
BLE SDK Guide

Version: 20240612

Online Version

https://developer.tuya.com/en/docs/iot-device-dev/tuya-ble-sdk-user-guide?id=K9h5zc4e5djd9

Contents

Contents

1 Overview of tuya ble sdk 2
1.1 Framework . 2
1.2 OS compatibility . 3
1.3 Event queue . 3
1.4 Directories . 4

2 The concepts of tuya ble service 5
2.1 MTU . 5
2.2 Broadcast data format . 5

3 How to port and configure tuya ble sdk 8
3.1 Reference of porting APIs . 8
3.2 Reference of configuration APIs . 39

4 API reference 53

5 The callback event of tuya ble sdk 93

6 Example of SDK port in nrf52832 106

7 OTA protocol 116
7.1 OTA upgrade process . 116
7.2 OTA upgrade protocol . 118
7.3 OTA upgrade APIs . 123

8 Reference of production testing APIs 125

I

Contents

This topic was no longer updated as of August 24, 2021. If you want to see the
updated content, please refer to Bluetooth Device Access of TuyaOS.

The tuya ble sdk encapsulates the communication protocol with Tuya Smart mobile
App and implements event scheduling abilities. The device using tuya ble sdk does
not need to care about the specific communication protocol implementation details.
It can be interconnected with Tuya Smart App by calling the API and callback pro-
vided by the tuya ble sdk.

This topic gives details of the components, porting instruction, SDK configuration,
API description, and usage of tuya ble sdk.

1 / 128

https://developer.tuya.com/en/docs/iot-device-dev/BLE-SDK?id=Kalgco5r2mr0h

1 Overview of tuya ble sdk

1 Overview of tuya ble sdk

1.1 Framework

The following figure shows the Application framework based on tuya ble sdk:

• platform: the chip platform. The chip and protocol stack are maintained by
the chip company.

• Port: the abstract interfaces needed by the tuya ble sdk. You must implement
them according to the chip-specific platform.

• tuya ble sdk: encapsulates the communication protocol of Tuya BLE and pro-
vides the service interface to develop Tuya BLE devices.

• Application: your application, built by using tuya ble sdk.

• Tuya sdk API: implements BLE related management, communication, and so

2 / 128

1 Overview of tuya ble sdk

forth. The calls of API are based on asynchronous messages, and the result of
API will be notified to the Application of device by message or call back.

• sdk config: by setting the macro in the configuration file, you can configure
tuya ble sdk to different modes, for example, the general network configura-
tion mode applicable to multi-protocol devices, Bluetooth singlepoint devices
mode, ECDH key based encryption method, whether to use OS, and so forth.

• Main process function: the engine of tuya ble sdk, to which the Application
will call all the time. If the platform architecture has an OS, The tuya ble sdk will
automatically create a task to run the main process based on the OS related
interface provided by the port layer. If the platform does not have an OS, the
device Application needs to be called circularly.

• Message or Call back: SDK sends the data of status, data, and others to
device Application through call back function registered by device Application
or messages.

1.2 OS compatibility

The tuya ble sdk can run on OS based chip platform besides Linux. If an OS is
used, the API requests are based on asynchronous messages. When tuya ble sdk is
initialized, the SDK automatically creates a task based on ’tuya_ble_config.h file to
process themessage events of the SDK, and creates amessage queue to receive the
responses of the Application API. The results of the API are notified to the Application
of the device in the form of message, so your Application needs to create a message
queue and call tuya_ble_callback_queue_register() after calling tuya_ble_sdk_init() or
tuya_ble_sdk_init_async() to register the message queue to the SDK.

In the chip platform that has an OS, you can also configure the tuya ble sdk to
process messages using the task provided by Application instead of tasks within the
tuya ble sdk. By doing so, the Application must implement the outbound message
interface at the port layer.

1.3 Event queue

The earlier event takes precedence to leave (FIFO). Event queue caches the mes-
sages sent by the Application and platform layer, the event can be API calls, data
response from BLE devices, and so forth. The main process function module circu-
larly queries the message queue and takes it out for processing.

3 / 128

1 Overview of tuya ble sdk

1.4 Directories

Directory Description

app Stores Applications that managed by
the tuya ble sdk, such as Tuya test and
production module, general connection
modules and so forth.

doc Help file.

extern_components External components, for example, the
extension for security-specific
algorithm.

port The abstract interfaces which must be
implemented by Applications.

sdk The core code of the tuya ble sdk.

tuya_ble_config.h The configuration file for tuya ble sdk.
However, your Application needs to
create another configuration files on
demand.

tuya_ble_sdk_version.h The version file.

README.md A brief introduction of the tuya ble sdk.

tuya_ble_sdk_version.txt Explains what are updated for each
version in Chinese.

CHANGELOG.md Explains what are updated for each
version in English.

4 / 128

2 The concepts of tuya ble service

2 The concepts of tuya ble service

The tuya ble sdk does not provide the interfaces for initializing service. Your Appli-
cation needs to implement the service characteristics defined in the following table
before you initializing the SDK. Other than the services required by the tuya ble sdk,
you can also define other services if needed. The initial format of broadcast data
must be implemented according to the following table, otherwise the tuya ble sdk
cannot work.

Service UUID
Characteristic
UUID Properties

Security
Permissions

1910 2b10 Notify None.

2b11 Write,write
without response.

None.

2.1 MTU

For a better compatibility, the ATT MTU used by tuya ble sdk is 23, and the GATT
MTU (ATT DATA MAX) is 20.

2.2 Broadcast data format

The following picture illustrates the broadcast packet format of BLE.

5 / 128

2 The concepts of tuya ble service

The following table describes what are contained in the broadcast packet.

Broadcast data segment Type Description

Physical connection
identifier of BLE device

0x01 Length: 0x02;Type:
0X01; Data: 0x16

Service UUID 0x02 Length: 0x03; Type:
0x02; Data: 0xA201

Service Data 0x16 Length: 0x0C or 0x14
Type: 0x16
Data: 0x01, 0xA2, type
(0-pid,1-product_key)PID,
or product_key (in 8 or 16
byte)

Example of 8 byte PID: 02 01 05 03 02 01 A2 0C 16 01 A2 00 00 00 00 00 00 00 00 00

The following table describes what are contained in the scan response data.

6 / 128

2 The concepts of tuya ble service

Response data segment Type Description

Complete Local Name 0x09 Length: 0x03; Type:
0x09; Date: 0x54 or 0x59

Custom data defined by
manufacturer

0xff Length: 0x19
Type: 0xff
Date: COMPANY
ID:0x07D0
FLAG: 0x00
Protocol version: 0x03
Encryption method: 0x00
Communication capacity:
0x0000
Reserved field: 0x00
ID field: 6 or 16 bytes

Example of an unassociated devices: 03 09 54 59 19 FF D0 07 00 0300 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00

7 / 128

3 How to port and configure tuya ble sdk

3 How to port and configure tuya ble sdk

As the following picture shows, the interfaces defined in the file tuya_ble_port.h and
tuya_ble_port_peripheral.h must be ported and implemented according to the chip-
specific platform. Note that if the platform used in the Application does not have an
OS, the OS related interfaces do not need to be implemented. The tuya_ble_port.c
and tuya_ble_port_peripheral.c are the weak implementation of the interfaces defined
for the tuya_ble_port.h and tuya_ble_port_peripheral.h.

You cannot implement platform-specific interfaces in the preceding .c files, please
create a new one, for example tuya_ble_port_nrf52832.c. If the file name contains the
keyword tuya, it is the platform implementation file that Tuya Smart has adapted
and transplanted, you can refer to it if needed.

3.1 Reference of porting APIs

3.1.1 TUYA_BLE_LOG

Function name TUYA_BLE_LOG

Prototype void TUYA_BLE_LOG(const char
*format,⋯)

8 / 128

3 How to port and configure tuya ble sdk

Function name TUYA_BLE_LOG

Description Formatted output.

Parameters format[in]: format controller.
⋯[in]: variable parameters.

Responses TUYA_BLE_ERR_INVALID_PARAM: invalid
parameters

3.1.2 TUYA_BLE_HEXDUMP

Function name TUYA_BLE_HEXDUMP

Prototype void TUYA_BLE_HEXDUMP(uint8_t
*p_data , uint16_t len)

Description Print in hex values.

Parameters p_data[in]: the data pointer to be
printed.
len[in]: data length.

Responses TUYA_BLE_ERR_INVALID_PARAM: invalid
parameters

3.1.3 tuya_ble_gap_advertising_adv_data_update

Function name tuya_ble_gap_advertising_adv_data_update

Prototype tuya_ble_status_t
tuya_ble_gap_advertising_adv_data_update(uint8_t
const * p_ad_data, uint8_t ad_len)

Description Updates the BLE broadcast packets.

Parameters p_ad_data[in]: new broadcast data.
ad_len[in]: data length.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

9 / 128

3 How to port and configure tuya ble sdk

3.1.4 tuya_ble_gap_advertising_scan_rsp_data_update

Function name tuya_ble_gap_advertising_scan_rsp_data_update

Prototype tuya_ble_status_t
tuya_ble_gap_advertising_scan_rsp_data_update(uint8_t
const *p_sr_data, uint8_t sr_len)

Description Updates the scan response data.

Parameters p_sr_data[in]: new scan response data.
sr_len[in]: data length.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

3.1.5 tuya_ble_gap_disconnect

Function name tuya_ble_gap_disconnect

Prototype tuya_ble_status_t
tuya_ble_gap_disconnect(void)

Description Break the BLE connection.

Parameters None.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

3.1.6 tuya_ble_gatt_send_data

Function name tuya_ble_gatt_send_data

Prototype tuya_ble_status_t
tuya_ble_gatt_send_data(const uint8_t
*p_data,uint16_t len)

Description Sends data via BLE GATT.

10 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_gatt_send_data

Parameters p_data[in]: the data pointer to send.
len[in]: the data length, less than 20
bytes.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

Notice It must be done in the notification
method.

3.1.7 tuya_ble_timer_create

Function name tuya_ble_timer_create

Prototype tuya_ble_status_t
tuya_ble_timer_create(void**
p_timer_id,uint32_t timeout_value_ms,
tuya_ble_timer_mode
mode,tuya_ble_timer_handler_t
timeout_handler)

Description create a timer.

Parameters p_timer_id[out]: the timer pointer.
timeout_value_ms[in]: the timing, unit:
ms.
mode[in]:
- TUYA_BLE_TIMER_SINGLE_SHOT:
one-time mode.
- TUYA_BLE_TIMER_REPEATED:
recurring mode.
- timeout_handler [in]: the timer
callback.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

11 / 128

3 How to port and configure tuya ble sdk

3.1.8 tuya_ble_timer_delete

Function name tuya_ble_timer_delete

Prototype tuya_ble_status_t
tuya_ble_timer_delete(void* timer_id)

Description Deletes a timer.

Parameters timer_id [in]: the timer ID.

Responses TUYA_BLE_SUCCESS: success.
TUYA_BLE_ERR_INVALID_PARAM: invalid
parameters.
Others: failure.

3.1.9 tuya_ble_timer_start

Function name tuya_ble_timer_start

Prototype tuya_ble_status_t
tuya_ble_timer_start(void* timer_id)

Description Starts a timer.

Parameters timer_id [in]: the timer ID.

Responses TUYA_BLE_SUCCESS: success.
TUYA_BLE_ERR_INVALID_PARAM: invalid
parameters.
Others: failure.

Notice If a timer has been started, a
tuya_ble_timer_start request will start
the timer again.

3.1.10 tuya_ble_timer_restart

12 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_timer_restart

Prototype tuya_ble_status_t
tuya_ble_timer_restart(void*
timer_id,uint32_t timeout_value_ms)

Description Restarts a timer with a new time.

Parameters timer_id [in]: the timer ID.
timeout_value_ms[in]: the timing, unit:
ms.

Responses TUYA_BLE_SUCCESS: success.

TUYA_BLE_ERR_INVALID_PARAM: invalid
parameters.
Others: failure.

3.1.11 tuya_ble_timer_stop

Function name tuya_ble_timer_stop

Prototype tuya_ble_status_t
tuya_ble_timer_stop(void* timer_id)

Description Stops a timer.

Parameters timer_id [in]: the timer ID.

Responses TUYA_BLE_SUCCESS: success.

TUYA_BLE_ERR_INVALID_PARAM: invalid
parameters.
Others: failure.

3.1.12 tuya_ble_device_delay_ms

13 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_device_delay_ms

Prototype void
tuya_ble_device_delay_ms(uint32_t
ms)

Description Delays an activity at the millisecond
level.

Parameters ms [in]: the delay time, unit: ms.

Responses None.

Notice If the platform has an OS, it must be
non-blocking delay. This method only
applies to specific cases, for example,
SDK initialization or device restart.

3.1.13 tuya_ble_device_delay_us

Function name tuya_ble_device_delay_us

Prototype void
tuya_ble_device_delay_us(uint32_t us)

Description Delays an activity at the microsecond
level.

Parameters us [in]: the delay time, unit: us.

Responses None.

Notice If the platform has an OS, it must be
non-blocking delay. This method only
applies to specific cases, for example,
SDK initialization or device restart.

3.1.14 tuya_ble_device_reset

14 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_device_reset

Prototype tuya_ble_status_t
tuya_ble_device_reset(void)

Description Restarts devices.

Parameters None.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

3.1.15 tuya_ble_gap_addr_get

Function name tuya_ble_gap_addr_get

Prototype tuya_ble_status_t
tuya_ble_gap_addr_get(tuya_ble_gap_addr_t
*p_addr);

Description Obtains the MAC address of devices.

Parameters p_addr [out]: the MAC address pointer.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

The following sample illustrates how to use the tuya_ble_gap_addr_get method.

15 / 128

3 How to port and configure tuya ble sdk

1 typedef enum
2
3 {
4
5 TUYA_BLE_ADDRESS_TYPE_PUBLIC , // The public address
6
7 TUYA_BLE_ADDRESS_TYPE_RANDOM , // The random address
8
9 } tuya_ble_addr_type_t;
10
11 typedef struct
12
13 {
14
15 tuya_ble_addr_type_t addr_type;
16
17 uint8_t addr[6];
18
19 }tuya_ble_gap_addr_t;

3.1.16 tuya_ble_gap_addr_set

Function name tuya_ble_gap_addr_set

Prototype tuya_ble_status_t
tuya_ble_gap_addr_set(tuya_ble_gap_addr_t
*p_addr);

Description Updates the MAC address of the device.

Parameters p_addr [in]: the MAC address pointer.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

3.1.17 tuya_ble_device_enter_critical

Function name tuya_ble_device_enter_critical

Prototype voidtuya_ble_device_enter_critical(void)

Description Enters the critical zone.

Parameters None.

16 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_device_enter_critical

Responses None.

3.1.18 tuya_ble_device_exit_critical

Function name tuya_ble_device_exit_critical

Prototype void tuya_ble_device_exit_critical(void)

Description Quits the critial zone.

Parameters None.

Responses None.

3.1.19 tuya_ble_rand_generator

Function name tuya_ble_rand_generator

Prototype tuya_ble_status_t
tuya_ble_rand_generator(uint8_t*
p_buf, uint8_t len)

Description Generates a random digit.

Parameters p_buf [out]: the array of random digit
pointer.
len[in]: the byte number of the random
value.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

3.1.20 tuya_ble_rtc_get_timestamp

17 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_rtc_get_timestamp

Prototype tuya_ble_status_t
tuya_ble_rtc_get_timestamp(uint32_t
timestamp,int32_t timezone);

Description Obtains the Unix timestamp.

Parameters timestamp [out]: the timestamp.
timezone [out]: the time zone, data
type: signed integer, the value must
be 100 times of the real time.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

Notice The data comes from the RTC
(real-time clock) maintained by the
Application itself. If the Application
does not have an RTC, it is not
necessary to use this interface.

3.1.21 tuya_ble_rtc_set_timestamp

Function name tuya_ble_rtc_set_timestamp

Prototype tuya_ble_status_t
tuya_ble_rtc_set_timestamp(uint32_t
timestamp,int32_t timezone)

Description Updates the Unix timestamp.

Parameters timestamp [in]: Unix timestamp.
timezone [in]: the time zone, data
type: signed integer, the value must
be 100 times of the real time.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

18 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_rtc_set_timestamp

Notice The tuya ble sdk uses this API to update
the RTC clock for the Application. If the
Application does not have an RTC, it is
not necessary to use this interface.

3.1.22 tuya_ble_nv_init

Function name tuya_ble_nv_init

Prototype tuya_ble_status_t
tuya_ble_nv_init(void)

Description Initializes the NV.

Parameters None.

Responses TUYA_BLE_SUCCESS: success.

Others: failure.
Notice It is used together with the NV space

address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details.

3.1.23 tuya_ble_nv_erase

Function name tuya_ble_nv_erase

Prototype tuya_ble_status_t
tuya_ble_nv_erase(uint32_t
addr,uint32_t size)

Description Erases the NV.

19 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_nv_erase

Parameters addr[in]: the initial address of NV
space to be erased.
size[in]: the space length to be erased,
unit: byte.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

Notice It is used together with the NV space
address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details.

3.1.24 tuya_ble_nv_write

Function name tuya_ble_nv_write

Prototype tuya_ble_status_t
tuya_ble_nv_write(uint32_t addr,const
uint8_t * p_data, uint32_t size)

Description Writes data to NV.

Parameters addr[in]: the initial address of NV
space to write data.
p_data[in]: the initial address of NV
space to write data.
size[in]: the data size, unit: byte.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

20 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_nv_write

Notice It is used together with the NV space
address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details.

3.1.25 tuya_ble_nv_read

Function name tuya_ble_nv_read

Prototype tuya_ble_status_t
tuya_ble_nv_read(uint32_t addr,uint8_t
* p_data, uint32_t size)

Description Reads data from NV.

Parameters addr[in]: the initial address of NV
space to read data.
p_data[out]: the initial address of NV
space to write data.
size[in]: the data size, unit: byte.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

Notice It is used together with the NV space
address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details.

3.1.26 tuya_ble_nv_erase_async

21 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_nv_erase_async

Prototype void tuya_ble_nv_erase_async(uint32_t
addr,uint32_t size,void
*p_context,tuya_ble_nv_async_callback_t
callback)

Description Erases data from NV asynchronously.

Parameters addr[in]: the initial address of NV
space to erase data.
size[in]: the data size, unit: byte.
p_context[in]: user custom data.
callback[in]: returns the API results.

Responses None.

Notice It is used together with the NV space
address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details. The interface is used in the
asynchronous flash based platform.

3.1.27 tuya_ble_nv_write_async

Function name tuya_ble_nv_write_async

Prototype void tuya_ble_nv_write_async(uint32_t
addr,const uint8_t * p_src, uint32_t
size,void
*p_context,tuya_ble_nv_async_callback_t
callback)

Description Writes data to NV asynchronously.

22 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_nv_write_async

Parameters addr[in]: the initial address of NV
space to write data.
p_src[in]: the address to write date.
size[in]: the data size, unit: byte.
p_context[in]: user custom data.
callback[in]: returns the API results.

Responses None.

Notice It is used together with the NV space
address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details. The interface is used in the
asynchronous flash based platform.

3.1.28 tuya_ble_nv_read_async

Function name tuya_ble_nv_read_async

Prototype void tuya_ble_nv_read_async(uint32_t
addr, uint8_t * p_dest, uint32_t size,void
*p_context,tuya_ble_nv_async_callback_t
callback)

Description Reads data from NV asynchronously.

Parameters addr[in]: the initial address of NV
space to read data.
p_dest[out]: the address to read data.
size[in]: the data size, unit: byte.
p_context[in]: user custom data.
callback[in]: returns the API results.

Responses None.

23 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_nv_read_async

Notice It is used together with the NV space
address that is defined in the
configuration file. The tuya ble sdk
calls NV related functions to store and
manage authorization and other
details. The interface is used in the
asynchronous flash based platform.

3.1.29 tuya_ble_common_uart_init

Function name tuya_ble_common_uart_init

Prototype tuya_ble_status_t
tuya_ble_common_uart_init(void)

Description Initializes the UART.

Parameters None.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

Notice Under the following circumstances,
there is no need to implement the
tuya_ble_common_uart_init interface:
- The functions of test and production
authorization are not used.
- The SDK’s production testing
authorization function are used, and
the Application has initialized the UART
before initializing the SDK.

3.1.30 tuya_ble_common_uart_send_data

24 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_common_uart_send_data

Prototype tuya_ble_status_t
tuya_ble_common_uart_send_data(const
uint8_t *p_data,uint16_t len)

Description Sends data via UART.

Parameters p_data[in]: the data pointer to send.
len[in]: the data size.

Responses TUYA_BLE_SUCCESS: success.
Others: failure.

Notice If the functions of test and production
authorization are not used, there is no
need to implement the
tuya_ble_common_uart_send_data interface.

3.1.31 tuya_ble_os_task_create

Function name tuya_ble_os_task_create

Prototype bool tuya_ble_os_task_create(void
**pp_handle, const char p_name,
void(p_routine)(void),void p_param,
uint16_t stack_size, uint16_t priority)

Description Creates tasks.

25 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_task_create

Parameters pp_handle [out]: passes back a handle
by which the created task can be
referenced.
p_name[in]: A descriptive name for the
task.
p_routine [in]: pointer to task routine
function that must be implemented to
never return.
p_param[in]: pointer parameter passed
to the task routine function.
stack_size[in]: the size of the task
stack that is specified as the number of
bytes.
priority[in]: the priority at which the
task should run. Higher priority task
has higher priority value.

Responses True: task was created successfully
and added to task ready list.
False: task was failed to create.

Notice This interface is required only in the
platform that has an OS.

3.1.32 tuya_ble_os_task_delete

Function name tuya_ble_os_task_delete

Prototype bool tuya_ble_os_task_delete(void
*p_handle)

Description Removes a task from RTOS’s task
management. The task being deleted
will be removed from RUNNING, READY,
or WAITING state.

Parameters pp_handle [in]: the handle of the task
to be deleted.

26 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_task_delete

Responses True: task was deleted successfully
False: task was failed to delete.

Notice This interface is required only in the
platform that has an OS.

3.1.33 tuya_ble_os_task_suspend

Function name tuya_ble_os_task_suspend

Prototype bool tuya_ble_os_task_suspend(void
*p_handle)

Description Suspends the task. The suspended task
will not be scheduled and never get
any microcontroller processing time.

Parameters pp_handle [in]: the handle of the task
to be suspend.

Responses True: task was suspend successfully.
False: task was failed to suspend.

Notice This interface is required only in the
platform that has an OS.

3.1.34 tuya_ble_os_task_resume

Function name tuya_ble_os_task_resume

Prototype bool tuya_ble_os_task_resume(void
*p_handle)

Description Resumes the suspended task.

Parameters pp_handle [in]: the handle of the task
to be resumed.

27 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_task_resume

Responses True: task was resumed successfully.
False: task was failed to resume.

Notice This interface is required only in the
platform that has an OS.

3.1.35 tuya_ble_os_msg_queue_create

Function name tuya_ble_os_msg_queue_create

Prototype bool
tuya_ble_os_msg_queue_create(void
**pp_handle, uint32_t msg_num,
uint32_tmsg_size)

Description Creates a message queue instance.
This allocates the storage required by
the new queue and passes back a
handle for the queue.

Parameters pp_handle [out]: passes back a handle
by which the message queue can be
referenced.
msg_num [in]: the maximum number
of items that the queue can contain.
msg_size [in]: the number of bytes
each item in the queue will require.

Responses True: message queue was created
successfully.
False: message queue was failed to
create.

Notice This interface is required only in the
platform that has an OS.

3.1.36 tuya_ble_os_msg_queue_delete

28 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_msg_queue_delete

Prototype bool
tuya_ble_os_msg_queue_delete(void
*p_handle)

Description Creates a message queue instance.
This allocates the storage required by
the new queue and passes back a
handle for the queue.

Parameters pp_handle [in]: the handle to the
message queue being deleted.

Responses True: message queue was deleted
successfully.
False: message queue was failed to
delete.

Notice This interface is required only in the
platform that has an OS.

3.1.37 tuya_ble_os_msg_queue_peek

Function name tuya_ble_os_msg_queue_peek

Prototype bool
tuya_ble_os_msg_queue_peek(void
p_handle, uint32_t p_msg_num)

Description Peeks the number of items sent and
resided on the message queue.

Parameters pp_handle [in]: the handle to the
message queue being peeked.
p_msg_num[out]: passes back the
number of items residing on the
message queue.

29 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_msg_queue_peek

Responses True: message queue was peeked
successfully.
False: message queue was failed to
peek.

Notice This interface is required only in the
platform that has an OS.

3.1.38 tuya_ble_os_msg_queue_send

Function name tuya_ble_os_msg_queue_send

Prototype bool
tuya_ble_os_msg_queue_send(void
p_handle, void p_msg, uint32_t
wait_ms)

Description Sends an item to the back of the
specified message queue.

Parameters pp_handle [in]: the handle to the
message queue on which the item is to
be sent.
p_msg[in]: pointer to the item that is to
be sent on the queue.
wait_ms[in]: the maximum amount of
time in milliseconds that the task
should block waiting for the item to
sent on the queue.
- 0: no blocking and return immediately.
- 0xFFFFFFFF: blocks infinitely until the
item received.
- others: the timeout value in
milliseconds.

30 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_msg_queue_send

Responses True: message item was sent
successfully.
False: message item was failed to
send.

Notice This interface is required only in the
platform that has an OS.

3.1.39 tuya_ble_os_msg_queue_recv

Function name tuya_ble_os_msg_queue_recv

Prototype bool tuya_ble_os_msg_queue_recv(void
p_handle, void p_msg, uint32_t
wait_ms)

Description Receives an item from the specified
message queue.

Parameters pp_handle [in]: the handle to the
message queue from which the item is
to be received.
p_msg[out]: pointer to the buffer into
which the received item will be copied.
wait_ms[in]: the maximum amount of
time in milliseconds that the task
should block waiting for the item to
received on the queue.
- 0: no blocking and return immediately.
- 0xFFFFFFFF: blocks infinitely until the
item received.
- others: the timeout value in
milliseconds.

Responses True: message item was received
successfully.
False: message item was failed to
receive.

31 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_os_msg_queue_recv

Notice This interface is required only in the
platform that has an OS.

3.1.40 tuya_ble_event_queue_send_port

Function name tuya_ble_event_queue_send_port

Prototype bool
tuya_ble_event_queue_send_port(tuya_ble_evt_param_t
*evt, uint32_t wait_ms)

Description If the TUYA_BLE_SELF_BUILT_TASK is
undefined, Application should provide
the task to sdk to process the event.
The sdk will use this port to send event
to the task of provided by Application.

Parameters evt [in]: the message data point to be
send.
wait_ms[in]: the maximum amount of
time in milliseconds that the task
should block waiting for the item to
sent on the queue.

Responses True: message item was sent
successfully.
False: message item was failed to
send.

Notice This interface is required only in the
platform that has an OS.

3.1.41 tuya_ble_aes128_ecb_encrypt

32 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_aes128_ecb_encrypt

Prototype bool
tuya_ble_aes128_ecb_encrypt(uint8_t
key,uint8_t
input,uint16_tinput_len,uint8_t
*output)

Description 128 bit AES ECB encryption on
specified plaintext and keys.

Parameters key [in]: keys to encrypt the plaintext
In_put[in]: specified plaintext to be
encrypted.
in_put_len[in]: byte length of the data
to be encrypted, must be multiples of
16.
Out_put[out]: output buffer to store
encrypted data.

Responses True: successful.
False: fail.

3.1.42 tuya_ble_aes128_ecb_decrypt

Function name tuya_ble_aes128_ecb_decrypt

Prototype bool
tuya_ble_aes128_ecb_decrypt(uint8_t
key,uint8_t
input,uint16_tinput_len,uint8_t
*output)

Description 128 bit AES ECB decryption on
specified encrypted data and keys

33 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_aes128_ecb_decrypt

Parameters key [in]: keys to decrypt the plaintext
In_put[in]: specified encrypted data to
be decypted
in_put_len[in]: byte length of the data
to be decrypted, must be multiples of
16.
Out_put[out]: output buffer to store
decrypted data.

Responses True: successful.
False: fail.

3.1.43 tuya_ble_aes128_cbc_encrypt

Function name tuya_ble_aes128_cbc_encrypt

Prototype bool
tuya_ble_aes128_cbc_encrypt(uint8_t
key,uint8_t iv,uint8_t input,uint16_t
input_len,uint8_toutput)

Description 128 bit AES CBC encryption on
specified plaintext and keys.

Parameters key [in]: keys to encrypt the plaintext.
iv[in]: initialization vector (IV) for CBC
mode.
In_put[in]: specified plain text to be
encrypted.
in_put_len[in]: byte length of the data
to be encrypted, must be multiples of
16.
Out_put[out]: output buffer to store
encrypted data.

Responses True: successful.
False: fail.

34 / 128

3 How to port and configure tuya ble sdk

3.1.44 tuya_ble_aes128_cbc_decrypt

Function name tuya_ble_aes128_cbc_decrypt

Prototype bool
tuya_ble_aes128_cbc_decrypt(uint8_tkey,uint8_t
iv,uint8_t input,uint16_t
input_len,uint8_t output)

Description 128 bit AES CBC decryption on
specified plaintext and keys.

Parameters key [in]: keys to decrypt the plaintext.
Iv[in]: initialization vector (IV) for CBC
mode
In_put[in]: specified encrypted data to
be decrypted.
in_put_len[in]: byte length of the data
to be decrypted, must be multiples of
16.
Out_put[out]: output buffer to store
decrypted data.

Responses True: successful.
False: fail.

3.1.45 tuya_ble_md5_crypt

Function name tuya_ble_md5_crypt

Prototype booltuya_ble_md5_crypt(uint8_t
input,uint16_t input_len,uint8_t output)

Description MD5 checksum.

35 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_md5_crypt

Parameters In_put[in]: specified plain text to be
encrypted.
in_put_len[in]: byte length of the data
to be encrypted.
Out_put[out]: output buffer to store
md5 result data,output data lenghth is
always 16.

Responses True: successful.
False: fail.

3.1.46 tuya_ble_hmac_sha1_crypt

Function name tuya_ble_hmac_sha1_crypt

Prototype bool
tuya_ble_hmac_sha1_crypt(constuint8_t
key, uint32_t key_len, const uint8_t
input, uint32_t input_len,uint8_t
*output)

Description Calculates the full generic HMAC on the
input buffer with the provided key.

Parameters key [in]: The HMAC secret key.
key_len[in]: The length of the HMAC
secret key in bytes.
In_put[in]: specified plain text to be
encrypted.
in_put_len[in]: byte length of the data
to be encrypted.
Out_put[out]: output buffer to store the
result data.

Responses True: successful.
False: fail.

36 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_hmac_sha1_crypt

Notice Not used currently, no need to
implement.

3.1.47 tuya_ble_hmac_sha256_crypt

Function name tuya_ble_hmac_sha1_crypt

Prototype bool
tuya_ble_hmac_sha256_crypt(const
uint8_t key, uint32_t key_len, const
uint8_t input, uint32_t input_len,
uint8_t *output)

Description Calculates the full generic HMAC on the
input buffer with the provided key.

Parameters key [in]: The HMAC secret key.
key_len[in]: The length of the HMAC
secret key in Bytes.
In_put[in]: specified plain text to be
encrypted.
in_put_len[in]: byte length of the data
to be encrypted.
out_put[out]: output buffer to store the
result data.

Responses True: successful.
False: fail.

Notice Not used currently, no need to
implement.

3.1.48 tuya_ble_port_malloc

37 / 128

3 How to port and configure tuya ble sdk

Function name tuya_ble_port_malloc

Prototype void *tuya_ble_port_malloc(uint32_t
size)

Description Allocate a memory block with required
size.

Parameters Size[in]: Required memory size.

Responses The address of the allocated memory
block. If the address is NULL, the
memory allocation failed.

Notice You need to implement this interface
only when
TUYA_BLE_USE_PLATFORM_MEMORY_HEAP is set
to 1.

3.1.49 tuya_ble_port_free

Function name tuya_ble_port_free

Prototype void tuya_ble_port_free(void *pv)

Description Frees a memory block that had been
allocated.

Parameters pv[in]: The address of memory block
being freed.

Responses None.

Notice You need to implement this interface
only when
TUYA_BLE_USE_PLATFORM_MEMORY_HEAP is set
to 1.

38 / 128

3 How to port and configure tuya ble sdk

3.2 Reference of configuration APIs

The items in the tuya_ble_config.h file are used to configure the tuya ble sdk for
different use cases, for example, network configuration for multi-protocol devices,
whether running an OS on the platform or not, device communication, whether self-
manage the authorization, and so forth.

3.2.1 CUSTOMIZED_TUYA_BLE_CONFIG_FILE

Macro CUSTOMIZED_TUYA_BLE_CONFIG_FILE

Dependency None.

Description Custom configuration file.
This file overwrites the default settings
in the tuya_ble_config.h file.
Your Application must create a
configuration file with a new name, and
assign the file name to the
CUSTOMIZED_TUYA_BLE_CONFIG_FILE, for
example, CUSTOMIZED_TUYA_BLE_CONFIG_FILE
= <custom_tuya_ble_config.h>.

3.2.2 CUSTOMIZED_TUYA_BLE_APP_PRODUCT_TEST_HEADER_FILE

Macro CUSTOMIZED_TUYA_BLE_APP_PRODUCT_TEST_HEADER_FILE

Dependency None.

Description The tuya ble sdk provides basic test
and production authorization services.
If the Tuya testing protocol is used in
your Application to perform many
customized test activities, your must
create a file to achieve that, and assign
the header file name to
CUSTOMIZED_TUYA_BLE_APP_PRODUCT_TEST_HEADER_FILE
.

39 / 128

3 How to port and configure tuya ble sdk

Macro CUSTOMIZED_TUYA_BLE_APP_PRODUCT_TEST_HEADER_FILE

Notice It must be completed in the custom
configuration file.

3.2.3 CUSTOMIZED_TUYA_BLE_APP_UART_COMMON_HEADER_FILE

Macro CUSTOMIZED_TUYA_BLE_APP_UART_COMMON_HEADER_FILE

Dependency None.

Description At present, it only applies to the
general module protocol of Tuya Smart.

Notice It must be completed in the custom
configuration file.

3.2.4 TUYA_BLE_USE_OS

Macro TUYA_BLE_USE_OS

Dependency None.

Description If the chip architecture is based on OS,
such as FreeRTOS, set
#define TUYA_BLE_USE_OS 1, otherwise, set
#define TUYA_BLE_USE_OS 0.

3.2.5 TUYA_BLE_SELF_BUILT_TASK

Macro TUYA_BLE_SELF_BUILT_TASK

Dependency #define TUYA_BLE_USE_OS 1

40 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_SELF_BUILT_TASK

Description For the OS architecture platform, if you
use self-built tasks in the tuya ble sdk
to handle messages, please set
#define TUYA_BLE_SELF_BUILT_TASK 1,
otherwise, set
#define TUYA_BLE_SELF_BUILT_TASK 0.

3.2.6 TUYA_BLE_TASK_PRIORITY

Macro TUYA_BLE_TASK_PRIORITY

Dependency #define TUYA_BLE_USE_OS 1
#define TUYA_BLE_SELF_BUILT_TASK 1

Description The priority of a task initiated by tuya
ble sdk. For example,
#define TUYA_BLE_TASK_PRIORITY 1.

Notice The priority value needs to be defined
according to the OS used by the chip
platform.

3.2.7 TUYA_BLE_TASK_STACK_SIZE

Macro TUYA_BLE_TASK_STACK_SIZE

Dependency #define TUYA_BLE_USE_OS 1
#define TUYA_BLE_SELF_BUILT_TASK 1

Description The stack size of a task initiated by
tuya ble sdk. For example,
#define TUYA_BLE_TASK_STACK_SIZE 256*10.

3.2.8 TUYA_BLE_DEVICE_COMMUNICATION_ABILITY

41 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_DEVICE_COMMUNICATION_ABILITY

Dependency None.

Description The communication of devices.
Possible setting:
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_BLE
: whether use BLE or not.
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_REGISTER_FROM_BLE

: whether register devices via ble or
not.
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_MESH

: whether use Mesh or not.
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_WIFI_24G

: whether support 2.4G Wi-Fi or not.
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_WIFI_5G

: whether support 5G Wi-Fi or not.
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_ZIGBEE

: whether support Zigbee or not.
TUYA_BLE_DEVICE_COMMUNICATION_ABILITY_NB
: whether support NB-IoT or not.

3.2.9 TUYA_BLE_DEVICE_SHARED

Macro TUYA_BLE_DEVICE_SHARED

Dependency None.

Description Determines whether a device is shared.

Notice If you do not understand what are
shared devices, please set
#define TUYA_BLE_DEVICE_SHARED 0.

42 / 128

3 How to port and configure tuya ble sdk

3.2.10 TUYA_BLE_DEVICE_UNBIND_MODE

Macro TUYA_BLE_DEVICE_UNBIND_MODE

Dependency None.

Description Determines whether the shared
devices need to perform the unbind
operation.

Notice If you do not understand what are
shared devices, please set
#define TUYA_BLE_DEVICE_UNBIND_MODE 1.

3.2.11 TUYA_BLE_WIFI_DEVICE_REGISTER_MODE

Macro TUYA_BLE_WIFI_DEVICE_REGISTER_MODE

Dependency The devices must support Wi-Fi
connection.

Description Determines whether to send command
to query the network configuration
state or not when use BLE to configure
network for Wi-Fi devices. If yes:
#define
TUYA_BLE_WIFI_DEVICE_REGISTER_MODE 1
If no: #define
TUYA_BLE_WIFI_DEVICE_REGISTER_MODE 0

Notice Currently not supported.

3.2.12 TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT

Macro TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT

Dependency None.

43 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT

Description If you use self-built tasks in the tuya
ble sdk to manage authorization,
please set #define
TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT 1,
otherwise, set #define
TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT 0.

Notice For BLE devices without Wi-Fi
capability, this value is recommended
to be defined as 1.

3.2.13 TUYA_BLE_SECURE_CONNECTION_TYPE

Macro TUYA_BLE_SECURE_CONNECTION_TYPE

Dependency None.

Description The communication encryption method
of devices. Possible setting:
TUYA_BLE_SECURE_CONNECTION_WITH_AUTH_KEY
: encrypt with auth_key.
TUYA_BLE_SECURE_CONNECTION_WITH_ECC
: encrypt with ECDH.
TUYA_BLE_SECURE_CONNECTION_WTIH_PASSTHROUGH

: no encrypt.
For example:
#define
TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT
TUYA_BLE_SECURE_CONNECTION_WITH_AUTH_KEY

Notice Currently, only
TUYA_BLE_SECURE_CONNECTION_WITH_AUTH_KEY
is supported.

44 / 128

3 How to port and configure tuya ble sdk

3.2.14 TUYA_BLE_DEVICE_MAC_UPDATE

Macro TUYA_BLE_DEVICE_MAC_UPDATE

Dependency None.

Description Determines whether to use the MAC
address in the Tuya authorization
information as the device MAC address
or not.

3.2.15 TUYA_BLE_DEVICE_MAC_UPDATE_RESET

Macro TUYA_BLE_DEVICE_MAC_UPDATE_RESET

Dependency #define TUYA_BLE_DEVICE_MAC_UPDATE 1

Description Determines whether the device needs
to restart after updating the MAC
address to take effect or not. If yes:
#define TUYA_BLE_DEVICE_MAC_UPDATE_RESET
1
If no: #define
TUYA_BLE_DEVICE_MAC_UPDATE_RESET 0

3.2.16 TUYA_BLE_USE_PLATFORM_MEMORY_HEAP

Macro TUYA_BLE_USE_PLATFORM_MEMORY_HEAP

Dependency None.

Description Whether tuya ble sdk uses its own
memory heap. If yes:
#define TUYA_BLE_USE_PLATFORM_MEMORY_HEAP
0
If no: #define
TUYA_BLE_USE_PLATFORM_MEMORY_HEAP 1

45 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_USE_PLATFORM_MEMORY_HEAP

Notice If it is defined as 1, your Application
must port and implement memory
management ability in the porting
layer for tuya ble sdk.

3.2.17 TUYA_BLE_GATT_SEND_DATA_QUEUE_SIZE

Macro TUYA_BLE_GATT_SEND_DATA_QUEUE_SIZE

Dependency None.

Description The size of the GATT send queue used
by tuya ble sdk. Default value: 20.
#define
TUYA_BLE_GATT_SEND_DATA_QUEUE_SIZE 20

Notice If you do not know much about the
macro, it is recommended to keep it at
20.

3.2.18 TUYA_BLE_DATA_MTU_MAX

Macro TUYA_BLE_DATA_MTU_MAX

Dependency None.

Description The size of GATT MTU:
#define TUYA_BLE_DATA_MTU_MAX 20

Notice Currently, only 20 bytes GATT MTU are
supported, which will be expanded and
upgraded later.

3.2.19 TUYA_BLE_LOG_ENABLE

46 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_LOG_ENABLE

Dependency None.

Description Determines whether to enable log of
tuya ble sdk or not.
If yes: #define TUYA_BLE_LOG_ENABLE 1
If no: #define TUYA_BLE_LOG_ENABLE 0

Notice Enabling the internal log consumes the
code space. It is recommended to turn
on it for the debug version and turn off
for the release version.

3.2.20 TUYA_BLE_LOG_COLORS_ENABLE

Macro TUYA_BLE_LOG_COLORS_ENABLE

Dependency #define TUYA_BLE_LOG_ENABLE 1

Description Determines whether to enable the
multi-color display for logs of SDK or
not.
If yes:
#define TUYA_BLE_LOG_COLORS_ENABLE 1
If no:
#define TUYA_BLE_LOG_COLORS_ENABLE 0

Notice Some tools do not support it, for
example, RTT of J-link.

3.2.21 TUYA_BLE_LOG_LEVEL

Macro TUYA_BLE_LOG_LEVEL

Dependency #define TUYA_BLE_LOG_ENABLE 1

47 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_LOG_LEVEL

Description Defines the display level of the log of
tuya ble sdk, which is divided into the
following levels:
#defineTUYA_BLE_LOG_LEVEL_ERROR 1U
#defineTUYA_BLE_LOG_LEVEL_WARNING 2U
#defineTUYA_BLE_LOG_LEVEL_INFO 3U
#defineTUYA_BLE_LOG_LEVEL_DEBUG 4U
If only error information needs to be
printed, set as:
#define TUYA_BLE_LOG_LEVEL
TUYA_BLE_LOG_LEVEL_ERROR

3.2.22 TUYA_APP_LOG_ENABLE

Macro TUYA_APP_LOG_ENABLE

Dependency None.

Description Whether to enable Application log.
If yes: #define TUYA_APP_LOG_ENABLE 1
If no: #define TUYA_APP_LOG_ENABLE 0

Notice Enabling the internal log consumes the
code space. It is recommended to turn
on it for the debug version and turn off
for the release version.

3.2.23 TUYA_APP_LOG_COLORS_ENABLE

Macro TUYA_APP_LOG_COLORS_ENABLE

Dependency #define TUYA_APP_LOG_ENABLE 1

48 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_APP_LOG_COLORS_ENABLE

Description Determines whether to enable the
multi-color display for logs of
Application or not.
If yes:
#define TUYA_APP_LOG_COLORS_ENABLE 1
If no:
#define TUYA_APP_LOG_COLORS_ENABLE 0

Notice Some tools do not support it, for
example, RTT of J-Link.

3.2.24 TUYA_APP_LOG_LEVEL

Macro TUYA_APP_LOG_LEVEL

Dependency #define TUYA_APP_LOG_ENABLE 1

Description Defines the display level of the log of
tuya ble sdk, which is divided into the
following levels:
#defineTUYA_APP_LOG_LEVEL_ERROR 1U
#defineTUYA_APP_LOG_LEVEL_WARNING 2U
#defineTUYA_APP_LOG_LEVEL_INFO 3U
#defineTUYA_APP_LOG_LEVEL_DEBUG 4U
If only error information needs to be
printed, set as:
#define TUYA_APP_LOG_LEVEL
TUYA_APP_LOG_LEVEL_ERROR

3.2.25 TUYA_BLE_ADVANCED_ENCRYPTION_DEVICE

Macro TUYA_BLE_ADVANCED_ENCRYPTION_DEVICE

Dependency None.

49 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_ADVANCED_ENCRYPTION_DEVICE

Description Determines whether to use advanced
encryption method.
If yes: #define
TUYA_BLE_ADVANCED_ENCRYPTION_DEVICE 1
If no: #define
TUYA_BLE_ADVANCED_ENCRYPTION_DEVICE 0

Notice It is not supported currently.

3.2.26 TUYA_NV_ERASE_MIN_SIZE

Macro TUYA_NV_ERASE_MIN_SIZE

Dependency None.

Description The minimum erasure unit of NV space
allocated to tuya ble sdk, for example:
#define TUYA_NV_ERASE_MIN_SIZE 4096

Notice It must be defined according to the
implementation of NV interface in the
port layer.

3.2.27 TUYA_NV_WRITE_GRAN

Macro TUYA_NV_WRITE_GRAN

Dependency None.

Description The maximum write granularity in the
NV space. For example,
#define TUYA_NV_WRITE_GRAN 4
allows 4 bytes if you write to NV.

Notice It must be defined according to the
implementation of NV interface in the
port layer.

50 / 128

3 How to port and configure tuya ble sdk

3.2.28 TUYA_NV_START_ADDR

Macro TUYA_NV_START_ADDR

Dependency None.

Description The initial NV space address allocated
to tuya ble sdk. For example:
#define TUYA_NV_START_ADDR 0x1000.

3.2.29 TUYA_NV_AREA_SIZE

Macro TUYA_NV_AREA_SIZE

Dependency None.

Description The NV space size allocated to tuya ble
sdk. For example,
#define TUYA_NV_AREA_SIZE (4*
TUYA_NV_ERASE_MIN_SIZE)
. The value must be an integer multiple
of TUYA_NV_ERASE_MIN_SIZE.

3.2.30 TUYA_BLE_APP_VERSION_STRING

Macro TUYA_BLE_APP_VERSION_STRING

Dependency None.

Description The Application version number string,
for example, #define
TUYA_BLE_APP_VERSION_STRING "1.0".

Notice Currently, only two digit version
numbers are supported.

3.2.31 TUYA_BLE_APP_BUILD_FIRMNAME_STRING

51 / 128

3 How to port and configure tuya ble sdk

Macro TUYA_BLE_APP_BUILD_FIRMNAME_STRING

Dependency None.

Description The Application firmware name, for
example, #define
TUYA_BLE_APP_BUILD_FIRMNAME_STRING "
tuya_ble_sdk_app_demo_xxx".

Notice It is only required when you use the
Tuya production testing license
agreement.

52 / 128

4 API reference

4 API reference

The tuya ble sdk provides packaged API for Application to achieve BLE related man-
agement, communication, and so forth. The APIs are defined in the tuya_ble_api.c
and tuya_ble_api.h files, you can read the source code to understand how the APIs
are implemented. The following tables describes the details of each API.

4.0.1 tuya_ble_main_tasks_exec

Function name tuya_ble_main_tasks_exec

Prototype void tuya_ble_main_tasks_exec(void)

Description The tuya ble sdk event main scheduler
when using the non-OS architecture
chip platform. The Application can call
it only in the main loop.

Parameters None.

Responses None.

Notice This function must be called from
within the main loop.
It will execute all events scheduled
since the last time it was called.

Example: the calling location under nrf52832 platform is as follows:

53 / 128

4 API reference

1 /**@brief Function for handling the idle state (main loop).
2 *
3 * @details If there is no pending log operation , then sleep until next

the next event occurs.
4 */
5 static void idle_state_handle(void)
6 {
7 tuya_ble_main_tasks_exec();
8
9 if (NRF_LOG_PROCESS() == false)
10 {
11 nrf_pwr_mgmt_run();
12 }
13
14 }

4.0.2 tuya_ble_gatt_receive_data

Function name tuya_ble_gatt_receive_data

Prototype tuya_ble_status_t
tuya_ble_gatt_receive_data(uint8_t*p_data,uint16_t
len);

Description By calling this function, the GATT data
received by Bluetooth is sent to tuya
ble sdk.

Parameters p_data[in]: point to the data to be sent.
len[in]: the length of the data to be
sent, cannot exceed
TUYA_BLE_DATA_MTU_MAX.

Responses TUYA_BLE_SUCCESS: send successfully.
TUYA_BLE_ERR_INTERNAL: failed.

Notice This function must be called from
where the BLE data is received.

Example (nrf52832 example demo):

54 / 128

4 API reference

1 /**@brief Function for handling the data from the Nordic UART Service.
2 *
3 * @details This function will process the data received from the

Nordic UART BLE Service and send
4 * it to the UART module.
5 *
6 * @param[in] p_evt Nordic UART Service event.
7 */
8 /**@snippet [Handling the data received over BLE] */
9 static void nus_commdata_handler(ble_nus_evt_t * p_evt)
10 {
11
12 if (p_evt->type == BLE_NUS_EVT_RX_DATA)
13 {
14 tuya_ble_gatt_receive_data((uint8_t*)(p_evt->params.rx_data . �

p_data),p_evt->params.rx_data.length);
15 TUYA_BLE_HEXDUMP("nus_commdata_handler :",20,(uint8_t*)(p_evt->

params.rx_data.p_data),p_evt->params � .rx_data.length);
16 }
17
18 }

4.0.3 tuya_ble_common_uart_receive_data

Function name tuya_ble_common_uart_receive_data

Prototype tuya_ble_status_t
tuya_ble_common_uart_receive_data
(uint8_t *p_data,uint16_t len)

Description If an Application uses the production
testing authorization module provided
by tuya ble sdk, you need to send UART
data to tuya ble sdk by calling this
function.
If you do not use the production testing
authorization function module provided
by tuya ble sdk, you do not need to call
this function.

Parameters p_data[in]: point to the data to be sent.
len[in]: length of data to be sent.

Responses TUYA_BLE_SUCCESS: sent successfully.
Other: failed to send.

55 / 128

4 API reference

Function name tuya_ble_common_uart_receive_data

Notice This function internally calls malloc to
apply for memory.
If the Application configuration uses
the malloc interface provided by the
platform,
confirm whether the platform malloc
supports interrupt calls.
If it does not support, it must not be
called in UART interrupt
tuya_ble_common_uart_receive_data().

4.0.4 tuya_ble_common_uart_send_full_instruction_received

Function name tuya_ble_common_uart_send_full_instruction_received

Prototype tuya_ble_status_t.
tuya_ble_common_uart_send_full_instruction_received
(uint8_t *p_data,uint16_t len)

Description Sends the Tuya production testing
protocol command (including the
cmd/data/checksum) that are received and
resolved by the UART to tuya ble sdk.
If your Application does not use the
protocol parsing function
tuya_ble_common_uart_receive_data()
provided by tuya ble sdk but uses a
custom UART parsing function to
parse the production testing protocol
data, you need to call this function to
send the parsed completed production
testing instruction to tuya ble sdk.

56 / 128

4 API reference

Function name tuya_ble_common_uart_send_full_instruction_received

Parameters p_data[in]: Point to the complete
command data to be sent.
len[in]: Command data length to be
sent.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_NO_MEM: Failed to
apply for memory.
TUYA_BLE_ERR_BUSY: BLE SDK busy.

Notice This function internally calls the malloc
interface. If the Application is
configured to use the chip
platform-provided malloc interface,
make sure that platform malloc
supports interrupt calls.
If it does not, you must not call
tuya_ble_common_uart_send_full_instruction_received
() in the UART interrupt.

Explanation:

• The tuya ble sdk integrates the production testing authorization function mod-
ule. The production testing authorization module communicates through the
UART and PC production testing authorization tools. UART communication has
a complete set of command formats. For details, refer to the Bluetooth General
Production Test Authorization Agreement.

• The tuya ble sdk includes the UART communication instruction parsing func-
tion. The Application only needs to call the tuya_ble_common_uart_receive_data
() function where UART data is received. The Application can also
parse out the complete UART communication instruction, and then call
tuya_ble_common_uart_send_full_instruction_received() function to send a com-
plete command to tuya ble sdk.

57 / 128

4 API reference

4.0.5 tuya_ble_device_update_product_id

Function name tuya_ble_device_update_product_id

Prototype tuya_ble_status_t
tuya_ble_device_update_product_id.
(tuya_ble_product_id_type_t type,
uint8_t len, uint8_t* p_buf)

Description Updates product id function.

Parameters type [in]: id type.
len[in]: id length.
p_buf[in]: id data.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INTERNAL: internal
error.

Notice In the SoC development scheme based
on tuya ble sdk, it is generally not
necessary to call this function, because
the product ID generally does not
change.

4.0.6 tuya_ble_device_update_login_key

Function name tuya_ble_device_update_login_key

Prototype tuya_ble_status_t
tuya_ble_device_update_login_key(uint8_t*
p_buf, uint8_t len)

Description Updates login key function.

Parameters len[in]: length.
p_buf[in]: loginkey.

58 / 128

4 API reference

Function name tuya_ble_device_update_login_key

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INTERNAL: internal
error.

Notice This API is mainly used in Wi-Fi/BLE
dual-protocol devices.
Send network configuration
information to Wi-Fi through BLE. The
device registers the device with the
cloud through Wi-Fi and calls.
the login key after successful
registration This function is sent to
tuya ble sdk, but also needs to update
the binding status.

4.0.7 tuya_ble_device_update_bound_state

Function name tuya_ble_device_update_bound_state

Prototype tuya_ble_status_t
tuya_ble_device_update_bound_state(uint8_t
state)

Description Updates registration binding status.

Parameters state[in]: 1-The device is registered for
binding，0-The device is not registered
for binding.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INTERNAL: internal
error.

59 / 128

4 API reference

Function name tuya_ble_device_update_bound_state

Notice This API is mainly used in Wi-Fi/BLE
dual-protocol devices.
(After the device registers and binds
successfully through the Wi-Fi link, this
function is called to update the binding
status to tuya ble sdk.
It also requires updating login key).

4.0.8 tuya_ble_device_update_mcu_version

Function name tuya_ble_device_update_mcu_version

Prototype tuya_ble_status_t
tuya_ble_device_update_mcu_version(uint32_t
mcu_firmware_version, uint32_t
mcu_hardware_version)

Description Updates external mcu version number.

Parameters mcu_firmware_version [in]: MCU
Firmware version number，For
example, 0x010101 indicates v1.1.1.
mcu_hardware_version [in]: MCU
hardware version number (PCBA
version number).

Responses TUYA_BLE_SUCCESS: Sent successfully.
Other: failed.

Notice The API is mainly used to develop BLE
module, SoC development program
does not need to use.

4.0.9 tuya_ble_sdk_init

60 / 128

4 API reference

Function name tuya_ble_sdk_init

Prototype tuya_ble_status_t
tuya_ble_sdk_init(tuya_ble_device_param_t
* param_data)

Description The tuya ble sdk initialization function.

Parameters param_data [in]: Initialize parameter.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.

Notice Initialization function, the Application
must call this function to initialize the
SDK, otherwise the SDK will not work.
The initialization function may also be
tuya_ble_sdk_init_async().

Parameter explanation:

The structure of tuya_ble_device_param_t is as follows:

1 typedef struct{
2 uint8_t device_id_len; //if ==20,Compressed into 16
3 uint8_t device_id[DEVICE_ID_LEN_MAX];
4 tuya_ble_product_id_type_t p_type;
5 uint8_t product_id_len;
6 uint8_t product_id[TUYA_BLE_PRODUCT_ID_MAX_LEN];
7 uint8_t device_vid[DEVICE_VIRTUAL_ID_LEN];
8 uint8_t auth_key[AUTH_KEY_LEN];
9 uint8_t login_key[LOGIN_KEY_LEN];
10 uint8_t bound_flag;
11 uint32_t firmware_version; //0x00010102: v1.1.2
12 uint32_t hardware_version;
13 uint8_t reserve_1;
14 uint8_t reserve_2;
15 }tuya_ble_device_param_t;

The following items describe the variables in the preceding snippet.

• device_id and auth_key: the device_uuid and the auth_key are unique identifier
pairs assigned to the BLE devices by the Tuya Developer Platform. They are
required when you perform the production testing authorization via Tuya test-
ing tool. After a BLE device is authorized by production testing, the tuya ble

61 / 128

4 API reference

sdk takes control of and manages them automatically. Therefore, you can set
the device_uuid ad the auth_key to 0 when the tuya ble sdk is initialized. If they
are not 0, the tuya ble sdk uses the pre-defined device_id and auth_key. For a
Wi-Fi/BLE dual-mode device, itsdevice_id and auth_key are managed by the Wi-Fi
layer, therefore, the actual device_id and auth_key are needed when the tuya ble
sdk is initialized.

• product_id: pid for short. It is automatically generated when a new product is
created on the Developer Platform. In your Application, the PID needs to be
saved in the form of a constant. It is required when initializing the tuya ble sdk.

• device_vid: the virtual ID of a BLE device, which is generated by Tuya Developer
Platform after the binding of the notice volume. It can be used to find the
data record of the cloud to the BLE device when the BLE device is added or
removed. For BLE devices that need the authorization information of the tuya
ble sdk management, the value is 0. For Wi-Fi/BLE dual mode devices, or BLE
devices of which the authorization is managed by your Application, the actual
device_vid is needed.

• login_key and bound_flag: if the authorization of BLE devices are managed by
the tuya ble sdk, set the values to 0. For Wi-Fi/BLE dual mode devices, or BLE
devices of which the authorization is managed by your Application, the actual
values are needed.

• firmware_version and hardware_version: indicates the firmware version number
and the hardware (PCBA) version number of BLE devices. They are required
when initializing the tuya ble sdk. Currently, BLE devices only support two digit
version numbers, for example 0x0100 represents v1.0.

The following snippet is the initialization example of tuya ble sdk for nrf52832 plat-
form.

62 / 128

4 API reference

1 static const char auth_key_test[] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
2 static const char device_id_test[] = "yyyyyyyyyyyyyyyy";
3
4 #define APP_PRODUCT_ID "vvvvvvvv"
5
6 void tuya_ble_app_init(void)
7 {
8 tuya_ble_device_param_t device_param = {0};
9 device_param.device_id_len = 16;
10 memcpy(device_param.auth_key ,(void *)auth_key_test ,AUTH_KEY_LEN);
11 memcpy(device_param.device_id ,(void *)device_id_test ,DEVICE_ID_LEN)

;
12 device_param.p_type = TUYA_BLE_PRODUCT_ID_TYPE_PID;
13 device_param.product_id_len = 8;
14 memcpy(device_param.product_id ,APP_PRODUCT_ID ,8);
15 device_param.firmware_version = TY_APP_VER_NUM;
16 device_param.hardware_version = TY_HARD_VER_NUM;
17
18 tuya_ble_sdk_init(&device_param);
19 tuya_ble_callback_queue_register(tuya_cb_handler);
20
21 tuya_ota_init();
22 }
23
24 /*nrf52832 example*/
25 int main(void)
26 {
27 bool erase_bonds;
28
29 // Initialize.
30 uart_init();
31 app_log_init();
32 timers_init();
33 buttons_leds_init(&erase_bonds);
34 power_management_init();
35 ble_stack_init();
36 gap_params_init();
37 gatt_init();
38 services_init();
39 advertising_init();
40 conn_params_init();
41 tuya_ble_app_init();
42 advertising_start();
43
44 NRF_LOG_INFO("App version: %s\r\n",TY_APP_VER_STR);
45
46 // Enter main loop.
47 for (;;)
48 {
49 idle_state_handle();
50 }
51 }

63 / 128

4 API reference

4.0.10 tuya_ble_sdk_init_async

Function name tuya_ble_sdk_init_async

Prototype void
tuya_ble_sdk_init_async(tuya_ble_device_param_t
*
param_data,tuya_ble_nv_async_callback_t
callback)

Description The tuya ble sdk initialization function,
mainly used in tuya ble sdk of
asynchronous flash operation
architecture.

Parameters param_data [in]: Initialize parameter.
callback[in]: Callback，This callback
will be executed automatically after the
initialization is completed.

Responses None.

Notice The tuya ble sdk Asynchronous
initialization function, the Application
must call this function to initialize the
SDK, otherwise the SDK will not work.

Example of tuya ble sdk asynchronous initialization:

64 / 128

4 API reference

1 static const char auth_key_test[] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
2 static const char device_id_test[] = "yyyyyyyyyyyyyyyy";
3
4 #define APP_PRODUCT_ID "vvvvvvvv"
5
6 static void tuya_ble_sdk_init_async_completed(void *p_param,

tuya_ble_status_t result)
7 {
8 if(result==TUYA_BLE_SUCCESS)
9 {
10 tuya_ble_callback_queue_register(tuya_cb_handler);
11
12 tuya_ota_init();
13
14 TUYA_APP_LOG_INFO("tuya sdk init succeed.");
15 TUYA_APP_LOG_INFO("App version: "TY_APP_VER_STR);
16 TUYA_APP_LOG_DEBUG("current free heap size = %d",

xTuyaPortGetFreeHeapSize());
17 //tuya_ble_device_factory_reset();
18 }
19 else
20 {
21 TUYA_APP_LOG_INFO("tuya sdk init failed.");
22 }
23 }
24
25 void tuya_ble_app_init(void)
26 {
27 tuya_ble_nv_init_custom();
28 memset(&device_param ,0,sizeof(tuya_ble_device_param_t));
29 device_param.device_id_len = 16;
30 memcpy(device_param.auth_key ,(void *)auth_key_test ,AUTH_KEY_LEN);
31 memcpy(device_param.device_id ,(void *)device_id_test ,DEVICE_ID_LEN)

;
32
33 device_param.p_type = TUYA_BLE_PRODUCT_ID_TYPE_PID;
34 device_param.product_id_len = 8;
35 memcpy(device_param.product_id ,APP_PRODUCT_ID ,8);
36 device_param.firmware_version = TY_APP_VER_NUM;
37 device_param.hardware_version = TY_HARD_VER_NUM;
38
39 tuya_ble_sdk_init_async(&device_param ,tuya_ble_sdk_init_asyn �

c_completed);
40
41
42 }
43
44 /*nrf52832 example*/
45 int main(void)
46 {
47 bool erase_bonds;
48
49 // Initialize.
50 uart_init();

65 / 128

4 API reference

1 app_log_init();
2 timers_init();
3 buttons_leds_init(&erase_bonds);
4 power_management_init();
5 ble_stack_init();
6 gap_params_init();
7 gatt_init();
8 services_init();
9 advertising_init();
10 conn_params_init();
11 tuya_ble_app_init();
12 advertising_start();
13
14 NRF_LOG_INFO("App version: %s\r\n",TY_APP_VER_STR);
15
16 // Enter main loop.
17 for (;;)
18 {
19 idle_state_handle();
20 }
21 }

4.0.11 tuya_ble_dp_data_report

Function name tuya_ble_dp_data_report

Prototype tuya_ble_status_t
tuya_ble_dp_data_report(uint8_t
*p_data,uint32_t len)

Description Reports dp point data to APP.

Parameters p_data [in]: dp point data.
len[in]: Data length，Cannot exceed
TUYA_BLE_REPORT_MAX_DP_DATA_LEN.

66 / 128

4 API reference

Function name tuya_ble_dp_data_report

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter invalid.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_NO_MEM: Memory
Application failed.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error .
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice Application reports DP data to mobile
App by calling this function.

parameter description:

• Tuya Developer Platform manages data in the form of dp points. The data
generated by any device needs to be abstracted in the form of dp points. A
complete dp point data consists of four parts (refer to the relevant introduction
on the Developer Platform for details):

Dp_id: 1 byte, dp_id serial number registered in the development platform.

Dp_type: 1 byte, dp point type.

#define DT_RAW 0 //raw type

#define DT_BOOL 1 //Boolean type

#define DT_VALUE 2 //Value type

#define DT_STRING 3 //String type

#define DT_ENUM 4 //Enumeration type

#define DT_BITMAP 5 // Bitmap type

Dp_len: Bluetooth currently supports only one byte, that is, the longest data of a
single dp point is 255 bytes.

67 / 128

4 API reference

Dp_data: Data, dp_len bytes.

• The dp point reporting function, the data pointed to by parameter p_data must
be assembled and reported in the form of a table:

Dp
point 1
data ~

Dp
point n
data

1 2 3 4~ ~ n n+1 n+2 n+3~

Dp_id Dp_type Dp_len Dp_data ~ Dp_id Dp_type Dp_len Dp_data

• When calling this function, the maximum length of parameter len is
TUYA_BLE_REPORT_MAX_DP_DATA_LEN (currently 255+3).

4.0.12 tuya_ble_dp_data_with_time_report

Function name tuya_ble_dp_data_with_time_report

Prototype tuya_ble_status_t
tuya_ble_dp_data_with_time_report(uint32_t
timestamp,uint8_t *p_data,uint32_t
len)

Description Reports dp point data with time stamp.

Parameters timestamp[in]: 4 byte Unix timestamp.
p_data [in] :dp data.
len[in]: The data length cannot exceed
TUYA_BLE_REPORT_MAX_DP_DATA_LEN.

68 / 128

4 API reference

Function name tuya_ble_dp_data_with_time_report

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection;
TUYA_BLE_ERR_NO_MEM: Memory
Application failed.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice The Application code reports dp point
data to the App with time stamp by
calling this function.
Generally, data that is cached offline
needs to be reported with time stamp.

4.0.13 tuya_ble_dp_data_with_time_ms_string_report

Function name tuya_ble_dp_data_with_time_ms_string_report

Prototype tuya_ble_status_t
tuya_ble_dp_data_with_time_ms_string_report(uint8_t
time_string,uint8_t p_data,uint32_t len)

Description Reports dp point data with string
format time.

Parameters time_string[in]: 13 byte ms level string
format time.
p_data [in]: dp point data.
Len[in]: Data length, the maximum
cannot exceed
TUYA_BLE_REPORT_MAX_DP_DATA_LEN.

69 / 128

4 API reference

Function name tuya_ble_dp_data_with_time_ms_string_report

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_NO_MEM: Memory
Application failed.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice The Application code reports dp point
data to the App with string format time
by calling this function.
generally offline data only needs to be
reported with time.
13 byte ms level time string, such as
“0000000123456”“, less than 13 bytes
before the supplementary character 0.

4.0.14 tuya_ble_dp_data_with_flag_report

Function name tuya_ble_dp_data_with_flag_report

Prototype tuya_ble_status_t
tuya_ble_dp_data_with_flag_report(uint16_t
sn,tuya_ble_report_mode_t
mode,uint8_t *p_data,uint32_t len)

Description Reports dp point data with flag.

70 / 128

4 API reference

Function name tuya_ble_dp_data_with_flag_report

Parameters sn[in]: Application defined serial
number.
mode[in]: Reporting mode.
p_data [in]: dp point data.
len[in]: dp point data length, the
maximum cannot exceed
TUYA_BLE_REPORT_MAX_DP_DATA_LEN.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection;
TUYA_BLE_ERR_NO_MEM: Memory
Application failed.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice Application calls this function to report
the marked DP point data to the App.

parameter description:

mode:

REPORT_FOR_CLOUD_PANEL: report to the panel and the cloud at the same time.

REPORT_FOR_CLOUD: only report to the cloud.

REPORT_FOR_PANEL: only report to the panel.

REPORT_FOR_NONE: neither reported to the panel nor to the cloud.

4.0.15 tuya_ble_dp_data_with_flag_and_time_report

71 / 128

4 API reference

Function name tuya_ble_dp_data_with_flag_and_time_report

Prototype tuya_ble_status_t
tuya_ble_dp_data_with_flag_and_time_report
(uint16_t sn,tuya_ble_report_mode_t
mode,uint32_t timestamp,uint8_t
*p_data,uint32_t len)

Description Reports dp point data with time stamp.

Parameters sn[in]: Application defined serial
number.
mode[in]: reporting mode.
timestamp[in]: 4 byte Unix timestamp.
p_data [in]: dp data.
len[in]: dp point data length, the
maximum cannot exceed
TUYA_BLE_REPORT_MAX_DP_DATA_LEN.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_NO_MEM: Memory
Application failed.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice The Application code reports dp point
data to the App with timestamp by
calling this function.
Generally, data that is cached offline
needs to be reported with a time
stamp.

72 / 128

4 API reference

4.0.16 tuya_ble_dp_data_with_flag_and_time_ms_string_report

Function name tuya_ble_dp_data_with_flag_and_time_ms_string_report

Prototype tuya_ble_status_t
tuya_ble_dp_data_with_flag_and_time_ms_string_report
(uint16_t sn,tuya_ble_report_mode_t
mode,uint8_t time_string,uint8_t
p_data,uint32_t len)

Description Reports dp point data with string
formatted time with flag.

Parameters sn[in]: Application defined serial
number.
mode[in]: reporting mode.
time_string[in]: 13-byte ms-level string
format time;
p_data [in]: dp point data.
Len[in]: data length, the maximum
cannot exceed
TUYA_BLE_REPORT_MAX_DP_DATA_LEN.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_NO_MEM: Memory
Application failed.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

73 / 128

4 API reference

Function name tuya_ble_dp_data_with_flag_and_time_ms_string_report

Notice The Application code reports dp point
data to the App with string format time
by calling this function.
generally offline data only needs to be
reported with time.
13 byte ms level time string, such as
“0000000123456”“, less than 13 bytes
before the supplementary character 0.

4.0.17 tuya_ble_connected_handler

Function name tuya_ble_connected_handler

Prototype void tuya_ble_connected_handler(void)

Description Bluetooth connection callback function.

Parameters None.

Responses None.

Notice The Application code needs to call this
function at the Bluetooth connection
callback of the chip platform SDK.
tuya ble sdk is based on this function
to manage the internal Bluetooth
connection state.

4.0.18 tuya_ble_disconnected_handler

Function name tuya_ble_disconnected_handler

Prototype void
tuya_ble_disconnected_handler(void)

Description Bluetooth disconnection callback
function.

74 / 128

4 API reference

Function name tuya_ble_disconnected_handler

Parameters None.

Responses None.

Notice The Application code needs to call this
function at the Bluetooth disconnection
callback of the chip platform SDK.
The tuya ble sdk manages the internal
Bluetooth connection state according
to the execution of this function.

Example of calling tuya_ble_connected_handler and tuya_ble_disconnected_handler
on nrf52832 platform:

75 / 128

4 API reference

1 /**@brief Function for handling BLE events.
2 *
3 * @param[in] p_ble_evt Bluetooth stack event.
4 * @param[in] p_context Unused.
5 */
6 static void ble_evt_handler(ble_evt_t const * p_ble_evt , void *

p_context)
7 {
8 uint32_t err_code;
9
10 switch (p_ble_evt ->header.evt_id)
11 {
12 case BLE_GAP_EVT_CONNECTED:
13
14 NRF_LOG_INFO("Connected");
15
16 tuya_ble_connected_handler();
17
18 err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
19 APP_ERROR_CHECK(err_code);
20 m_conn_handle = p_ble_evt ->evt.gap_evt.conn_handle;
21 err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle

);
22 APP_ERROR_CHECK(err_code);
23
24 break;
25
26 case BLE_GAP_EVT_DISCONNECTED:
27
28 NRF_LOG_INFO("Disconnected");
29
30 tuya_ble_disconnected_handler();
31
32 tuya_ota_init_disconnect();
33 // LED indication will be changed when advertising starts.
34 m_conn_handle = BLE_CONN_HANDLE_INVALID;
35 break;
36
37 case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
38 {
39 NRF_LOG_DEBUG("PHY update request.");
40 ble_gap_phys_t const phys =
41 {
42 .rx_phys = BLE_GAP_PHY_AUTO ,
43 .tx_phys = BLE_GAP_PHY_AUTO ,
44 };
45 err_code = sd_ble_gap_phy_update(p_ble_evt ->evt.gap_evt.

conn_handle , &phys);
46 APP_ERROR_CHECK(err_code);
47 }
48 break;
49
50 case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
51 // Pairing not supported

76 / 128

4 API reference

1 err_code = sd_ble_gap_sec_params_reply(m_conn_handle ,
BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP , NULL, NULL);

2 APP_ERROR_CHECK(err_code);
3 break;
4
5 case BLE_GATTS_EVT_SYS_ATTR_MISSING:
6 // No system attributes have been stored.
7 err_code = sd_ble_gatts_sys_attr_set(m_conn_handle , NULL, 0, 0)

;
8 APP_ERROR_CHECK(err_code);
9 break;
10
11 case BLE_GATTC_EVT_TIMEOUT:
12 // Disconnect on GATT Client timeout event.
13 err_code = sd_ble_gap_disconnect(p_ble_evt ->evt.gattc_evt.

conn_handle ,
14 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION

);
15 APP_ERROR_CHECK(err_code);
16 break;
17
18 case BLE_GATTS_EVT_TIMEOUT:
19 // Disconnect on GATT Server timeout event.
20 err_code = sd_ble_gap_disconnect(p_ble_evt ->evt.gatts_evt.

conn_handle ,
21 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION

);
22 APP_ERROR_CHECK(err_code);
23 break;
24
25 default:
26 // No implementation needed.
27 break;
28 }
29 }

4.0.19 tuya_ble_adv_data_connecting_request_set

Function name tuya_ble_adv_data_connecting_request_set

Prototype tuya_ble_status_t
tuya_ble_adv_data_connecting_request_set(uint8_t
on_off)

Description Triggers broadcast packet change
request connection flag.

77 / 128

4 API reference

Function name tuya_ble_adv_data_connecting_request_set

Parameters on_off[in]: 0 - Clear flag，1 - set flag.
Responses TUYA_BLE_SUCCESS: success.

TUYA_BLE_ERR_INVALID_STATE: The
current state is not supported, for
example, it is currently connected.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

4.0.20 tuya_ble_data_passthrough

Function name tuya_ble_data_passthrough

Prototype tuya_ble_status_t
tuya_ble_data_passthrough(uint8_t
*p_data,uint32_t len)

Description Passes through the custom data of the
Application.

Parameters p_data [in]: data pointer that needs to
be transparently transmitted.
len[in]: data length, the maximum
cannot exceed
TUYA_BLE_TRANSMISSION_MAX_DATA_LEN.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

78 / 128

4 API reference

Function name tuya_ble_data_passthrough

Notice Application transparently transmits
data to App by calling this function.
The transparently transmitted data
format is negotiated by the device
Application and the mobile App, and
tuya ble sdk does not parse it.

4.0.21 tuya_ble_production_test_asynchronous_response

Function name tuya_ble_production_test_asynchronous_response

Prototype tuya_ble_status_t
tuya_ble_production_test_asynchronous_response
(uint8_t channel,uint8_t
*p_data,uint32_t len)

Description Asynchronously respond to the
production testing command.

Parameters Channel[in]: Transmission channel，
0-uart;1-ble.
p_data [in]: complete command data
that needs to be responded to.
len[in]: Data length.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_MEM: Failed to
apply for memory.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

79 / 128

4 API reference

Function name tuya_ble_production_test_asynchronous_response

Notice When performing production testing
(production testing authorization is
through UART, the whole machine test
passes BLE)
Some test items can not immediately
respond to the results of the upper
computer production testing tool,
or some test items need to be
processed by the Application. At this
time, you need to call this function to
send the test results to the upper
computer production testing tool.

4.0.22 tuya_ble_net_config_response

Function name tuya_ble_net_config_response

Prototype tuya_ble_status_t
tuya_ble_net_config_response(int16_t
result_code)

Description Responds the Wi-Fi network
configuration request.

Parameters Result_code[in]: status code.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice Suitable for Wi-Fi / BLE combo devices.

80 / 128

4 API reference

4.0.23 tuya_ble_ubound_response

Function name tuya_ble_ubound_response

Prototype tuya_ble_status_t
tuya_ble_ubound_response(uint8_t
result_code)

Description Responds to the removal requests of
multi-protocol combo device.

Parameters Result_code[in]: status code, 0 -
success，1 - fail.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth disconnec-
tion.TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice Suitable for Wi-Fi / BLE combo devices.

4.0.24 tuya_ble_anomaly_ubound_response

Function name tuya_ble_anomaly_ubound_response

Prototype tuya_ble_status_t
tuya_ble_anomaly_ubound_response
(uint8_t result_code)

Description Responds to the abnormal removal
requests of multi-protocol combo
device.

Parameters Result_code[in]: status code，0 -
success，1 - fail.

81 / 128

4 API reference

Function name tuya_ble_anomaly_ubound_response

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth
disconnection.
TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice Suitable for Wi-Fi / BLE combo devices.

4.0.25 tuya_ble_device_reset_response

Function name tuya_ble_device_reset_response

Prototype tuya_ble_status_t
tuya_ble_device_reset_response
(uint8_t result_code)

Description Responds to the reset requests of
multi-protocol combo device.

Parameters Result_code[in]: status code，0 -
success，1 - fail.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: The
current status does not support
sending, such as Bluetooth disconnec-
tion.TUYA_BLE_ERR_NO_EVENT: Other
errors.

Notice Suitable for Wi-Fi / BLE combo devices.

4.0.26 tuya_ble_connect_status_get

82 / 128

4 API reference

Function name tuya_ble_connect_status_get

Prototype tuya_ble_connect_status_t
tuya_ble_connect_status_get(void)

Description Gets current BLE connection status

Parameters None.

Responses tuya_ble_connect_status_t. See the
following response example for details.

Responses description:

1 typedef enum{
2 UNBONDING_UNCONN = 0,
3 UNBONDING_CONN ,
4 BONDING_UNCONN ,
5 BONDING_CONN ,
6 BONDING_UNAUTH_CONN ,
7 UNBONDING_UNAUTH_CONN ,
8 UNKNOW_STATUS
9 }tuya_ble_connect_status_t;

4.0.27 tuya_ble_device_factory_reset

Function name tuya_ble_device_factory_reset

Prototype tuya_ble_status_t
tuya_ble_device_factory_reset(void)

Description Resets BLE devices.

Parameters None.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INTERNAL: Other
errors.

83 / 128

4 API reference

Function name tuya_ble_device_factory_reset

Notice For devices that define an external key
reset function, the Application needs to
call this function to notify tuya ble sdk
to reset related information after the
key triggers a reset, such as clearing
binding information.

4.0.28 tuya_ble_time_req

Function name tuya_ble_time_req

Prototype tuya_ble_status_t
tuya_ble_time_req(uint8_t time_type)

Description Requests cloud time.

Parameters time_type[in]:
0 - Request time in 13-byte ms-level
string format.
1 - Find the year, month, day, hour,
minute, second, week format time.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_PARAM:
parameter error.
TUYA_BLE_ERR_INTERNAL: Other
errors.

84 / 128

4 API reference

Function name tuya_ble_time_req

Notice 13 byte string time format:
“0000000123456”means 123456 ms
timestamp.
normal time format:
0x13,0x04,0x1C,0x0C,0x17,0x19,0x02
means:
April 28, 2019 :23:25 Tuesday.
tuya ble sdk will send the
corresponding instruction to the App
after receiving the request,
sdk will send a message to the device
Application after receiving the time
returned by the App.

4.0.29 tuya_ble_ota_response

Function name tuya_ble_ota_response

Prototype tuya_ble_status_t
tuya_ble_ota_response(tuya_ble_ota_response_t
*p_data)

Description OTA response command.

Parameters p_data[in]: OTA response data.

Responses TUYA_BLE_SUCCESS: Sent successfully.
TUYA_BLE_ERR_INVALID_STATE: State
error.
TUYA_BLE_ERR_INVALID_LENGTH: Data
length error.
TUYA_BLE_ERR_NO_MEM: Memory
Application fail.
TUYA_BLE_ERR_INTERNAL: Other
errors.

85 / 128

4 API reference

Function name tuya_ble_ota_response

Notice See the OTA introduction chapter for
the specific format.

4.0.30 tuya_ble_custom_event_send

Function name tuya_ble_custom_event_send

Prototype uint8_t
tuya_ble_custom_event_send(tuya_ble_custom_evt_t
evt)

Description Sends Application custom message
and callback to tuya ble sdk.

Parameters evt[in]: Custom event.

Responses 0: Sent successfully.
1: fail.

Notice typedef struct{
void *data;
void
(*custom_event_handler)(void*data);
} tuya_ble_custom_evt_t;

Description: This function is mainly used when the Application wants to use
the internal message scheduler of tuya ble sdk to process the Application’s
message events.
tuya_ble_custom_event_send Application examples:

86 / 128

4 API reference

1 #define APP_CUSTOM_EVENT_1 1
2 #define APP_CUSTOM_EVENT_2 2
3 #define APP_CUSTOM_EVENT_3 3
4 #define APP_CUSTOM_EVENT_4 4
5 #define APP_CUSTOM_EVENT_5 5
6
7 typedef struct {
8 uint8_t data[50];
9 } custom_data_type_t;
10
11 void custom_data_process(int32_t evt_id,void *data)
12 {
13 custom_data_type_t *event_1_data;
14 TUYA_BLE_LOG_DEBUG("custom event id = %d",evt_id);
15 switch (evt_id)
16 {
17 case APP_CUSTOM_EVENT_1:
18 event_1_data = (custom_data_type_t *)data;
19 TUYA_BLE_LOG_HEXDUMP_DEBUG("received APP_CUSTOM_EVENT_1

data:",event_1_data ->data ,50);
20 break;
21 case APP_CUSTOM_EVENT_2:
22 break;
23 case APP_CUSTOM_EVENT_3:
24 break;
25 case APP_CUSTOM_EVENT_4:
26 break;
27 case APP_CUSTOM_EVENT_5:
28 break;
29 default:
30 break;
31
32 }
33 }
34
35 custom_data_type_t custom_data;
36
37 void custom_evt_1_send_test(uint8_t data)
38 {
39 tuya_ble_custom_evt_t event;
40
41 for(uint8_t i=0; i<50; i++)
42 {
43 custom_data.data[i] = data;
44 }
45 event.evt_id = APP_CUSTOM_EVENT_1;
46 event.custom_event_handler = (void *)custom_data_process;
47 event.data = &custom_data;
48 tuya_ble_custom_event_send(event);
49 }

87 / 128

4 API reference

4.0.31 tuya_ble_callback_queue_register

Function name tuya_ble_callback_queue_register

Prototype prototype 1: tuya_ble_status_t
tuya_ble_callback_queue_register(void
*cb_queue).
prototype 2: tuya_ble_status_t
tuya_ble_callback_queue_register(tuya_ble_callback_t
cb).

Description To register the message queue for
receiving tuya ble sdk messages under
the OS platform architecture, use
prototype 1.
To register callback function for
receiving tuya ble sdk messages under
OS-less platform architecture, use
prototype 2.

Parameters cb_queue [in]: message queue.
cb[in]: callback Function address.

Responses TUYA_BLE_ERR_RESOURCES: Register
fail.
TUYA_BLE_SUCCESS: Register success.

Application examples for OS platform:

1 void *tuya_custom_queue_handle;
2
3 os_msg_queue_create(&tuya_custom_queue_handle ,

MAX_NUMBER_OF_TUYA_CUSTOM_MESSAGE , sizeof(tuya_ble_cb_evt_param_t));
4
5 tuya_ble_callback_queue_register(tuya_custom_queue_handle);

Application example without OS platform:

1 void tuya_cb_handler(tuya_ble_cb_evt_param_t* event).
2
3 tuya_ble_callback_queue_register(tuya_cb_handler);

88 / 128

4 API reference

4.0.32 tuya_ble_event_response

Function name tuya_ble_event_response

Prototype tuya_ble_status_t
tuya_ble_event_response(tuya_ble_cb_evt_param_t
*param)

Description Responds to tuya ble sdk messages
under the OS platform architecture.

Parameters param [in]: message pointer.

Responses TUYA_BLE_SUCCESS: success.
other: fail.

Notice Under the OS platform architecture,
after the Application code processes
the message sent by tuya ble sdk，
Must call this function to give feedback
to tuya ble sdk.

Application examples:

89 / 128

4 API reference

1 /*Application task to process ble sdk messages*/
2 void app_custom_task(void *p_param)
3 {
4 tuya_ble_cb_evt_param_t event;
5
6 while (true)
7 {
8 if (os_msg_recv(tuya_custom_queue_handle , &event, 0xFFFFFFFF)

== true)
9 {
10 switch (event.evt)
11 {
12 case TUYA_BLE_CB_EVT_CONNECTE_STATUS:
13 break;
14 case TUYA_BLE_CB_EVT_DP_WRITE:
15 break;
16 case TUYA_BLE_CB_EVT_DP_DATA_REPORT_RESPONSE:
17 break;
18 case TUYA_BLE_CB_EVT_DP_DATA_WTTH_TIME_REPORT_RESPONSE:
19 break;
20 case TUYA_BLE_CB_EVT_UNBOUND:
21 break;
22 case TUYA_BLE_CB_EVT_ANOMALY_UNBOUND:
23 break;
24 case TUYA_BLE_CB_EVT_DEVICE_RESET:
25 break;
26 case TUYA_BLE_CB_EVT_DP_QUERY:
27 break;
28 case TUYA_BLE_CB_EVT_OTA_DATA:
29 break;
30 case TUYA_BLE_CB_EVT_NETWORK_INFO:
31 break;
32 case TUYA_BLE_CB_EVT_WIFI_SSID:
33 break;
34 case TUYA_BLE_CB_EVT_TIME_STAMP:
35 break;
36 case TUYA_BLE_CB_EVT_TIME_NORMAL:
37 break;
38 case TUYA_BLE_CB_EVT_DATA_PASSTHROUGH:
39 break;
40 default:
41 break;
42 }
43
44 tuya_ble_event_response(&event);
45 }
46 }
47
48 }

90 / 128

4 API reference

4.0.33 tuya_ble_scheduler_queue_size_get

Function name tuya_ble_scheduler_queue_size_get

Prototype uint16_t
tuya_ble_scheduler_queue_size_get(void)

Description Gets the total size of tuya ble sdk
scheduler queue in platforms that have
no OS.

Parameters None.

Responses Total size of the scheduler queue.

4.0.34 tuya_ble_scheduler_queue_space_get

Function name tuya_ble_scheduler_queue_space_get

Prototype uint16_t
tuya_ble_scheduler_queue_space_get(void)

Description Gets the idle number of tuya ble sdk
scheduler queue in platforms that have
no OS.

Parameters None.

Responses Scheduler queue idle.

4.0.35 tuya_ble_scheduler_queue_events_get

Function name tuya_ble_scheduler_queue_events_get

Prototype uint16_t
tuya_ble_scheduler_queue_events_get(void)

Description Gets the number of unprocessed
events in the tuya ble sdk scheduler
queue in platforms that have no OS.

91 / 128

4 API reference

Function name tuya_ble_scheduler_queue_events_get

Parameters None.

Responses The number of unprocessed events in
the scheduler queue.

92 / 128

5 The callback event of tuya ble sdk

5 The callback event of tuya ble sdk

The tuya ble sdk sends message of status, data, and other information to Applica-
tion through message (for OS architecture platform) or callback function registered
by Application (for non-OS architecture platform). According to the previous sec-
tion, the example of tuya_ble_event_response describes how the Application in the OS
architecture platform handle the messages sent by tuya ble sdk. The chip plat-
form without an OS can use the similar code to process messages, however it is not
necessary to call the tuya_ble_event_response() to respond to tuya ble sdk after the
messages is handled by the callback function. As the following snippet shows an
example for callback registration in the platform without an OS.

93 / 128

5 The callback event of tuya ble sdk

1 /*Call back function for processing ble sdk messages*/
2 static void tuya_cb_handler(tuya_ble_cb_evt_param_t* event)
3 {
4 switch (event->evt)
5 {
6 case TUYA_BLE_CB_EVT_CONNECTE_STATUS:
7 break;
8 case TUYA_BLE_CB_EVT_DP_WRITE:
9 break;
10 case TUYA_BLE_CB_EVT_DP_DATA_REPORT_RESPONSE:
11 break;
12 case TUYA_BLE_CB_EVT_DP_DATA_WTTH_TIME_REPORT_RESPONSE:
13 break;
14 case TUYA_BLE_CB_EVT_UNBOUND:
15 break;
16 case TUYA_BLE_CB_EVT_ANOMALY_UNBOUND:
17 break;
18 case TUYA_BLE_CB_EVT_DEVICE_RESET:
19 break;
20 case TUYA_BLE_CB_EVT_DP_QUERY:
21 break;
22 case TUYA_BLE_CB_EVT_OTA_DATA:
23 break;
24 case TUYA_BLE_CB_EVT_NETWORK_INFO:
25 break;
26 case TUYA_BLE_CB_EVT_WIFI_SSID:
27 break;
28 case TUYA_BLE_CB_EVT_TIME_STAMP:
29 break;
30 case TUYA_BLE_CB_EVT_TIME_NORMAL:
31 break;
32 case TUYA_BLE_CB_EVT_DATA_PASSTHROUGH:
33 break;
34 default:
35 break;
36 }
37
38 }
39
40 void tuya_ble_app_init(void)
41 {
42 device_param.device_id_len = 16;
43 memcpy(device_param.auth_key ,(void *)auth_key_test ,AUTH_KEY_LEN

);
44 memcpy(device_param.device_id ,(void *)device_id_test ,

DEVICE_ID_LEN);
45 device_param.p_type = TUYA_BLE_PRODUCT_ID_TYPE_PID;
46 device_param.product_id_len = 8;
47 memcpy(device_param.product_id ,APP_PRODUCT_ID ,8);
48 device_param.firmware_version = TY_APP_VER_NUM;
49 device_param.hardware_version = TY_HARD_VER_NUM;
50
51 tuya_ble_sdk_init(&device_param);

94 / 128

5 The callback event of tuya ble sdk

1 tuya_ble_callback_queue_register(tuya_cb_handler);
2
3 tuya_ota_init();
4 }

5.0.1 TUYA_BLE_CB_EVT_CONNECTE_STATUS

Event TUYA_BLE_CB_EVT_CONNECTE_STATUS

Description Every time the state changes, tuya ble
sdk will send the event to the device
Application

Corresponding data structure:

1 typedef enum{
2 UNBONDING_UNCONN = 0,
3 UNBONDING_CONN ,
4 BONDING_UNCONN ,
5 BONDING_CONN ,
6 BONDING_UNAUTH_CONN ,
7 UNBONDING_UNAUTH_CONN ,
8 UNKNOW_STATUS
9 }tuya_ble_connect_status_t;

5.0.2 TUYA_BLE_CB_EVT_DP_WRITE

Event TUYA_BLE_CB_EVT_DP_WRITE

Description The tuya ble sdk received dp point data
sent by mobile App.

Notice See format tuya_ble_dp_data_report API
introduction.

Corresponding data structure:

95 / 128

5 The callback event of tuya ble sdk

1 /*
2 * dp data buffer: (Dp_id,Dp_type,Dp_len,Dp_data),(Dp_id,Dp_type,

Dp_len,Dp_data),....
3 * */
4 typedef struct{
5 uint8_t *p_data;
6 uint16_t data_len;
7 }tuya_ble_dp_write_data_t;

5.0.3 TUYA_BLE_CB_EVT_DP_QUERY

Event TUYA_BLE_CB_EVT_DP_QUERY

Description The dp point to be checked, which is
sent from the mobile App.

Notice data_len=0 means to query all dp
points, otherwise each byte pointed to
by p_data represents a dp point to be
queried, for example, data_len=3,
p_data{0x01,0x02,0x03}, means to
query dp_id=1, dp_id=2 , dp_id=3 data
of 3 dp points.

Corresponding data structure:

1 /*
2 * query dp point data,if data_len is 0,means query all dp point

data,otherwise query the dp point in p_data buffer.
3 * */
4 typedef struct{
5 uint8_t *p_data;
6 uint16_t data_len;
7 }tuya_ble_dp_query_data_t;

5.0.4 TUYA_BLE_CB_EVT_OTA_DATA

96 / 128

5 The callback event of tuya ble sdk

Event TUYA_BLE_CB_EVT_OTA_DATA

Description tuya ble sdk received the OTA data
sent by the mobile App.

Notice See the OTA section for details.

Corresponding data structure:

1 typedef struct{
2 tuya_ble_ota_data_type_t type;
3 uint16_t data_len;
4 uint8_t *p_data;
5 }tuya_ble_ota_data_t;

5.0.5 TUYA_BLE_CB_EVT_NETWORK_INFO

Event TUYA_BLE_CB_EVT_NETWORK_INFO

Description The tuya ble sdk received Wi-Fi
distribution information sent by the
mobile app, for example:
{"wifi_ssid":"tuya","password":"12345678"
,"token":"xxxxxxxxxx".}

Notice Only applicable to Wi-Fi / BLE dual
protocol combo devices.

Corresponding data structure:

1 /*
2 * network data,unformatted json data,for example " {"wifi_ssid":"

tuya","password":"12345678","token":"xxxxxxxxxx"} "
3 * */
4 typedef struct{
5 uint16_t data_len;//include '\0'
6 uint8_t *p_data;
7 }tuya_ble_network_data_t;

5.0.6 TUYA_BLE_CB_EVT_WIFI_SSID

97 / 128

5 The callback event of tuya ble sdk

Event TUYA_BLE_CB_EVT_WIFI_SSID

Description tuya ble sdk received Wi-Fi distribution
information sent by the mobile app, for
example:
“{”wifi_ssid”:“tuya”,“password”:
“12345678”}“.

Notice Only applicable to Wi-Fi / BLE dual
protocol combo devices，Compared
with TUYA_BLE_CB_EVT_NETWORK_INFO, it
lacks the token field, and is mainly
used for Wi-Fi SSID update of the
network-equipped devices.

Corresponding data structure:

1 /*
2 * wifi ssid data,unformatted json data,for example " {"wifi_ssid

":"tuya","password":"12345678"} "
3 * */
4 typedef struct{
5 uint16_t data_len;//include '\0'
6 uint8_t *p_data;
7 }tuya_ble_wifi_ssid_data_t;

5.0.7 TUYA_BLE_CB_EVT_TIME_STAMP

Event TUYA_BLE_CB_EVT_TIME_STAMP

Description The tuya ble sdk received the
timestamp in the format of a string
sent by the mobile phone app, for
example, 0000000123456 means
123456ms, Unix timestamp at the
millisecond level.

Notice time_zone The time zone is 100 times
the actual time zone, for example, -8
zone is -800.

98 / 128

5 The callback event of tuya ble sdk

Corresponding data structure:

1 /*
2 * Unix timestamp
3 * */
4 typedef struct{
5 uint8_t timestamp_string[14];
6 int16_t time_zone; //actual time zone Multiply by 100.
7 }tuya_ble_timestamp_data_t;

5.0.8 TUYA_BLE_CB_EVT_TIME_NORMAL

Event TUYA_BLE_CB_EVT_TIME_NORMAL

Description tuya ble sdk received the time in the
conventional format sent by the mobile
app, for example:
UTC +8, Tuesday, April 28, 2019
12:23:25.
corresponding data: 0x13, 0x04, 0x1C,
0x0C, 0x17, 0x19, 0x02 (week),
0x0320 (time zone time_zone).

Corresponding data structure:

1 /*
2 * normal time formatted
3 * */
4 typedef struct{
5 uint16_t nYear;
6 uint8_t nMonth;
7 uint8_t nDay;
8 uint8_t nHour;
9 uint8_t nMin;
10 uint8_t nSec;
11 uint8_t DayIndex; /* 0 = Sunday */
12 int16_t time_zone; //actual time zone Multiply by 100.
13 }tuya_ble_time_noraml_data_t;

5.0.9 TUYA_BLE_CB_EVT_DATA_PASSTHROUGH

99 / 128

5 The callback event of tuya ble sdk

Event TUYA_BLE_CB_EVT_DATA_PASSTHROUGH

Description The tuya ble sdk received the
transparent transmission data sent by
the mobile app.

Notice The tuya ble sdk does not parse
transparently transmitted data, and
the data format is negotiated and
defined by the device Application and
mobile App.

Corresponding data structure:

1 typedef struct{
2 uint16_t data_len;
3 uint8_t *p_data;
4 }tuya_ble_passthrough_data_t;

5.0.10 TUYA_BLE_CB_EVT_DP_DATA_REPORT_RESPONSE

Event TUYA_BLE_CB_EVT_DP_DATA_REPORT_RESPONSE

Description After the Device Application calls the
tuya_ble_dp_data_report() function to
send dp point data, if you need to
confirm whether it is sent successfully,
you need to wait for the Event.
status=0 means success, and other
failures. If the Device Application waits
for the sending result, you need to add
a timeout mechanism. Unlimited
waiting.

Corresponding data structure:

100 / 128

5 The callback event of tuya ble sdk

1 typedef struct{
2 uint8_t status;
3 }tuya_ble_dp_data_report_response_t;

5.0.11 TUYA_BLE_CB_EVT_DP_DATA_WTTH_TIME_REPORT_RESPONSE

Event TUYA_BLE_CB_EVT_DP_DATA_WTTH_TIME_REPORT_RESPONSE

Description Device Application calls
tuya_ble_dp_data_with_time_report() and
tuya_ble_dp_data_with_time_ms_string_report
() function after sending the
time-stamped dp point data, if you
need to confirm whether it is sent
successfully, you need to wait for the
Event, status=0 means success, other
failure, device Application You must
add a timeout mechanism for waiting
for the results to be sent, and you can’
t wait indefinitely.

Corresponding data structure:

1 typedef struct{
2 uint8_t status;
3 }tuya_ble_dp_data_with_time_report_response_t;

5.0.12 TUYA_BLE_CB_EVT_DP_DATA_WITH_FLAG_REPORT_RESPONSE

101 / 128

5 The callback event of tuya ble sdk

Event TUYA_BLE_CB_EVT_DP_DATA_WITH_FLAG_REPORT_RESPONSE

Description After the Application calls the
tuya_ble_dp_data_with_flag_report()
function to send dp point data, if you
need to confirm whether it is sent
successfully, wait for the Event.
The sn and the mode are the serial
number and mode of dp point data
sent by the Application.
status=0 indicates success, other values
indicate failures.

Notice Device Application can determine
which response point of dp point data
is sent according to the serial number.

Corresponding data structure:

1 typedef struct{
2 uint16_t sn;
3 tuya_ble_report_mode_t mode;
4 uint8_t status;
5 }tuya_ble_dp_data_with_flag_report_response_t;

5.0.13 TUYA_BLE_CB_EVT_DP_DATA_WITH_FLAG_AND_TIME_REPORT_RESPONSE

102 / 128

5 The callback event of tuya ble sdk

Event TUYA_BLE_CB_EVT_DP_DATA_WITH_FLAG_AND_TIME_REPORT_RESPONSE

Description Device Application calls
tuya_ble_dp_data_with_flag_and_time_report
() and
tuya_ble_dp_data_with_flag_and_time_ms_string_report
() function after sending dp point data
with flag and timestamp, if you need to
confirm whether Sent successfully, you
need to wait for this Event;
sn and mode are device Application
Sending dp point data is the incoming
serial number and mode;
status=0 means success, other
failures.

Notice Device Application can determine
which response point of dp point data
is sent according to the serial number.

Corresponding data structure:

1 typedef struct{
2 uint16_t sn;
3 tuya_ble_report_mode_t mode;
4 uint8_t status;
5 }tuya_ble_dp_data_with_flag_and_time_report_response_t;

5.0.14 TUYA_BLE_CB_EVT_UNBOUND

Event TUYA_BLE_CB_EVT_UNBOUND

Description Receiving the Event means that the
mobile phone App sends an instruction
to learn the binding. The data field is a
reserved field and is not used for the
time being.

103 / 128

5 The callback event of tuya ble sdk

Corresponding data structure:

1 typedef struct{
2 uint8_t data;
3 }tuya_ble_unbound_data_t;

5.0.15 TUYA_BLE_CB_EVT_ANOMALY_UNBOUND

Event TUYA_BLE_CB_EVT_ANOMALY_UNBOUND

Description Receiving the Event indicates that the
mobile App sent an abnormal
unbinding instruction, in which the
data field is a reserved field and is not
used for the time being.

Corresponding data structure:

1 typedef struct{
2 uint8_t data;
3 }tuya_ble_anomaly_unbound_data_t;

5.0.16 TUYA_BLE_CB_EVT_DEVICE_RESET

Event TUYA_BLE_CB_EVT_DEVICE_RESET

Description Receiving the Event indicates that the
mobile App has sent a reset command,
where the data field is a reserved field
and is not used for the time being.

Notice After the device Application receives
the reset event, it needs to perform
some operations defined by the reset
function.

104 / 128

5 The callback event of tuya ble sdk

Corresponding data structure:

1 typedef struct{
2 uint8_t data;
3 }tuya_ble_device_reset_data_t;

5.0.17 TUYA_BLE_CB_EVT_UPDATE_LOGIN_KEY_VID

Event TUYA_BLE_CB_EVT_UPDATE_LOGIN_KEY_VID

Description After the Notification book is bound to
success, the mobile App will send the
login key and device virtual ID to the
device.

Notice The BLE device does not need to
process this information.

Corresponding data structure:

1 typedef struct{
2 uint8_t login_key_len;
3 uint8_t vid_len;
4 uint8_t login_key[LOGIN_KEY_LEN];
5 uint8_t vid[DEVICE_VIRTUAL_ID_LEN];
6 }tuya_ble_login_key_vid_data_t;

105 / 128

6 Example of SDK port in nrf52832

6 Example of SDK port in nrf52832

This section takes nrf52832 as an example to describe the porting steps for the OS-
free architecture platforms. You can contact your account manager in Tuya for the
detailed procedure of nrf52832 and the demo of other platforms.

1. Download the original SDK of nrf52832 chip, for example, nRF5_SDK_15.2.0_9412b96,
and prepare a nrf52832 development board.

2. Unzip the SDK to a custom directory, as shown in the following picture.

3. Open the examples > ble_peripheral directories. In this directory, you can
see tutorials of ble peripheral.

106 / 128

6 Example of SDK port in nrf52832

4. Create a project with ble_app_uart as the template, and copy the ble_app_uart
folder and rename it (for example, tuya_ble_standard_nordic).

107 / 128

6 Example of SDK port in nrf52832

5. Enter the PCA10040 > S123 directories, open the project and compile it. You
must confirm that it can be compiled and run correctly on the development
board.

6. Create a file with the ble_nus.c in the nRF_BLE_Services directory as the tem-
plate and tuya_ble_service.c as the name, modify your code to cater for the
tuya ble service, modify the code in the main.c file and broadcast the changes

108 / 128

6 Example of SDK port in nrf52832

according the broadcasting content specified in the previous introduction.

7. Compile and download to your development board and run, use Bluetooth scan-
ning tool in your mobile phone (for example, LightBlue for iOS) to scan devices.
Make sure that your scanning result meet the requirement of broadcasting and
service.

8. Download the tuya ble sdk to the directory of a new project, add the source
files to the project and compile for once.

9. Your project must have the same directories as the following pictures. Note
that select correct library files.

109 / 128

6 Example of SDK port in nrf52832

110 / 128

6 Example of SDK port in nrf52832

10. Create a custom_tuya_ble_config.h file, and save to the directories of your project,
for example, tuya_ble_app.

You must configure the items in the custom_tuya_ble_config.h according to your
actual demand and environment. The tuya ble sdk provides references for
some chip platforms. The reference configuration files are stored in each plat-
form directory under the port directory in the tuya ble sdk folder.

11. Assign the name of custom_tuya_ble_config.h to the CUSTOMIZED_TUYA_BLE_CONFIG_FILE
file, and add to the macro of your project.

12. Create port files, and the name can be tuya_ble_port_nrf52832.h and tuya_ble_port_nrf52832
.c, or replace the nrf52832 with other platforms.

In the port file, implement the interfaces listed in the tuya_ble_port.h file ac-
cording to your configurations. Not all of the listed interfaces need to be imple-
mented, for example, this porting tutorial does not involve OS, therefore, the

111 / 128

6 Example of SDK port in nrf52832

OS-specific APIs are not needed. This tutorial is configured to use the internal
memory management module of tuya ble sdk, therefore the memory alloca-
tion and release APIs are not needed. Under the port file of the tuya ble sdk,
every platform is provided with porting reference file with the platform as the
file name.

13. After the port file is completed, define the port file in the custom_tuya_ble_config
.h.

14. Compile. If the compiling fails, examine your code first.

15. In this tutorial, a specific file is created to handle the initialization of the tuya
ble sdk, call back function registration, and callback message handling. As the
following picture shows.

112 / 128

6 Example of SDK port in nrf52832

16. Register the product in the Tuya Developer Platform and copy the product
ID to your project code. The macro name APP_PRODUCT_ID, APP_BUILD_FIRMNAME
, TY_APP_VER_NUM, TY_APP_VER_STR, TY_HARD_VER_NUM, and TY_HARD_VER_STR cannot be
changed. Replace the xxxxxxxx as the product ID. If you use the test and pro-
duction tooling authorization, contact your Tuya account manager to create
a project for you, and replace the tuya_ble_sdk_app_demo_nrf52832 as the project
name.

113 / 128

6 Example of SDK port in nrf52832

17. Call the tuya_ble_app_init(), tuya_ble_main_tasks_exec(), tuya_ble_gatt_receive_data
(), tuya_ble_common_uart_receive_data(), tuya_ble_disconnected_handler(), and
tuya_ble_connected_handler() respectively in your code, as the following picture
shows.

114 / 128

6 Example of SDK port in nrf52832

18. During the development and debug stage, contact your Tuya account manager
to obtain the auth_key_test and device_id_test.

19. Compile your code, download the code to the development board, download
Tuya Smart App, and scan to add devices.

115 / 128

7 OTA protocol

7 OTA protocol

The firmware upgrade and the chip platform architecture are related, therefore the
tuya ble sdk only provides a firmware upgrade interface, and your Application only
needs to be implemented according to the OTA protocol described below through
the OTA communication interface provided by tuya ble sdk.

The Application receives OTA data through the registered callback function (if the
chip platform does not have OS) or registered queue (if the chip platform has an
OS), the EVENT ID is TUYA_BLE_CB_EVT_OTA_DATA.

For the data format, see the upgrade protocol section. And the OTA response data
is sent through the tuya_ble_ota_response(tuya_ble_ota_response_t *p_data) function.

7.1 OTA upgrade process

The following picture illustrates the process of OTA upgrade.

116 / 128

7 OTA protocol

117 / 128

7 OTA protocol

7.2 OTA upgrade protocol

7.2.1 OTA data types

1 typedef enum
2
3 {
4
5 TUYA_BLE_OTA_REQ , // OTA Upgrade request command
6
7 TUYA_BLE_OTA_FILE_INFO , // OTA Upgrade file information command
8
9 TUYA_BLE_OTA_FILE_OFFSET_REQ , // OTA Upgrade file offset command
10
11 TUYA_BLE_OTA_DATA , // OTA Upgrade data command
12
13 TUYA_BLE_OTA_END , // End of OTA upgrade command
14
15 TUYA_BLE_OTA_UNKONWN ,
16
17 }tuya_ble_ota_data_type_t;
18
19 typedef struct{
20
21 tuya_ble_ota_data_type_t type;
22
23 uint16_t data_len;
24
25 uint8_t *p_data;
26
27 }tuya_ble_ota_data_t; //The mobile app sends the data struct

corresponding to the OTA upgrade EVENT (TUYA_BLE_CB_EVT_OTA_DATA)..
28
29 typedef struct{
30
31 tuya_ble_ota_data_type_t type;
32
33 uint16_t data_len;
34
35 uint8_t *p_data;
36
37 }tuya_ble_ota_response_t; //Data struct corresponding to OTA response

data sending function tuya_ble_ota_response(tuya_ble_ota_response_t
*p_data)

118 / 128

7 OTA protocol

7.2.2 OTA upgrade request (TUYA_BLE_OTA_REQ)

From App to BLE devices

data_len=1

Length: 1 byte

Data: fixed 0

From BLE devices to App

data_len=9

Length: 1 byte 1 byte 1 byte 4 byte 2 byte

Data: Flag OTA_Version 0 Version Maximum
packet
length.

• Flag: 0x00 indicates upgrade confirmation, 0x01 indicates upgrade denial.

• OTA_Version: OTA Protocol version, for example 0x03 indicates the protocol ver-
sion of 3.X.

• Version: the current firmware version number in the big-endian format. For
example, 0x00 01 00 02 indicates the version number is V1.0.2.

• Maximum packet length: the maximum length of a single packet allowed by the
device, unit: byte. The current version cannot exceed 512 bytes.

7.2.3 OTA upgrade file information (TUYA_BLE_OTA_FILE_INFO)

From App to BLE devices

data_len=37

Length: 1 byte 8 byte 4 byte 16 byte 4 byte 4 byte

Data: 0 product
id

file
version

file MD5 file
length

CRC32

119 / 128

7 OTA protocol

• product id: the PID.

• file version: for example, 0x00010002 indicates the version is V1.0.2.

From BLE devices to App

data_len=26

Length: 1 byte 1 byte 4 byte 4 byte 16 byte

Data: 0 STATE Saved data
length

Saved data
CRC32

saved data
MD5 (Not
used
currently)

• STATE:

0x00: upgrade success

0x01: PID different

0x02: the file version is lower than or equal to the current version

0x03: file size is out of range.

• Other: a reserved field.

• File information has been saved: to support the resuming of the breakpoint, the
file information that are stored in the device will be returned. After receiv-
ing the infomration, the App first calculates the CRC32 of the corresponding
length of the new file according to the length of the stored file returned by
the device, and then compares it with the CRC32 returned by the device. If
the both are consistent, then in the following file start transmission request,
the start transmission offset is changed to the length value. Otherwise, the
file start transmission offset is changed to 0, indicating that the transmission
starts from the beginning.

7.2.4 OTA upgrade file offset (TUYA_BLE_OTA_FILE_OFFSET_REQ)

From App to BLE devices

120 / 128

7 OTA protocol

data_len=5

Length: 1 byte 4 byte

Data: 0 Offset

offset: upgrade file offset.

From BLE devices to App

data_len=5

Length: 1 byte 4 byte

Data: 0 Offset

offset: the starting file offset required by the device. The offset address of the actual
file transfer should be based on the device requirements, and the address required
by the device will be less or equal to the offset given by the App.

7.2.5 OTA Upgrade data (TUYA_BLE_OTA_DATA)

From App to BLE devices

data_len=7+n

Length: 1 byte 2 byte 2 byte 2 byte n byte

Data: 0 Package
number

Current
package
data length
n

Current
package
data CRC16

Current
package
data

The packet number starts from 0, and the high byte is at the beginning of the
packet.

From BLE devices to App

121 / 128

7 OTA protocol

data_len=2

Length: 1 byte 1 byte

Data: 0 STATE

STATE:

• 0x00: success

• 0x01: the package number is abnormal

• 0x02: the length is inconsistent

• 0x03: CRC check fails

• 0x04: others

7.2.6 OTA upgrade is over (TUYA_BLE_OTA_END)

From App to BLE devices

data_len=1

Length: 1 byte

Data: 0

From BLE devices to App

data_len=2

Length: 1 byte 1 byte

Data: 0 STATE

STATE:

• 0x00: success

• 0x01: the total data length is wrong

122 / 128

7 OTA protocol

• 0x02: the total CRC of data check fails

• 0x03: others

If you need to restart after verifying the success of the ble device OTA file, you
can call the API tuya_ble_ota_response(tuya_ble_ota_response_t *p_data) to respond
to the App result at least no delay and restart after 2 seconds.

7.3 OTA upgrade APIs

The Application receives OTA data through the registered callback function (with-
out RTOS environment) or registered queue (in the RTOS environment), the
EVENT ID is TUYA_BLE_CB_EVT_OTA_DATA. And the OTA response data is sent through
tuya_ble_ota_response(tuya_ble_ota_response_t *p_data) function.

As the following picture shows, the Application calls the custom OTA processing
function.

An example of OTA processing function:

123 / 128

7 OTA protocol

1 void tuya_ota_proc(uint16_t cmd,uint8_t*recv_data ,uint32_t recv_len)
2 {
3 TUYA_BLE_LOG_DEBUG("ota cmd: 0x%04x , recv_len: %d",cmd,recv_len);
4 switch(cmd)
5 {
6 case TUYA_BLE_OTA_REQ:
7 tuya_ota_start_req(recv_data ,recv_len);
8 break;
9 case TUYA_BLE_OTA_FILE_INFO:
10 tuya_ota_file_info_req(recv_data ,recv_len);
11 break;
12 case TUYA_BLE_OTA_FILE_OFFSET_REQ:
13 tuya_ota_offset_req(recv_data ,recv_len);
14 break;
15 case TUYA_BLE_OTA_DATA:
16 tuya_ota_data_req(recv_data ,recv_len);
17 break;
18 case TUYA_BLE_OTA_END:
19 tuya_ota_end_req(recv_data ,recv_len);
20 break;
21 default:
22 break;
23 }
24
25 }

124 / 128

8 Reference of production testing APIs

8 Reference of production testing APIs

Before BLE devices are connected to Tuya IoT development platform, they must
be burned with license information (one set of licenses for one device), which is
usually burned in factory production. You can also use Tuya production testing tools
to burn license and test. Alternatively, you can purchase licenses in batches, and
use custom protocol and interface to manage them.

If you use custom protocol, you must set the auth_key and device_id when you initial-
ize the tuya ble sdk. As the following sample shows.

1 tuya_ble_device_param_t device_param ;
2
3 void tuya_ble_app_init(void)
4 {
5 memset(&device_param ,0,sizeof(tuya_ble_device_param_t));
6 device_param.device_id_len = 16;
7 memcpy(device_param.auth_key ,(void *)auth_key_test ,AUTH_KEY_LEN);
8 memcpy(device_param.device_id ,(void *)device_id_test ,DEVICE_ID_LEN);
9 device_param.p_type = TUYA_BLE_PRODUCT_ID_TYPE_PID;
10 device_param.product_id_len = 8;
11 memcpy(device_param.product_id ,APP_PRODUCT_ID ,8);
12 device_param.firmware_version = TY_APP_VER_NUM;
13 device_param.hardware_version = TY_HARD_VER_NUM;
14
15 tuya_ble_sdk_init(&device_param);
16 tuya_ble_callback_queue_register(tuya_cb_handler);
17
18 tuya_ota_init();
19
20 TUYA_APP_LOG_INFO("app version: "TY_APP_VER_STR);
21 }

If you use the authorization tool of Tuya production testing to burn the license and
you use the tuya ble sdk to manage authorization, then the auth_key and device_id are
not needed when you initialize the tuya ble sdk. As the following sample shows.

125 / 128

8 Reference of production testing APIs

1 tuya_ble_device_param_t device_param ;
2
3 void tuya_ble_app_init(void)
4 {
5 memset(&device_param ,0,sizeof(tuya_ble_device_param_t));
6 device_param.device_id_len = 0;
7 device_param.p_type = TUYA_BLE_PRODUCT_ID_TYPE_PID;
8 device_param.product_id_len = 8;
9 memcpy(device_param.product_id ,APP_PRODUCT_ID ,8);
10 device_param.firmware_version = TY_APP_VER_NUM;
11 device_param.hardware_version = TY_HARD_VER_NUM;
12
13 tuya_ble_sdk_init(&device_param);
14 tuya_ble_callback_queue_register(tuya_cb_handler);
15
16 tuya_ota_init();
17
18 TUYA_APP_LOG_INFO("app version: "TY_APP_VER_STR);
19 }

If you use the authorization tool of Tuya production testing to burn the license,
make sure that the TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT is enabled by setting #define
TUYA_BLE_DEVICE_AUTH_SELF_MANAGEMENT 1.

The production testing consists of the general authorization testing and the gen-
eral device testing, and the general machine testing is subordinate to the general
authorization testing. The general authorization testing includes authorization burn-
ing, GPIO testing and RSSI testing. The general device testing provides additional
testing for tailored products, you can see the Bluetooth General Authorization Proto-
col of Production Testing or Bluetooth General Device Testing Protocol of Production
Testing for more information.

The tuya ble sdk has achieved the protocol of general authorization testing, how-
ever, testing such as RSSI testing, GPIO testing and additional testing for tailored
products provided by general device testing must be implemented according to the
product configuration. The source file tuya_ble_app_production_test.c in the tuya ble
sdk has prepared APIs for the preceding testings, and they are defined in the form
of __TUYA_BLE_WEAK weak implement. Your Application can redefine those APIs in other
source files, for example, creating a custom_app_product_test.c file, and referring to it
in your custom configuration file. As the following pictures show.

126 / 128

8 Reference of production testing APIs

127 / 128

8 Reference of production testing APIs

128 / 128

	Overview of tuya ble sdk
	Framework
	OS compatibility
	Event queue
	Directories

	The concepts of tuya ble service
	MTU
	Broadcast data format

	How to port and configure tuya ble sdk
	Reference of porting APIs
	Reference of configuration APIs

	API reference
	The callback event of tuya ble sdk
	Example of SDK port in nrf52832
	OTA protocol
	OTA upgrade process
	OTA upgrade protocol
	OTA upgrade APIs

	Reference of production testing APIs

