
Welcome!

Thank you for purchasing our AZ-Delivery DS3231 Real Time Clock Module.

On the following pages, you will be introduced to how to use and set up this

handy device.

Have fun!

Table of Contents

Introduction..3

Specifications..5

The pinout...6

How to set-up Arduino IDE..7

How to set-up the Raspberry Pi and Python...11

Connecting the module with Uno...12

Sketch example...14

Connecting the module with Raspberry Pi..20

Enabling the I2C interface...21

Libraries and tools for Python..23

Python script..24

- 2 -

Introduction

The DS3231 Real Time Clock module is used as time synchronization

device in applications where precise timings are essential. The module is

used in digital clocks, computer motherboards, digital cameras, embedded

systems etc.

It is a real time clock with an integrated temperature-compensated crystal

oscillator. There is an on-board battery holder, so that it can maintain

continuous time keeping when the device is not powered from an external

source.

One of the features of the module is that it can operate in 12 hour or 24

hour format and has a AM/PM indication capability.

The module is programmable with two day-time alarms. Alarms can be

programmed via an integrated EEPROM chip which can store alarm data in

internal memory. There is also 32KHz square-wave oscillator output pin,

which can be used to synchronize time with other similar devices.

- 3 -

The internal clock can provide seconds, minutes, hours, day, date, month,

and year information. The date at the end of the month is automatically

adjusted for months which have less than 31 days. It also includes

corrections for leap years.

The module has an I2C interface with I2C serial address, and it can be

connected alongside with other devices on the same I2C lines.

- 4 -

Specifications

Power supply voltage 3.3V

Operational temperature from 0 to +70℃ ℃
Communication interface I2C

Battery backup One 3V coin cell battery batter holder

Digital temp sensor ±3°C Accuracy

Programmable square-wave 32kHz [Output]

Time of day alarms 2

Low power consumption less then 1mA

Dimensions 34 x 23 x 18mm [1.3 x 09 x 07in]

The module consists of a DS3231 RTC Clock chip and Atmel AT24C32

EEPROM chip. The AT24C32 has memory storage capacity of 32kB and

uses the I2C bus interface with 0x57 address which can be modified. It has

a capability of setting the time and date, checking and clearing alarms and

logging data with a timestamp.

The module has a battery holder for a 3 V button cell; the battery is not
included with the module. A CR2032 or, alternatively, a LIR2032 is

required. The battery serves as a backup power supply for the module.

When the external power supply is switched off, the integrated chip with

automatic detection switches to the emergency power supply provided by

the battery.

- 5 -

The pinout

The DS3231 RTC module has a six pins on one side and additional four, for

power supply and I2C interface lines on the other side. The pinout is shown

on the following image:

The DS3231 RTC module safely operates in 3.3V Voltage.

VCC can only be connected to 5V if the RTC is operated with a LIR2032.

The 32K output pin is a crystal controlled oscillator output pin. It provides a

32kHz square-wave signal and it can be used to feed the reference signal

for other devices. It may be left floating if not used.

The SQW pin can provide either an interrupt signal due to alarm

conditions or a square-wave output signal.

- 6 -

How to set-up Arduino IDE

If the Arduino IDE is not installed, follow the link and download the

installation file for the operating system of choice.

For Windows users, double click on the downloaded .exe file and follow

the instructions in the installation window.

- 7 -

https://www.arduino.cc/en/Main/Software

For Linux users, download a file with the extension .tar.xz, which has to

be extracted. When it is extracted, go to the extracted directory and open

the terminal in that directory. Two .sh scripts have to be executed, the first

called arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser has to be entered when the command is

started. Wait for a few minutes for the script to complete everything.

The second script, called install.sh, has to be used after the installation

of the first script. Run the following command in the terminal (extracted

directory): sh install.sh

After the installation of these scripts, go to the All Apps, where the Arduino

IDE is installed.

- 8 -

Almost all operating systems come with a text editor preinstalled (for

example, Windows comes with Notepad, Linux Ubuntu comes with

Gedit, Linux Raspbian comes with Leafpad, etc.). All of these text

editors are perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect an Arduino board. Open freshly

installed Arduino IDE, and go to:

Tools > Board > {your board name here}

{your board name here} should be the Arduino/Genuino Uno, as it can

be seen on the following image:

The port to which the Arduino board is connected has to be selected. Go to:

Tools > Port > {port name goes here}

and when the Arduino board is connected to the USB port, the port name

can be seen in the drop-down menu on the previous image.

- 9 -

If the Arduino IDE is used on Windows, port names are as follows:

For Linux users, for example port name is /dev/ttyUSBx, where x

represents integer number between 0 and 9.

- 10 -

How to set-up the Raspberry Pi and Python

For the Raspberry Pi, first the operating system has to be installed, then

everything has to be set-up so that it can be used in the Headless mode.

The Headless mode enables remote connection to the Raspberry Pi,

without the need for a PC screen Monitor, mouse or keyboard. The only

things that are used in this mode are the Raspberry Pi itself, power supply

and internet connection. All of this is explained minutely in the free eBook:

Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python preinstalled.

- 11 -

https://www.az-delivery.de/products/raspberry-pi-kostenfreies-e-book?ls=en

Connecting the module with Microcontroller
Compatible with Arduino

Connect the DS3231 RTC module with the Microcontroller compatible with

Arduino as shown on the following connection diagram:

Module pin MC pin Wire color

SCL A5 Green wire

SDA A4 Blue wire

VCC 3.3V Red wire

GND GND Black wire

- 12 -

Library for Arduino IDE

To use the module with a Uno, it is recommended to download an external

library. The library we are going to use is called the RTClib. The version of

the library that is used is 1.3.3. To download and install it, open Arduino IDE

and go to:

Tools > Manage Libraries.

When new window opens, type RTClib in the search box and install the

library RTClib made by Adafruit, as shown in the following image:

With the library comes several sketch examples, to open one, go to:

File > Examples > RTClib > ds3231

With this sketch example the module can be tested. The sketch in this

eBook is modified version of this sketch, to get more user-friendly output.

- 13 -

Sketch example

#include <Wire.h>

#include "RTClib.h"

RTC_DS3231 rtc;

char daysOfTheWeek[7][12] = {

 "Sunday",

 "Monday",

 "Tuesday",

 "Wednesday",

 "Thursday",

 "Friday",

 "Saturday"

};

void setup () {

 Serial.begin(9600);

 delay(2000);

 rtc.begin();

 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

/* To manualy set date and time,

 remove the coment // signs

 and enter new values in the followingline

 in this sequence: year, day, month, hour, minute and second.*/

 //rtc.adjust(DateTime(2020, 2, 24, 10, 00, 0));

}

void loop () {

 DateTime now = rtc.now();

 //Day of the week

 Serial.print("Day of the week: ");

 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);

 Serial.println();

- 14 -

 //one tab

 //Current time:

 Serial.print("Current Time: ");

 if (now.hour() < 10) {

 Serial.print("0");

 Serial.print(now.hour());

 }

 else {

 Serial.print(now.hour(), DEC);

 }

 Serial.print(':');

 if (now.minute() < 10) {

 Serial.print("0");

 Serial.print(now.minute());

 }

 else {

 Serial.print(now.minute(), DEC);

 }

 Serial.print(':');

 if (now.second() < 10) {

 Serial.print("0");

 Serial.print(now.second());

 }

 else {

 Serial.print(now.second(), DEC);

 }

 Serial.println();

- 15 -

 //one tab

 //Current date:

 Serial.print("Current Date: ");

 if (now.day() < 10) {

 Serial.print("0");

 Serial.print(now.day());

 }

 else {

 Serial.print(now.day(), DEC);

 }

 Serial.print('/');

 if (now.month() < 10) {

 Serial.print("0");

 Serial.print(now.month());

 }

 else {

 Serial.print(now.month(), DEC);

 }

 Serial.print('/');

 Serial.print(now.year(), DEC);

 Serial.print("");

 Serial.println();

 //Temperature:

 Serial.print("Temperature: ");

 Serial.print(rtc.getTemperature());

 Serial.println(" C");

 Serial.println();

 delay(2000);

}

- 16 -

Upload the sketch to the Uno and open Serial Monitor: (Tools > Serial

Monitor).

The result should look like the output on the following image:

- 17 -

At the beginning of the sketch two libraries called Wire and RTClib are

imported. These libraries are used to import functions that can be used for

communication between the module and Uno.

Next, an object called RTC_DS3231 is created with the following line of

code: RTC_DS3231 rtc;

Where rtc object represents the RTC module.

Then a char array called daysOfTheWeek is created which represents the

names of weekdays, and these predefined names are used to display

current day status in the Serial Monitor.

At the beginning of setup() function, communication is started between

Uno and RTC with the following line of code: Rtc.Begin();

Next, the function called rtc.adjust() is used. This function sets date

and time in the module. It has one argument, a DateTime object. To set

the current date and time of the PC during upload time, the following line of

code is used:

rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

- 18 -

When a specific time and date has to be set, it can be done with adjust()

and DateTime() functions. For example, if date is to be set to: 09th March

2020. And time to 10:00:00, following line of code can be used:

rtc.adjust(DateTime(2020, 3, 09, 10, 00, 0));

The DateTime() function has six arguments and returns a DateTime

object. The arguments are integer numbers, which represent date and time,

in the following sequence: year, day, month, hour, minute and second. The

return value is a DateTime object required for setting the date and time in

the module.

At the beginning of the loop() function, the data is read from the module

and information is stored in the object called now with following line of code:

DateTime now = rtc.now();

The object now is type of DateTime. After reading and storing data to this

object, properties of this object are called to display data.

The following is the algorhithm for displaying the data.

First, day of the week is printed. Next, the current time. The original sketch

output displayed values without a leading zero, so a simple if and else

statements are added for better output. Each time when numerical values

are less than 10, a leading zero is added to the output.

- 19 -

Connecting the module with Raspberry Pi

Connect the DS3231 RTC module with the Raspberry Pi as shown on the

following connection diagram:

RTC pin Microcontroller pin Physical pin Wire color

VCC 3V3 1 Red wire

SDA GPIO2 3 Blue wire
GND GND 6 Black wire

SCL GPIO3 5 Green wire

- 20 -

Enabling the I2C interface

In order to use the module with Raspberry Pi, I2C interface of the

Raspberry Pi has to be enabled. Open following menu:

Application Menu > Preferences > Raspberry Pi Configuration

In the new window, under the tab Interfaces, enable the I2C radio button, as

on the following image:

- 21 -

To detect I2C address of the module, i2ctools should be installed. If It is

not installed, open the terminal and execute the following command:

sudo apt-get install i2ctools -y

Checking the RTC module I2C address is done by executing the following

command in the terminal:

i2cdetect -y 1

The output should look like on the following image:

Where, the 0x68 is the I2C address of the RTC module and 0x57 is the I2C

address of the EEPROM chip.

If I2C interface is not enabled before executing the previous command, the

error will be displayed as on the following image:

- 22 -

Libraries and tools for Python

To use this script, the git app and python-smbus library have to be

installed. To do so, run the following commands in the terminal:

sudo apt-get update

sudo apt-get install -y python-smbus git

External library script can be downloaded with following command:

git clone https://github.com/Slaveche90/az-delivery-ds3231.git

After downloading the library, the script rtc_lib.py can be found in the

following directory:

/home/pi/az-delivery-ds3231

To change the directory, enter the following command:

cd az-delivery-ds3231

- 23 -

Python script

The following is the script for controlling the RTC module:

import time

import rtc_lib # importing library functions

degree_sign = u'\xb0'

ds3231 = rtc_lib.SDL_DS3231(1, 0x68)

ds3231.write_now() # saves the current date and time of R. Pi

ds3231.write_all(seconds=None, minutes=None, hours=None,

day=None, date=None, month=None, year=None, save_as_24h=True)

Range: seconds [0-59]; minutes [0-59]; hours [0-23]; day [1-7];

date [1-31]; month [1-12]; year [0-99]

def check(num):

'''A fucntion that put leading zero to single digit number

return: string

'''

if num < 10:

return '0{}'.format(num)

else:

return str(num)

- 24 -

print('[Press CTRL + C to end the script!]')

try:

while True:

print('\nSystem time: {}'.format(

time.strftime('%Y-%m-%d %H:%M:%S')))

data = ds3231.read_datetime() # return tuple

print('RTC date: {} {}.{}.{}'.format(data[0],

data[1], check(data[2]), check(data[3])))

print('RTC time: {}:{}:{}'.format(check(data[4]),

check(data[5]), check(data[6])))

return string

print('RTC date_time: {}'.format(ds3231.read_str()))

print('Temperature: {:.1f}C'.format(ds3231.getTemp(),

degree_sign))

time.sleep(1)

except KeyboardInterrupt:

print('\nScript end!')

- 25 -

Save the script by the name rtc.py in the same directory where the

rtc_lib.py script is saved. To run the script, open the terminal in the

directory where the script is saved and run the following command:

python3 rtc.py

The result should look like as on the following image:

To stop the script press 'CTRL + C' on the keyboard.

- 26 -

The script starts with importing two libraries, time and rtc_lib.

Next, the variable called degree_sign is created. The value of this

variable represents the UTF8 symbol for degree sign.

Then, the object called ds3231 is created with the following line of code:

ds3231 = rtc_lib.SDL-DS3231(1, 0x68)

Where the number 0x68 represents the I2C address of the RTC module.

After this, the date and time in RTC is updated with the following line of

code:

ds3231.write_now()

The function write_now() stores in the RTC module the current date and

time of the Raspbian operating system.

There is another option to store time and date data. It can be done with the

following line of code:

ds3231.write_all(seconds=None,minutes=None,hours=None,day=None,

date=None,month=None,year=None,save_as_24h=True)

- 27 -

The function called write_all() has eight arguments and returns no

value. The arguments represent part of data for date and time. The values

for all arguments are integer numbers in the ranges:

Seconds: 0 - 59, Minutes: 0 - 59, Hours: 0 - 23 Day: 1 - 7 (day in week),

Date: 1 - 31, Month: 1 12, Year: 0 - 99

Save_as_24h: True/False (tested with only as True)

Next, a new function is created, called check(). The function has one

argument and returns a string value. It is used to add leading zero to the

single digit number. The argument represents the number which is then

checked if it is a single or double digit number. If the number is a single

digit, then the string value ‘0{}’.format(num) is returned. If the number

is not a double digit number then the string value str(num) is returned.

After that, the try-except block of code is created. In the try block of

code, the indefinite loop is created. In the indefinite loop the RTC data is

read, and displayed in the terminal. There are two ways to display data in

the terminal. The first is by using the function read_datetime() and the

second is by using the function read_str().

To stop the script press ‘CTRL + C’ on the keyboard. This is called the

keyboard interrupt. When the keyboard interrupt happens, the except

block of code is executed, displaying message Script end! in the

terminal.

- 28 -

The function read_datetime() has two arguments and returns a tuple.

The first argument represents the century, an integer value, for example: for

21st century, use century=21. The second argument represents time

zone info, used for datetime objects (it is not covered in this eBook). The

return value is a tuple which has seven elements. The elements are:

dayOfWeek, dayOfMonth, month, year, hour, minute and second (in this

order). All values for these elements are integer numbers, except the value

of dayOfWeek argument which is a string value, which represents the name

of the weekday.

The function read_str() has one argument and returns a string value.

The argument is the century argument, and is used as the century

argument of the read_datetime() function. The return value is a string

value, with predefined format for date and time data, as shown in the

following script output:

System time: 2020-03-15 15:44:15

RTC date: Sunday 15.03.2020

RTC time: 15:44:15

RTC date_time: Sunday 15-03-2020 15:44:15

Temperature: 28.8°C

To get temperature data from the RTC module, use the function called

detTemp(). The function has no arguments and returns a float value. The

return value, a float value, represents the temperature data in Celsius.

- 29 -

Now it is the time to learn and make your own projects. You can do that with

the help of many example scripts and other tutorials, which can be found on

the Internet.

If you are looking for the high quality products for Arduino and

Raspberry Pi, AZ-Delivery Vertriebs GmbH is the right company to get

them from. You will be provided with numerous application examples,

full installation guides, eBooks, libraries and assistance from our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

- 30 -

https://az-delivery.de/pages/about-us
https://az-delivery.de/

	Introduction
	Specifications
	The pinout
	How to set-up Arduino IDE
	How to set-up the Raspberry Pi and Python
	Connecting the module with Uno
	Sketch example

	​ Connecting the module with Raspberry Pi
	Enabling the I2C interface
	Libraries and tools for Python
	Python script

