ottobock.

Evidence essentials.

Kenevo/Microprocessor Knees for K2.

	Mobility need or deficit of the patient	
		Evidence for benefits of Kenevo/MPK vs. NMPK in K2 patients
Safety	Patient stumbles and/or falls repeatedly Patient avoids activities due to fear of falling Patient sustained fall-related injuries	 Significant reduction in falls of up to 80% (Wurdeman et al., 2025; Hahn et al., 2021; Davie-Smith et al., 2021; Kaufman et al., 2018; Mileusnic et al., 2017; Wong et al., 2015; Hahn et al., 2015; Kannenberg et al., 2014; Hafner et al., 2009; Kahle et al., 2008) Significant reduction in fear of falling (Wurdeman et al., 2025; Hahn et al., 2021; Jayaraman et al., 2021; Mileusnic et al., 2017; Wong et al., 2015; Hahn et al., 2015) Significant reduction in the frequency of stumbles (Wurdeman et al., 2025; Mileusnic et al., 2017; Kannenberg et al., 2014; Hafner et al., 2009)
		 Significant improvements in balance and indicators for the risk of falling, such as Timed-up-and-go-test, ABC scale, PEQ Addendum; Modified Falls Efficacy Scale, etc. (Wurdeman et al., 2025; Hahn et al., 2021; Davie-Smith et al., 2021; Jayaraman et al., 2021; Lansade et al., 2018; Hahn et al., 2016; Wong et al., 2015; Kannenberg et al., 2014; Burnfield et al., 2012; Hafner et al., 2007 and 2009)
Mobility	Patient has difficulty negotiating slopes/hills	 Significant improvement in quality of slope descent towards more natural gait pattern (Kannenberg et al., 2014; Burnfield et al., 2012; Hafner et al., 2009) Significant increase in downhill walking speed of up to 36% (Kannenberg et al., 2014; Burnfield et al., 2012; Hafner et al., 2009) Significant improvement in patient-reported slope ambulation (Hahn et al., 2016)
Mobility	Patient has difficulty negotiating uneven terrain and obstacles	 Significant increase in walking speed on uneven terrain and obstacle courses of up to 20% (Kannenberg et al., 2014; Hafner et al., 2009; Kahle et al., 2008) Significant improvement in patient-reported uneven terrain and obstacle negotiation (Hahn et al., 2016)

Mobility	Patient has difficulty descending stairs with reciprocal (step-over-step) gait	 Significant improvement in quality of stair descent towards more natural gait pattern (Kannenberg et al., 2014; Hafner et al., 2009; Kahle et al., 2008;) Significant improvement in patient-reported stair ambulation (Hahn et al., 2016)
Mobility	Patient has difficulty with dual tasking while walking with the prosthesis	- Significantly improved capacity and performance in executing a concurrent task while walking with the prosthesis (Mileusnic et al., 2017; Hahn et al., 2016; Hahn et al., 2015; Kannenberg et al., 2014; Hafner et al., 2009)
Mobility	Patient has difficulty with performing activities of daily living	 Significantly improved performance in the execution of various activities of daily living (Wurdeman et al., 2025) Significantly improved performance in the execution of various activities of daily living (Kannenberg et al., 2014; Theeven et al., 2011 and 2012) Significant improvement in PRQ Ambulation and PEQ Utility (Hahn et al., 2021) Almost significant (p=0.056) but clinically meaningful improvement in patient-reported mobility (PLUS-M) (Davie-Smith et al., 2021)
Mobility	Patient is limited in his/her mobility Patient uses a wheelchair and a prosthesis	 Significant increase in over-ground walking speed of up to 25% (Wurdeman et al., 2025; Hahn et al., 2021; Davie-Smith et al., 2021; Jayaraman et al., 2021; Eberly et al., 2014; Kannenberg et al., 2014; Kahle et al., 2008) Significant improvement in distance walked in the 2-minute walk test (Wurdeman et al., 2025; Davie-Smith et al., 2021) Significant reduction in additional use of a wheelchair from 87% to 37% of subjects (Mileusnic et al., 2017)
		 Patients spent significantly more time active and significantly less time sitting (Kaufman et al., 2018) About 50% of K2 patients are able to improve their overall mobility level to K3 (Hahn et al., 2021; Hahn et al., 2016; Hahn et al., 2015; Kannenberg et
Quality of life	Patient has reduced quality of life	 al., 2014; Hafner et al. 2009; Kahle et al., 2008) Significant improvement in health-related quality of life (Davie-Smith et al., 2021) Preservation of quality of life of older TF amputees (avg. age 73 yrs) in a 12-month study while quality of life in the NMPK group declined significantly (Wurdeman et al., 2025)

References

Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transferoral amputees. Prosthet Orthot Int 2012;36(1):95-104.

Davie-Smith F, Carse B. Comparison of patient-reported and functional outcomes following transition from mechanical to microprocessor knee in the low-activity user with a unilateral transferoral amputation. Prosth Orthot Int 2021;45(3):198-204.

Eberly VJ. Mulroy SJ, Gronley JK, Perry J, Burnfield JM. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with transferoral amputation. Prosth Orthot Int 2014;38(6):447-455.

Hahn A, Bueschges S, Prager M, Kannenberg A. The effect of microprocessor controlled exoprosthetic knees on limited community ambulators: systematic review and meta-analysis. Disabil Rehabil 2021 Oct 25:1-19.

Hahn A, Lang M, Stuckart C. Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings. Medicine. 2016;95(45):e5386.

Hahn A, Lang M. Effects of mobility grade, age, and etiology on functional benefit and safety of subjects evaluated in more than 1200 C-Leg trial fittings in Germany. J Prosthet Orthot 2015; 27(3): 86-95.

Hafner BJ, Smith DG. Differences in function and safety between Medicare Functional Classification Level-2 and -3 transfemoral amputees and influence of prosthetic knee joint control. J Rehabil Res Dev 2009;46(3):417-434.

Jayaraman C, Mummidisetty CK, Albert MV, et al. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial. J Neuroeng Rehabil. 2021;18(1):88.

Kahle JT, Highsmith MJ, Hubbard SL. Comparison of Non-microprocessor Knee Mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, Stumbles, Falls, Walking Tests, Stair Descent, and Knee Preference; J Rehabil Res Dev 2008;45(1):1-14.

Kannenberg A, Zacharias B, Pröbsting E: Benefits of microprocessor prosthetic knees to limited community ambulators: A systematic review. J Rehabil Res Dev 2014;51(10):1469-1495.

Kaufman KR, Bernhardt KA, Symms K. Functional assessment and satisfaction of transfemoral amputees with mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Clin Biomech (Bristol, Avon) 2018 Oct;58:116-122.

Mileusnic M, Hahn A, Reiter S. Effects of a novel microprocessor-controlled knee, Kenevo, on the safety, mobility, and satisfaction of lower-activity patients with transfemoral amputation. J Prosthet Orthot 2017;29(4):198-205.

Lansade C, Vicaut E, Paysant J, Ménager D, Cristina MC, Braatz F, Domayer S, Pérennou D, Chiesa G. Mobility and safety with a microprocessor-controlled knee in moderately active amputees: A multi-centric randomized crossover trial. Ann Phys Rehabil Med 2018;61(5):278-285.

Theeven P, Hemmen B, Rings F, Meys G, Brink P, Smeets R, Seelen H. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. J Rehabil Med 2011;43(10):906-915.

Theeven PJ, Hemmen B, Geers RP, Smeets RJ, Brink PR, Seelen HA. Influence of advanced prosthetic knee joints on perceived performance and everyday life activity of low-functional persons with a transfemoral amputation or knee disarticulation. J Rehabil Med 2012;44(5):454-461.

Wong CK, Rheinstein J, Stern MA. Benefits for adults with transfemoral amputation and peripheral artery disease using microprocessor compared with nonmicroprocessor prosthetic knees. Am J Phys Med Rehabil 2015; 94 (10): 804-810.

Wurdeman SR, Hafner BJ, Sawers A, England DL, Lundstrom R, Kannenber A. Assessing clinical outcomes with microprocessor knee utilization in a K2 population (ASCENT K2): randomized controlled trial results for above-knee prosthesis users over age 65. Disabil Rahabil 2025 Jul 21:1-18. doi: 10.1080/09638288.2025.2530172. Online ahead of print.

Ottobock North America, Reimbursement P 800 328 4058 F 800 230 3962

US: https://shop.ottobock.us

CA: https://shop.ottobock.ca

reimbursement911@ottobock.com