs is molecularly-missing adapters, you
should improve library preparation.
Page 29

Demultiplexing Iso-Seq® Data
Demultiplex Barcodes is used to identify and remove Iso-Seq cDNA
primers. If the Iso-Seq sample is barcoded, the barcodes should be
included as part of the primer. Note: To demultiplex Iso-Seq samples in the
SMRT Link GUI, always choose the Iso-Seq Analysis application, not the
Demultiplex Barcodes application. Only by using the command line can
users use lima with the --isoseq option for demultiplexing Iso-Seq data.

The input Iso-Seq data format for demultiplexing is .ccs.bam. Users must
first generate a CCS Reads BAM file for an Iso-Seq Data Set before
running lima. The recommended parameters for running CCS Analysis for
Iso-Seq are min-pass=1, min accuracy=0.9, and turning Polish to OFF.

1. Primer IDs must be specified using the suffix _5p to indicate 5’ cDNA
primers and the suffix _3p to indicate 3’ cDNA primers. The 3’ cDNA
primer should not include the Ts and is written in reverse complement.

2. Below are two example primer sets. The first is unbarcoded, the
second has barcodes (shown in lower case) adjacent to the 3’ primer.

Example 1: The Iso-Seq v2 primer set (included with the SMRT Link
installation).

>NEB_5p
GCAATGAAGTCGCAGGGTTGGG
>Clontech_5p
AAGCAGTGGTATCAACGCAGAGTACATGGGG
>NEB_Clontech_3p
GTACTCTGCGTTGATACCACTGCTT

Note: The Clontech kit is unsupported, and these primers will not be
included in future SMRT Link releases. We recommend using the
NEBNext® Single Cell/Low Input cDNA Synthesis & Amplification Module.

Example 2: 4 tissues were multiplexed using barcodes on the 3’ end only.

>NEB_5p
GCAATGAAGTCGCAGGGTTGGG
>dT_BC1001_3p
AAGCAGTGGTATCAACGCAGAGTACCACATATCAGAGTGCG
>dT_BC1002_3p
AAGCAGTGGTATCAACGCAGAGTACACACACAGACTGTGAG
>dT_BC1003_3p
AAGCAGTGGTATCAACGCAGAGTACACACATCTCGTGAGAG
>dT_BC1004_3p
AAGCAGTGGTATCAACGCAGAGTACCACGCACACACGCGCG

Note: NEB_5p is not an NEB primer sequence; it is PacBio’s Iso-Seq
Express cDNA PCR primer sequence listed in the protocol.

3. Use the --isoseq mode. Note that this cannot be combined with the
--guess option.
Page 30

4. The output will be only different pairs with a 5p and 3p combination:
demux.5p--tissue1_3p.bam
demux.5p--tissue2_3p.bam

The --isoseq parameter set is very conservative for removing any
spurious and ambiguous calls, and guarantees that only proper
asymmetric (barcoded) primer are used in downstream analyses. Good
libraries reach >75% CCS Reads passing the Demultiplex Barcodes
filters.

BAM Tags
In SMRT Link v8.0 and earlier, no LB and SM tags were written the BAM
file. In SMRT Link v10.2, LB and SM tags are set by the user in Run Design.
The SM tag can also be set in Demultiplex Barcodes in SMRT® Analysis.

Non-demultiplex case:

• LB: Well Sample Name.
• SM: Bio Sample Name.

Multiplexed case, BAM pre-demultiplexing:

• LB: Well Sample Name.
• SM: Tag removed.

Multiplexed case, BAMs post-demultiplexing:

• LB: Well Sample Name for all child barcode BAMs.
• SM: Each individual Bio Sample Name for the specific barcode.
• BC: Barcode sequence or hyphenated barcode sequences of the pair.
• DS: Appends barcode information used in demultiplexing: BarcodeFile,

BarcodeHash, BarcodeCount, BarcodeMode, BarcodeQuality.
• Example read group header after demultiplexing:

@RG
ID:66d5a6af/3--3
PL:PACBIO
DS:READTYPE=SUBREAD;
 Ipd:CodecV1=ip;
 PulseWidth:CodecV1=pw;
 BINDINGKIT=101-500-400;
 SEQUENCINGKIT=101-427-800;
 BASECALLERVERSION=5.0.0;
 FRAMERATEHZ=100.000000;
 BarcodeFile=Sequel_16_barcodes_v3.barcodeset.xml;
 BarcodeHash=f2b1fa0b43eb6ccbb30749883bb550e3;
 BarcodeCount=16;
 BarcodeMode=Symmetric;
 BarcodeQuality=Score
PU:m54010_200212_162236
SM:MySampleName
PM:SEQUEL
BC:ACAGTCGAGCGCTGCGT
Page 31

export-datasets The export-datasets tool takes one or more PacBio Data Set XML files
and packages all contents (including index files and supplemental Data
Sets) into a single ZIP archive. Data Set resources, such as BAM files, are
reorganized and renamed to flatten the directory structure, avoid
redundant file writes, and convert all resource paths from absolute paths to
relative paths. Where multiple Data Sets are provided, the contents of
each is nested in a directory named after the UniqueId attribute in the
XML.

The resulting archive is primarily intended to be directly imported into
SMRT Link using the Data Management interface, but it may also be
unpacked manually and used on the command line.

Usage
export-datasets [options] <dataset>...

Input Files
• One or more PacBio Dataset XML files.

Output File
• One output ZIP file.

Examples
export-datasets m64001_200704_012345.subreadset.xml

export-datasets sample1.consensusreadset.xml sample2.consensusreadset.xml
\sample3.consensusreadset.xml -o barcoded_ccs.zip

export-datasets /opt/smrtlink/jobs/0000/0000001/0000001234/outputs/
mapped.alignmentset.xml

Options Description

-o, --output Name of output ZIP file. (Default = datasets_<timestamp>.zip)
--keep-parent-ref Keeps the reference to the parent Data Set when archiving a

demultiplexed child Data Set.

--no-scraps Excludes the scraps.bam file if present in the XML file.

-h, --help Displays help information and exits.

--log-file Writes the log to a file. (Default = stderr)
--log-level Specifies the log level; values are [ERROR,DEBUG, INFO, WARN].

(Default = WARN)

--logback Override all logger configuration using a specified logback.xml file.

--log2stdout If True, log output is displayed to the console. (Default = False)

--debug Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to ERROR. (Default = False)

--verbose Alias for setting the log level to INFO. (Default = False)
Page 32

export-job The export-job tool packages a SMRT Link Analysis job for export to
another system, usually for reimportation into another SMRT Link
instance. All internal paths in job output files are converted from absolute
to relative paths, and many of the internal details of the Cromwell
workflows are omitted. The export is not a complete record of the job, but
rather a collection of job output files and metadata.

Note that export-job will include any external Data Sets referenced in
output Data Sets inside the job, for example ReferenceSets associated
with mapped Data Sets, or BarcodeSets associated with demultiplexed
Data Sets. However, these Data Sets will not be imported along with the
job. The exported job does not include the input reads used to run the job;
these may be exported separately using the export-datasets tool.

IMPORTANT: Only SMRT Link v10.0 or later generates the necessary
metadata files for export-job to save a full record of job execution. Jobs
created with older versions of SMRT Link will still be archived, but the
metadata will be empty and/or incorrect.

Usage
export-job [options] <job_dir>

Input
• A path to a job directory.

Output File
• One output ZIP file.

Examples
export-job /path/to/smrtlink/jobs-root/0000/0000000/0000000860 -o job860.zip

Options Description

<job_dir> Path to a SMRT Link job directory.

-o, --output Name of output ZIP file. (Default = job_<timestamp>.zip)
-h, --help Displays help information and exits.

--log-file Writes the log to a file. (Default = stderr)
--log-level Specifies the log level; values are [ERROR,DEBUG, INFO, WARN].

(Default = WARN)

--logback Override all logger configuration using a specified logback.xml file.

--log2stdout If True, log output is displayed to the console. (Default = False)

--debug Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to ERROR. (Default = False)

--verbose Alias for setting the log level to INFO. (Default = False)
Page 33

To reimport on another system:

pbservice import-job job860.zip

gcpp gcpp is a variant-calling tool provided by the GCpp package which provides
several variant-calling algorithms for PacBio sequencing data.

Usage
gcpp -j8 --algorithm=arrow \
 -r lambdaNEB.fa \
 -o variants.gff \
 aligned_subreads.bam

This example requests variant-calling, using 8 worker processes and the
Arrow algorithm, taking input from the file aligned_subreads.bam, using
the FASTA file lambdaNEB.fa as the reference, and writing output to
variants.gff.

A particularly useful option is --referenceWindow/-w; which allows the
variant-calling to be performed exclusively on a window of the reference
genome.

Input Files
• A sorted file of reference-aligned reads in Pacific Biosciences’

standard BAM format.
• A FASTA file that follows the Pacific Biosciences FASTA file

convention. If specifying an input FASTA file, a FASTA index file (.fai)
with the same name and path is required. If the .fai file is not
supplied, gcpp exits and displays an error message.

Note: The --algorithm=arrow option requires that certain metrics be in
place in the input BAM file. It requires per-read SNR metrics, and the per-
base PulseWidth metric for Sequel data.

The selected algorithm will stop with an error message if any features that
it requires are unavailable.

Output Files
Output files are specified as comma-separated arguments to the -o flag.
The file name extension provided to the -o flag is meaningful, as it
determines the output file format. For example:

gcpp aligned_subreads.bam -r lambda.fa -o myVariants.gff,myConsensus.fasta

will read input from aligned_subreads.bam, using the reference
lambda.fa, and send variant call output to the file myVariants.gff, and
consensus output to myConsensus.fasta.

The file formats currently supported (using extensions) are:
Page 34

• .gff: PacBio GFFv3 variants format; convertible to BED.
• .vcf: VCF 4.2 variants format (that is compatible with v4.3.)
• .fasta: FASTA file recording the consensus sequence calculated for

each reference contig.
• .fastq: FASTQ file recording the consensus sequence calculated for

each reference contig, as well as per-base confidence scores.

Available Algorithms
At this time there are three algorithms available for variant calling:
plurality, poa and arrow.

• plurality is a simple and very fast procedure that merely tallies the
most frequent read base or bases found in alignment with each
reference base, and reports deviations from the reference as potential
variants. This is a very insensitive and flawed approach for PacBio
sequence data, and is prone to insertion and deletion errors.

• poa uses the partial order alignment algorithm to determine the
consensus sequence. It is a heuristic algorithm that approximates a
multiple sequence alignment by progressively aligning sequences to
an existing set of alignments.

• arrow uses the per-read SNR metric and the per-pulse pulsewidth
metric as part of its likelihood model.

Confidence Values
The arrow and plurality algorithms make a confidence metric available
for every position of the consensus sequence. The confidence should be
interpreted as a phred-transformed posterior probability that the
consensus call is incorrect; such as:

Options Description

-j Specifies the number of worker processes to use.

--algorithm= Specifies the variant-calling algorithm to use; values are plurality,
arrow and poa. (Default = arrow)

-r Specifies the FASTA reference file to use.

-o Specifies the output file format; values are .gff, .vcf, .fasta, and
.fastq.

--maskRadius When using the arrow algorithm, setting this option to a value N greater
than 0 causes gcpp to pass over the data a second time after masking out
regions of reads that have >70% errors in 2*N+1 bases. This setting has
little to no effect at low coverage, but for high-coverage datasets (>50X),
setting this parameter to 3 may improve final consensus accuracy. In rare
circumstances, such as misassembly or mapping to the wrong reference,
enabling this parameter may cause worse performance.

--minConfidence MINCONFIDENCE
-q MINCONFIDENCE

Specifies the minimum confidence for a variant call to be output to
variants.{gff,vcf} (Default = 40)

--minCoverage MINCOVERAGE
-x MINCOVERAGE

Specifies the minimum site coverage for variant calls and consensus to be
calculated for a site. (Default = 5)
Page 35

gcpp clips reported QV values at 93; larger values cannot be encoded in a
standard FASTQ file.

Chemistry Specificity
The --algorithm=arrow parameter is trained per-chemistry. arrow
identifies the sequencing chemistry used for each run by looking at
metadata contained in the input BAM data file. This behavior can be
overridden by a command-line option.

When multiple chemistries are represented in the reads in the input file,
the Arrow will model reads appropriately using the parameter set for its
chemistry, thus yielding optimal results.

Genome
Assembly

The Genome Assembly application generates de novo assemblies using
HiFi Reads. The application is fast, produces contiguous assemblies, and
is suitable for genomes of any size.

The Genome Assembly application is powered by the IPA HiFi genome
assembler and includes the following features:

• Separates haplotypes during assembly using a novel phasing stage
(Nighthawk).

• Polishes the contigs with phased reads using Racon.
• Improves haplotype separation using the purge_dups tool.

Workflow of the Genome Assembly Application
Analysis steps are highly optimized to produce assemblies of large
genomes efficiently.

The workflow consists of seven stages:

1. Sequence database construction.
2. Fast overlap computation using the Pancake tool.
3. A dedicated phasing stage using the Nighthawk tool.
4. Filtering chimeras and residual repeats.
5. Layout based on the string graph.
6. Polishing using the Racon tool.
7. Purging haplotype duplicates from the primary assembly using the

third-party tool purge_dups.

The workflow accepts HiFi XML Data Sets as input.
Page 36

IPA HiFi Genome Assembler

• Scales well on a cluster.
• The workflow has an embedded downsampling feature:

– If the genome size and the desired coverage are specified, the initial
stage (SeqDB construction) downsamples the input Data Set to the
desired coverage.

– Otherwise, the full coverage is used.

Usage
The Genome Assembly application is run using the pbcromwell run
command, with the pb_assembly_hifi parameter to specify the
application. See “pbcromwell” on page 74 for details.

To view information on the available Genome Assembly options, enter:

pbcromwell show-workflow-details pb_assembly_hifi

The minimum command needed to run the workflow requires the input
and the number of threads. The following example uses 16 threads:

pbcromwell run pb_assembly_hifi -e <input.xml> --nproc 16

The following example performs an assembly using an input XML Data
Set, and uses all default settings, including 1 CPU:

pbcromwell run pb_assembly_hifi -e <input.consensusreadset.xml>

Note: The default options for this workflow are equivalent to the following
command:

pbcromwell run pb_assembly_hifi \
-e <input.consensusreadset.xml> \
--task-option reads=None \
--task-option ipa2_genome_size=0 \
--task-option ipa2_downsampled_coverage=0 \
--task-option ipa2_advanced_options="" \
--task-option ipa2_run_polishing=True \
--task-option ipa2_run_phasing=True \
--task-option ipa2_run_purge_dups=True \
--task-option ipa2_ctg_prefix="ctg." \
--task-option ipa2_reads_db_prefix="reads" \
--task-option ipa2_cleanup_intermediate_files=True \
--task-option dataset_filters="" \
--task-option filter_min_qv=20 \
--nproc 8

The default options for this workflow should work well for any genome
types.

If the assembly is run on a single local node with high CPU count, such as
64 cores, we recommend that the job submission for pbcromwell is
configured so that it uses 4 concurrent jobs and 16 threads per job.
Page 37

We found this to be more efficient than using 64 threads and 1 concurrent
job, as many steps are very data I/O-dependent.

You can apply a similar principle for compute environments with more or
fewer cores. For example, for a machine with 80 cores, one can use 20
threads and 4 concurrent jobs.

Genome Assembly Parameters Input Files
 Option Default Value Description

-e, --eid_ccs NONE Optional parameter, required if --task-option reads
<input> is not specified. This is a SMRT Link-specific input
parameter and supports only PacBio Consensusreadset
XML files as input.

--task-option reads NONE Optional parameter, required if -e <input> is not specified.
Supports multiple input formats: FASTA, FASTQ, BAM, XML,
FOFN and gzipped versions of FASTA/FASTQ.

--task-option
ipa2_genome_size

0 The approximate number of base pairs expected in the
genome. This is used only for downsampling; if the value is ≤
0, downsampling is disabled. Note: It is better to slightly
overestimate rather than underestimate the genome length to
ensure good coverage across the genome.

--task-option
ipa2_downsampled_coverage

0 The input Data Set can be downsampled to a desired
coverage, provided that both the
ipa2_downsampled_coverage and ipa2_genome_size
options are specified and >0.
Downsampling applies to the entire assembly process,
including polishing.
This parameter selects reads randomly, using a fixed random
seed for reproducibility.

--task-option
ipa2_advanced_options

NONE A semicolon-separated list of KEY=VALUE pairs. New line
characters are not accepted. (These are described later in
this document.)

--task-option
ipa2_run_polishing

TRUE Enables or disables the polishing stage of the workflow.
Polishing can be disabled to perform fast draft assemblies.

--task-option
ipa2_run_phasing

TRUE Enables or disables the phasing stage of the workflow.
Phasing can be disabled to assemble haploid genomes, or to
perform fast draft assemblies.

--task-option
ipa2_run_purge_dups

TRUE Enables or disables identification of “duplicate” alternate
haplotype contigs which may be assembled in the primary
contig file, and moves them to the associate contig (haplotig)
file.

--task-option
ipa2_ctg_prefix

.ctg The prefix used to label the output generated contigs.

--task-option
ipa2_reads_db_prefix

reads The prefix of the sequence and seed databases which will be
used internally for assembly.

--task-option
ipa2_cleanup_intermediate
_files

TRUE Removes intermediate files from the run directory to save
space.

--task-option
dataset_filters

NONE (General pbcromwell option) A semicolon-separated (not
comma-separated) list of other filters to add to the Data Set.

--task-option
filter_min_qv

20 (General pbcromwell option) Phred-scale integer QV cutoff
for filtering HiFi Reads. The default for all applications
(except Iso-Seq analysis) is 20 (QV 20), or 99% predicted
accuracy.
Page 38

• *.bam file containing PacBio data.
• *.fasta or *.fastq file containing PacBio data.
• *.xml file containing PacBio data.
• *.fofn files with file names of files containing PacBio data.

Output Files
• final_purged_primary.fasta file containing assembled primary

contigs.
• final_purged_haplotigs.fasta file containing assembled

haplotigs.

Advanced Parameters
Advanced parameters should be rarely modified. For the special cases
when that is required, advanced parameters are documented below.

Advanced parameters specified on the command line:

• Are in the form of key = value pairs.
• Each pair is separated by a semicolon (;) character.
• The full set of advanced parameters is surrounded by one set of

double quotes.
• The specified value of a parameter overwrites the default options for

that key – all desired options of that parameter must be explicitly listed,
not just the ones which should change from the default.

• Setting an empty value clears the parameter; it does not reset the
value back to default.

Example:

 --task-option ipa2_advanced_options="config_seeddb_opt=-k 30;config_block_size=2048"

Complete List of Available Advanced Parameters and Default Values:

--config NONE (General pbcromwell option) Java configuration file for
running Cromwell.

--nproc 1 (General pbcromwell option) Number of processors per
task.

 Option Default Value Description

 Advanced Parameters Default Value Description

config_genome_size 0 The approximate number of base pairs expected in the
genome, used to determine the coverage cutoff. This is
only used for downsampling; 0 turns downsampling off.
Note: It is better to slightly overestimate rather than
underestimate the genome length to ensure good
coverage across the genome.
Page 39

config_coverage 0 The input Data Set can be downsampled to a desired
coverage, provided that both the Downsampled
coverage and Genome Length parameters are
specified and above 0.
Downsampling applies to the entire assembly process,
including polishing. This feature selects reads randomly,
using a fixed random seed for reproducibility.

config_polish_run 1 Enables or disables the polishing stage of the workflow.
Polishing can be disabled to perform fast draft
assemblies. 0 disables this feature; 1 enables it.

config_phase_run 1 Enables or disables the phasing stage of the workflow.
Phasing can be disabled to assemble haploid genomes,
or to perform fast draft assemblies. 0 disables this
feature; 1 enables it.

config_purge_dups_run 1 Enables or disables the purge_dups stage of the
workflow. 0 disables this feature; 1 enables it.

config_autocomp_max_cov 1 If enabled, the maximum allowed overlap coverage at
either the 5’ or the 3’ end of every read is automatically
determined based on the statistics computed from the
overlap piles. This value is appended to the
config_ovl_filter_opt value internally, and
supersedes the manually specified --max-cov and
--max-diff values of that parameter. These options
are used to determine potential repeats and filter out
those reads before the string graph is constructed.
0 disables this feature; 1 enables it.

config_block_size 4096 The overlapping process is performed on pairs of blocks
of input sequences, where each block contains the
number of sequences which crop up to this size (in Mbp).
Note: The number of pairwise comparisons grows
quadratically with the number of blocks (meaning more
cluster jobs), but also the larger the block size the more
resources are required to execute each pairwise
comparison.

config_existing_db_prefix NONE Allows injection of an existing SeqDB, so that one
doesn’t have to be built from scratch. The provided
existing DB is symbolically linked and used for assembly.
(This option is intended for debugging purposes.)

 Advanced Parameters Default Value Description
Page 40

config_ovl_filter_opt --max-diff 80
--max-cov 100
--min-cov 2
--bestn 10
--min-len 4000
--gapFilt
--minDepth 4
--idt-stage2 98

Overlap filter options.
--gapFilt - Enables the chimera filter, which analyzes
each overlap pile, and determines whether a pread is
chimeric based on the local coverage across the pread.
--minDepth - Option for the chimera filter. The chimera
filter is ignored when a local region of a read has
coverage lower than this value.
The other parameters are:
--min-cov - Minimum allowed coverage at either the 5'
or the 3' end of a read. If the coverage is below this
value, the read is blacklisted and all of the overlaps it is
incident with are ignored. This helps remove potentially
chimeric reads.
--max-cov - Maximum allowed coverage at either the 5'
or the 3' end of a read. If the coverage is above this
value, the read is blacklisted and all of the overlaps it is
incident with are ignored. This helps remove repetitive
reads which can make tangles in the string graph. Note
that this value is a heuristic which works well for ~30x
seed length cutoff. If the cutoff is set higher, we advise
that this value be also increased. Alternatively, using the
autocompute_max_cov option can automatically
estimate the value of this parameter, which can improve
contiguity (for example, in cases when the input genome
size or the seed coverage were overestimated).
--max-diff - Maximum allowed difference between the
coverages at the 5' and 3' ends of any particular read. If
the coverage is above this value, the read is blacklisted
and all of the overlaps it is incident with are ignored. If the
autocompute_max_cov option is used, then the same
computed value is supplied to this parameter as well.
--bestn - Keep at most this many overlaps on the 5'
and the 3' side of any particular read.
--min-len - Filter overlaps where either A-read or the
B-read are shorter than this value.
--idt-stage2 - Filter overlaps with identity below 98%.
--high-copy-sample-rate - Controls the
downsampling of reads from high copy elements to the
expected coverage determined by maxCov*rate, where
rate is the value of this parameter. If rate is 0, then
these high coverage reads are discarded.

config_ovl_min_idt 98 The final overlap identity threshold. Applied during the
final filtering stage, right before the overlaps are passed
to the layout stage.

config_ovl_min_len 1000 The minimum length of either A-read or a B-read to keep
the overlap. Applied during the final filtering stage, right
before the overlaps are passed to the layout stage.

config_ovl_opt --one-hit-per-
target
--min-idt 96

Overlapping options for the pancake overlapping tool.
The options set by this parameter here are passed
directly to pancake. For details on pancake options,
use pancake -h.
The defaults used here are: --one-hit-per-target
which keeps only the best hit in case there are multiple
possible overlaps between a pair of reads (tandem
repeats); and --min-idt 96 which will filter out any
overlap with identity lower than 96%.

config_phasing_opt NONE Options for the phasing tool nighthawk. The options set
by this parameter are passed directly to nighthawk. For
details on nighthawk options, use nighthawk -h.

 Advanced Parameters Default Value Description
Page 41

config_phasing_split_opt --split-type
noverlaps
--limit 3000000

Options that control the chunking of the phasing jobs,
and through that regulate the time and memory
consumption of each individual chunk.
The defaults are: --split-type noverlaps which
splits the chunks by the number of overlaps; and
--limit 3000000 which allow at most approximately 3
million overlaps per chunk.
Empirically, the current defaults keep the maximum
memory consumption (RSS) of the phasing jobs under 4
GB per chunk.

config_seeddb_opt -k 28
-w 120
--space 1

Options to control the seed computation. These options
are passed directly to the pancake seeddb command.
Defaults: -k 28 is the k-mer size of 28 bp; -w 120 is the
minimizer window size of 120 bp; and --space 1
specifies the spacing for spaced seed construction, with
1 gap in between every two bases of the seed.
For more details on these and other options, use
pancake seeddb -h.

config_seqdb_opt --compression 1 Options to control the construction of the sequence
database. These options are passed directly to the
pancake seqdb command.
Current default is --compression 1 which turns on the
2-bit encoding compression of the sequences.
For more details on these and other options, use
pancake seqdb -h.

config_use_hpc 0 This parameter enables (1) or disables (0) an
experimental Homopolymer Compression feature.
If this feature is enabled, the overlaps are computed from
homopolymer-compressed sequences. The layout stage
is somewhat slower because the sequences have to be
aligned to determine the correct homopolymer-expanded
coordinates.

config_use_seq_ids 1 This feature is mostly useful for debugging purposes. If 0
is specified, then the overlaps contain original sequence
names instead of their numerical IDs.
The default of 1 uses the numerical IDs to represent
reads, which uses memory much more efficiently.

config_purge_map_opt --min-map-len
1000
--min-idt 98.0
--bestn 5

This option is used to control the mapping of the reads to
contigs for the purge_dups tool. The mapper used is
pancake, and the options set by this parameter are used
directly by pancake. For details on pancake options,
use pancake -h.
Option --min-map-len 1000 removes any alignment
which did not span more than 1000 bp during the
mapping process; --min-idt 98.0 removes any
alignment with identity below 98.0%, and --bestn 5
keeps at most 5 top scoring alignments for each query
read (one primary alignment and at most 4 secondary
alignments).

 Advanced Parameters Default Value Description
Page 42

HiFiViral SARS-
CoV-2 Analysis

Use this application to analyze multiplexed samples sequenced with the
HiFiViral SARS-CoV-2 Kit. For each sample, this analysis provides:

• Consensus sequence (FASTA)
• Variant calls (VCF)
• HiFi Reads aligned to the reference (BAM)
• Plot of HiFi Read coverage depth across the SARS-CoV-2 genome.

Across all samples, this analysis provides:

• Job summary table including passing sample count at 90 and 95%
genome coverage.

• Sample summary table including, for each sample: Count of variable
sites, genome coverage, read coverage, and probability of multiple
strains, and other metrics.

• Plate QC graphical summary of performance across samples in assay
plate layout.

• Plot of HiFi Read depth of coverage for all samples.

config_purge_dups_calcuts NONE The third-party tool purge_dups can accept user-
defined cutoffs for purging. On some genomes, the
automated computation of the cutoffs in purge_dups
can result in suboptimal values, and in this case a user
can specify them manually.
This option is passed directly to the
purge_dups_calcuts tool. For details on the possible
values that can be passed to this tool, use
ipa_purge_dups_calcuts without parameters.
Relevant parameters include:
-l INT Lower bound for read depth.
-m INT Transition between haploid and diploid.
-u INT Upper bound for read depth.

config_m4filt_high_copy_s
ample_rate

1.0 This option is passed to the --high-copy-sample-
rate parameter of the overlap filter, which controls the
downsampling of reads from high copy elements to the
expected coverage determined by maxCov*rate, where
rate is the value of this parameter. If 0, then these high
coverage reads are discarded.
Note: This parameter supersedes the
config_ovl_filter_opt options.

config_max_polish_block_m
b

100 During the polishing stage, contigs are grouped into
chunks of approximate size specified by this parameter
(in megabases). Each chunk is processed separately
and in parallel (depending on the system configuration).

config_layout_opt NONE This value is passed directly to the assembly layout
stage. To get a list of valid options for this parameter,
enter ipa2_ovlp_to_graph -h on the command line.

 Advanced Parameters Default Value Description
Page 43

Notes:

• The application accepts HiFi Reads (BAM format) as input. HiFi
Reads are reads generated with CCS Analysis that have a quality
value equal to or greater than Phred-scaled Q20.

• This application is for SARS-CoV-2 analysis only and is not
recommended for other viral studies. The Wuhan reference genome is
included with SMRT Link and used by default, but advanced users
may specify other reference genomes. We have not tested the
application with reference genomes other than the Wuhan reference
genome.

• The application is intended to identify variable sites and call a single
consensus sequence per sample. The output consensus sequence is
produced based on the dominant variant observed. Minor variant
information that passes through a default threshold may be encoded in
the raw VCF, but does not get propagated into the consensus
sequence FASTA.

• The HiFiViral SARS-CoV-2 Analysis application can be run using the
Auto Analysis feature available in Run Design. This feature allows
users to complete all necessary analysis steps immediately after
sequencing without manual intervention. The Auto Analysis workflow
includes CCS, Demultiplex Barcodes, and HiFiViral SARS-CoV-2
Analysis.

HiFiViral SARS-CoV-2 Application Workflow
1. Process the reads using the mimux tool to trim the probe arm

sequences.
2. Align the reads to the reference genome using pbmm2.
3. Call and filter variants using bcftools, generating the raw variant calls

in VCF file format. Filtering in this step removes low-quality calls (less
than Q20), and normalizes indels.

4. Filter low-frequency variants using vcfcons and generate a consensus
sequence by injecting variants into the reference genome. At each
position, a variant is called only if both the base coverage exceeds
the minimum base coverage threshold (Default = 4) and the fraction of
reads that support this variant is above the minimum variant frequency
threshold (Default = 0.5). See here for details.

Preparing Input Data for the HiFiViral SARS-CoV-2 Analysis
Application
1. Run the Demultiplex Barcodes cromwell workflow, where the input

to that application are HiFi Reads, and the primers are multiplexed bar-
code primers. See “Demultiplex Barcodes” on page 20 for details. If HiFi
Reads have not been generated on the instrument, run CCS Analysis
first. See “ccs” on page 6 for details.
– Provide the proper barcode sequences:
HiFiViral_SARS-CoV-2_M13barcodes.

– Use the task option lima_symmetric_barcodes=false. (The
barcode pairs are asymmetric.)
Page 44

https://www.biorxiv.org/content/10.1101/2021.02.26.433111v1

• Provide the correctly-formatted barcode pair-to-Bio Sample CSV file.
For details, see the --task-option sample_wells_csv option in the
table further down this page.

Input Files
• movie.consensusreadset.xml: Previously-demultiplexed HiFi

Reads, packaged as separate BAM files wrapped in an XML Data Set.
(See “Preparing Input Data for the HiFiViral SARS-CoV-2 Analysis Application”
on page 44 for details.)

• sars_cov2.referenceset.xml: The Wuhan reference genome.
• HiFiViral_SARS-CoV-2_Enrichment_Probes.barcodeset.xml:

Dataset XML specifying the probe sequence file in FASTA format.
• [Optional] Plate QC csv: Four-column CSV file that includes
barcode, biosample, plateID and wellID.
To specify this optional file, add the following option to pbservice:
--task-option sample_wells_csv=<path to CSV file>

Output Files
• pb_sars_cov2_kit.probe_counts_zip: Zipped TSV files with probe

counts, per sample.
• pb_sars_cov2_kit.variants_csv: CSV variant calls for all

samples.
• pb_sars_cov2_kit.vcf_zip: Zipped VCF files containing the final

variant calls, per sample.
• pb_sars_cov2_kit.raw_vcf_zip: Zipped VCF files containing the

raw variant calls, per sample.
• pb_sars_cov2_kit.fasta_zip: Zipped final consensus sequences,

by sample, in FASTA format. This is a single consensus sequence with
Ns for each sample.

• pb_sars_cov2_kit.frag_fasta_zip: Zipped file of consensus
sequences, split on Ns, in FASTA format, by sample.

• pb_sars_cov2_kit.mapped_zip: Zipped BAM files containing the
output from mapping HiFi Reads to the reference genome, by sample.

• samples.consensus_mapped.bam.zip: Zipped BAM files containing
the output from mapping consensus FASTA files to the reference
genome, by sample.

• samples.coverage.png.zip: Zipped per-sample coverage graphs in
png format.

• hifi_reads.fastq.zip: Zipped file of per-sample trimmed HiFi
Reads in FASTQ format.

• sample_summary.csv: Sample Summary file in CSV format, with one
row per sample.
Page 45

Running the SARS-CoV-2 Analysis Application
pbcromwell run pb_sars_cov2_kit \

-e <movie.consensusreadset.xml> \

-e $SMRT_ROOT/current/bundles/smrtinub/current/private/pacbio/barcodes/ HiFiViral_SARS-
CoV-2_Enrichment_Probes.barcodeset.xml \

-e eid_ref_dataset_2:$SMRT_ROOT/current/bundles/smrtinub/current/private/pacbio/
canneddata/referenceset/SARS-CoV-2/sars_cov2.referenceset.xml

--task-option min_alt_freq=0.5 \
--task-option min_bq=80 \
--task-option mimux_overrides="--max-len=800 --same" \
--task-option sample_wells_csv=None \
--config cromwell.conf \
--nproc 8

ipdSummary The ipdSummary tool detects DNA base-modifications from kinetic
signatures. It is part of the kineticsTool package.

kineticsTool loads IPDs observed at each position in the genome,
compares those IPDs to value expected for unmodified DNA, and outputs
the result of this statistical test. The expected IPD value for unmodified
DNA can come from either an in-silico control or an amplified control. The
in-silico control is trained by Pacific Biosciences and shipped with the
package. It predicts the IPD using the local sequence context around the
current position. An amplified control Data Set is generated by sequencing

Options Description

--task-option
sample_wells_csv

Specifies a 4-column CSV file used to generate the Plate QC Report,
which displays analysis results for each sample in the assay plate. The
CSV file must contain barcode pairs, Bio Sample name, Plate IDs, and
Well IDs. The report is useful for diagnosing sample issues based on plate
location. (Default = None)

--task-option min_coverage Specifies the minimum read coverage. Below this value, the consensus
sequence will be set to Ns and no variants are called. (Default = 4)

--task-option min_alt_freq Specifies that only variants whose frequency is greater than this value are
reported. This frequency is determined based on the read depth (DP) and
allele read count (AD) information in the VCF output file. We recommend
using the default value to properly call the dominant alternative variant
while also filtering out potential artifacts. (Default = 0.5)

--task-option min_bq Specifies that reads with barcode scores below this minimum value are
not included in analysis. (Default = 80)

--task-option mimux_overrides Specifies additional options to pass to the mimux preprocessing tool for
trimming and filtering reads by probe sequences. Options should be
entered in space-separated format.
Available options include:
--max-len: Specifies the maximum sequence length. (Default = 800)
--same: Specifies that only reads with arms sequences from the same
probe are used.
Page 46

unmodified DNA with the same sequence as the test sample. An amplified
control sample is usually generated by whole-genome amplification of the
original sample.

Modification Detection
The basic mode of kineticsTool does an independent comparison of IPDs
at each position on the genome, for each strand, and outputs various
statistics to CSV and GFF files (after applying a significance filter).

Modifications Identification
kineticsTool also has a Modification Identification mode that can decode
multi-site IPD “fingerprints” into a reduced set of calls of specific
modifications. This feature has the following benefits:

• Different modifications occurring on the same base can be
distinguished; for example, 6mA and 4mC.

• The signal from one modification is combined into one statistic,
improving sensitivity, removing extra peaks, and correctly centering the
call.

Algorithm: Synthetic Control
Studies of the relationship between IPD and sequence context reveal that
most of the variation in mean IPD across a genome can be predicted from
a 12-base sequence context surrounding the active site of the DNA
polymerase. The bounds of the relevant context window correspond to the
window of DNA in contact with the polymerase, as seen in DNA/
polymerase crystal structures. To simplify the process of finding DNA
modifications with PacBio data, the tool includes a pre-trained lookup table
mapping 12-mer DNA sequences to mean IPDs observed in C2 chemistry.

Algorithm: Filtering and Trimming
kineticsTool uses the Mapping QV generated by pbmm2 and stored in the
cmp.h5 or BAM file (or AlignmentSet) to ignore reads that are not
confidently mapped. The default minimum Mapping QV required is 10,
implying that pbmm2 has 90% confidence that the read is correctly mapped.
Because of the range of read lengths inherent in PacBio data, this can be
changed using the --mapQvThreshold option.

There are a few features of PacBio data that require special attention to
achieve good modification detection performance. kineticsTool inspects
the alignment between the observed bases and the reference sequence
for an IPD measurement to be included in the analysis. The PacBio read
sequence must match the reference sequence for k around the cognate
base. In the current module, k=1. The IPD distribution at some locus can
be thought of as a mixture between the “normal” incorporation process
IPD, which is sensitive to the local sequence context and DNA
modifications, and a contaminating “pause” process IPD, which has a
much longer duration (mean > 10 times longer than normal), but happen
Page 47

rarely (~1% of IPDs).
Note: Our current understanding is that pauses do not carry useful
information about the methylation state of the DNA; however a more
careful analysis may be warranted. Also note that modifications that
drastically increase the roughly 1% of observed IPDs are generated by
pause events. Capping observed IPDs at the global 99th percentile is
motivated by theory from robust hypothesis testing. Some sequence
contexts may have naturally longer IPDs; to avoid capping too much data
at those contexts, the cap threshold is adjusted per context as follows:

capThreshold = max(global99, 5*modelPrediction,
percentile(ipdObservations, 75))

Algorithm: Statistical Testing
We test the hypothesis that IPDs observed at a particular locus in the
sample have longer means than IPDs observed at the same locus in
unmodified DNA. If we have generated a Whole Genome Amplified Data
Set, which removes DNA modifications, we use a case-control, two-
sample t-test. This tool also provides a pre-calibrated “synthetic control”
model which predicts the unmodified IPD, given a 12-base sequence
context. In the synthetic control case we use a one-sample t-test, with an
adjustment to account for error in the synthetic control model.

Usage
To run using a BAM input, and output GFF and HDF5 files:

ipdSummary aligned.bam --reference ref.fasta m6A,m4C --gff basemods.gff \
--csv_h5 kinetics.h5

To run using cmp.h5 input, perform methyl fraction calculation, and output
GFF and CSV files:

ipdSummary aligned.cmp.h5 --reference ref.fasta m6A,m4C --methylFraction \
--gff basemods.gff --csv kinetics.csv

Input Files
• A standard PacBio alignment file - either AlignmentSet XML, BAM, or
cmp.h5 - containing alignments and IPD information.

• Reference sequence used to perform alignments. This can be either a
FASTA file or a ReferenceSet XML.

Output Options Description

--gff FILENAME GFF format.

--csv FILENAME Comma-separated value format.

--csv_h5 FILENAME Compact binary-equivalent of .csv, in HDF5 format.

--bigwig FILENAME BigWig file format.
Page 48

Output Files
The tool provides results in a variety of formats suitable for in-depth
statistical analysis, quick reference, and consumption by visualization
tools. Results are generally indexed by reference position and reference
strand. In all cases the strand value refers to the strand carrying the
modification in the DNA sample. Remember that the kinetic effect of the
modification is observed in read sequences aligning to the opposite
strand. So reads aligning to the positive strand carry information about
modification on the negative strand and vice versa, but the strand
containing the putative modification is always reported.

• modifications.gff: Compliant with the GFF Version 3 specification.
Each template position/strand pair whose probability value exceeds
the probability value threshold appears as a row. The template position
is 1-based, per the GFF specifications. The strand column refers to the
strand carrying the detected modification, which is the opposite strand
from those used to detect the modification. The GFF confidence
column is a Phred-transformed probability value of detection.

The auxiliary data column of the GFF file contains other statistics
which may be useful for downstream analysis or filtering. These
include the coverage level of the reads used to make the call, and +/-
20 bp sequence context surrounding the site.

• modifications.csv: Contains one row for each (reference position,
strand) pair that appeared in the Data Set with coverage at least x.
x defaults to 3, but is configurable with the --minCoverage option. The
reference position index is 1-based for compatibility with the GFF file in
the R environment. Note that this output type scales poorly and is not
recommended for large genomes; the HDF5 output should perform
much better in these cases.

Output Columns: In-Silico Control Mode

Column Description

refId Reference sequence ID of this observation.

tpl 1-based template position.

strand Native sample strand where kinetics were generated. 0 is the strand of the original
FASTA, 1 is opposite strand from FASTA.

base The cognate base at this position in the reference.

score Phred-transformed probability value that a kinetic deviation exists at this position.

tMean Capped mean of normalized IPDs observed at this position.

tErr Capped standard error of normalized IPDs observed at this position (standard
deviation/sqrt(coverage)).

modelPrediction Normalized mean IPD predicted by the synthetic control model for this sequence
context.

ipdRatio tMean/modelPrediction.

coverage Count of valid IPDs at this position.

frac Estimate of the fraction of molecules that carry the modification.
Page 49

http://www.sequenceontology.org/gff3.shtml

Output Columns: Case Control Mode

isoseq3 The isoseq3 tool enables analysis and functional characterization of
transcript isoforms for sequencing data generated on PacBio instruments.
The analysis is performed de novo, without a reference genome.

Usage
isoseq3 <tool>

Typical workflow
1. If you don’t already have CCS Reads, generate them from a subreads

BAM file. By default, CCS Analysis will run with Polish=ON (contains
QVs).

ccs movie.subreads.bam movie.ccs.bam --min-rq 0.9

fracLow 2.5% confidence bound of the frac estimate.

fracUpp 97.5% confidence bound of the frac estimate.

Column Description

Column Description

refId Reference sequence ID of this observation.

tpl 1-based template position.

strand Native sample strand where kinetics were generated. 0 is the strand of the
original FASTA, 1 is opposite strand from FASTA.

base The cognate base at this position in the reference.

score Phred-transformed probability value that a kinetic deviation exists at this
position.

caseMean Mean of normalized case IPDs observed at this position.

controlMean Mean of normalized control IPDs observed at this position.

caseStd Standard deviation of case IPDs observed at this position.

controlStd Standard deviation of control IPDs observed at this position.

ipdRatio tMean/modelPrediction.

testStatistic T-test statistic.

coverage Mean of case and control coverage.

controlCoverage Count of valid control IPDs at this position.

caseCoverage Count of valid case IPDs at this position.

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits
Page 50

2. Visualize primers, then remove primers and demultiplex:

cat primers.fasta
>5p
GCAATGAAGTCGCAGGGTTGGGG
>3p
GTACTCTGCGTTGATACCACTGCTT

lima movie.ccs.bam primers.fasta demux.bam --isoseq

See “Demultiplex Barcodes” on page 20 for details on the lima tool.

3. Remove noise from FL reads:

isoseq3 refine demux.5p--3p.bam primers.fasta flnc.bam --require-polya

4. Cluster consensus sequences to generate transcripts. This will gener-
ate unpolished.hq.bam and unpolished.hq.fasta.gz files, which
are the high-quality (HQ) transcripts that should be analyzed further.
Note: HQ transcripts generated from this step do not contain Quality
Values.

isoseq3 cluster flnc.bam unpolished.bam --use-qvs

5. (Optional) If QVs are desired, run isoseq3 polish, which takes
significantly longer to complete:

isoseq3 polish unpolished.bam movie.subreads.bam polished.bam

6. (Optional) Map transcripts to the genome and collapse HQ transcripts
based on genomic mapping:

pbmm2 align unpolished.bam reference.fasta aligned.sorted.bam --preset ISOSEQ --sort
isoseq3 collapse aligned.sorted.bam out.gff or
isoseq3 collapse aligned.sorted.bam movie.ccs.bam out.gff

See “pbmm2” on page 80 for details.

refine Tool: Remove polyA and concatemers from full-length (FL) reads
and generate full-length non-concatemer (FLNC) transcripts (FL to FLNC).

Usage
isoseq refine [options] <ccs.demux.bam|xml> <primer.fasta|xml>
<flnc.bam|xml>

Inputs/Outputs Description

ccs.demux.bam|xml Input demultiplexed CCS Reads BAM or ConsensusReadSet XML file.

primer.fasta|xml Input primer FASTA or BarcodeSet XML file.

flnc.bam|xml Output flnc BAM or ConsensusReadSet XML file.
Page 51

cluster Tool: Cluster FLNC reads and generate transcripts.

Usage
isoseq3 cluster [options] input output

Example
isoseq3 cluster movie.consensusreadset.xml unpolished.bam

Custom BAM Tags
isoseq3 cluster adds the following custom PacBio tags to the output BAM
file:

• ib: Barcode summary: triplets delimited by semicolons, each triplet
contains two barcode indices and the ZMW counts, delimited by
commas. Example: 0,1,20;0,3,5

• im: ZMW names associated with this isoform.
• is: Number of ZMWs associated with this isoform.

Preprocessing Description

--min-polya-length Specifies the minimum poly(A) tail length. (Default = 20)

--require-polya Requires FL reads to have a poly(A) tail and remove it.

 Options Description

--help, -h Displays help information and exits.

--version Displays program version number and exits.

--verbose, -v Sets the verbosity level.

-j,--num-threads Specifies the number of threads to use; 0 means autodetection.
(Default = 0)

--log-file Writes the log to a file. (Default = stderr)
--log-level Specifies the log level; values are [DEBUG, INFO, WARN, TRACE, FATAL].

(Default = WARN)

Inputs/Outputs Description

input flnc.bam file or movie.consensusreadset.xml file.

output unpolished.bam file or unpolished.transcriptset.xml file.

Options Description

--s1 Specifies the number of seeds for minimer-only clustering.
(Default = 1000)

--s2 Specifies the number of seeds for DP clustering. (Default = 1000)

--poa-cov Specifies the maximum number of CCS Reads used for POA consensus.
(Default = 10)

--use-qvs Use CCS Analysis Quality Values; sets --poa-cov to 100.
Page 52

polish Tool: Polish transcripts using Continuous Long Reads subreads.

Usage
isoseq3 polish [options] input_1 input_2 output

Custom BAM Tags
isoseq3 polish adds the following custom PacBio tags to the output BAM
file:

• iz: Maximum number of subreads used for polishing.
• rq: Predicted accuracy for polished isoform.

Example
isoseq3 polish unpolished.bam movie.subreadset.xml polished.bam

--split-bam Splits BAM output files into a maximum of N files; 0 means no splitting.
(Default = 0)

--min-subreads-split Subread threshold for High-Quality/Low-Quality split; only works with
--use-qvs. (Default = 7)

--log-level Specifies the log level; values are [DEBUG, INFO, WARN, ERROR,
CRITICAL]. (Default = WARN)

-v,--verbose Uses verbose output.

-j,--num-threads Specifies the number of threads to use; 0 means autodetection.
(Default = 0)

--log-file Writes the log to a file. (Default = stdout)

Options Description

Inputs/Outputs Description

input_1 unpolished.bam file or unpolished.transcriptset.xml file.

input_2 movie.subreads.bam file or movie.subreadset.xml file.

output polished.bam file or polished.transcriptset.xml file.

Options Description

-r,--rq-cutoff Specifies the RQ cutoff for fastx output. (Default = 0.99)

-c,--coverage Specifies the maximum number of subreads used for polishing.
(Default = 60)

--log-level Specifies the log level; values are [DEBUG, INFO, WARN, ERROR,
CRITICAL]. (Default = WARN)

-v,--verbose Uses verbose output.

-j,--num-threads Specifies the number of threads to use; 0 means autodetection.
(Default = 0)

--log-file Writes the log to a file. (Default = stdout)
Page 53

summarize Tool: Create a .csv-format barcode overview from transcripts.

Usage
isoseq3 summarize [options] input output

Example
isoseq3 summarize polished.bam summary.csv

collapse Tool: Collapse transcripts based on genomic mapping.

Usage
isoseq3 collapse [options] <alignments.bam|xml> <ccs.bam|xml>
<out.fastq>

Examples:
isoseq3 collapse aligned.sorted.bam out.gff
or
isoseq3 collapse aligned.sorted.bam ccs.bam out.gff

Inputs/Outputs Description

input unpolished.bam file or polished.bam file.

output summary.csv file.

Options Description

--log-level Specifies the log level; values are [DEBUG, INFO, WARN, ERROR,
CRITICAL]. (Default = WARN)

-v,--verbose Uses verbose output.

--log-file Writes the log to file. (Default = stdout)

Inputs/Outputs Description

alignments Alignments mapping polished or unpolished transcripts to the reference
genome. (BAM or XML file).

ccs.bam Optional input BAM file containing CCS Reads.

out.fastq Collapsed transcripts in FASTQ format.

Options Description

--min-aln-coverage Ignores alignments with less than the Minimum Query Coverage.
(Default = 0.95)

--min-aln-identity Ignores alignments with less than the Minimum Alignment Identity.
(Default = 0.50)

--max-fuzzy-junction Ignores mismatches or indels shorter than or equal to N. (Default = 5)

--version Displays program version number and exits.

--log-file Writes the log to file. (Default = stderr)
--log-level Specifies the log level; values are [DEBUG, INFO, WARN, ERROR,

CRITICAL]. (Default = WARN)
Page 54

juliet juliet is a general-purpose minor variant caller that identifies and phases
minor single nucleotide substitution variants in complex populations. It
identifies codon-wise variants in coding regions, performs a reference-
guided de novo variant discovery, and annotates known drug-resistance
mutations. Insertion and deletion variants are currently ignored; support
will be added in a future version. There is no technical limitation with
respect to the target organism or gene.

The underlying model is a statistical test, the Bonferroni-corrected Fisher's
Exact test. It compares the number of observed mutated codons to the
number of expected mutations at a given position.

juliet uses JSON target configuration files to define different genes in
longer reference sequences, such as overlapping open reading frames in
HIV. These predefined configurations ease batch applications and allow
immediate reproducibility. A target configuration may contain multiple
coding regions within one reference sequence and optional drug
resistance mutation positions.

Notes:

• The preinstalled target configurations are meant for a quick start. It is
the user's responsibility to ensure that the target configurations used
are correct and up-to-date.

• If the target configuration none was specified, the provided reference is
assumed to be in-frame.

Performance
At a coverage of 6,000 CCS Reads with a predicted accuracy (RQ) of
≥0.99, the false positive and false negative rates are below 1% and
0.001% (10-5), respectively.

Usage
juliet --config "HIV" data.align.bam patientZero.html

-j,--num-threads Specifies the number of threads to use; 0 means autodetection.
(Default = 0)

Options Description

 Required Description

input_file.bam Input aligned BAM file containing CCS Reads, which must be PacBio-
compliant, that is, cigar M is forbidden.

output_file.html Output report HTML file.
Page 55

Input Files
• BAM-format files containing CCS Reads. These must be PacBio-

compliant, that is, cigar M is forbidden.
• Input CCS Reads should have a minimal predicted accuracy of 0.99.
• Reads should be created with CCS Analysis using the --richQVs

option. Without the --richQVs information, the number of false
positive calls might be higher, as juliet is missing information to filter
actual heteroduplexes in the sample provided.

• juliet currently does not demultiplex barcoded data; you must
provide one BAM file per barcode.

 Configuration Description

--config,-c Path to the target configuration JSON file, predefined target configuration
tag, or the JSON string.

--mode-phasing,-p Phase variants and cluster haplotypes.

 Restrictions Description

--region,-r Specifies the genomic region of interest; reads are clipped to that region.
Empty means all reads.

--drm-only,-k Only reports DRM positions specified in the target configuration. Can be
used to filter for drug-resistance mutations - only known variants from the
target configuration are called.

--min-perc,-m Specifies the minimum variant percentage to report.
Example: --min-perc 1 will only show variant calls with an observed
abundance of more than 1%. (Default = 0)

--max-perc,-n Specifies the maximum variant percentage to report.
Example: --max-perc 95 will only show variant calls with an observed
abundance of less than 95%. (Default = 100)

 Chemistry Override (Specify
both) Description

--sub,-s Specifies the substitution rate. Use to override the learned rate.
(Default = 0)

--del,-d Specifies the deletion rate. Use to override the learned rate. (Default = 0)

 Options Description

--help, -h Displays help information and exits.

--verbose, -v Sets the verbosity level.

--version Displays program version number and exits.

--debug Returns all amino acids, irrespective of their relevance.

--mode-phasing,-p Phases variants and cluster haplotypes.
Page 56

Output Files
A JSON and/or HTML file:

juliet data.align.bam patientZero.html
juliet data.align.bam patientZero.json
juliet data.align.bam patientZero.html patientZero.json

The HTML file includes the same content as the JSON file, but in more
human-readable format. The HTML file contains four sections:

1. Input Data

Summarizes the data provided, the exact call for juliet, and juliet
version for traceability purposes.

2. Target Config

Summarizes details of the provided target configuration for traceability.
This includes the configuration version, reference name and length, and
annotated genes. Each gene name (in bold) is followed by the reference
start, end positions, and possibly known drug resistance mutations.

3. Variant Discovery

For each gene/open reading frame, there is one overview table.

Each row represents a variant position.

• Each variant position consists of the reference codon, reference amino
acid, relative amino acid position in the gene, mutated codon,
percentage, mutated amino acid, coverage, and possible affected
drugs.

• Clicking the row displays counts of the multiple-sequence alignment
counts of the -3 to +3 context positions.
Page 57

4. Drug Summaries

Summarizes the variants grouped by annotated drug mutations:

Predefined Target Configuration
juliet ships with one predefined target configuration, for HIV. Following
is the command syntax for running that predefined target configuration:

juliet --config "HIV" data.align.bam patientZero.html
Page 58

• Note: For the predefined configuration HIV, please use the HIV HXB2
complete genome for alignment.

Customized Target Configuration
To define your own target configuration, create a JSON file. The root child
genes contains a list of coding regions, with begin and end, the name of
the gene, and a list of drug resistant mutations. Each DRM consists of its
name and the positions it targets. The drms field is optional. If provided,
the referenceSequence is used to call mutations, otherwise it will be
tested against the major codon. All indices are with respect to the provided
alignment space, 1-based, begin-inclusive and end-exclusive [).

Target Configuration Example 1- A customized json target configuration
file named my_customized_hiv.json:

{
 "genes": [
 {
 "begin": 2550,
 "drms": [
 {
 "name": "fancy drug",
 "positions": ["M41L"]
 }
],
 "end": 2700,
 "name": "Reverse Transcriptase"
 }
],
 "referenceName": "my seq",
 "referenceSequence": "TGGAAGGGCT...",
Page 59

 "version": "Free text to version your config files"
 "databaseVersion": "DrugDB version x.y.z (last updated YYYY-MM-DD)"
}

Run with a customized target configuration using the --config option:

juliet --config my_customized_hiv.json data.align.bam patientZero.html

Valid Formats for DRMs/positions

103 Only the reference position.
M130 Reference amino acid and reference position.
M103L Reference aa, reference position, mutated aa.
M103LKA Reference aa, reference position, list of possible mutated aas.
103L Reference position and mutated aa.
103LG Reference position and list mutated aas.

Missing amino acids are processed as wildcard (*).

Example:

{ "name": "ATV/r", "positions": ["V32I", "L33", "46IL",
"I54VTALM", "V82ATFS", "84"] }

Target Configuration Example 2 - BCR-ABL:

For BCR-ABL, using the ABL1 gene with the following reference
NM_005157.5, a typical target configuration looks like this:

{
 "genes": [
 {
 "name": "ABL1",
 "begin": 193,
 "end": 3585,
 "drms": [
 {
 "name": "imatinib",
 "positions": [
 "T315AI","Y253H","E255KV","V299L","F317AICLV","F359CIV"]
 },
 {
 "name": "dasatinib",
 "positions": ["T315AI","V299L","F317AICLV"]
 },
 {
 "name": "nilotinib",
 "positions": ["T315AI","Y253H","E255KV","F359CIV"]
 },
 {
 "name": "bosutinib",
 "positions": ["T315AI"]
 }
]
 }
],
 "referenceName": "NM_005157.5",
 "referenceSequence": "TTAACAGGCGCGTCCC..."
Page 60

https://www.ncbi.nlm.nih.gov/nuccore/NM_005157.5

No Target Configuration
If no target configuration is specified, either make sure that the sequence
is in-frame, or specify the region of interest to mark the correct reading
frame, so that amino acids are correctly translated. The output is labeled
with unknown as the gene name:

juliet data.align.bam patientZero.html

Phasing
The default mode is to call amino-acid/codon variants independently.
Using the --mode-phasing option, variant calls from distinct haplotypes
are clustered and visualized in the HTML output.

• The row-wise variant calls are "transposed" onto per-column
haplotypes. Each haplotype has an ID: [A-Z]{1}[a-z]?.

• For each variant, colored boxes in this row mark haplotypes that
contain this variant.

• Colored boxes per haplotype/column indicate variants that co-occur.
Wild type (no variant) is represented by plain dark gray. A color palette
helps to distinguish between columns.

• The JSON variant positions has an additional haplotype_hit boolean
array with the length equal to the number of haplotypes. Each entry
indicates if that variant is present in the haplotype. A haplotype block
under the root of the JSON file contains counts and read names. The
order of those haplotypes matches the order of all haplotype_hit
arrays.
Page 61

There are two types of tooltips in the haplotype section of the table.

The first tooltip is for the Haplotypes % and shows the number of reads
that count towards (A) Actually reported haplotypes, (B) Haplotypes that
have less than 10 reads and are not being reported, and (C) Haplotypes
that are not suitable for phasing. Those first three categories are mutually
exclusive and their sum is the total number of reads going into juliet. For
(C), the three different marginals provide insights into the sample quality;
as they are marginals, they are not exclusive and can overlap. The
following image shows a sample with bad PCR conditions:

The second type of tooltip is for each haplotype percentage and shows the
number of reads contributing to this haplotype:

laa Long Amplicon Analysis (LAA) finds phased consensus sequences from a
pooled set of (possibly polyploid) amplicons sequenced with Pacific
Biosciences’ SMRT technology. Sometimes referred to as LAA2, the
executable laa is a complete rewrite of the AmpliconAnalysis module
from the ConsensusTools package included with earlier versions of SMRT
Analysis, which performed a similar function in the Quiver framework.
laa is a computational and memory-intensive software tool that builds
upon the Arrow framework for generating high-quality consensus
sequences. It is generally preferable to run laa using the SMRT Link
interface for efficient distribution across a compute cluster. However, it is
occasionally useful to run laa from the command-line to identify optimal
parameter settings or to diagnose a problem.

Run Modes
AmpliconAnalysis is a general solution for the analysis of PCR products
generated with SMRT sequencing, and it can be run in multiple
configurations depending on the design of the experiment.
Page 62

1. Pooled Polyploid Amplicons: The default mode assumes that the
data contains a single complex mixture of amplicons, which may come
from different genes and may have multiple alleles.

2. Barcoded Polyploid Amplicons: If passed a file of barcoding results,
AmpliconAnalysis will instead separate the data by barcode and run
the above process on each subset.

3. Barcoded Simple Amplicons: Another common use case is to
generate consensus sequences for a large number of simple ampli-
cons, such as for synthetic construct validation or high-throughput
screening.

Input Files
laa only accepts PacBio-compatible BAM files or Data Set XML files as
input.

In addition, the underlying files themselves now contain barcode
information. This document assumes that you already have a barcoded
PacBio BAM file containing the data to be analyzed.

Output Files
laa produces two sets of FASTQ files containing a sequence for each
phased template sequence in each coarse cluster, and for each barcode.

• amplicon_analysis.fastq: Contains all of the high-quality non-
artifactual sequences found.

• amplicon_analysis_chimeras_noise.fastq: Contains sequences
thought to be some form of PCR or sequencing artifact.

Note: A sequence is defined as an artifact if, in the summary CSV file,
the value of either the IsDuplicate, NoiseSequence or IsChimera
column is True.

• amplicon_analysis_summary.csv: Contains summary information
about each read. Empty fields and values of -1 represent inapplicable
columns, while fields with 1 represent True and 0 represents False.
Contains the following fields:
– BarcodeName: Name of the barcode the reads came from. This is set

to 0 for non-barcode runs.
– FastaName: Sequence ID or header string.
– CoarseCluster: Number of the coarse cluster the sequence came

from.
– Phase: Number of the phase of the sequence in the coarse cluster.
– TotalCoverage: Total number of subreads mapped to this

sequence. This may be capped using the numPhasingReads option.
– SequenceLength: Length of this consensus sequence.
– ConsensusConverged: 1 if a final consensus was reached within the

allotted iterations; 0 if otherwise. 0 may indicate problems with the
underlying sample or data.
Page 63

– PredictedAccuracy: Predicted accuracy of the consensus
sequence, calculated by multiplying together the QVs generated by
Arrow.

– NoiseSequence: 1 if the sequence has a low-quality consensus,
corresponding to a predicted accuracy less than 95% indicating a
probable PCR artifact; 0 if otherwise.

– IsDuplicate: 1 if the sequence is a duplicate of another with more
coverage; 0 if otherwise.

– DuplicateOf: If IsDuplicate is 1, contains the name of the other
sequence; otherwise empty.

– IsChimera: 1 if the sequence is tagged as a chimeric by the
UCHIME-like chimera labeler; 0 if otherwise.

– ChimeraScore: UCHIME-like score for sequences tested as
possible chimeras.

– ParentSequenceA: If chimeric, the name of the consensus thought
to be the source of the left half.

– ParentSequenceB: If chimeric, the name of the consensus thought
to be the source of the right half.

– CrossoverPosition: Position in the chimeric sequence where the
junction between the parent sequences is thought to have occurred.

• amplicon_analysis_subreads.X.csv: Contains mapping
probabilities for each subread used to call the consensus sequences
generated. A separate file is written for each barcode pair, where X is
replaced with the name of that pair. Contains the following fields:
– SubreadId: The name of a particular subread used in the current

run.
– <A Consensus Sequence Name>: The mapping probability for the

subread listed in SubreadId to the particular consensus sequence
named.

Usage
laa [options] INPUT

 Options Description

-h, --help Displays help information and exits.

--verbose, -v Sets the verbosity level.

--version Displays program version number and exits.

--log level Sets the logging level. (Default = INFO)

--rngSeed RNG seed, modulates reservoir filtering of reads. (Default = 42)

--generateBamIndex Generates PacBio indicies (*.pbi) for BAM files that don't have them.

--ignoreBamIndex Ignores PacBio indicies (*.pbi) for BAM files if they exist.

-M,--modelPath Specifies the path to a model file or directory containing model files.

-m,--modelSpec Specifies the name of chemistry or model to use, overriding the default
selection.

--numThreads,-n Specifies the number of threads to use; 0 means autodetection.
(Default = 0)
Page 64

--takeN Reports only the top N consensus sequences for each barcode. To
disable, use a number less than 1. (Default = 0)

-t,--trimEnds Trims N bases from each end of each consensus. (Default = 0)

--minPredictedAccuracy Specifies the minimum predicted consensus accuracy below which a
consensus is treated as noise. (Default = 0.949999988079071)

--chimeraScoreThreshold Specifies the minimum score to consider a sequence chimeric.
(Default = 1)

--ChimeraFilter Activates the chimera filter and separate chimeric consensus outputs.

--noChimeraFilter Deactivates the chimera filter and outputs all consensus.

--logFile Output file to write logging information to.

--resultFile Output file name for high-quality results.
(Default = amplicon_analysis.fastq)

--junkFile Output file name for low-quality or chimeric results.
(Default = amplicon_analysis_chimeras_noise.fastq)

--reportFile Output file name for the summary report.
(Default = amplicon_analysis_summary.csv)

--inputReportFile Output file name for the output estimates of input PCR quality, based on
subread mappings. (Default = amplicon_analysis_input.csv)

--subreadsReportPrefix Prefix for the output subreads report.
(Default = amplicon_analysis_subreads)

-b,--barcodes Specifies the FASTA file name of the barcode sequences used, which
overwrites any barcode names in the Data Set. Note: This is used only
to find barcode names.

--minBarcodeScore Specifies the minimum average barcode score required for subreads.
(Default = 0)

--fullLength Filters input reads by presence of both flanking barcodes.

--doBc Specifies a comma-separated list of barcode pairs to analyse. This can be
by name ("lbc1--lbc1") or by Index ("0--0").

--ignoreBc Disables barcode filtering so that all data be treated as one sample.

-l,--minLength Specifies the minimum length of input reads to use. (Default = 3000)

-L,--maxLength Specifies the maximum length of input reads to use. To disable, set to 0.
(Default = 0)

-s,--minReadScore Specifies the minimum read score of input reads to use. (Default = 0.75)

--minSnr Specifies the minimum SNR of input reads to use. (Default = 3.75)

--whitelist Specifies a file of ReadIds, in either Text or FASTA format, to allow from
the input file. (Default = NONE)

-r,--maxReads Specifies the maximum number of input reads, per barcode, to use in
analysis. (Default = 2000)

-c,--maxClusteringReads Specifies the maximum number of input reads to use in the initial
clustering step. (Default = 500)

--fullLengthPreference Prefers full-length subreads when clustering.

--fullLengthClustering Uses only full-length subreads when clustering.

--clusterInflation Markov clustering inflation parameter. (Default = 2)

 Options Description
Page 65

Algorithm Description
laa proceeds in six main phases: Data filtering, coarse clustering,
waterfall clustering, fine phasing, consensus polishing, and post-
processing.

• Data filtering is used to separate out sequences by their barcode
calls, if present, so that only reads long enough to meaningfully
contribute to phasing are used.

• The Coarse and Waterfall Clustering steps are used to find and
separate reads coming from different amplicons.

• The reads from each cluster are then put through the phasing step,
which recursively separates full-length haplotypes using a variant of
the Arrow model. Those haplotypes are then polished within the
Arrow framework to achieve a high-quality consensus sequence.

• Finally, a post-processing step attempts to identify and remove
spurious consensus sequences and sequences representing PCR
artifacts.

--clusterLoopWeight Markov clustering loop weight parameter.
(Default = 0.00100000004749745)

--skipRate Skips some high-scoring alignments to disperse the cluster more.
(Default = 0.0)

--minClusterSize Specifies the minimum number of reads supporting a cluster before it is
reported. (Default = 20)

--doCluster Only analyzes one specified cluster. (Default = -1)

--Clustering Enables coarse clustering.

--noClustering Disables coarse clustering.

-i,--ignoreEnds When splitting, ignores N bases at the end. This prevents excessive
splitting caused by degenerate primers. (Default = 0)

--maxPhasingReads Specifies the maximum number of reads to use for phasing/consensus.
(Default = 500)

--minQScore Specifies the minimum score to require of mutations used for phasing.
(Default = 20)

--minPrevalence Specifies the minimum prevalence to require of mutations used for
phasing. (Default = 0.0900000035762787)

--minSplitReads Specifies the minimum number of reads favoring the minor phase required
to split a haplotype. (Default = 20)

--minSplitFraction Specifies the minimum fraction of reads favoring the minor phase required
to split a haplotype. (Default = 0.100000001490116)

--minSplitScore Specifies the global likelyhood improvement required to split a haplotype.
(Default = 500)

--minZScore Specifies the minimum Z Score to allow before adding a read to a
haplotype. (Default = -10)

--Phasing Enables the fine phasing step.

--noPhasing Disables the fine phasing step.

 Options Description
Page 66

Data Filtering
In this first step, we separate sequences by barcode and then apply a
series of user-selected quality filters to speed up down-stream processing
and improve result quality. Filters are used primarily to remove short
subreads (which may not be long enough to phase variants of interest)
and subreads with low barcode scores (representing reads for whom the
barcode call is uncertain and may be incorrect). A “Whitelist” option is also
available so that users can specify the exact list of subreads or ZMWs to
use.

Coarse Clustering and Waterfall Clustering
The coarse clustering step groups the number of subreads (set by the
maxClusteringReads option) that originate from different amplicons into
different clusters. It works by detecting subread-to-subread similarities,
building a graph of the results, and then clustering nodes (subreads) using
the Markov Clustering algorithm (http://micans.org/mcl/). The Markov
clustering step is needed to remove spurious similarities caused by
chimeric reads that can arise from PCR errors or doubly-loaded ZMWs, or
just by chance due to sequencing error.

Next, if the number of subreads specified with the maxReads option is
greater than the number used in coarse clustering, any remaining
subreads are aligned to a rough consensus of each cluster and added to
the cluster with the greatest similarity. This “waterfall” step allows for a
larger number of reads to be used much more quickly than if all subreads
had to be clustered using the normal coarse clustering process.

At the end of clustering, subreads in each cluster are then sorted for
downstream analysis using the PageRank algorithm (Page, Lawrence, et
al. “The PageRank citation ranking: Bringing order to the web.” (1999)).
This ensures that the most representative reads of the cluster are used
first in the generation of consensus sequences.

Phasing/Consensus
The reads assigned to each cluster are loaded into the Arrow framework,
and an initial consensus of all reads is found. SNP differences between
subreads and the initial consensus are scored with the Arrow model, and
combinations of high-scoring SNPs are tested for their ability to segregate
the reads into multiple haplotypes. If sufficient evidence of a second
haplotype is found, the template sequence is “split” into two copies, one
with the SNPs applied to the template and one without. This process is
repeated recursively so long as new haplotypes with sufficient scores can
be found with at least some minimum level of coverage.

Post-Processing Filters
laa implements a post-processing step to flag likely PCR artifacts in the
set of phased output sequences. First, consensus sequences that are
identical duplicates of other consensus sequences in the results are
Page 67

removed. Next, those with unusually low predicted accuracy are flagged
as being probable sequencing artifacts and removed. PacBio implemented
a filter for consensus sequences from PCR crossover events, which on
average make up ~5 to 20% of products generated by PCR amplifications
>3 kb in length.

For artifacts of PCR crossover events, or “chimeras”, PacBio implemented
a variant of the UCHIME algorithm (Edgar, Robert C., et al. “UCHIME
improves sensitivity and speed of chimera detection.” Bioinformatics
27.16(2011): 2194-2200). The consensus sequences are sorted in order of
decreasing read coverage, and the first two sequences are accepted as
non-chimeric since they have no possible parent sequences with greater
coverage. The remaining sequences are evaluated in descending order,
with each test sequence aligned to all non-chimeric sequences so far
processed. Crossovers between pairs of non-chimeric sequences are
checked to see if they would yield a sequence very similar to the test
sequence. If one is found with a sufficient score, the test sequence is
marked as chimeric. If not, the test sequence is added to the list of non-
chimeric sequences.

Microbial
Assembly

The Microbial Assembly application is powered by the IPA HiFi genome
assembler and includes the following feature:

• Polishes the contigs with phased reads using Racon.

Workflow of the Microbial Assembly Application
The workflow consists of several steps around 2 main stages:

1. Chromosomal stage: Assemble large contigs using IPA, the Hifi
Genome Assembly tool.

2. Separate reads that were used for accurate large contigs from all other
reads.

3. Plasmid stage: Assemble plasmids (using IPA) from the reads sepa-
rated in the previous step.

4. De-duplicate plasmids.
5. Collect all contigs into a single FASTA file.
6. Rotate circular contigs.
7. Align the input dataset to the assembled contigs.

The application accepts HiFi XML Data Sets as input, and has an
embedded downsampling feature:

• If the genome size and the desired coverage are specified, both
stages are downsampled, as with the Genome Assembly Application.

• Otherwise, the full coverage is used.

The embedded downsampling feature is not applied to the alignment
stage – all input reads will be aligned against the assembled contigs.
Page 68

Usage
The Microbial Assembly application is run using the pbcromwell run
command, with the pb_assembly_hifi_microbial parameter to specify
the application. See “pbcromwell” on page 74 for details.

To view information on the available Microbial Assembly options, enter:

pbcromwell show-workflow-details pb_assembly_hifi_microbial

The minimum command needed to run the workflow requires the input and
the number of threads. The following example uses 16 threads:

pbcromwell run pb_assembly_hifi_microbial -e <input.xml> --nproc 16

The following example performs an assembly using an input XML Data
Set, and uses all default settings, including 1 CPU:

pbcromwell run pb_assembly_hifi_microbial -e <input.consensusreadset.xml>

Note: To specify different task options on the command line, consider the
following example:

pbcromwell run pb_assembly_hifi_microbial \
-e <input.consensusreadset.xml> \
--task-option reads=None \
--task-option ipa2_genome_size=0 \
--task-option ipa2_downsampled_coverage=0 \
--task-option microasm_plasmid_contig_len_max=300000
--task-option ipa2_cleanup_intermediate_files=True \
--task-option dataset_filters="" \
--task-option filter_min_qv=20 \
--nproc 8

The default options for this application should work well for any genome
type.

As microbes are relatively small, we rarely find much advantage to using
more than 4 threads, or more than 2 concurrent jobs.

Microbial Assembly Parameters
 Option Default Value Description

-e, --eid_ccs NONE Optional parameter, required if --task-option reads
<input> is not specified. This is a SMRT Link-specific input
parameter and supports only PacBio Consensusreadset
XML files as input.

--task-option reads NONE Optional parameter, required if -e <input> is not specified.
Supports multiple input formats: FASTA, FASTQ, BAM, XML,
FOFN and gzipped versions of FASTA/FASTQ.
Page 69

--task-option
ipa2_genome_size

10M The approximate number of base-pairs expected in the
chromosomal genome. (We assume that any plasmids are a
tiny fraction of the total.) Used only for downsampling in the
assembly stages (that is, not in polishing). If value <=0, then
downsampling is off.
Default: 10M (10 Mega basepairs).
Note: ipa2_genome_size is currently the only option that
accepts a metric suffix. Commas and decimals are not
accepted anywhere. ipa2_genome_size actually accepts a
String, which can be an integer followed by one of these
metric suffixes: k/M/G. For example: 4500k means “4,500
kilobases” or “4,500,000”. M stands for Mega and G stands for
Giga.

--task-option
ipa2_downsampled_coverage

100 The maximum coverage after downsampling, assuming the
estimated genome_size was high enough. (The default
genome_size was chosen to be larger than any realistic
microbe.) If <=0, then downsampling is off.
Default: 100
Example: If your genome is 1G in length, and you specify
ipa2_genome_size=2G, you have over-estimated by 2x. If
you also specify ipa2_downsampled_coverage=100,
your data will be downsampled to 200x coverage, simply
because of the over-estimate. The cost of extra coverage is
greater runtime. The defaults are usually fine.

--task-option
ipa2_advanced_options_chro
m

See Description
Column

A semicolon-separated list of KEY=VALUE pairs. New line
characters are not accepted. (These are described later in
this document.)
config_block_size = 100;
config_seeddb_opt = -k 28 -w 20 --space 0 --use-
hpc-seeds-only;
config_ovl_opt = --one-hit-per-target --min-idt 98
--traceback --mask-hp --mask-repeats --trim --trim-
window-size 30 --trim-match-frac 0.75

--task-option
ipa2_advanced_options_plas
mid

See Description
Column

A semicolon-separated list of KEY=VALUE pairs. New line
characters are not accepted. (These are described later in
this document.)
con-fig_block_size = 100;
con-fig_ovl_filter_opt = --max-diff 80 --max-cov
100 --min-cov 2 --bestn 10 --min-len 500 --gapFilt
--minDepth 4 --idt-stage2 98;
con-fig_ovl_min_len = 500;
con-fig_seeddb_opt = -k 28 -w 20 --space 0 --use-
hpc-seeds-only;
config_ovl_opt = --one-hit-per-target --min-idt 98
--min-map-len 500 --min-anchor-span 500 --traceback
--mask-hp --mask-repeats --trim --trim-window-size
30 --trim-match-frac 0.75 --smart-hit-per-target --
secondary-min-ovl-frac 0.05; con-fig_layout_opt = -
-allow-circular;

--task-option
ipa2_cleanup_intermediate_
files

TRUE Removes intermediate files from the run directory to save
space.

--task-option
microasm_plasmid_contig_le
n_max

300000 After the chromosomal stage, in task
filter_draft_contigs, separates long contigs
(presumed to be chromosomal) from shorter contigs (to be re-
assembled in the plasmid stage). Then, after the plasmid
stage, in dedup_plasmids, contigs less than this value are
ignored. The default value is usually fine.

--task-option
consolidate_aligned_bam

FALSE Consolidates Mapped BAMs for IGV.

 Option Default Value Description
Page 70

Input Files
• *.bam file containing PacBio data.
• *.fasta or *.fastq file containing PacBio data.
• *.xml file containing PacBio data.
• *.fofn files with file names of files containing PacBio data.

Output Files
• final_assembly.fasta: File containing all assembled contigs,

rotated.
• assembly.rotated.polished.renamed.fsa: File for NCBI, but

otherwise identical to final_assembly.fasta; only the headers are
changed.

Advanced Parameters
Note: Advanced parameters should be rarely modified. Advanced
parameters for the Microbial Assembly workflow are the same as those for
the Genome Assembly workflow. See “Advanced Parameters” on page 39 for
details.

Advanced parameters specified on the command line:

• Are in the form of key = value pairs.
• Each pair is separated by a semicolon (;) character.
• The full set of advanced parameters is surrounded by one set of

double quotes.
• The specified value of a parameter overwrites the default options for

that key – all desired options of that parameter must be explicitly listed,
not just the ones which should change from the default.

• Setting an empty value clears the parameter; it does not reset the
value back to default.

--task-option
dataset_filters

NONE (General pbcromwell option) A semicolon-separated (not
comma-separated) list of other filters to add to the Data Set.

--task-option
filter_min_qv

20 (General pbcromwell option) Phred-scale integer QV cutoff
for filtering HiFi Reads. The default for all applications
(except Iso-Seq analysis) is 20 (QV 20), or 99% predicted
accuracy.

--task-option
downsample_factor

0 Downsamples the input Data Set by a given factor. This is ap-
plied on the entire input Data Set, and affects both assembly
and alignment stages.

--task-option log_level INFO Specifies the logging (verbosity) level for tools which support
this feature. Values are: [TRACE, DEBUG, INFO, WARN,
FATAL]

--task-option max_nchunks 40 Specifies the maximum number of chunks per task.

--task-option tmp_dir /tmp Specifies an optional temporary directory for used by several
subtools, such as sort.

 Option Default Value Description
Page 71

Example:

 --task-option ipa2_advanced_options_chrom="config_seeddb_opt=-k
30;config_block_size=2048"

motifMaker The motifMaker tool identifies motifs associated with DNA modifications
in prokaryotic genomes. Modified DNA in prokaryotes commonly arises
from restriction-modification systems that methylate a specific base in a
specific sequence motif. The canonical example is the m6A methylation of
adenine in GATC contexts in E. coli. Prokaryotes may have a very large
number of active restriction-modification systems present, leading to a
complicated mixture of sequence motifs.

PacBio SMRT sequencing is sensitive to the presence of methylated DNA
at single base resolution, via shifts in the polymerase kinetics observed in
the real-time sequencing traces. For more background on modification
detection, see here.

Algorithm
Existing motif-finding algorithms such as MEME-chip and YMF are sub-
optimal for this case for the following reasons:

• They search for a single motif, rather than attempting to identify a
complicated mixture of motifs.

• They generally don't accept the notion of aligned motifs - the input to
the tools is a window into the reference sequence which can contain
the motif at any offset, rather than a single center position that is
available with kinetic modification detection.

• Implementations generally either use a Markov model of the reference
(MEME-chip), or do exact counting on the reference, but place
restrictions on the size and complexity of the motifs that can be
discovered.

Following is a rough overview of the algorithm used by motifMaker:
Define a motif as a set of tuples: (position relative to methylation, required
base). Positions not listed in the motif are implicitly degenerate. Given a
list of modification detections and a genome sequence, define the
following objective function on motifs:

Motif score(motif) = (# of detections matching motif) / (# of genome sites matching
motif) * (Sum of log-pvalue of detections matching motif) = (fraction methylated) * (sum
of log-pvalues of matches)

Then, search (close to exhaustively) through the space of all possible
motifs, progressively testing longer motifs using a branch-and-bound
search. The “fraction methylated” term must be less than 1, so the
maximum achievable score of a child node is the sum of scores of
modification hits in the current node, allowing pruning of all search paths
whose maximum achievable score is less than the best score discovered
so far.
Page 72

http://nar.oxfordjournals.org/content/early/2011/12/07/nar.gkr1146.full

Usage
Run the find command, and pass the reference FASTA and the
modifications.gff (.gz) file output by the PacBio modification detection
workflow.

The reprocess subcommand annotates the GFF file with motif
information for better genome browsing.

MotifMaker [options] [command] [command options]

find Command: Run motif-finding.

find [options]

reprocess Command: Update a modifications.gff file with motif
information based on new Modification QV thresholds.

reprocess [options]

Output Files
Using the find command:

• Output CSV file: This file has the same format as the standard "Fields
included in motif_summary.csv" described in the Methylome Analysis
White Paper.

Using the reprocess command:

Options Description

-h, --help Displays help information and exits.

* -f, --fasta Reference FASTA file.

* -g, --gff Modifications.gff or .gff.gz file.

-m, --minScore Specifies the minimum Qmod score to use in motif finding.
(Default = 40.0)

* -o, --output Outputs motifs.csv file.

-x, --xml Outputs motifs XML file.

Options Description

-c, --csv Raw modifications.csv file.

* -f, --fasta Reference FASTA file.

* -g, --gff Modifications.gff or .gff.gz file.

-m, --minFraction Specifies that only motifs above this methylated fraction are used.
(Default = 0.75)

-m, --motifs Motifs.csv file.

* -o, --output Reprocessed modifications.gff file.
Page 73

https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Methylome-Analysis-Technical-Note
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Methylome-Analysis-Technical-Note

• Output GFF file: The format of the output file is the same as the input
file, and is described in the Methylome Analysis White Paper under
"Fields included in the modifications.gff file".

pbcromwell The pbcromwell tool is Pacific Biosciences’ wrapper for the cromwell
scientific workflow engine used to power SMRT Link. pbcromwell
includes advanced utilities for interacting directly with a Cromwell server.

pbcromwell is designed primarily for running workflows distributed and
supported by PacBio, but it is written to handle any valid WDL source
(version 1.0), and is very flexible in how it takes input. PacBio workflows
are expected to be found in the directory defined by the
SMRT_PIPELINE_BUNDLE_DIR environment variable, which is automatically
defined by the SMRT Link distribution.

Note that pbcromwell does not interact with SMRT Link services; to run
a Cromwell workflow as a SMRT Link job, please use pbservice. (For
details, see “pbservice” on page 87.)

Note: Interaction with the Cromwell server is primarily intended for
developers and power users.

Usage:
pbcromwell run [-h] [--output-dir OUTPUT_DIR] [--overwrite] [-i INPUTS]
 [-e ENTRY_POINTS] [-n NPROC] [-c MAX_NCHUNKS]
 [--target-size TARGET_SIZE] [--queue QUEUE] [-o OPTIONS]
 [-t TASK_OPTIONS] [-b BACKEND] [-r MAX_RETRIES]
 [--tmp-dir TMP_DIR] [--config CONFIG] [--dry-run]
 [run,show-workflows,show-workflow-details,configure,submit,get-
job,abort,metadata,show-running,wait]

Options Description

--output-dir OUTPUT_DIR Specifies the output directory for cromwell output.
(Default = cromwell_out)

--overwrite Overwrites the output directory, if it exists. (Default = False)

-i INPUTS, --inputs INPUTS Specifies cromwell inputs and settings as JSON files. (Default = None)

-e ENTRY_POINTS, --entry
ENTRY_POINTS

Specifies the entry point Data Set; may be repeated for workflows that take
more than one input Data Set. Note that all PacBio workflows require at
least one such entry point.

-n NPROC, --nproc NPROC Specifies the number of processors per task. (Default = 1)

-c MAX_NCHUNKS, --max-nchunks
MAX_NCHUNKS

Specifies the maximum number of chunks per task. (Default = None)

--target-size TARGET_SIZE Specifies the target chunk size. (Default = None)

--queue QUEUE Specifies the cluster queue to use. (Default = None)

-o OPTIONS, --options OPTIONS Specifies additional cromwell engine options, as a JSON file.
(Default = None)

-t TASK_OPTIONS, --task-
option TASK_OPTIONS

Specifies workflow- or task-level option as key=value strings, specific to
the application. May be specified multiple times for multiple options.
(Default = [])
Page 74

https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Methylome-Analysis-Technical-Note

Enter pbcromwell {command} -h for a command's options.

Examples:

Show available PacBio-developed workflows:

pbcromwell show-workflows

Show details for a PacBio workflow:

pbcromwell show-workflow-details pb_ccs

Generate cromwell.conf with HPC settings:

pbcromwell configure --default-backend SGE --output-file cromwell.conf

Launch a PacBio workflow:

pbcromwell run pb_ccs -e /path/to/movie.subreadset.xml --nproc 8 --config /full/ path/
to/cromwell.conf

pbcromwell run Command: Run a Cromwell workflow. Multiple input
modes are supported, including a pbsmrtpipe-like set of arguments

-b BACKEND, --backend BACKEND Specifies the backend to use for running tasks. (Default = None)

-r MAX_RETRIES, --maxRetries
MAX_RETRIES

Specifies the maximum number of times to retry a failing task. (Default = 1)

--tmp-dir TMP_DIR Specifies an optional temporary directory for cromwell tasks, which must
exist on all compute hosts. (Default = None)

--config CONFIG Specifies a Java configuration file for running cromwell. (Default = None)

--dry-run Specifies that cromwell is not executed, but instead writes out final
inputs and then exits. (Default = True)

workflow Specifies the workflow ID (such as pb_ccs or
cromwell.workflows.pb_ccs for PacBio workflows only) or a path to
a Workflow Description Language (WDL) source file.

Options Description

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file LOG_FILE Writes the log to file. (Default = None, writes to stdout.)

--log-level=INFO Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR,
CRITICAL.] (Default = INFO)

--debug Alias for setting the log level to DEBUG. (Default = False)

--verbose, -v Sets the verbosity level. (Default = None)
Page 75

(for PacBio workflows only), and JSON files already in the native
Cromwell format.
All PacBio workflows have similar requirements to the pbsmrtpipe
pipelines in previous SMRT Link versions:

1. One or more PacBio dataset XML entry points, usually a SubreadSet
or ConsensusReadSet (--entry-point <FILE>.)

2. Any number of workflow-specific task options (--task-option
<OPTION>.)

3. Engine options independent of the workflow, such as number of pro-
cessors per task (--nproc), or compute backend (--backend).

Output is directed to a new directory: --output-dir, which defaults to
cromwell_out. This includes final inputs for the Cromwell CLI, and
subdirectories for logs (workflow and task outputs), links to output files,
and the Cromwell execution itself, which has a complex nested directory
structure. Detailed information about the workflow execution can be found
in the file metadata.json, in the native Cromwell format.

Note that output file links do not include the individual resource files of
datasets and reports (BAM files, index files, plot PNGs, and so on.) Follow
the symbolic links to their real path (for example using readlink -f) to
find report plots.

For further information about Cromwell, consult the official documentation
here.

Workflow Examples:

Run the CCS Analysis:

pbcromwell run pb_ccs -e <SUBREADS> --nproc 8 --config /full/path/to/cromwell.conf

Run the Iso-Seq workflow, including mapping to a reference, and execute
on SGE:

pbcromwell run pb_isoseq3 -e <SUBREADS> -e <PRIMERS> -e <REFERENCE> --nproc 8 -- config
/full/path/to/cromwell.conf

Run a user-defined workflow:

pbcromwell run my_workflow.wdl -i inputs.json -o options.json --config /full/path/to/
cromwell.conf

Set up input files but exit before starting Cromwell:

pbcromwell run pb_ccs -e <SUBREADS> --nproc 8 --dry-run

Print details about the named PacBio workflow, including input files and
task options. Note: The prefix cromwell.workflows. is optional.
Page 76

https://cromwell.readthedocs.io

pbcromwell show-workflow-details pb_ccs
pbcromwell show-workflow-details cromwell.workflows.pb_ccs

pbcromwell show-workflow-details Command: Display details
about a specified PacBio workflow, including input files and task
options.

Usage:
pbcromwell show-workflow-details [-h] [--inputs-json INPUTS_JSON]
 workflow_id

pbcromwell configure Command: Generate the Java configuration file used by cromwell
to define backends and other important engine options that cannot be set at runtime. You
can pass this to
pbcromwell run using the --config argument.

Usage:
pbcromwell configure [-h] [--port PORT]
 [--local-job-limit LOCAL_JOB_LIMIT]
 [--jms-job-limit JMS_JOB_LIMIT]
 [--db-port DB_PORT] [--db-user DB_USER]
 [--db-password DB_PASSWORD]
 [--default-backend DEFAULT_BACKEND]
 [--max-workflows MAX_WORKFLOWS]
 [--output-file OUTPUT_FILE] [--timeout TIMEOUT]
 [--cache] [--no-cache]

Options Description

workflow_id Specifies the workflow ID, such as pb_ccs or
cromwell.workflows.pb_ccs for PacBio workflows only.

--inputs-json INPUTS_JSON Writes a JSON template containing workflow inputs to the specified file.
(Default = None)

Options Description

--port PORT Specifies the port that cromwell should listen to. (Default = 8000)

--local-job-limit
LOCAL_JOB_LIMIT

Specifies the maximum number of local jobs/tasks that can be run at once.
(Default = 10)

--jms-job-limit JMS_JOB_LIMIT Specifies the maximum number of jobs/tasks that can be submitted to the
queueing system at one time. (Default = 500)

--db-port DB_PORT Specifies the database port for cromwell to use; if undefined, database
configuration is omitted. (Default = None)

--db-user DB_USER Specifies the user name tused to connect to Postgres.
(Default = smrtlink_user)

--db-password DB_PASSWORD Specifies the password used to connect to Postgres.

--default-backend
DEFAULT_BACKEND

Specifies the default job execution backend. Choices are: Local, SGE,
Slurm, PBS, or LSF. (Default = Local)

--max-workflows MAX_WORKFLOWS Specifies the maximum number of workflows that cromwell can run at
once. (Default = 100)

--output-file OUTPUT_FILE Specifies the name of the output configuration file.
(Default = cromwell.conf)
Page 77

pbindex The pbindex tool creates an index file that enables random access to
PacBio-specific data in BAM files.

Usage
pbindex <input>

Input File
• *.bam file containing PacBio data.

Output File
• *.pbi index file, with the same prefix as the input file name.

pbmarkdup The pbmarkdup tool marks PCR duplicates in CCS Reads Data Sets from
amplified libraries. PCR duplicates are different reads that arose from
amplifying a single-source molecule. pbmarkdup can also optionally
remove the duplicate reads.

Note: pbmarkdup only works with CCS Reads, not with Continuous Long
Reads.

pbmarkdup uses a reference-free comparison method. Duplicates are
identified as pairs of reads that:

1. Have the same length - within 10 bp, and
2. Have high percent identity alignments at the molecule ends at >98%

identity of the first and last 250 bp.

Clusters are formed from sets of two or more duplicate reads, and a single
read is selected as the representative of each cluster. Other reads in the
cluster are considered duplicates.

How are duplicates marked?
In FASTA and FASTQ formats, reads from duplicate clusters have
annotated names. The following is a FASTA example:

>m64013_191117_050515/67104/ccs DUPLICATE=m64013_191117_050515/3802014/ccs DS=2

--timeout TIMEOUT Specifies the time to wait for task completion before checking the cluster
job status. (Default = 600)

--cache Enables call caching. (Default = True)

--no-cache Disables call caching. (Default = True)

Options Description

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.
Page 78

This shows a marked duplicate read m64013_191117_050515/67104/ccs
that is a duplicate of m64013_191117_050515/3802014/ccs in a cluster
with 2 reads (DS value). Accordingly, the following is the read selected as
the representative of the molecule:

>m64013_191117_050515/3802014/ccs DS=2

In BAM format, duplicate reads are flagged with 0x400. The read-level tag
ds provides the number of reads in a cluster (like the DS attribute
described above for FASTA/FASTQ), and the du tag provides the name of
the representative read (like the DUPLICATE attribute described above for
FASTA/FASTQ).

Usage
pbmarkdup [options] <INFILE.bam|xml|fa|fq|fofn> <OUTFILE.bam|xml|fa.gz|fq.gz>

Input Files
 CCS Reads from one or multiple movies in any of the following formats:

• PacBio BAM (.ccs.bam)

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file Logs to a file, instead of stderr.

--log-level Specifies the log level; values are [TRACE,DEBUG,INFO,WARN,
FATAL] (Default = WARN)
--log-level INFO produces a summary report such as:

LIBRARY READS UNIQUE MOLECULES DUPLICATE READS

<Unnamed> 25000 24948 (99.8%) 52 (0.2%)
SS-lib 496 493 (99.4%) 3 (0.6%)

TOTAL 25496 25441 (99.8%) 55 (0.2%)

-j,--num-threads Specifies the number of threads to use, 0 means autodetection.
(Default = 0)

Duplicate Marking Options Description

--cross-library, -x Identifies duplicate reads across sequencing libraries. Libraries are
specified in the BAM read group LB tag.

Output Options Description

-rmdup, -r Excludes duplicates from OUTFILE. (This is redundant when
--dup-file is specified.)

--dup-file FILE Stores duplicate reads in an extra file other than OUTFILE. The format of
this file can be different from the output file.

--clobber, -f Overwrites OUTFILE if it exists.
Page 79

• PacBio dataset (.dataset.xml)
• File of File Names (.fofn)
• FASTA (.fasta,.fasta.gz)
• FASTQ (.fastq,.fastq.gz)

Output Files
CCS Reads with duplicates marked in a format inferred from the file
extension:

• PacBio BAM (.ccs.bam)
• PacBio dataset (.dataset.xml), which also generates a

corresponding BAM file.
• FASTA (.fasta.gz)
• FASTQ (.fastq.gz)

Allowed Input/Output Combinations

Examples
Run on a single movie:

pbmarkdup movie.ccs.bam output.bam

Run on multiple movies:

pbmarkdup movie1.fasta movie2.fasta output.fasta

Run on multiple movies and output duplicates in separate file:

pbmarkdup movie1.ccs.bam movie2.fastq uniq.fastq --dup-file dups.fasta

pbmm2 The pbmm2 tool aligns native PacBio data, outputs PacBio BAM files, and
is a SMRT minimap2 wrapper for PacBio data.

pbmm2 supports native PacBio input and output, provides sets of
recommended parameters, generates sorted output on-the-fly, and post-
processes alignments. Sorted output can be used directly for polishing
using GenomicConsensus, if BAM has been used as input to pbmm2.

pbmm2 adds the following SAM tag to each aligned record:

Input File Output BAM Output Dataset Output FASTQ Output FASTA

Input BAM Allowed Allowed Allowed Allowed

Input Dataset Allowed Allowed Allowed Allowed

Input FASTQ Not Allowed Not Allowed Allowed Allowed

Input FASTA Not Allowed Not Allowed Not Allowed Allowed
Page 80

https://github.com/PacificBiosciences/pbmm2/#what-is-repeated-matches-trimming

• mg, stores gap-compressed alignment identity, defined as
nM/(nM + nMM + nInsEvents + nDelEvents).

Usage
pbmm2 <tool>

index Command: Indexes references and stores them as .mmi files.
Indexing is optional, but recommended if you use the same refer-
ence with the same --preset multiple times.

Usage:
pbmm2 index [options] <ref.fa|xml> <out.mmi>

Input File
• *.fasta, *.fa file containing reference contigs or
*.referenceset.xml.

Output File
• out.mmi (minimap2 index file.)

Notes:
• You can use existing minimap2 .mmi files with pbmm2 align.
• If you use an index file, you cannot override parameters -k, -w, nor -u

in pbmm2 align.
• The minimap2 parameter -H (homopolymer-compressed k-mer) is

always on for SUBREAD and UNROLLED presets, and can be
disabled using -u.

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

Options Description

--preset Specifies the alignment mode:
• "SUBREAD" -k 19 -w 10
• "CCS" -k 19 -w 10 -u
• "ISOSEQ" -k 15 -w 5 -u
• "UNROLLED" -k 15 -w 15
The option is not case-sensitive. (Default = SUBREAD)

-k Specifies the k-mer size, which cannot be larger than 28. (Default = -1)

-w Specifies the Minimizer window size. (Default = -1)

-u,--no-kmer-compression Disables homopolymer-compressed k-mer. (Compression is on by default
for the SUBREAD and UNROLLED presets.)

--short-sa-cigar Populates the SA tag with the short cigar representation.
Page 81

align Command: Aligns PacBio reads to reference sequences. The
output argument is optional; if not provided, the BAM output is
streamed to stdout.

Usage:
pbmm2 align [options] <ref.fa|xml|mmi> <in.bam|xml|fa|fq> [out.aligned.bam|xml]

Input Files
• *.fasta file containing reference contigs, or *.referenceset.xml, or
*.mmi index file.

• *.bam, *.subreadset.xml, *.consensusreadset.xml,
*.transcriptset.xml, *.fasta, *.fa, *.fastq, or *.fastq file
containing PacBio data.

Output Files
• *.bam aligned reads in BAM format.
• *.alignmentset, *.consensusalignmentset.xml, or
*.transcriptalignmentset.xml if XML output was chosen.

The following Data Set Input/output combinations are allowed:

SubreadSet > AlignmentSet

pbmm2 align hg38.referenceset.xml movie.subreadset.xml hg38.movie.alignmentset.xml

ConsensusReadSet > ConsensusAlignmentSet

pbmm2 align hg38.referenceset.xml movie.consensusreadset.xml
hg38.movie.consensusalignmentset.xml --preset CCS

TranscriptSet > TranscriptAlignmentSet

pbmm2 align hg38.referenceset.xml movie.transcriptset.xml
hg38.movie.transcriptalignmentset.xml --preset ISOSEQ

FASTA/Q input

In addition to native PacBio BAM input, reads can also be provided in
FASTA and FASTQ formats.

Attention: The resulting output BAM file cannot be used as input into
GenomicConsensus!

With FASTA/Q input, the --rg option sets the read group. Example:

pbmm2 align hg38.fasta movie.Q20.fastq hg38.movie.bam --preset CCS --rg
'@RG\tID:myid\tSM:mysample'
Page 82

All three reference file formats .fasta, .referenceset.xml, and .mmi
can be combined with FASTA/Q input.

Options Description

-h, --help Displays help information and exits.

--chunk-size Processes N records per chunk. (Default = 100)

--sort Generates a sorted BAM file.

-m,--sort-memory Specifies the memory per thread for sorting. (Default = 768M)

-j,--alignment-threads Specifies the number of threads used for alignment. 0 means
autodetection. (Default = 0)

-J,--sort-threads Specifies the number of threads used for sorting. 0 means 25% of -j, with
a maximum of 8. (Default = 0)

--sample Specifies the sample name for all read groups. Defaults, in order of
precedence: A) SM field in the input read group B) Biosample name
C) Well sample name D) "UnnamedSample".

--rg Specifies the read group header line such as '@RG\tID:xyz\tSM:abc'.
Only for FASTA/Q inputs.

-y,--min-gap-comp-id-perc Specifies the minimum gap-compressed sequence identity, in percent.
(Default = 70)

-l,--min-length Specifies the minimum mapped read length, in base pairs. (Default = 50)

-N,--best-n Specifies the output at maximum N alignments for each read. 0 means no
maximum. (Default = 0)

--strip Removes all kinetic and extra QV tags. The output cannot be polished.

--split-by-sample Specifies one output BAM file per sample.

--no-bai Omits BAI index file generation for sorted output.

--unmapped Specifies that unmapped records be included in the output.

--median-filter Picks one read per ZMW of median length.

--zmw Processes ZMW Reads; subreadset.xml input is required. This
activates the UNROLLED preset.

--hqregion Processes the HQ region of each ZMW; subreadset.xml input is
required. This activates the UNROLLED preset.

Parameter Set Options and
Overrides Description

--preset Specifies the alignment mode:
• "SUBREAD" -k 19 -w 10 -o 5 -O 56 -e 4 -E 1 -A 2 -B 5

-z 400 -Z 50 -r 2000 -L 0.5
• "CCS" -k 19 -w 10 -u -o 5 -O 56 -e 4 -E 1 -A 2 -B 5 -

z 400 -Z 50 -r 2000 -L 0.5
• "ISOSEQ" -k 15 -w 5 -u -o 2 -O 32 -e 1 -E 0 -A 1 -B 2

-z 200 -Z 100 -C 5 -r 200000 -G 200000 -L 0.5
• "UNROLLED" -k 15 -w 15 -o 2 -O 32 -e 1 -E 0 -A 1 -B 2

-z 200 -Z 100 -r 2000 -L 0.5
(Default = SUBREAD)

-k Specifies the k-mer size, which cannot be no larger than 28. (Default = -1)

-w Specifies the Minimizer window size. (Default = -1)
Page 83

Examples:
Generate an index file for reference and reuse it to align reads:

pbmm2 index ref.fasta ref.mmi
pbmm2 align ref.mmi movie.subreads.bam ref.movie.bam

Align reads and sort on-the-fly, with 4 alignment and 2 sort threads:

pbmm2 align ref.fasta movie.subreads.bam ref.movie.bam --sort -j 4 -J 2

Align reads, sort on-the-fly, and create a PBI:

pbmm2 align ref.fasta movie.subreadset.xml ref.movie.alignmentset.xml --sort

Omit the output file and stream the BAM output to stdout:

pbmm2 align hg38.mmi movie1.subreadset.xml | samtools sort > hg38.movie1.sorted.bam

Align the CCS Reads fastq input and sort the output:

pbmm2 align ref.fasta movie.Q20.fastq ref.movie.bam --preset CCS --sort --rg
'@RG\tID:myid\tSM:mysample'

Alignment Parallelization
The number of alignment threads can be specified using the -j,
--alignment-threads option. If not specified, the maximum number of

-u,--no-kmer-compression Disables homopolymer-compressed k-mer. (Compression is on by default
for the SUBREAD and UNROLLED presets.)

-A Specifies the matching score. (Default = -1)

-B Specifies the mismatch penalty. (Default = -1)

-z Specifies the Z-drop score. (Default = -1)

-Z Specifies the Z-drop inversion score. (Default = -1)

-r Specifies the bandwidth used in chaining and DP-based alignment.
(Default = -1)

-o,--gap-open-1 Specifies the gap open penalty 1. (Default = -1)

-O,--gap-open-2 Specifies the gap open penalty 2. (Default = -1)

-e,--gap-extend-1 Specifies the gap extension penalty 1. (Default = -1)

-E,--gap-extend-2 Specifies the gap extension penalty 2. (Default = -1)

-L,--lj-min-ratio Specifies the long join flank ratio. (Default = -1)

-G Specifies the maximum intron length; this changes -r. (Default = -1)

-C Specifies the cost for a non-canonical GT-AG splicing. (Default = -1)

--no-splice-flank Specifies that you do not prefer splicing flanks GT-AG.

Parameter Set Options and
Overrides Description
Page 84

threads are used, minus one thread for BAM I/O and minus the number of
threads specified for sorting.

Sorting
Sorted output can be generated using the --sort option.

• By default, 25% of threads specified with the -j option (Maximum = 8)
are used for sorting.

• To override the default percentage, the -J,--sort-threads option
defines the explicit number of threads used for on-the-fly sorting. The
memory allocated per sort thread is defined using the -m,--sort-
memory option, accepting suffixes M,G.

Benchmarks on human data show that 4 sort threads are recommended,
but that no more than 8 threads can be effectively leveraged, even with 70
cores used for alignment. We recommend that you provide more memory
to each of a few sort threads to avoid disk I/O pressure, rather than
providing less memory to each of many sort threads.

What are parameter sets and how can I override them?
Per default, pbmm2 uses recommended parameter sets to simplify the
multitudes of possible combinations. Please see the available parameter
sets in the option table shown earlier.

What other special parameters are used implicitly?
We implicitly use the following minimap2 parameters:

• Soft clipping with -Y.
• Long cigars for tag CG with -L.
• X/= cigars instead of M with --eqx.
• No overlapping query intervals with repeated matches trimming.
• No secondary alignments are produced using the --secondary=no

option.

What is repeated matches trimming?
A repeated match occurs when the same query interval is shared between
a primary and supplementary alignment. This can happen for
translocations, where breakends share the same flanking sequence:

And sometimes, when a LINE gets inserted, the flanks are duplicated,
leading to complicated alignments, where we see a split read sharing a
Page 85

duplication. The inserted region itself, mapping to a random other LINE in
the reference genome, may also share sequence similarity to the flanks:

To get the best alignments, minimap2 decides that two alignments may
use up to 50% (default) of the same query bases. This does not work for
PacBio, as pbmm2 requires that a single base may never be aligned twice.
Minimap2 offers a feature to enforce a query interval overlap to 0%. If a
query interval gets used in two alignments, one or both get flagged as
secondary and get filtered. This leads to yield loss, and more importantly,
missing SVs in the alignment.

Papers (such as this) present dynamic programming approaches to find
the optimal split to uniquely map query intervals, while maximizing
alignment scores. We don't have per base alignment scores available,
thus our approach is much simpler. We align the read, find overlapping
query intervals, determine one alignment to be maximal reference-
spanning, then trim all others. By trimming, pbmm2 rewrites the cigar and
the reference coordinates on-the-fly. This allows us to increase the
number of mapped bases, which slightly reduces mapped concordance,
but boosts SV recall rate.

How can I set the sample name?
You can override the sample name (SM field in the RG tag) for all read
groups using the --sample option. If not provided, sample names derive
from the Data Set input using the following order of precedence: A) SM field
in the input read group B) Biosample name C) Well sample name
D) UnnamedSample. If the input is a BAM file and the --sample option was
not used, the SM field is populated with UnnamedSample.

Can I split output by sample name?
Yes, the --split-by-sample option generates one output BAM file per
sample name, with the sample name as the file name prefix, if there is
more than one aligned sample name.

Can I remove all those extra per-base and per-pulse tags?
Yes, the --strip option removes the following extraneous tags if the input
is BAM: dq, dt, ip, iq, mq, pa, pc, pd, pe, pg, pm, pq, pt,
pv, pw, px, sf, sq, st. Note that the resulting output BAM file cannot
be used as input into GenomicConsensus.

Where are the unmapped reads?
Per default, unmapped reads are omitted. You can add them to the output
BAM file using the --unmapped option.
Page 86

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0670-9

Can I output at maximum the N best alignments per read?
Use the option -N, --best-n. If set to 0, (the default), maximum filtering
is disabled.

Is there a way to only align one subread per ZMW?
Using the --median-filter option, only the subread closest to the
median subread length per ZMW is aligned. Preferably, full-length
subreads flanked by adapters are chosen.

pbservice The pbservice tool performs a variety of useful tasks within SMRT Link.

• To get help for pbservice, use pbservice -h.
• To get help for a specific pbservice command, use
pbservice <command> -h.

Note: Starting in SMRT Link v6.0.0, pbservice now requires
authentication when run from a remote host, using the same credentials
used to log in to the SMRT Link GUI. (This also routes all requests through
HTTPS port 8243, so the services port is not required if authentication is
used.) Access to services running on localhost will continue to work
without authentication.

All pbservice commands include the following optional parameters:

status Command: Use to get system status.

pbservice status [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO}

Options Description

--host=http://localhost Specifies the server host. Override the default with the environmental
variable PB_SERVICE_HOST.

--port=8070 Specifies the server port. Override the default with the environmental
variable PB_SERVICE_PORT.

--log-file LOG_FILE Writes the log to file. (Default = None, writes to stdout.)

--log-level=INFO Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR,
CRITICAL.] (Default = INFO)

--debug=False Alias for setting the log level to DEBUG. (Default = False)

--quiet=False Alias for setting the log level to CRITICAL to suppress output.
(Default = False)

--user USERNAME Specifies the user to authenticate as; this is required if the target host is
anything other than localhost.

--ask-pass Prompts the user to enter a password.

--password PASSWORD Supplies the password directly. This exposes the password in the shell
history (or log files), so this option is not recommended unless you are
using a limited account without Unix login access.
Page 87

 [--debug] [--quiet]

import-dataset Command: Import Local Data Set XML. The file location
must be accessible from the host where the services are running; often on
a shared file system.

pbservice import-dataset [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]
 xml_or_dir

import-run Command: Create a SMRT Link Run Design and optional
Auto Analysis jobs from a CSV file. This is equivalent to the Run Design
CSV import feature in the SMRT Link UI; the resulting runs can then be
edited in the UI or executed on-instrument.

pbservice import-run [-h][--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]
 [--dry-run]
 csv_file

import-fasta Command: Import a FASTA file and convert to a
ReferenceSet file. The file location must be accessible from the host
where the services are running; often on a shared file system.

pbservice import-fasta [-h] --name NAME --organism ORGANISM --ploidy
 PLOIDY [--block] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]
 fasta_path

Required Description

xml_or_dir Specifies a directory or XML file for the Data Set.

Required Description

csv_file Specifies a Run Design CSV-format file.

Option Description

--dry-run Prints the generated run XML without POSTing to the server.

Required Description

fasta_path Path to the FASTA file to import.

Options Description

--name Specifies the name of the ReferenceSet to convert the FASTA file to.
Page 88

run-analysis Command: Run a secondary analysis pipeline using an
analysis.json file.

pbservice run-analysis [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet] [--block]
 json_path

emit-analysis-template Command: Output an analysis.json
template to stdout that can be run using the run-analysis command.

pbservice emit-analysis-template [-h] [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]

get-job Command: Get a job summary by Job Id.
pbservice get-job [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]
 job_id

get-jobs Command: Get job summaries by Job Id.
pbservice get-jobs [-h] [-m MAX_ITEMS] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]

get-dataset Command: Get a Data Set summary by Data Set Id or
UUID.

--organism Specifies the name of the organism.

--ploidy Ploidy.

--block=False Blocks during importing process.

Options Description

Required Description

json_path Path to the analysis.json file.

Options Description

--block=False Blocks during importing process.

Required Description

job_id Job id or UUID.

Options Description

-m=25, --max-items=25 Specifies the maximum number of jobs to get.
Page 89

pbservice get-dataset [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]
 id_or_uuid

get-datasets Command: Get a Data Set list summary by Data Set type.
pbservice get-datasets [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet] [-m MAX_ITEMS]
 [-t DATASET_TYPE]

delete-dataset Command: Delete a specified Data Set.
Note: This is a "soft" delete - the database record is tagged as inactive so
it won't display in any lists, but the files will not be removed.

pbservice delete-dataset [-h] [--host HOST] [--port PORT]
 [--log-file LOG_FILE]
 [--log-level INFO]
 [--debug] [--quiet]
 [ID]

Examples
To obtain system status, the Data Set summary, and the job summary:

pbservice status --host smrtlink-release --port 9091

To import a Data Set XML:

pbservice import-dataset --host smrtlink-release --port 9091 \
path/to/subreadset.xml

To obtain a job summary using the Job Id:

pbservice get-job --host smrtlink-release --port 9091 \
--log-level CRITICAL 1

To obtain Data Sets by using the Data Set Type subreads:

pbservice get-datasets --host smrtlink-alpha --port 8081 \
--quiet --max-items 1 -t subreads

Required Description

id_or_uuid Data Set Id or UUID.

Required Description

-t=subreads, --dataset-
type=subreads

Specifies the type of Data Set to retrieve: subreads, alignments,
references, barcodes.

Required Description

ID A valid Data Set ID, either UUID or integer ID, for the Data Set to delete.
Page 90

To obtain Data Sets by using the Data Set Type alignments:

pbservice get-datasets --host smrtlink-alpha --port 8081 \
--quiet --max-items 1 -t alignments

To obtain Data Sets by using the Data Set Type references:

pbservice get-datasets --host smrtlink-alpha --port 8081 \
--quiet --max-items 1 -t references

To obtain Data Sets by using the Data Set Type barcodes:

pbservice get-datasets --host smrtlink-alpha --port 8081 \
--quiet --max-items 1 -t barcodes

To obtain Data Sets by using the Data Set UUID:

pbservice get-dataset --host smrtlink-alpha --port 8081 \
--quiet 43156b3a-3974-4ddb-2548-bb0ec95270ee

pbsv pbsv is a structural variant caller for PacBio reads. It identifies structural
variants and large indels (Default: ≥20 bp) in a sample or set of samples
relative to a reference. pbsv identifies the following types of variants:
Insertions, deletions, duplications, copy number variants, inversions, and
translocations.

pbsv takes as input read alignments (BAM) and a reference genome
(FASTA); it outputs structural variant calls (VCF).

Usage:
pbsv [-h] [--version] [--quiet] [--verbose]
 {discover,call}...

pbsv discover
This command finds structural variant (SV) signatures in read alignments.
The input read alignments must be sorted by chromosome position.
Alignments are typically generated with pbmm2. The output SVSIG file
contains SV signatures.

 Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file Logs to a file, instead of stdout.

--log-level Specifies the log level; values are [TRACE,DEBUG,INFO, WARN,
FATAL.] (Default = WARN)

discover Finds structural variant signatures in read alignments (BAM to SVSIG).

call Calls structural variants from SV signatures and assign genotypes (SVSIG
to VCF).
Page 91

Usage:
pbsv discover [options] <ref.in.bam|xml> <ref.out.svsig.gz>

pbsv call
This command calls structural variants from SV signatures and assigns
genotypes.

The input SVSIG file is generated using pbsv discover. The output is
structural variants in VCF format.

Usage:
pbsv call [options] <ref.fa|xml> <ref.in.svsig.gz|fofn>
<ref.out.vcf>

 Required Description

ref.in.bam|xml Coordinate-sorted aligned reads in which to identify SV signatures.

ref.out.svsig.gz Structural variant signatures output.

 Options Description

-h, --help Displays help information and exits.

-s,--sample Overrides sample name tag from BAM read group.

-q,--min-mapq Ignores alignments with mapping quality < N. (Default = 20)

-m,--min-ref-span Ignores alignments with reference length < N bp. (Default = 100)

-w,--downsample-window-length Specifies a window in which to limit coverage, in base pairs.
(Default = 10K)

-a,--downsample-max-
alignments

Considers up to N alignments in a window; 0 means disabled.
(Default = 100)

-r,--region Limits discovery to this reference region: CHR|CHR:START-END.

-l,--min-svsig-length Ignores SV signatures with length < N bp. (Default = 7)

-b,--tandem-repeats Specifies tandem repeat intervals for indel clustering, as an input BED file.

-k,--max-skip-split Ignores alignment pairs separated by > N bp of a read or reference.
(Default = 100)

-y,--min-gap-comp-id-perc Ignores alignments with gap-compressed sequence identity < N%.
(Default = 70)

 Required Description

ref.fa|xml Reference FASTA file or ReferenceSet XML file against which to call
variants.

ref.in.svsig.gz|fofn SV signatures from one or more samples. This can be either an SV
signature SVSIG file generated by pbsv discover, or a FOFN of SVSIG
files.

ref.out.vcf Variant call format (VCF) output file.
Page 92

Following is a typical SV analysis workflow starting from subreads:

 Options Description

-h, --help Displays help information and exits.

-j,--num-threads Specifies the number of threads to use, 0 means autodetection.
(Default = 0)

-r,--region Limits discovery to this reference region: CHR|CHR:START-END
-t,--types Calls these SV types: "DEL", "INS", "INV", "DUP", "BND", "CNV".

(Default = “DEL,INS,INV,DUP,BND”)

-m,--min-sv-length Ignores variants with length < N bp. (Default = 20)

--max-ins-length Ignores insertions with length > N bp. (Default = 15K)

--max-dup-length Ignores duplications with length > N bp. (Default = 1M)

--cluster-max-length-perc-
diff

Does not cluster signatures with difference in length > P%. (Default = 25)

--cluster-max-ref-pos-diff Does not cluster signatures > N bp apart in the reference. (Default = 200)

--cluster-min-basepair-perc-
id

Does not cluster signatures with base pair identity < P%. (Default = 10)

-x,--max-consensus-coverage Limits to N reads for variant consensus. (Default = 20)

-s,--poa-scores Scores POA alignment with triplet match,mismatch,gap.
(Default = “1,-2,-2“)

--min-realign-length Considers segments with > N length for realignment. (Default = 100)

-A, --call-min-reads-all-
samples

Ignores calls supported by < N reads total across samples. (Default = 3)

-O, --call-min-reads-one-
sample

Ignores calls supported by < N reads in every sample. (Default = 3)

-S, --call-min-reads-per-
strand-all-samples

Ignores calls supported by < N reads per strand total across samples.
(Default = 1)

-B,--call-min-bnd-reads-all-
samples

Ignores BND calls supported by < N reads total across samples.
(Default = 2)

-P, --call-min-read-perc-one-
sample

Ignores calls supported by < P% of reads in every sample. (Default = 20)

--preserve-non-acgt Preserves non-ACGT in REF allele instead of replacing with N.
(Default = false)

--hifi, --ccs Uses options optimized for HiFi Reads: -S 0 -P 10. (Default = false)

--gt-min-reads Specifies the minimum supporting reads to assign a sample a non-
reference genotype. (Default = 1)

--annotations Annotates variants by comparing with sequences in FASTA.
(Default annotations are ALU, L1, and SVA.)

--annotation-min-perc-sim Annotates variant if sequence similarity > P%. (Default = 60)

--min-N-in-gap Considers ≥ N consecutive "N" bp as a reference gap. (Default = 50)

--filter-near-reference-gap Flags variants < N bp from a gap as "NearReferenceGap".
(Default = 1000)

--filter-near-contig-end Flags variants < N bp from a contig end as “NearContigEnd”.
(Default = 1K)
Page 93

1. Align PacBio reads to a reference genome, per movie:

Subreads BAM Input:

pbmm2 align ref.fa movie1.subreads.bam ref.movie1.bam --sort --median-filter --sample
sample1

CCS Reads BAM Input:

pbmm2 align ref.fa movie1.ccs.bam ref.movie1.bam --sort --preset CCS --sample sample1

CCS Reads FASTQ Input:
pbmm2 align ref.fa movie1.Q20.fastq ref.movie1.bam --sort --preset CCS --sample sample1
--rg '@RG\tID:movie1'

2. Discover the signatures of structural variation, per movie or per
sample:

pbsv discover ref.movie1.bam ref.sample1.svsig.gz
pbsv discover ref.movie2.bam ref.sample2.svsig.gz

3. Call structural variants and assign genotypes (all samples); for CCS
Analysis input append --ccs:

pbsv call ref.fa ref.sample1.svsig.gz ref.sample2.svsig.gz
ref.var.vcf

Launching a Multi-Sample pbsv Analysis - Requirements
1. Merge multiple Bio Sample SMRT Cells to one Data Set with the Bio

Samples specified.
– Each SMRT Cell must have exactly one Bio Sample name - multiple

Bio Sample names cannot be assigned to one SMRT Cell.
– Multiple SMRT Cells can have the same Bio Sample name.
– All of the inputs need to already have the appropriate Bio Sample

records in their CollectionMetadata. If they don't, they are treated
as a single sample.

2. Create a ReferenceSet from a FASTA file.
– The ReferenceSet is often already generated and registered in

SMRT Link.
– If the ReferenceSet doesn’t exist, use the dataset create

command to create one:

dataset create --type ReferenceSet --name reference_name reference.fasta

Launching a Multi-Sample Analysis
Set subreads and ref FASTA
sample1=sample1.subreadset.xml sample2=sample2.subreadset.xml
ref=reference.fasta

pbmm2 align ${ref} ${sample1} sample1.bam --sort --median-filter --sample Sample1
pbmm2 align ${ref} ${sample2} sample2.bam --sort --median-filter --sample Sample2
samtools index sample1.bam
samtools index sample2.bam
pbindex sample1.bam
pbindex sample2.bam
Page 94

pbsv discover sample1.bam sample1.svsig.gz
pbsv discover sample2.bam sample2.svsig.gz
pbsv call ${ref} sample1.svsig.gz sample2.svsig.gz out.vcf

out.vcf: A pbsv VCF output file, where columns starting from column 10
represent structural variants of Sample 1 and Sample 2:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2
chr01 222737 pbsv.INS.1 T TTGGTGTTTGTTGTTTTGTTTT . PASS
SVTYPE=INS;END=222737;SVLEN=21;SVANN=TANDEM GT:AD:DP 0/1:6,4:10 0/1:6,5:11

pbvalidate The pbvalidate tool validates that files produced by PacBio software are
compliant with Pacific Biosciences’ own internal specifications.

Input Files
pbvalidate supports the following input formats:

• BAM
• FASTA
• Data Set XML

See here for further information about each format's requirements.

Usage
pbvalidate [-h] [--version] [--log-file LOG_FILE]
 [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL} | --debug | --quiet | -v]
 [-c] [--quick] [--max MAX_ERRORS]
 [--max-records MAX_RECORDS]
 [--type {BAM,Fasta,AlignmentSet,ConsensusSet,ConsensusAlignmentSet,
 SubreadSet,BarcodeSet,ContigSet,ReferenceSet,HdfSubreadSet}]
 [--index] [--strict] [-x XUNIT_OUT] [--unaligned]
 [--unmapped] [--aligned] [--mapped]
 [--contents {SUBREAD,CCS}] [--reference REFERENCE]
 file

Required Description

file Input BAM, FASTA, or Data Set XML file to validate.

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file LOG_FILE Writes the log to file. Default (None) will write to stdout.

--log-level Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR,
CRITICAL.] (Default = CRITICAL)

--debug=False Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to CRITICAL to suppress output.
(Default = False)

--verbose, -v Sets the verbosity level. (Default = None)
Page 95

http://pacbiofileformats.readthedocs.org/en/10.0/

Examples
To validate a BAM file:

pbvalidate in.subreads.bam

To validate a FASTA file:

pbvalidate in.fasta

To validate a Data Set XML file:

pbvalidate in.subreadset.xml

To validate a BAM file and its index file (.pbi):

pbvalidate --index in.subreads.bam

To validate a BAM file and exit after 10 errors are detected:

pbvalidate --max 10 in.subreads.bam

--quick Limits validation to the first 100 records (plus file header); equivalent to
--max-records=100. (Default = False)

--max MAX_ERRORS Exits after MAX_ERRORS were recorded.
(Default = None; checks the entire file.)

--max-records MAX_RECORDS Exits after MAX_RECORDS were inspected.
(Default = None; checks the entire file.)

--type Uses the specified file type instead of guessing.
[BAM,Fasta,AlignmentSet,ConsensusSet,ConsensusAlignmen
tSet,SubreadSet,BarcodeSet,ContigSet,ReferenceSet,
HdfSubreadSet] (Default = None)

--index Requires index files:.fai or .pbi. (Default = False)

--strict Turns on additional validation, primarily for Data Set XML.
(Default = False)

BAM Options Description

--unaligned Specifies that the file should contain only unmapped alignments.
(Default = None, no requirement.)

--unmapped Alias for --unaligned. (Default = None)

--aligned Specifies that the file should contain only mapped alignments.
(Default = None, no requirement.)

--mapped Alias for --aligned. (Default = None)

--contents Enforces the read type: [SUBREAD, CCS] (Default = None)

--reference REFERENCE Specifies the path to an optional reference FASTA file, used for additional
validation of mapped BAM records. (Default = None)

Options Description
Page 96

To validate up to 100 records in a BAM file:

pbvalidate --max-records 100 in.subreads.bam

To validate up to 100 records in a BAM file (equivalent to --max-
records=100):

pbvalidate --quick in.subreads.bam

To validate a BAM file, using a specified log level:

pbvalidate --log-level=INFO in.subreads.bam

To validate a BAM file and write log messages to a file rather than to
stdout:

pbvalidate --log-file validation_results.log in.subreads.bam

runqc-reports The runqc-reports tool generates up to five different Run QC reports,
depending on Data Set type: Raw Data, Adapters, Loading, Control, and
CCS Reads. Generating a complete set of reports requires the presence
of an sts.xml resource in the Data Set, but either the CCS Analysis report
(or a fallback Subreads report) will always be generated. All report JSON
and plot PNG files are written to the current working directory, unless
otherwise specified.

Usage
runqc-reports [-h] [--version] [--log-file LOG_FILE]
 [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
 [| --debug | --quiet | -v]
 [-o OUTPUT_DIR]
 dataset_xml

Required Description

dataset_xml Input SubreadSet or ConsensusReadSet XML, which must contain an
sts.xml resource for the full Run QC report set to be generated.

-o OUTPUT_DIR Output report directory. (Default = Current working directory)

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file LOG_FILE Writes the log to file. Default (None) will write to stdout.

--log-level Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR,
CRITICAL.] (Default = WARNING)

--debug Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to CRITICAL to suppress output.
(Default = False)

--verbose, -v Sets the verbosity level. (Default = None)
Page 97

Examples
runqc-reports moviename.subreadset.xml
runqc-reports moviename.consensusreadset.xml

summarize
Modifications

The summarizeModifications tool generates a GFF summary file
(alignment_summary.gff) from the output of base modification analysis
(for example, ipdSummary) combined with the coverage summary GFF
generated by resequencing pipelines. This is useful for power users
running custom workflows.

Usage
summarizeModifications [-h] [--version]
 [--log-file LOG_FILE]
 [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL} | --debug
 | --quiet | -v]
 modifications alignmentSummary gff_out

Input Files
• modifications: Base Modification GFF file.
• alignmentSummary: Alignment Summary GFF file.

Output Files
• gff_out: Coverage summary for regions (bins) spanning the reference

with Base Modification results for each region.

Options Description

-h, --help Displays help information and exits.

--version Displays program version number and exits.

--log-file LOG_FILE Writes the log to file. Default (None) will write to stdout.

--log-level Specifies the log level; values are [DEBUG, INFO, WARNING, ERROR,
CRITICAL] (Default = INFO)

--debug Alias for setting the log level to DEBUG. (Default = False)

--quiet Alias for setting the log level to CRITICAL to suppress output.
(Default = False)

--verbose, -v Sets the verbosity level. (Default = None)
Page 98

Appendix A - Application Entry Points and Output Files

Note: To print information about a specific PacBio workflow, including input
files and task options, use the pbcromwell show-workflow-details
command, which is available for all applications. Example:

pbcromwell show-workflow-details pb_hgap4
pbcromwell show-workflow-details cromwell.workflows.pb_hgap4

(The prefix cromwell.workflows is optional.)

Assembly
(HGAP 4) (CLR

Reads Only)

Analysis Application Name: cromwell.workflows.pb_hgap4

Entry Point
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet

Key Output Files

Base
Modification

Detection (CLR
Reads Only)

Analysis Application Name: cromwell.workflows.pb_basemods

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

File Name Datastore SourceId

Coverage Summary pb_hgap4.coverage_gff
Alignments pb_hgap4.mapped
Polished Assembly pb_hgap4.consensus_fasta
Polished Assembly pb_hgap4.consensus_fastq
Draft Assembly pb_hgap4.ofile_a_ctg_fasta, pb_hgap4.ofile_p_ctg_fasta

File Name Datastore SourceId

Motifs and Modifications pb_basemods.motifs_gff
Motifs Summary pb_basemods.motifs_csv
Full Kinetics Summary pb_basemods.basemods_gff
IPD Ratios pb_basemods.basemods_csv
Page 99

Circular
Consensus
Sequencing
(CCS) (CLR

Reads Only)

Analysis Application Name: cromwell.workflows.pb_ccs

Entry Point
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet

Key Output Files

CCS with
Demultiplexing

(CLR Reads
Only)

Analysis Application Name: cromwell.workflows.pb_ccs_demux

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_barcode
:name: Entry eid_barcode
:fileTypeId: PacBio.DataSet.BarcodeSet

Key Output Files

File Name Datastore SourceId

FASTQ file ccs_fastq_out
FASTA file ccs_fasta_out
<moviename>.hifi.reads.bam file ccs_bam_out
Consensus Sequences pb_ccs.ccsxml
CCS Analysis Statistics pb_ccs.report_ccs
All Reads (BAM) reads_bam
<moviename>.hifi.reads.fasta ccs_fasta_out
<moviename>.hifi.reads.fastq ccs_fastq_out

File Name Datastore SourceId

FASTQ file ccs_fastq_out
FASTA file ccs_fasta_out
BAM file ccs_bam_out
Consensus Sequences pb_ccs.ccsxml
CCS Analysis Statistics pb_ccs.report_ccs
Barcode Report Details pb_demux_ccs.summary_csv
Demultiplexed Data Sets pb_demux_ccs.demuxed_files_datastore
Unbarcoded Reads pb_demux_ccs.unbarcoded
Page 100

CCS with
Mapping (CLR

Reads Only)

Analysis Application Name: cromwell.workflows.pb_ccs_mapping

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Convert BAM to
FASTX (CLR
Reads Only)

Analysis Application Name: cromwell.workflows.pb_bam2fastx

Entry Point
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet

Key Output Files

Demultiplex
Barcodes (CLR

Reads Only)

Analysis Application Name: cromwell.workflows.pb_demux_subreads

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_barcode
:name: Entry eid_barcode
:fileTypeId: PacBio.DataSet.BarcodeSet

File Name Datastore SourceId

Coverage Summary pb_ccs_mapping.coverage_gff
Alignments pb_ccs_mapping.mapped
FASTQ file ccs_fastq_out
FASTA file ccs_fasta_out
BAM file ccs_bam_out
Consensus Sequences pb_ccs_mapping.ccsxml
CCS Analysis Statistics pb_ccs_mapping.report_ccs
Aligned BAM pb_ccs_mapping.mapped_bam
BAM Index pb_ccs_mapping.mapped_bam_bai

File Name Datastore SourceId

FASTQ file(s) pb_bam2fastx.fastq_zip
FASTA file(s) pb_bam2fastx.fasta_zip
Page 101

Key Output Files

Demultiplex
Barcodes (HiFi

Reads Only)

Analysis Application Name: cromwell.workflows.pb_demux_ccs

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_barcode
:name: Entry eid_barcode
:fileTypeId: PacBio.DataSet.BarcodeSet

Key Output Files

Export Reads
(HiFi Reads

Only)

Analysis Application Name: cromwell.workflows.pb_export_ccs

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet

Key Output Files

Note: If users select a lower cutoff Phred QV value, the string hifi is
replaced by the QV value in the file names.
Example: <moviename>.q10.fastq.gz.

Genome
Assembly (HiFi

Reads Only)

Analysis Application Name: cromwell.workflows.pb_assembly_hifi

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet

File Name Datastore SourceId

Barcode Report Details pb_demux_subreads.summary_csv
Demultiplexed Datasets pb_demux_subreads.barcoded_reads
Unbarcoded Reads pb_demux_subreads.unbarcoded

File Name Datastore SourceId

Barcode Report Details pb_demux_ccs.summary_csv
Demultiplexed Datasets pb_demux_ccs.demuxed_files_datastore
Unbarcoded Reads pb_demux_ccs.unbarcoded

File Name Datastore SourceId

<moviename>.hifi_reads.fastq.gz ccs_fastq_out
<moviename>.hifi_reads.fasta.gz ccs_fasta_out
<moviename>.hifi_reads.bam.gz ccs_bam_out
Page 102

Key Output Files

HiFiViral SARS-
CoV-2 Analysis

(HiFi Reads
Only)

Analysis Application Name: cromwell.workflows.pb_sars_cov2_kit

Entry Point
:id: eid_ccs (HiFi Reads, demultiplexed as separate BAM files)
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_ref_dataset_2 (Reference Genome)
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet
:id: eid_barcode (Probe Sequences)
:name: Entry eid_barcode
:fileTypeId: PacBio.DataSet.BarcodeSet

Key Output Files

File Name Datastore SourceId

Final Polished Assembly,
Primary Contigs

pb_assembly_hifi.final_primary_contigs_fasta

Final Polished Assembly,
Haplotigs

pb_assembly_hifi.final_haplotigs_fasta

List of Circular Contigs pb_assembly_hifi.circular_contigs
Summary Report pb_assembly_hifi.report_polished_assembly

File Name Datastore SourceId

All Samples, Probe Counts TSV pb_sars_cov2_kit.probe_counts_zip
All Samples, Raw Variant Calls
VCF

pb_sars_cov2_kit.raw_vcf_zip

All Samples, Variant Call VCF pb_sars_cov2_kit.vcf_zip
All Samples, Variant Calls CSV pb_sars_cov2_kit.variants_csv
All Samples, Consensus
Sequence FASTA

pb_sars_cov2_kit.fasta_zip

All Samples, Consensus
Sequence By Fragments FASTA

pb_sars_cov2_kit.frag_fasta_zip

All Samples, Aligned Reads
BAM

pb_sars_cov2_kit.mapped_zip

All Samples, Consensus
Sequence Aligned BAM

pb_sars_cov2_kit.aligned_frag_zip

All Samples, Trimmed HiFi
Reads FASTQ

pb_sars_cov2_kit.trimmed_zip

Failed Sample Info pb_sars_cov2_kit.sample_failures_csv
Failed Sample Analysis Logs pb_sars_cov2_kit.errors_zip
Demultiplex Summaries pb_sars_cov2_kit.lima_summary_zip
Sample Summary Table CSV pb_sars_cov2_kit.summary_csv
All Samples, Genome Coverage
Plots

pb_sars_cov2_kit.coverage_png_zip
Page 103

Iso-Seq
Analysis

(HiFi Reads
Only)

Analysis Application Name: cromwell.workflows.pb_isoseq3_ccsonly

Entry Points
:id: eid_ccs
:name: Reads
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_barcode
:name: Primers
:fileTypeId: PacBio.DataSet.BarcodeSet
:id: eid_ref_dataset
:name: Reference (Optional)
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Long Amplicon
Analysis (LAA)

(CLR Reads
Only)

Analysis Application Name: cromwell.workflows.pb_laa

Entry Point
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet

File Name Datastore SourceId

Collapsed Filtered Isoforms FASTQ pb_isoseq3_ccsonly.collapse_fastq
Collapsed Filtered Isoforms GFF pb_isoseq3_ccsonly.collapse_gff
Group TXT pb_isoseq3_ccsonly.collapse_group
Abundance TXT pb_isoseq3_ccsonly.collapse_abundance
Read Stat TXT pb_isoseq3_ccsonly.collapse_readstat
Collapsed Isoforms Abundance TXT
(Files are numbered consecutively,
1 for each barcoded sample.)

pb_isoseq3_ccsonly.collapse_abundance
Separate clusters, one per barcoded sample.

Collapsed Isoforms Abundance TXT
(Files are numbered consecutively,
1 for each barcoded sample.)

pb_isoseq3_ccsonly.collapse_abundance
Pooled clusters, one per barcoded sample.

High-Quality Transcripts pb_isoseq3_ccsonly.hq_fastq
Low-Quality Transcripts pb_isoseq3_ccsonly.lq_fastq
High-Quality Transcripts Counts
(Files are numbered consecutively,
1 for each barcoded sample.)

pb_isoseq3_ccsonly.barcode_overview_report
Separate clusters, one per barcoded sample.

High-Quality Transcripts Counts
(Files are numbered consecutively,
1 for each barcoded sample.)

pb_isoseq3_ccsonly.barcode_overview_report
Pooled clusters, one per barcoded sample.

CCS Reads FASTQ pb_isoseq3_ccsonly.ccs_fastq_zip
Full-length CCS Reads pb_isoseq3._ccsonly.flnc_bam
Polished Report pb_isoseq3._ccsonly.polish_report_csv
Cluster Report pb_isoseq3._ccsonly.report_isoseq
Page 104

Key Output Files

Mapping (CLR
Reads Only)

Analysis Application Name: cromwell.workflows.pb_align_ccs

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Mapping (HiFi
Reads Only)

Analysis Application Name: cromwell.workflows.pb_ccs_subreads

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Mark PCR
Duplicates

(HiFi Reads
Only)

Analysis Application Name:
cromwell.workflows.pb_mark_duplicates

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet

File Name Datastore SourceId

Consensus Sequence Statistics CSV pb_laa.summary_csv
Chimeric/Noise Consensus
Sequences

pb_laa.chimeras_fastq

Consensus Sequences pb_laa.consensus_fastq
Consensus Sequences by Barcode pb_laa.consensus_fastq_split
Chimeric/Noise Consensus
Sequences by Barcode

pb_laa.chimeras_fastq_split

File Name Datastore SourceId

Mapped reads pb_align_ccs.mapped
Coverage summary pb_align_ccs.coverage_gff

File Name Datastore SourceId

Mapped reads pb_align_ccs.mapped
Coverage summary pb_align_ccs.coverage_gff
Page 105

Key Output Files

Microbial
Assembly (CLR

Reads Only)

Analysis Application Name:
cromwell.workflows.pb_assembly_microbial

Entry Point
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet

Key Output Files

Microbial
Assembly (HiFi

Reads Only)

Analysis Application Name:
cromwell.workflows.pb_assembly_hifi_microbial

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusreadSet
id: reads (only for debugging)

Key Output Files

File Name Datastore SourceId

PCR Duplicates pb_mark_duplicates.duplicates
Deduplicated reads pb_mark_duplicates.deduplicated

In the SMRT Link UI, this displays as <ORIGINAL_DATASET_NAME>
(deduplicated).

File Name Datastore SourceId

Polished Assembly pb_assembly_microbial.consensus_fasta/fastq
Polished Contigs After oriC Rotation pb_assembly_microbial.assembled_fasta/fastq
Draft Assembly pb_assembly_microbial.draft_assembly
Draft Assembly Index pb_assembly_microbial.draft_assembly_fai
Final Assembly pb_assembly_microbial.ncbi_fasta
Mapped BAM pb_assembly_microbial.mapped
List of Circular Contigs pb_assembly_microbial.circular_list
Coverage Summary pb_assembly_microbial.coverage_gff
Coverage Report pb_assembly_microbial.report_coverage
Mapping Statistics Report pb_assembly_microbial.report_mapping_stats
Preassembly Report pb_assembly_microbial.report_preassembly
Polished Assembly Report pb_assembly_microbial.report_polished_assembly

File Name Datastore SourceId

Final Polished Assembly pb_assembly_hifi_microbial.assembly_fasta
Final Polished Assembly Index pb_assembly_hifi_microbial.assembly_fasta.fai
Page 106

Minor Variants
Analysis (HiFi

Reads Only)

Analysis Application Name: cromwell.workflows.pb_mv_ccs

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Site
Acceptance

Test (SAT) (CLR
Reads Only)

Analysis Application Name: cromwell.workflows.pb_sat

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Final Polished Assembly for NCBI pb_assembly_hifi_microbial.ncbi_fasta
Mapped BAM pb_assembly_hifi_microbial.mapped
List of Circular Contigs pb_assembly_hifi_microbial.circular_list
Coverage Summary pb_assembly_hifi_microbial.coverage_gff
Coverage Report pb_assembly_hifi_microbial.report_coverage
Mapping Statistics Report pb_assembly_hifi_microbial.report_mapping_stats
Mapped BAM Datastore pb_assembly_hifi_microbial.mapped_bam_datastore
Polished Assembly Report pb_assembly_hifi_microbial.report_polished_assembly

File Name Datastore SourceId

File Name Datastore SourceId

Minor Variants HTML Reports pb_mv_ccs.juliet_html
Per-Variant Table pb_mv_ccs.report_csv
Alignments pb_mv_ccs.mapped

File Name Datastore SourceId

Coverage and Variant Call Summary pb_sat.consensus_gff
Variant Calls pb_sat.variants_gff
Consensus Contigs pb_sat.consensus_fastq
Variant Calls pb_sat.variants_vcf
Alignments pb_sat.mapped
Page 107

Structural
Variant Calling

(CLR Reads
Only)

Analysis Application Name: cromwell.workflows.pb_sv_clr

Entry Points
:id: eid_subread
:name: Entry eid_subread
:fileTypeId: PacBio.DataSet.SubreadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Structural
Variant Calling

(HiFi Reads
Only)

Analysis Application Name: cromwell.workflows.pb_sv_ccs

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_ref_dataset
:name: Entry eid_ref_dataset
:fileTypeId: PacBio.DataSet.ReferenceSet

Key Output Files

Trim gDNA
Amplification

Adapters (HiFi
Reads Only)

Analysis Application Name: cromwell.workflows.pb_trim_adapters

Entry Points
:id: eid_ccs
:name: Entry eid_ccs
:fileTypeId: PacBio.DataSet.ConsensusReadSet
:id: eid_barcode
:name: Entry eid_barcode
:fileTypeId: PacBio.DataSet.BarcodeSet

Note: The barcodes need to be a single primer sequence.

Coverage Summary pb_sat.coverage_gff
Consensus Sequences pb_sat.consensus_fasta

File Name Datastore SourceId

File Name Datastore SourceId

Structural Variants pb_sv_clr.variants
Aligned reads
(BioSampleName)

pb_sv_clr.alignments_by_sample_datastore

File Name Datastore SourceId

Structural Variants pb_sv_ccs.variants
Aligned reads (Bio Sample
Name)

pb_sv_ccs.alignments_by_sample_datastore
Page 108

Key Output Files

File Name Datastore SourceId

Reads Missing Adapters pb_trim_adapters.unbarcoded
PCR Adapter Data CSV pb_trim_adapters.summary_csv
Trimmed reads pb_trim_adapters.trimmed

In the SMRT Link UI, this displays as <ORIGINAL_DATASET_NAME>
(trimmed).
Page 109

Appendix B - Third Party Command-Line Tools
Following is information on the third-party command-line tools included in
the smrtcmds/bin subdirectory.

bamtools • A C++ API and toolkit for reading, writing, and manipulating BAM files.
• See https://sourceforge.net/projects/bamtools/ for details.

cromwell • Scientific workflow engine used to power SMRT Link.
• See https://cromwell.readthedocs.io/en/stable/ for details.

daligner,
LAsort,

LAmerge,
HPC.daligner

• Finds all significant local alignments between reads.
• See https://dazzlerblog.wordpress.com/command-guides/daligner-

command-reference-guide/ for details.

datander • Finds all local self-alignment between long, noisy DNA reads.
• See https://github.com/thegenemyers/DAMASKER for details.

DB2fasta,
DBdump,

DBdust, DBrm,
DBshow,
DBsplit,

DBstats,
Fasta2DB

Utilities that work with Dazzler databases:

• DB2fasta: Converts database files to FASTA format.
• DBdust: Runs the DUST algorithm over the reads in the untrimmed

database, producing a track that marks all intervals of low complexity
sequence.

• DBdump/DBshow: Displays a subset of the reads in the database;
selects the information to show about the reads, including any mask
tracks.

• DBrm: Deletes all the files in a given database.
• DBsplit: Divides a database conceptually into a series of blocks.
• DBstats: Shows overview statistics for all the reads in the trimmed

database.
• Fasta2DB: Builds an initial database, or adds to an existing database,

using a list of .fasta files.
• See https://dazzlerblog.wordpress.com/command-guides/dazz_db-

command-guide/ for details.

ipython • An interactive shell for using the Pacific Biosciences API.
• See https://ipython.org/ for details.

purge_dups • Removes haplotigs and contig overlaps in a de novo assembly based
on read depth.

• See https://github.com/dfguan/purge_dups for details.

python • An object-oriented programming language.
• See https://www.python.org/ for details.
Page 110

REPmask,
TANmask,

HPC.REPmask,
HPC.TANmask

• A set of programs to soft-mask all tandem and interspersed repeats in
Dazzler databases when computing overlaps.

• See https://github.com/thegenemyers/DAMASKER for details.

samtools • A set of programs for interacting with high-throughput sequencing data
in SAM/BAM/VCF formats.

• See http://www.htslib.org/ for details.
Page 111

Appendix C - Microbial Assembly Advanced Options (Continuous
Long Reads Only)

Use this application to generate de novo assemblies of small prokaryotic
genomes between 1.9-10 Mb and companion plasmids between 2 – 220
kb, using Continuous Long Read data as input.

The Microbial Assembly application:

• Includes chromosomal- and plasmid-level de novo genome assembly,
circularization, polishing, and rotation of the origin of replication for
each circular contig.

• Facilitates assembly of larger genomes (yeast) as well.
• Accepts Continuous Long Read Sequel data (BAM format) as input.
Page 112

The workflow shown above consists of two assembly stages:

Stage 1: Intended for contig assembly of large sequences. This stage
uses the seed length cutoff which might miss small sequences in the input
sample (smaller than the input cutoff, such as the plasmids).

Stage 2: Intended for a fine-grained assembly. This stage assembles only
the unmapped and poorly mapped reads, does not use a seed length
cutoff, and relaxes the overlapping parameters.

Both stages use an automated random subsampling process to reduce the
input Data Set for assembly (by default to 100x). Note that the
subsampling is only applied to the contig construction process, while the
polishing stage of the workflow still uses the full input Data Set.

Available options for these two stages are identical. The only differences
are:

1. Stage 1 parameters are prefixed with stage1 and Stage 2 parameters
with stage2.

2. Default values.

Complete list of all available options and their default values

genome_size = 5000000
coverage = 30
plasmid_contig_len_max = 300000
plasmid_min_aln_frac = 0.95
plasmid_dedup_min_frac = 0.90
remove_temp_data = 1

stage1.length_cutoff = -1
stage1.block_size = 1024
stage1.subsample_coverage = 100
stage1.subsample_random_seed = 12345
stage1.use_median_filter = 1
stage1.autocomp_max_cov = 1
stage1.ovl_opt_raw =
stage1.ovl_opt_erc =
stage1.ovl_flank_grace = 20
stage1.ovl_min_idt = 96
stage1.ovl_min_len = 1000
stage1.ovl_filter_opt = --max-diff 80 --max-cov 100 --min-cov 1 --bestn 20 --min-len
4000 --gapFilt --minDepth 4
stage2.length_cutoff = 0
stage2.block_size = 400
stage2.subsample_coverage = 100
stage2.subsample_random_seed = 12345
stage2.use_median_filter = 1
stage2.autocomp_max_cov = 0
stage2.ovl_opt_raw = --min-map-len 499
stage2.ovl_opt_erc = --min-map-len 499
stage2.ovl_flank_grace = 20
stage2.ovl_min_idt = 94
Page 113

stage2.ovl_min_len = 500
stage2.ovl_filter_opt = --max-diff 10000 --max-cov 10000 --min-cov 1 --bestn 20 --min-
len 498 --gapFilt --minDepth 4

 Advanced Parameters Default Value Description

stage1.length_cutoff -1 Only reads as long as this value are used as seeds in the draft
assembly, and subsequently error-corrected.
-1 means this is calculated automatically so that the total
number of seed bases equals (Genome Length x Coverage).
0 means all reads in the input Data Set are used for error-
correction.

stage1.block_size 1024 The overlapping process is performed on pairs of blocks of
input sequences, where each block contains the number of
sequences which crop up to this size (in Mbp). Note: The
number of pairwise comparisons grows quadratically with the
number of blocks (meaning more cluster jobs), but also the
larger the block size the more resources are required to
execute each pairwise comparison.

stage1.subsample_coverage 100 If the input Data Set is large, it will automatically be randomly
subsampled to the desired coverage specified by this
parameter. The subsampling here is applied only to the
assembly process, while the polishing stage will still use the
full input Data Set. The specified subsample_coverage
value should be larger than the coverage parameter used for
seed selection. The difference between these two parameters
is that subsample_coverage selects reads randomly, while
coverage picks the longest reads. If subsample_coverage
is set to <=0, subsampling is deactivated.

stage1.subsample_random_s
eed

12345 The value used to seed the random number generator for the
subsampling process. Value greater than 0 specifies a fixed
seed which allows reproducibility, while a value <= 0 should
produce a different ordering on every run.

stage1.use_median_filter 1 The median filter selects one subread per ZMW – the median
length subread. 1 enables the filter; 0 deactivates it. It is highly
recommended to use the median filter.

stage1.autocomp_max_cov 1 If enabled, the maximum allowed overlap coverage at either
the 5’ or the 3’ end of every read is automatically determined
based on the statistics computed from the overlap piles. This
value is appended to the ovl_filter_opt value internally,
and supersedes the manually specified
values of the --max-cov and --max-diff parameters.
These parameters are used to determine potential repeats and
filter out those reads before the string graph is constructed. 1
enables this option, and 0 turns it off.

stage1.ovl_opt_raw NONE Overlapping options for the Raptor overlapping tool, applied
at the raw read overlapping stage (pre-assembly). The
defaults are set to work well with PacBio subreads. The
options set by this parameter here are passed directly to
Raptor. For details on Raptor options, use raptor -h.

stage1.ovl_opt_erc NONE Overlapping options for the Raptor overlapping tool, applied
at the pread overlapping stage. The defaults are set to work
well with error-corrected reads and HiFi Reads. The options
set by this parameter here are passed directly to Raptor. For
details on Raptor options, use raptor -h.
Page 114

stage1.ovl_flank_grace 20 Heuristic to salvage some potential dovetail overlaps. Only
dovetail overlaps are used for assembly, and all other overlaps
(partial overlaps, which are actually local alignments by
definition) are not used to construct the string graph.
Dovetail overlaps are overlaps where the full suffix of one read
and a full prefix of the other read are used to form the overlap.
More details can be found here.
Overlaps are formed in the process of alignment, and
alignment extension near the ends of the sequences can be
stopped in case there are errors present near the edges of one
or both of the sequences.
For any overlap which is missing only a few bases to become
a dovetail overlap (the number of bases defined by this
parameter), the coordinates are augmented to convert it into a
dovetail overlap.
The impact of this parameter is very low, and this value is set
to work in almost all cases. This value should also be set
relatively low, to avoid chimeric overlaps.

stage1.ovl_min_idt 96 Overlap identity threshold (in percentage) for filtering overlaps
used for contig construction.

stage1.ovl_min_len 1000 Minimum span of an overlap to keep it for contig construction,
in bp.

stage1.ovl_filter_opt --max-diff 80
--max-cov 100
--min-cov 1 -
-bestn 20
--min-len
4000
--gapFilt
--minDepth 4

Overlap filter options. These are identical to FALCON overlap
filtering options except for the addition of the two options listed
in the defaults:
--gapFilt - Enables the chimera filter, which analyzes each
pread's overlap pile, and determines whether a pread is
chimeric based on the local coverage across the pread.
--minDepth - Option for the chimera filter. The chimera filter
is ignored when a local region of a read has coverage lower
than this value.
The other parameters are:
--min-cov - Minimum allowed coverage at either the 5' or
the 3' end of a read. If the coverage is below this value, the
read is blacklisted and all of the overlaps it is incident with are
ignored. This helps remove potentially chimeric reads.
--max-cov - Maximum allowed coverage at either the 5' or
the 3' end of a read. If the coverage is above this value, the
read is blacklisted and all of the overlaps it is incident with are
ignored. This helps remove repetitive reads which can make
tangles in the string graph. Note that this value is a heuristic
which works well for ~30x seed length cutoff. If the cutoff is set
higher, it is advised that this value is also increased.
Alternatively, using the autocompute_max_cov option can
automatically estimate the value of this parameter, which can
improve contiguity (for example, in cases when the input
genome size or the seed coverage were overestimated).
--max-diff - Maximum allowed difference between the
coverages at the 5' and 3' ends of any particular read. If the
coverage is above this value, the read is blacklisted and all of
the overlaps it is incident with are ignored. If the
autocompute_max_cov option is used, then the same
computed value is supplied to this parameter as well.
--bestn - Keep at most this many overlaps on the 5' and the
3' side of any particular read.
--min-len - Filter overlaps where either A-read or the B-read
are shorter than this value.

 Advanced Parameters Default Value Description
Page 115

http://wgs-assembler.sourceforge.net/wiki/index.php/Overlaps

stage2.length_cutoff 0 Only reads as long as this value are used as seeds in the draft
assembly, and subsequently error-corrected. -1 means this is
calculated automatically so that the total number of seed
bases equals (Genome Length x Coverage).
0 means all reads in the input Data Set are used for error-
correction.

stage2.block_size 400 The overlapping process is performed on pairs of blocks of
input sequences, where each block contains the amount of
sequences which crop up to this size (in Mbp). Note: The
number of pairwise comparisons grows quadratically with the
number of blocks (meaning: more cluster jobs), but also the
larger the block size the more resources are required to
execute each pairwise comparison.

stage2.subsample_coverage 100 If the input Data Set is large, it will automatically be randomly
subsampled to the desired coverage specified by this
parameter. The subsampling here is applied only to the
assembly process, while the polishing stage will still use the
full input Data Set. The specified subsample_coverage
value should be larger than the coverage parameter used for
seed selection. The difference between these two parameters
is that subsample_coverage selects reads randomly, while
coverage picks the longest reads. If subsample_coverage
is set to <=0, subsampling is deactivated.

stage2.subsample_random_s
eed

12345 The value used to seed the random number generator for the
subsampling process. Value greater than 0 specifies a fixed
seed which allows reproducibility, while a value <= 0 should
produce a different ordering on every run.

stage2.use_median_filter 1 The median filter selects one subread per ZMW – the median
length subread. 1 enables the filter; 0 deactivates it. It is highly
recommended to use the median filter.

stage2.autocomp_max_cov 0 If enabled, the maximum allowed overlap coverage at either
the 5’ or the 3’ end of every read is automatically determined
based on the statistics computed from the overlap piles. This
value is appended to the ovl_filter_opt value internally,
and supersedes the manually specified
values of the --max-cov and --max-diff parameters.
These parameters are used to determine potential repeats and
filter out those reads before the string graph is constructed. 1
enables this option, and 0 turns it off.

stage2.ovl_opt_raw --min-map-
len 499

Overlapping options for the Raptor overlapping tool, applied
at the raw read overlapping stage (pre-assembly). The
defaults are set to work well with PacBio subreads. The
options set by this parameter here are passed directly to
Raptor. For details on Raptor options, use raptor -h.
The option --min-map-len reduces the minimum span of
the overlap to 499 bp (instead of the default 1000 bp). This
allows shorter overlaps to be reported.

stage2.ovl_opt_erc --min-map-
len 499

Overlapping options for the Raptor overlapping tool, applied
at the pread overlapping stage. The defaults are set to work
well with error-corrected reads and HiFi Reads. The options
set by this parameter here are passed directly to Raptor. For
details on Raptor options, use raptor -h.
The option --min-map-len reduces the minimum span of
the overlap to 499 bp (instead of the default 1000 bp). This
allows shorter overlaps to be reported.

 Advanced Parameters Default Value Description
Page 116

stage2.ovl_flank_grace 20 Heuristic to salvage some potential dovetail overlaps. Only
dovetail overlaps are used for assembly, and all other overlaps
(partial overlaps, which are actually local alignments by
definition) are not used to construct the string graph.
Dovetail overlaps are overlaps where the full suffix of one read
and a full prefix of the other read are used to form the overlap.
More details can be found here.
Overlaps are formed in the process of alignments, and
alignment extension near the ends of the sequences can be
stopped in case there are errors present near the edges of one
or both of the sequences.
For any overlap which is missing only a few bases to become
a dovetail overlap (the number of bases defined by this
parameter), the coordinates are augmented to convert it into a
dovetail overlap.
The impact of this parameter is very low, and this value is set
to work in almost all cases. This value should also be set
relatively low, to avoid chimeric overlaps.

stage2.ovl_min_idt 94 Overlap identity threshold (in percentage) for filtering overlaps
used for contig construction.

stage2.ovl_min_len 500 Minimum span of an overlap to keep it for contig construction,
in bp.

stage2.ovl_filter_opt --max-diff
10000
--max-cov
10000
--min-cov 1
--bestn 20
--min-len 498
--gapFilt
--minDepth 4

Overlap filter options. These are identical to FALCON overlap
filtering options except for the addition of the two options listed
in the defaults:
--gapFilt - Enables the chimera filter, which analyzes each
pread's overlap pile, and determines whether a pread is
chimeric based on the local coverage across the pread.
--minDepth - Option for the chimera filter. The chimera filter
is ignored when a local region of a read has coverage lower
than this value.
The other parameters are:
--min-cov - Minimum allowed coverage at either the 5' or
the 3' end of a read. If the coverage is below this value, the
read is blacklisted and all of the overlaps it is incident with are
ignored. This helps remove potentially chimeric reads.
--max-cov - Maximum allowed coverage at either the 5' or
the 3' end of a read. If the coverage is above this value, the
read is blacklisted and all of the overlaps it is incident with are
ignored. This helps remove repetitive reads which can make
tangles in the string graph. Note that this value is a heuristic
which works well for ~30x seed length cutoff. If the cutoff is set
higher, it is advised that this value is also increased.
Alternatively, using the autocompute_max_cov option can
automatically estimate the value of this parameter, which can
improve contiguity (for example, in cases when the input
genome size or the seed coverage were overestimated).
--max-diff - Maximum allowed difference between the
coverages at the 5' and 3' ends of any particular read. If the
coverage is above this value, the read is blacklisted and all of
the overlaps it is incident with are ignored. If the
autocompute_max_cov option is used, then the same
computed value is supplied to this parameter as well.
--bestn - Keep at most this many overlaps on the 5' and the
3' side of any particular read.
--min-len - Filter overlaps where either A-read or the B-read
are shorter than this value.

 Advanced Parameters Default Value Description
Page 117

http://wgs-assembler.sourceforge.net/wiki/index.php/Overlaps

genome_size 5,000,000 The approximate number of base pairs expected in the
genome, used to determine the coverage cutoff.
Note: It is better to slightly overestimate rather than
underestimate the genome length to ensure good coverage
across the genome.

coverage 30 A target value for the total amount of subread coverage used
for assembly. This parameter is used, together with the
genome size, to calculate the seed length cutoff.

plasmid_contig_len_max 300,000 The maximum expected plasmid size in the input subreadset.
The default value covers a large range of possible plasmids.
This value is used to select subreads for the secondary
assembly stage which is specialized for assembly of smaller
sequences (such as plasmids) that might have been lost due
to the seed length cutoff threshold.
Any contig assembled in the first assembly stage larger than
this value is filtered out and reassembled in the secondary
assembly stage. This is performed to avoid partially
assembled plasmid sequences

plasmid_min_aln_frac 0.95 Applied in the "Mapping and filtering" stage, where raw
subreads are aligned to the filtered contigs of the first
assembly stage.
Any subread which doesn't have at least this large of aligned
span (in query coordinates) is kept for the secondary
assembly stage, in addition to all reads which didn't align.
The value is a fraction of the subread's length (0.95 means
95% of the subread's size).

plasmid_dedup_min_frac 0.90 Applied in the "Deduplicate plasmid contigs" stage, where
contigs from the secondary assembly stage are aligned to the
contigs of the first assembly stage. This is done because
reusing unmapped and poorly mapped reads can still cause
duplicate contigs to form in the secondary assembly stage.
After contigs from the secondary stage are aligned, any contig
whose alignment doesn't cover at least this fraction of it's
length is kept. All other contigs are marked as duplicates and
removed.

remove_temp_data 1 Removes intermediate data once they are no longer needed.
This includes the mapped BAM files from the “Mapping and
filtering” stage of the workflow. Enabled if set to 1, otherwise
this option is disabled.

 Advanced Parameters Default Value Description
Page 118

Appendix D - Microbial Assembly Advanced Options (HiFi Reads Only)
Use this application to generate de novo assemblies of small prokaryotic
genomes between 1.9-10 Mb and companion plasmids between 2 – 220
kb from Hifi (CCS) Reads.

The HiFi Microbial Assembly application:

• Includes chromosomal- and plasmid-level de novo genome assembly,
circularization, polishing, and rotation of the origin of replication for
each circular contig.

• Facilitates assembly of larger genomes (yeast) as well.
• Accepts Sequel HiFi Read data (BAM format) as input.

The workflow consists of two assembly stages: chromosomal and
plasmid.

Chromosonal Stage: Intended for contig assembly of large sequences.
This stage uses more stringent filtering (using advanced options) to
produce contiguous assemblies of complex regions, but it may miss small
sequences in the input sample (such as plasmids.)

Plasmid Stage: Intended for a fine-grained assembly. This stage
assembles only the unmapped and poorly mapped reads. It also relaxes
the overlapping parameters, using advanced options.

Both stages use an automated random subsampling process to reduce the
input Data Set for assembly (by default to 100x). Note that the
subsampling is only applied to the contig construction process, while the
alignment and reports stages of the workflow still uses the full input Data
Set.

Available options for the two assembly stages are identical. The only
differences are:

1. Chromosonal stage parameters are prefixed with:
ipa2_advanced_options_chrom.

2. Plasmid stage parameters are prefixed with:
ipa2_advanced_options_plasmid.

The same sub-options are available to each stage, but the defaults are
very different. The current defaults are:

ipa2_advanced_options_chrom =

"config_block_size = 100; config_seeddb_opt = -k 28 -w 20 --space 0 --use-hpc-seeds-
only; config_ovl_opt = --one-hit-per-target --min-idt 98 --traceback --mask-hp --mask-
repeats --trim --trim-window-size 30 --trim-match-frac 0.75;"

ipa2_advanced_options_plasmid =
Page 119

"config_block_size = 100; config_ovl_filter_opt = --max-diff 80 --max-cov 100 --min-cov
2 --bestn 10 --min-len 500 --gapFilt --minDepth 4 --idt-stage2 98; config_ovl_min_len =
500; config_seeddb_opt = -k 28 -w 20 --space 0 --use-hpc-seeds-only; config_ovl_opt = -
-one-hit-per-target --min-idt 98 --min-map-len 500 --min-anchor-span 500 --traceback --
mask-hp --mask-repeats --trim --trim-window-size 30 --trim-match-frac 0.75 --smart-hit-
per-target --secondary-min-ovl-frac 0.05; config_layout_opt = --allow-circular;"

Options are separated by semicolons; within each option, parameters are
separated by spaces.

Users should not need to modify any of default options. If the defaults are
modified, workflow behavior could be very different.

Note: The options available in ipa2_advanced_options_* are exactly
the same as the config_* options available for the Genome Assembly
tool. See “Genome Assembly Parameters Input Files” on page 38 for details.

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2017-2021, Pacific Biosciences of
California, Inc. All rights reserved. Information in this document is subject to change without notice. Pacific Biosciences
assumes no responsibility for any errors or omissions in this document. Certain notices, terms, conditions and/or use
restrictions may pertain to your use of Pacific Biosciences products and/or third party products. Please refer to the
applicable Pacific Biosciences Terms and Conditions of Sale and to the applicable license terms at
https://www.pacb.com/legal-and-trademarks/terms-and-conditions-of-sale/.

Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq and Sequel are trademarks of
Pacific Biosciences. FEMTO Pulse and Fragment Analyzer are trademarks of Agilent Technologies Inc. All other
trademarks are the sole property of their respective owners.

See https://github.com/broadinstitute/cromwell/blob/develop/LICENSE.txt for Cromwell redistribution information.

 P/N 102-155-200 Version 01 (November 2021)
Page 120

	Introduction
	Installation
	Supported Chemistry
	Pacific Biosciences Command-Line Tools
	bam2fasta/ bam2fastq
	bamsieve
	ccs
	dataset
	Demultiplex Barcodes
	export-datasets
	export-job
	gcpp
	Genome Assembly
	HiFiViral SARS- CoV-2 Analysis
	ipdSummary
	isoseq3
	juliet
	laa
	Microbial Assembly
	motifMaker
	pbcromwell
	pbindex
	pbmarkdup
	pbmm2
	pbservice
	pbsv
	pbvalidate
	runqc-reports
	summarize Modifications

	Appendix A - Application Entry Points and Output Files
	Assembly (HGAP 4) (CLR Reads Only)
	Base Modification Detection (CLR Reads Only)
	Circular Consensus Sequencing (CCS) (CLR Reads Only)
	CCS with Demultiplexing (CLR Reads Only)
	CCS with Mapping (CLR Reads Only)
	Convert BAM to FASTX (CLR Reads Only)
	Demultiplex Barcodes (CLR Reads Only)
	Demultiplex Barcodes (HiFi Reads Only)
	Export Reads (HiFi Reads Only)
	Genome Assembly (HiFi Reads Only)
	HiFiViral SARS- CoV-2 Analysis (HiFi Reads Only)
	Iso-Seq Analysis (HiFi Reads Only)
	Long Amplicon Analysis (LAA) (CLR Reads Only)
	Mapping (CLR Reads Only)
	Mapping (HiFi Reads Only)
	Mark PCR Duplicates (HiFi Reads Only)
	Microbial Assembly (CLR Reads Only)
	Microbial Assembly (HiFi Reads Only)
	Minor Variants Analysis (HiFi Reads Only)
	Site Acceptance Test (SAT) (CLR Reads Only)
	Structural Variant Calling (CLR Reads Only)
	Structural Variant Calling (HiFi Reads Only)
	Trim gDNA Amplification Adapters (HiFi Reads Only)

	Appendix B - Third Party Command-Line Tools
	bamtools
	cromwell
	daligner, LAsort, LAmerge, HPC.daligner
	datander
	DB2fasta, DBdump, DBdust, DBrm, DBshow, DBsplit, DBstats, Fasta2DB
	ipython
	purge_dups
	python
	REPmask, TANmask, HPC.REPmask, HPC.TANmask
	samtools

	Appendix C - Microbial Assembly Advanced Options (Continuous Long Reads Only)
	Appendix D - Microbial Assembly Advanced Options (HiFi Reads Only)

