
 Application Note

R01AN5824EJ0101 Rev.1.01 Page 1 of 33
Jun.21.21

RX Family
Firmware Update Module Using Firmware Integration Technology
Introduction
This application note describes the firmware update module using Firmware Integration Technology (FIT).
The module is referred to below as the firmware update FIT module.

This application note is based on Renesas MCU Firmware Update Design Policy (R01AN5548). It is
recommended that the reader read that document before consulting this application note.

By using the FIT module, users can easily incorporate firmware update functionality into their applications.
This application note explains how to use the firmware update FIT module and how to incorporate its API
functions into user applications.

Target Devices
RX130 Group

RX231 Group

RX65N Group

RX66T Group

RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Application Notes
Application notes related to this application note are listed below. Refer to them in conjunction with this
application note.

• Renesas MCU Firmware Update Design Policy (R01AN5548)
• RX Family How to implement FreeRTOS OTA by using Amazon Web Services on RX65N (R01AN5549)
• Firmware Integration Technology User’s Manual (R01AN1833)
• RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family Flash Module Using Firmware Integration Technology (R01AN2184)
• RX Family SCI Module Using Firmware Integration Technology (R01AN1815)
• RX Family Ethernet Module Using Firmware Integration Technology (R01AN2009)
• RX Family CMT Module Using Firmware Integration Technology (R01AN1856)
• RX Family BYTEQ Module Using Firmware Integration Technology (R01AN1683)
• RX Family System Timer Module Firmware Integration Technology (R20AN0431)

Target Compiler
C/C++ Compiler Package for RX Family from Renesas Electronics

For compiler details related to the environment on which operation has been confirmed, refer to 5.1,
Confirmed Operation Environment.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 2 of 33
Jun.21.21

Contents

1. Overview ... 4
1.1 About the Firmware Update Module .. 4
1.2 Configuration of Firmware Update Module ... 5
1.3 Firmware Update Operation .. 7
1.3.1 Firmware Update Operation Using Dual Mode ... 7
1.3.2 Firmware Update Operation Using Linear Mode ... 8
1.4 API Overview ... 10

2. API Information .. 11
2.1 Hardware Requirements ... 11
2.2 Software Requirements ... 11
2.3 Supported Toolchain ... 11
2.4 Header Files .. 11
2.5 Integer Types ... 11
2.6 Compile Settings ... 12
2.6.1 Note on Compiling for RX130 Environment .. 15
2.7 Code Size .. 16
2.8 Arguments ... 17
2.9 Return Values .. 18
2.10 Adding the FIT Module to Your Project ... 18
2.11 Note on Status Transition Monitoring Using System Timer .. 18

3. API Functions .. 19
3.1 R_FWUP_Open Function .. 19
3.2 R_FWUP_Close Function ... 19
3.3 R_FWUP_Operation Function ... 20
3.4 R_FWUP_SoftwareReset Function ... 20
3.5 R_FWUP_SetEndOfLife Function ... 21
3.6 R_FWUP_SecureBoot Function .. 21
3.7 R_FWUP_ExecuteFirmware Function .. 22
3.8 R_FWUP_Abort Function .. 22
3.9 R_FWUP_CreateFileForRx Function .. 22
3.10 R_FWUP_CloseFile Function ... 23
3.11 R_FWUP_WriteBlock Function ... 23
3.12 R_FWUP_ActiveNewImage Function ... 23
3.13 R_FWUP_ResetDevice Function .. 24
3.14 R_FWUP_SetPlatformImageState Function ... 24
3.15 R_FWUP_GetPlatformImageState Function ... 24
3.16 R_FWUP_CheckFileSignature Function ... 25
3.17 R_FWUP_ReadAndAssumeCertificate Function .. 25

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 3 of 33
Jun.21.21

3.18 R_FWUP_GetVersion Function .. 25

4. Demo Project ... 26
4.1 Firmware Update Using Serial Communications Interface (SCI) of RX65N ... 26
4.1.1 Generating the Firmware Update .. 27
4.1.2 Updating the Firmware .. 30
4.1.3 Generating EOL Firmware .. 31
4.1.4 Firmware EOL ... 31

5. Appendices .. 32
5.1 Confirmed Operation Environment .. 32

Revision History .. 33

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 4 of 33
Jun.21.21

1. Overview
1.1 About the Firmware Update Module
A firmware update is a process in which the firmware, the software that controls the device’s hardware, is
overwritten with a new version of the firmware. Firmware updates may be applied to fix bugs, add new
functions, or improve performance.

On RX Family MCUs the firmware is written (programmed) to the on-chip flash memory. Therefore, in the
case of the RX Family, the term firmware update refers to the operations and processing for overwriting the
contents of the MCU’s on-chip flash memory.

Generally, one of the following two methods is used to overwrite the contents of the MCU’s on-chip flash
memory.

• Off-board programming
A method in which the MCU is connected to an external flash programming device such as a PC running
Flash Programmer and the flash memory is overwritten

• On-board programming (self-programming)

A method in which the MCU is made to overwrite its own on-chip flash memory

The latter self-programming function is used for firmware updates; the MCU programs its own on-chip flash
memory.

To perform self-programming of the on-chip flash memory, it is necessary first to copy to the RAM the
program that will program the flash memory and then to execute flash memory programming commands
from the RAM. Since users need to obtain new firmware versions via a variety of interfaces, it used to be
very difficult to build firmware update functionality into the customer’s system.

However, using the firmware update FIT module makes it easy to integrate firmware update functionality into
the customer’s system.

The firmware update module can be incorporated into user projects as an API. For instructions on adding the
module, refer to 2.10, Adding the FIT Module to Your Project.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 5 of 33
Jun.21.21

1.2 Configuration of Firmware Update Module
The firmware update module is middleware for the purpose of updating the firmware of the MCU.

The firmware update module has functions for use on OS-less systems and functions for use on systems
using FreeRTOS over-the-air (OTA) updates. For details of FreeRTOS over-the-air (OTA) updates, refer to
the following webpage:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

Figure 1.1 shows a system configuration incorporating the firmware update module on an OS-less system,
and Figure 1.2 shows a system configuration incorporating the firmware update module on a system using
FreeRTOS over-the-air (OTA) updates.

On the OS-less system a bootloader module and the firmware update module are used. On the system using
FreeRTOS over-the-air (OTA) updates only the firmware update module is used because FreeRTOS over-
the-air (OTA) updates includes functionality equivalent to the bootloader module.

The bootloader module runs first after the system is reset and verifies that the user program (the program
that runs after the bootloader) has not been tampered with.

The firmware update module is incorporated into the user program and performs the actual firmware update.

Table 1.1 lists the FIT modules used for firmware updates.

The firmware to be applied as an update is received via a communication interface and then programmed to
the code flash memory of the target device via the firmware update module and flash FIT module.

Figure 1.1 System Configuration of Firmware Update Module on OS-less System

User program
(main routine of program for updating firmware/main routine of bootloader)

Application

This FIT module
Firmware update module/bootloader module

Byte queue buffer
FIT module

Flash FIT module System timer
FIT module

Compare match
timer FIT module

Serial communication
FIT module

Board support package
(BSP module)

Target device to be supported

FIT modules

Middleware

Device driver

BSP

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 6 of 33
Jun.21.21

Figure 1.2 System Configuration of Firmware Update Module on System
Using FreeRTOS Over-the-Air (OTA) Updates

Table 1.1 List of Modules

Type Application Note (Document No.) FIT Module
BSP RX Family Board Support Package Module Using Firmware

Integration Technology (R01AN1685)
r_bsp

Device driver RX Family Flash Module Using Firmware Integration Technology
(R01AN2184)

r_flash_rx

 RX Family SCI Module Using Firmware Integration Technology
(R01AN1815)

r_sci_rx

 RX Family CMT Module Using Firmware Integration Technology
(R01AN1856)

r_cmt_rx

Middleware RX Family BYTEQ Module Using Firmware Integration Technology
(R01AN1683)

r_byteq

 RX Family System Timer Module Firmware Integration Technology
(R20AN0431)

r_sys_time_rx

User program (Amazon FreeRTOS OTA demo)
(including OTA PAL)

Firmware update module

Flash FIT module System timer
FIT module

Compare match
timer FIT module

Ethernet
communication module

Board support package
(BSP module)

Target device to be supported

FIT modules

Application

This FIT module

Middleware

Device driver

BSP

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 7 of 33
Jun.21.21

1.3 Firmware Update Operation
On some products in the RX Family the MCU’s on-chip flash memory supports dual-bank functionality.

To program the flash memory on a product without dual-bank functionality or when using a product with
dual-bank functionality in linear mode, it is necessary first to copy to the RAM the program that will program
the flash memory and then to execute flash memory programming commands from the RAM.

When using a product with dual-bank functionality in dual mode, so long as the area of flash memory to be
programmed and the area from which the program performing the programming runs are different areas, it is
not necessary to run the program from the RAM. This makes it a simple matter to maintain system operation
while programming the flash memory.

The firmware update module is capable of applying firmware updates in both linear mode and dual mode.

Table 1.2 Linear Mode and Dual Mode Support on Specific Devices

Device Linear Mode Dual Mode
RX130 Group 
RX231 Group 
RX65N Group
RX66T Group 
RX72N Group

1.3.1 Firmware Update Operation Using Dual Mode
Firmware update operation when using the flash memory in dual mode is described below.

Firmware update operation is divided into two parts: initial settings to the on-chip flash memory to prepare for
the firmware update and applying the firmware update.

Figure 1.3 shows the initial settings for firmware update operation in dual mode.

A tool (Renesas Secure Flash Programmer) for creating the initial firmware to be written to the on-chip flash
memory is provided together with the FIT module. This tool can be used to create initial firmware containing
the user program only or to create initial firmware containing both the bootloader and the user program. By
using Flash Programmer or the like to program initial firmware containing both the bootloader and the user
program to the on-chip flash memory, the state shown in Figure 1.3 step [4] can be achieved.

Alternatively, the state shown in Figure 1.3 step [1] can be achieved by building the bootloader program and
programming the resulting .mot file to the on-chip flash memory. If just the bootloader has been programmed
to the on-chip flash memory, it is then possible to use the functions of the bootloader to program initial
firmware containing only the user program to the on-chip flash memory.

You can start initial settings from step [1] or step [4], depending on the characteristics of the customer’s
system.

Figure 1.3 Dual Mode Firmware Update Initial Settings

buffer
[BLANK]

bootloader(mirror)
[BLANK]

user program
[BLANK]

bootloader

[1] Program bootloader.

Bank 0

Bank 1

buffer
[BLANK]

bootloader(mirror)

user program
[BLANK]

bootloader

[2] Create mirror of bootloader.

buffer
[FW V1.00]

bootloader(mirror)

user program
[BLANK]

bootloader

[3] Program initial firmware.

buffer
[BLANK]

bootloader(mirror)

user program
[FW V1.00]

bootloader

[4] Swap banks.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 8 of 33
Jun.21.21

Starting initial settings from step [1]

[1] Use Flash Programmer or the like to program the bootloader to the on-chip flash memory.
[2] Run the bootloader to create a mirror of the bootloader in bank 1.
[3] Use the bootloader to program the initial firmware containing only the user program (must be input

externally) and to verify the firmware.
[4] If the verification completes successfully, swap the banks.

Starting initial settings from step [4]

[4] Use Flash Programmer or the like to program the initial firmware containing the bootloader and the user
program to the on-chip flash memory.

Figure 1.4 shows dual mode firmware update operation.

Figure 1.4 Dual Mode Firmware Update Operation

[1] Initial state.
[2] Use the firmware update module incorporated in the user program to program the new firmware version

(must be input externally) and to verify the firmware after it has been programmed.
[3] If the verification completes successfully, swap the banks.
[4] Erase the old firmware from bank 1.

1.3.2 Firmware Update Operation Using Linear Mode
Firmware update operation when using the flash memory in linear mode is described below.

Figure 1.5 shows the initial settings for firmware update operation in linear mode.

A tool (Renesas Secure Flash Programmer.exe) for creating the initial firmware to be written to the on-chip
flash memory is provided together with the FIT module. This tool can be used to create initial firmware
containing the user program only or to create initial firmware containing both the bootloader and the user
program. By using Flash Programmer or the like to program initial firmware containing both the bootloader
and the user program to the on-chip flash memory, the state shown in Figure 1.5 step [2] can be achieved.

Alternatively, the state shown in Figure 1.5 step [1] can be achieved by building the bootloader program and
programming the resulting .mot file to the on-chip flash memory. If just the bootloader has been programmed
to the on-chip flash memory, it is then possible to use the functions of the bootloader to program initial
firmware containing only the user program to the on-chip flash memory.

buffer
[FW V1.01]

bootloader(mirror)

user program
[FW V1.00]

bootloader

buffer
[FW V1.00]

bootloader(mirror)

user program
[FW V1.01]

bootloader

buffer
[BLANK]

bootloader(mirror)

user program
[FW V1.01]

bootloader

[2] Program new firmware. [3] Swap banks. [4] Erase old firmware.

buffer
[BLANK]

bootloader(mirror)

user program
[FW V1.00]

bootloader

[1] Initial state.

Bank 0

Bank 1

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 9 of 33
Jun.21.21

You can start initial settings from step [1] or step [2], depending on the characteristics of the customer’s
system.

Figure 1.5 Linear Mode Firmware Update Initial Settings

Starting initial settings from step [1]

[1] Use Flash Programmer or the like to program the bootloader to the on-chip flash memory.
[2] Use the bootloader to program the initial firmware containing the user program only (must be input

externally) and to verify the firmware after it has been programmed to the on-chip flash memory. If the
verification completes successfully, the operation is complete.

Starting initial settings from step [2]

[2] Use Flash Programmer or the like to program the initial firmware containing the bootloader and the user
program to the on-chip flash memory.

Figure 1.6 shows firmware update operation in linear mode.

Figure 1.6 Linear Mode Firmware Update Operation

[1] Initial state.
[2] Use the user program to program the new firmware version (must be input externally) to the buffer area

and to verify the firmware after it has been programmed.
[3] If the verification completes successfully, copy the firmware from the buffer area to the user program

area.
[4] Erase the buffer area.

buffer
[BLANK]

user program
[BLANK]

bootloader

buffer
[BLANK]

user program
[FW V1.00]

bootloader

[1] Program bootloader. [2] Program user program.

buffer
[FW V1.01]

user program
[FW V1.00]

bootloader

buffer
[FW V1.01]

user program
[FW V1.01]

bootloader

buffer
[BLANK]

user program
[FW V1.01]

bootloader

[2] Program new firmware. [3] Copy firmware. [4] Erase buffer.

buffer
[BLANK]

user program
[FW V1.00]

bootloader

[1] Initial state.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 10 of 33
Jun.21.21

1.4 API Overview
Table 1.3 lists the API functions included in the firmware update module.

Table 1.3 API Functions

Function Function Description

FreeRTOS
(OTA) OS-less
Firmware
Update
Module

Firmware
Update
Module

Bootloader
Module

R_FWUP_Open Performs processing to open the
module.

 

R_FWUP_Close Performs processing to close the
module.

 

R_FWUP_Operation Performs firmware update
processing from the user program.

 

R_FWUP_SoftwareReset Applies a software reset. 
R_FWUP_SetEndOfLife Performs end of life processing for

the user program.
 

R_FWUP_SecureBoot Performs secure boot processing
using the bootloader.

 

R_FWUP_ExecuteFirmware Transfers processing to the
installed or updated firmware.

 

R_FWUP_Abort Stops OTA update processing.  
R_FWUP_CreateFileForRx Applies initial settings for OTA.  
R_FWUP_CloseFile Closes the specified file.  
R_FWUP_WriteBlock Writes a data block to the specified

file at the specified offset.
  

R_FWUP_ActiveNewImage Activates or launches the new
firmware image.

  

R_FWUP_SetPlatformImageState Sets the life cycle status to the
status specified by an argument.

  

R_FWUP_GetPlatformImageState Returns the current life cycle status.  
R_FWUP_CheckFileSigunature Checks the signature of the

specified file.
  

R_FWUP_ReadAndAssumeCertificate Reads and returns the specified
signer certificate from the file
system.

  

R_FWUP_GetVersion Returns the version number of the
module.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 11 of 33
Jun.21.21

2. API Information
The FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
• Flash memory
• Serial communications interface: optional
• Ethernet: optional
• System timer module

2.2 Software Requirements
The driver is dependent upon the following FIT module:

• Board support package (r_bsp)
• Byte queue buffer module (r_byteq)
• Compare match timer (r_cmt_rx)
• Flash module (r_flash_rx)
• Serial communications interface (SCI: asynchronous/clock synchronous) (r_sci_rx): optional
• Ethernet module (r_ether_rx): optional
• System timer module (r_sys_time_rx)

2.3 Supported Toolchain
The driver has been confirmed to work with the toolchain listed in 5.1, Confirmed Operation Environment.

2.4 Header Files
All API calls and their supporting interface definitions are located in r_fwup_if.h.

2.5 Integer Types
The project uses ANSI C99. These types are defined in stdint.h.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 12 of 33
Jun.21.21

2.6 Compile Settings
The configuration option settings of the FIT module are contained in r_fwup_config.h.

The names of the options and descriptions of their setting values are listed in Table 2.1.

Table 2.1 Configuration Settings

Configuration options in r_fwup _config.h
FWUP_CFG_IMPLEMENTATION
_ENVIRONMENT
Note: The default is 0.

Specifies the user program environment where the FIT module will be
implemented.
The API functions that can be used differ depending on the implementation
target.
Enter one of the following setting values.
0: Implement in bootloader program (default).
1: Implement in user program firmware update program (OS-less system).
2: Implement in FreeRTOS (OTA) program.
3: Implement in firmware update program using OS other than FreeRTOS.

More setting values can be added for additional implementation environments.

FWUP_CFG_COMMUNICATION
_FUNCTION
Note: The default is 0.

This configuration setting specifies the communication channel used to obtain
the new version of the firmware used by the user program for the firmware
update.
Enter one of the following setting values.
0: Connection via SCI communication (default)
1: Connection via Ethernet communication
2: Connection via USB*1
3: Connection via SDHI*1
4: Connection via QSPI*1

More setting values can be added for additional communication channels.

FWUP_CFG_USE_SERIAL_FLASH
_FOR_BUFFER
Note: The default is 0.

Specifies whether or not external serial flash memory is used when obtaining
the new version of the firmware.
0: Do not use external serial flash memory (default).
1: Use external serial flash memory.*1

FWUP_CFG_SIGNATURE
_VERIFICATION
Note: The default is 0.

Specifies the signature verification algorithm.
0: Use ECDSA-secp256r1 for signature verification and SHA256 as the hash

algorithm (default).
More setting values can be added for additional verification algorithms.

FWUP_CFG_BOOT_PROTECT
_ENABLE
Note: The default is 0.

Turns boot protection on or off.
0: Boot protection disabled (default).
1: Boot protection enabled.*2

FWUP_CFG_PRINTF_DISABLE
Note: The default is 0.

Suppresses display of character strings by sending printf statements to the
terminal software in order to minimize ROM usage.
0: Display character strings in terminal software (default).
1: Do not display character strings in terminal software.

FWUP_CFG_SERIAL_TERM_SCI
Note: The default is 8.

Specifies the SCI channel used to download the firmware.

FWUP_CFG_SERIAL_TERM_SCI
_BITRATE
Note: The default is 115,200.

Specifies the UART baud rate setting used to download the firmware.

FWUP_CFG_SERIAL_TERM_SCI
_INTERRUPT_PRIORITY
Note: The default is 15.

Specifies the SCI interrupt priority level used when downloading the
firmware.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 13 of 33
Jun.21.21

Configuration options in r_fwup _config.h
FWUP_CFG_SCI_RECEIVE_WAIT
Note: The default is 300.

Specifies the UART receive wait time after transmit ends (RTS set to HIGH).
The setting unit is microseconds.

FWUP_CFG_PORT_SYMBOL
Note: The default is PORTC on the

RSK-RX231.

Specifies the port symbol of the I/O port used for RTS, the UART receive
request pin.

FWUP_CFG_BIT_SYMBOL
Note: The default is B4 on the

RSK-RX231.

Specifies the bit symbol of the I/O port used for RTS, the UART receive request
pin.

Notes: 1. This item is unsupported, so entering this setting value has no effect.
 2. This function prevents the area where the bootloader is stored from being overwritten.

Once boot protection is enabled it may not be possible to change the setting back to “boot
protection disabled,” or to change the accessible area or startup area protection function settings,
depending on the environment. Exercise due caution regarding the handling of the boot protection
setting.

Some combinations of the configuration option settings FWUP_CFG_IMPLEMENTATION_ENVIRONMENT
and FWUP_CFG_COMMUNICATION_FUNCTION are allowed and others are not. The allowed
combinations are shown below.

Table 2.2 Allowable Compile Setting Combinations

 FWUP_CFG_COMMUNICATION_FUNCTION
 0: SC

I

1: Ethernet

2: U
SB

3: SD
H

I

4: Q
SPI

FW
U

P_C
FG

_IM
PLEM

EN
TATIO

N
_EN

VIR
O

N
M

E
N

T 0: Bootloader program 0    
1: User program firmware update program

(OS-less system)
1  2  3

2: FreeRTOS (OTA) program 4 5 6 7 
3: Firmware update program using OS other

than FreeRTOS.
8  9 10 11

Note: In the table above, a numeral represents the setting value of
FWUP_ENV_COMMUNICATION_FUNCTION, and a dash () represents an invalid combination of
settings.

The conditions constituting a valid combination of the implementation environment setting and
communication channel setting are retained as macros in r_fwup_private.h.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 14 of 33
Jun.21.21

Table 2.3 Valid Combination Macro Values

Macro Value Description
FWUP_COMM_SCI_BOOTLOADER 0 Connect a PC (COM port) to the SCI, and perform

bootloader processing.
FWUP_COMM_SCI_PRIMITIVE 1 Connect a PC (COM port) to the SCI, and obtain the

new version of the firmware via terminal software.
FWUP_COMM_USB_PRIMITIVE 2 Connect a PC (COM port) to the USB, and obtain the

new version of the firmware via terminal software.
FWUP_COMM_QSPI_PRIMITIVE 3 Connect an external storage device (an SD card) to

the QSPI, and obtain the new version of the firmware.
FWUP_COMM_SCI_AFRTOS 4 Connect a wireless module (SX-ULPGN, BG96, etc.)

to the SCI, and obtain the new version of the firmware
using FreeRTOS over-the-air (OTA) updates.

FWUP_COMM_ETHER_AFRTOS 5 Connect via Ethernet, and obtain the new version of
the firmware using FreeRTOS over-the-air (OTA)
updates.

FWUP_COMM_USB_AFRTOS 6 Connect an LTE modem to the USB, and obtain the
new version of the firmware using FreeRTOS over-
the-air (OTA) updates.

FWUP_COMM_SDHI_AFRTOS 7 Connect a wireless module (Type 1DX, etc.) to the
SDHI, and obtain the new version of the firmware
using FreeRTOS over-the-air (OTA) updates.

FWUP_COMM_SCI_FS 8 Connect an external storage device (an SD card) to
the SCI, and obtain the new version of the firmware
using the file system.

FWUP_COMM_USB_FS 9 Connect an external storage device (a USB flash
drive) to the USB, and obtain the new version of the
firmware using the file system.

FWUP_COMM_SDHI_FS 10 Connect an external storage device (an SD card) to
the SDHI, and obtain the new version of the firmware
using the file system.

FWUP_COMM_QSPI_FS 11 Connect an external storage device (serial flash
memory) to the QSPI, and obtain the new version of
the firmware using the file system.

When additional combinations of the implementation environment setting and communication channel
setting are added, additional macro settings can be added.

ex.)
#define FWUP_COMM_SCI_BOOTLOADER 0 // Used for Bootloader with SCI connection from COM port.
#define FWUP_COMM_SCI_PRIMITIVE 1 // SCI connection from COM port using primitive R/W.
#define FWUP_COMM_USB_PRIMITIVE 2 // USB connection from COM port using primitive R/W.
#define FWUP_COMM_QSP_PRIMITIVE 3 // Connect external storage (SD card) to QSPI using primitive R/W.
#define FWUP_COMM_SCI_AFRTOS 4 // Connect wireless module to SCI with Amazon FreeRTOS.
#define FWUP_COMM_ETHER_AFRTOS 5 // Connect Eathernet with Amazon FreeRTOS.
#define FWUP_COMM_USB_AFRTOS 6 // Connect LTE modem to USB with Amazon FreeRTOS.
#define FWUP_COMM_SDHI_AFRTOS 7 // Connect wireless module to SDHI with Amazon FreeRTOS.
#define FWUP_COMM_SCI_FS 8 // External storage (SD card + file system) connected to SCI.
#define FWUP_COMM_USB_FS 9 // External storage (USB flash drive + file system) connected to USB.
#define FWUP_COMM_SDHI_FS 10 // External storage (SD card + file system) connected to SDHI.
#define FWUP_COMM_QSPI_FS 11 // External storage (Serial flash + file system) connected to QSPI.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 15 of 33
Jun.21.21

2.6.1 Note on Compiling for RX130 Environment
To use the FIT module on the RSK RX130, change the setting of the board support package (BSP)
configuration option for the user stack size (BSP_CFG_USTACK_BYTES) from the default value of 0x400
(1 KB) to 0x1000 (4 KB).

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 16 of 33
Jun.21.21

2.7 Code Size
The code sizes associated with the FIT module are listed in the table below.

Table 2.4 Code Sizes

ROM, RAM and Stack Code Sizes
Device Category Memory Used Remarks
RX65N ROM 3,294 bytes boot_loader project

3,983 bytes fwup_main project
3,050 bytes eol_main project
5,396 bytes aws_demos project

RAM 36,968 bytes boot_loader project
3,217 bytes fwup_main project
2,193 bytes eol_main project
1,256 bytes aws_demos project

Max. stack size used 1,168 bytes boot_loader project
2,192 bytes fwup_main project
800 bytes eol_main project
1,792 bytes aws_demos project

RX231 ROM 3,665 bytes boot_loader project
3,949 bytes fwup_main project
2,961 bytes eol_main project

RAM 2,961 bytes boot_loader project
3,217 bytes fwup_main project
2,193 bytes eol_main project

Max. stack size used 1,384 bytes boot_loader project
2,172 bytes fwup_main project
772 bytes eol_main project

Conditions

• Optimization level: Level 2
• Link module optimization: Checked
• Optimization method: Code size optimization
• Remove unreferenced variables/functions: Unchecked
• FWUP_CFG_PRINTF_DISABLE(Config): 1

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 17 of 33
Jun.21.21

2.8 Arguments
Regarding structures used as API function arguments, the file context settings for the Amazon FreeRTOS
(OTA) 202002.00 environment are used for other environments as well.

The reused structure is shown below.

Note: Settings that apply to Amazon FreeRTOS when using over-the-air (OTA) updates may change due to
version upgrades or the like. You will therefore need to check for any setting changes when applying
version upgrades.
Location of declaration in FreeRTOS environment using over-the-air (OTA) updates:
aws_demos¥libraries¥freertos_plus¥aws¥ota¥include¥aws_iot_ota_agent.h

Table 2.5 OTA File Context
typedef struct
{
 uint16_t usSize; /* Size, in bytes, of the signature. */
 uint8_t ucData[kOTA_MaxSignatureSize]; /* The binary signature data. */
} Sig256_t;

typedef struct OTA_FileContext
{
 uint8_t * pucFilePath; /*!< Local file pathname. */
 union
 {
 int32_t lFileHandle; /*!< Device internal file pointer or handle.
 * File type is handle after file is open for write. */
 #if WIN32
 FILE * pxFile; /*!< File type is stdio FILE structure after file is open for write. */
 #endif
 uint8_t * pucFile; /*!< File type is RAM/Flash image pointer after file is open for write. */
 };
 uint32_t ulFileSize; /*!< The size of the file in bytes. */
 uint32_t ulBlocksRemaining; /*!< How many blocks remain to be received (a code optimization). */
 uint32_t ulFileAttributes; /*!< Flags specific to the file being received (e.g. secure, bundle, archive). */
 uint32_t ulServerFileID; /*!< The file is referenced by this numeric ID in the OTA job. */
 uint8_t * pucJobName; /*!< The job name associated with this file from the job service. */
 uint8_t * pucStreamName; /*!< The stream associated with this file from the OTA service. */
 Sig256_t * pxSignature; /*!< Pointer to the file's signature structure. */
 uint8_t * pucRxBlockBitmap; /*!< Bitmap of blocks received (for de-duping and missing block request). */
 uint8_t * pucCertFilepath; /*!< Pathname of the certificate file used to validate the receive file. */
 uint8_t * pucUpdateUrlPath; /*!< Url for the file. */
 uint8_t * pucAuthScheme; /*!< Authorization scheme. */
 uint32_t ulUpdaterVersion; /*!< Used by OTA self-test detection, the version of FW that did the update. */
 bool_t xIsInSelfTest; /*!< True if the job is in self test mode. */
 uint8_t * pucProtocols; /*!< Authorization scheme. */
} OTA_FileContext_t;

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 18 of 33
Jun.21.21

2.9 Return Values
This section describes return values of API functions. This enumeration is located in r_fwup_if.h as are the
prototype declarations of API functions.

Table 2.6 API Return Value Settings

typedef enum e_fwup_err
{
 FWUP_SUCCESS = 0, // Normally terminated.
 FWUP_FAIL, // Illegal terminated.
 FWUP_IN_PROGRESS, // Firmware update is in progress.
 FWUP_END_OF_LIFE, // End Of Life process finished.
 FWUP_ERR_ALREADY_OPEN, // Firmware Update module is in use by another process.
 FWUP_ERR_NOT_OPEN, // R_FWUP_Open function is not executed yet.
 FWUP_ERR_IMAGE_STATE, // Platform image status not suitable for firmware update.
 FWUP_ERR_LESS_MEMORY, // Out of memory.
 FWUP_ERR_FLASH, // Detect error of r_flash module.
 FWUP_ERR_COMM, // Detect error of communication module.
 FWUP_ERR_STATE_MONITORING, // Detect error of state monitoring module.
} fwup_err_t;

2.10 Adding the FIT Module to Your Project
The module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (2) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

2.11 Note on Status Transition Monitoring Using System Timer
The module uses the system timer to perform status transition monitoring, and the specification stipulates
that an error end occurs when more than the specified duration elapses without a status transition. The
default value is one minute. Take appropriate measures to ensure that the status does not remain fixed for
longer than the specified duration.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 19 of 33
Jun.21.21

3. API Functions

3.1 R_FWUP_Open Function

Table 3.1 R_FWUP_Open Function Specifications

Format fwup_err_t R_FWUP_Open (void)
Description Performs processing to open the firmware update module.

Performs processing to open the resources used by the firmware update module, makes OS
initial settings (when using an OS), and initializes variables.

Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_ERR_ALREADY_OPEN : Already open

 FWUP_ERR_LESS_MEMORY : Insufficient memory
 FWUP_ERR_IMAGE_STATE : Updating not possible in current flash status
 FWUP_ERR_FLASH : Flash module error
 FWUP_ERR_COMM : Communication module error
 FWUP_ERR_STATE_MONITORING : Status transition monitoring module error
Special
Notes



3.2 R_FWUP_Close Function

Table 3.2 R_FWUP_Close Function Specifications

Format fwup_err_t R_FWUP_Close (void)
Description Performs processing to close the firmware update module.

Performs processing to close the resources used by the firmware update module, and
makes OS end settings (when using an OS).

Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_ERR_NOT_OPEN : Not open

 FWUP_ERR_FLASH : Flash module error
 FWUP_ERR_COMM : Communication module error
 FWUP_ERR_STATE_MONITORING : Status transition monitoring module error
Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 20 of 33
Jun.21.21

3.3 R_FWUP_Operation Function

Table 3.3 R_FWUP_Operation Function Specifications

Format fwup_err_t R_FWUP_Operation (void)
Description Performs firmware update processing from the user program.

Obtains the firmware data to be applied as an update from the communication channel
specified in the configuration settings, programs the flash memory, and performs signature
verification.
• If the status of the flash memory to be updated is other than VALID or INITIAL_FIRM_

INSTALLING, the firmware cannot be updated, so a value of
FWUP_ERR_IMAGE_STATE is returned.

• If the return value is FWUP_IN_PROGRESS, a firmware update is currently in progress,
so call this function again later.

• If the return value is FWUP_SUCCESS, the firmware update is complete. Call the
R_FWUP_SoftwareReset function. Processing transitions to the new firmware after a
software reset is applied.

• If the return value is FWUP_FAIL, the firmware update failed. Cancel the error and call
this function again.

Parameters None
Return
Values

FWUP_SUCCESS : Firmware update normal end
FWUP_FAIL : Firmware update error occurred

 FWUP_IN_PROGRESS : Firmware update in progress
 FWUP_ERR_NOT_OPEN : Not open
 FWUP_ERR_IMAGE_STATE : Updating not possible in current flash status
 FWUP_ERR_STATE_MONITORING : Firmware update status has not changed for more

than specified duration
Special
Notes



3.4 R_FWUP_SoftwareReset Function

Table 3.4 R_FWUP_SoftwareReset Function Specifications

Format void R_FWUP_SoftwareReset (void)
Description Applies a software reset.
Parameters None
Return
Values

None

Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 21 of 33
Jun.21.21

3.5 R_FWUP_SetEndOfLife Function

Table 3.5 R_FWUP_SetEndOfLife Function Specifications

Format fwup_err_t R_FWUP_SetEndOfLife (void)
Description Performs end of life processing for the user program.

[Note]
When the status is normal end (FWUP_SUCCESS) after this function is called, end of life
(EOL) processing is not yet complete.
To finish end of life (EOL) processing after this function runs, it is necessary to call the
R_FWUP_SoftwareReset function to apply a software reset accompanied by a bank swap,
and to execute the remaining end of life processing using the bootloader.

Parameters None
Return
Values

FWUP_SUCCESS : Normal end
FWUP_ERR_NOT_OPEN : Not open

 FWUP_ERR_IMAGE_STATE : Updating not possible in current flash status
 FWUP_ERR_FLASH : Flash module error
 FWUP_ERR_COMM : Communication module error
Special
Notes



3.6 R_FWUP_SecureBoot Function

Table 3.6 R_FWUP_SecureBoot Function Specifications

Format int32_t R_FWUP_SecureBoot (void)
Description Performs secure boot processing using the bootloader.

• Performs signature verification to check for tampering before allowing the newly installed
firmware to run.

• If no firmware is installed, the function obtains the firmware data to be applied as an
update from the communication channel specified in the configuration settings, programs
the flash memory, and performs signature verification.

• If the firmware to be applied as an update is specified by the user program, it is
substituted as the startup firmware.

• If end of life (EOL) processing is specified by the user program, this function erases the
firmware.

• If the return value is FWUP_IN_PROGRESS, a secure boot is currently in progress, so
call this function again later.

• If the return value is FWUP_SUCCESS, the secure boot is complete. Call the
R_FWUP_ExecuteFirmware function to transition processing to the newly installed or
updated firmware.

• If the return value is FWUP_FAIL, the secure boot failed. If necessary, cancel the error
and call this function again.

Parameters None
Return
Values

FWUP_SUCCESS : Secure boot normal end
FWUP_FAIL : Secure boot error occurred

 FWUP_IN_PROGRESS : Secure boot in progress
Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 22 of 33
Jun.21.21

3.7 R_FWUP_ExecuteFirmware Function

Table 3.7 R_FWUP_ExecuteFirmware Function Specifications

Format void R_FWUP_ExecuteFirmware (void)
Description Transfers processing to the installed or updated firmware.

[Note]
The start address of the firmware to which processing is transferred may differ depending on
the MCU family or series.
It may be necessary to implement processing to obtain the firmware start address to match
the implementation environment.
[Example: RX65N]
Transfer processing to the address set in macro USER_RESET_VECTOR_ADDRESS.

Parameters None
Return
Values

None

Special
Notes



3.8 R_FWUP_Abort Function

Table 3.8 R_FWUP_Abort Function Specifications

Format OTA_Err_t R_FWUP_Abort (OTA_FileContext_t * const C)
Description Stops OTA update processing.
Parameters * C : File context
Return
Values

kOTA_Err_None : Normal end
kOTA_Err_FileClose : File context close error

Special
Notes



3.9 R_FWUP_CreateFileForRx Function

Table 3.9 R_FWUP_CreateFileForRx Function Specifications

Format OTA_Err_t R_FWUP_CreateFileForRx (OTA_FileContext_t * const C)
Description Applies initial settings for OTA.

Creates a file to store the received data.
Parameters * C : File context
Return
Values

kOTA_Err_None : Normal end
kOTA_Err_RxFileCreateFailed : File creation error

Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 23 of 33
Jun.21.21

3.10 R_FWUP_CloseFile Function

Table 3.10 R_FWUP_CloseFile Function Specifications

Format OTA_Err_t R_FWUP_CloseFile (OTA_FileContext_t * const C)
Description Closes the specified file.

Performs signature verification on the firmware image downloaded to a buffer area in a
temporary area.
Writes header information for the buffer area in the temporary area.

Parameters * C : File context
Return
Values

kOTA_Err_None : Normal end
kOTA_Err_FileClose : File close error

 kOTA_Err_SignatureCheckFailed : Signature verification error
Special
Notes



3.11 R_FWUP_WriteBlock Function

Table 3.11 R_FWUP_WriteBlock Function Specifications

Format int16_t R_FWUP_WriteBlock (OTA_FileContext_t * const C,
 uint32_t ulOffset,
 uint8_t * const pacData,
 uint32_t ulBlockSize)

Description Writes a data block to the specified file at the specified offset.
When the operation is successful, returns the number of bytes written.

Parameters * C : File context
ulOffset : Code flash write destination offset

 * pacData : Write data
 ulBlockSize : Write data size
Return
Values

R_OTA_ERR_QUEUE_SEND_FAIL (-2) : Error writing to code flash
Other than above: : Number of bytes written to code flash

Special
Notes



3.12 R_FWUP_ActiveNewImage Function

Table 3.12 R_FWUP_ActiveNewImage Function Specifications

Format OTA_Err_t R_FWUP_ActiveNewImage (void)
Description Activates or launches the new firmware image.

Calls the R_FWUP_ResetDevice() function to apply a software reset.
Parameters None
Return
Values

kOTA_Err_None : Normal end

Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 24 of 33
Jun.21.21

3.13 R_FWUP_ResetDevice Function

Table 3.13 R_FWUP_ResetDevice Function Specifications

Format OTA_Err_t R_FWUP_ResetDevice (void)
Description Calling this function generates a software reset, after which the new firmware is launched

through processing by the bootloader.
Parameters None
Return
Values

kOTA_Err_None : Normal end

Special
Notes

Close all open peripheral circuits before calling this function.

3.14 R_FWUP_SetPlatformImageState Function

Table 3.14 R_FWUP_SetPlatformImageState Function Specifications

Format OTA_Err_t R_FWUP_SetPlatformImageState (OTA_ImageState_t eState)
Description Sets the life cycle status to the status specified by a parameter.

When updating to the new firmware finishes, the function erases the buffer area in the
temporary area.

Parameters eState : Specified status
Return
Values

kOTA_Err_None : Normal end
kOTA_Err_CommitFailed : Commit error

Special
Notes



3.15 R_FWUP_GetPlatformImageState Function

Table 3.15 R_FWUP_GetPlatformImageState Function Specifications

Format OTA_PAL_ImageState_t R_FWUP_GetPlatformImageState (void)
Description Returns the current life cycle status.
Parameters None
Return
Values

Current life cycle status

Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 25 of 33
Jun.21.21

3.16 R_FWUP_CheckFileSignature Function

Table 3.16 R_FWUP_CheckFileSignature Function Specifications

Format OTA_Err_t R_FWUP_CheckFileSignature (OTA_FileContext_t * const C)
Description Checks the signature of the specified file.
Parameters * C : File context
Return
Values

kOTA_Err_None : Normal end
kOTA_Err_SignatureCheckFailed : Signature verification error

Special
Notes



3.17 R_FWUP_ReadAndAssumeCertificate Function

Table 3.17 R_FWUP_ReadAndAssumeCertificate Function Specifications

Format uint8_t * R_FWUP_ReadAndAssumeCertificate (const uint8_t * const pucCertName
uint32_t * const ulSignerCertSize)

Description Reads and returns the specified signer certificate from the file system.
Parameters * pucCertName : Certificate file name
 * ulSignerCertSize : Certificate size
Return
Values

Pointer to certificate data

Special
Notes



3.18 R_FWUP_GetVersion Function

Table 3.18 R_FWUP_GetVersion Function Specifications

Format uint32_t R_FWUP_GetVersion (void)
Description Returns the version number of the FIT module.
Parameters None
Return
Values

Version number

Special
Notes



RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 26 of 33
Jun.21.21

4. Demo Project
The demo project includes a main() function that utilizes the FIT module and its dependent modules. The FIT
module includes the following demo project.

4.1 Firmware Update Using Serial Communications Interface (SCI) of RX65N
The firmware update demo utilizes the serial communications interface (SCI) of the RX65N, which is
mounted on the RSK RX65N starter kit board. Communication with the terminal software takes place via SCI
channels configured as a UART.

The firmware update demo uses serial port SCI6, which interfaces with the PMOD1. The PMOD1 connector
is connected to a serial converter board.

A PC running terminal software is required for data input and output.

Table 4.1 Device Configuration

No. Device Description
1 Development PC The PC used for development.
2 Evaluation board

(Renesas Starter Kit for RX65N)


3 Host PC (running terminal software
such as TeraTerm)

PC running serial communication software that supports
XMODEM/SUM transfer protocol (The development PC
may also be used for this purpose.)

4 USB serial converter board Converts the serial I/O signals of the Renesas Starter Kit
for RX65N to and from USB serial format and connects to
the host PC via a USB cable.

5 USB cable Implements a USB connection between the USB serial
converter board and the host PC.

Figure 4.1 RSK RX65N Device Connection Diagram

Table 4.2 Communication Specifications

Item Description
Communication system Asynchronous communication
Bit rate 115,200 bps
Data length 8 bits
Parity None
Stop bit 1 bit
Flow control None

USB cable

Renesas Starter Kit for RX65N

PMOD1

RX65N

E2 Lite AC adaptor

Host PC
(Serial communications software)

Development
PC

USB serial
converter board

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 27 of 33
Jun.21.21

4.1.1 Generating the Firmware Update
1. To ensure the integrity of the firmware to be applied as an update, the firmware update is digitally signed

(ECDSA + SHA256) and the signature is used to verify its integrity. To perform verification, the following
code must be added to the fwup_main_RX65N sample application.
 Tinycrypt library
 Base64 decode function
 Key file used for digital signature

The procedure for adding these items is as follows.
(1) Adding the Tinycrypt library

After obtaining the files from https://github.com/renesas/amazon-freertos/tree/master/libraries/
3rdparty/tinycrypt, add the lib folder to the src/src/tinycypt/lib folder of the fwup_main_RX65N
project.

(2) Adding the Base64 decode function

After obtaining the files from https://github.com/renesas/amazon-freertos/tree/master/projects/renesas/
rx65n-rsk/e2studio/boot_loader/src/src, add base64_decode.c and base64_decode.h to the src/src
folder of the fwup_main_RX65N project.

(3) Adding the key file

After obtaining the files from https://github.com/renesas/amazon-freertos/tree/master/projects/renesas/
rx65n-rsk/e2studio/boot_loader/src/, add the key folder to the src/key folder of the
fwup_main_RX65N project. After adding the folder, enter the public key information for signature
verification in code_signer_public_key.h.
Refer to the following link for instructions on adding the information.

https://github.com/renesas/amazon-freertos/wiki/OTA の活用#手順まとめ
4. Create the keys to be used for firmware verification in OpenSSL.
5. To enable firmware verification using ECDSA + SHA256, import the public key for signature

verification (secp256r1.publickey) by the bootloader.

https://github.com/renesas/amazon-freertos/tree/master/libraries/3rdparty/tinycrypt
https://github.com/renesas/amazon-freertos/tree/master/libraries/3rdparty/tinycrypt
https://github.com/renesas/amazon-freertos/tree/master/projects/renesas/rx65n-rsk/e2studio/boot_loader/src/src
https://github.com/renesas/amazon-freertos/tree/master/projects/renesas/rx65n-rsk/e2studio/boot_loader/src/src
https://github.com/renesas/amazon-freertos/tree/master/projects/renesas/rx65n-rsk/e2studio/boot_loader/src/
https://github.com/renesas/amazon-freertos/tree/master/projects/renesas/rx65n-rsk/e2studio/boot_loader/src/
https://github.com/renesas/amazon-freertos/wiki/OTA%E3%81%AE%E6%B4%BB%E7%94%A8#%E6%89%8B%E9%A0%86%E3%81%BE%E3%81%A8%E3%82%81
https://github.com/renesas/amazon-freertos/wiki/OTA%E3%81%AE%E6%B4%BB%E7%94%A8#%E6%89%8B%E9%A0%86%E3%81%BE%E3%81%A8%E3%82%81

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 28 of 33
Jun.21.21

2. Build the fwup_main_RX65N sample application and convert the resulting .mot file into an .RSU file. This
is the “initial firmware.”
The procedure for converting the .mot file into an .RSU file is as follows.
Download Renesas Secure Flash Programmer.exe from
Release mot file converter tool · renesas/mot-file-converter · GitHub and then run it. (You will also need
the other files archived along with it, so download them too.)
 Select the [Initial Firm] tab and set the parameters as shown in the screenshot below.
 Set the path of secp256r1.private key in Private Key Path of Settings.
 Set Bank0 User Program (Binary Format) to Select Output format in Settings.
 For File Path under Bank 0 User Program, specify the path of the .mot file created as described

above.
 Click the [Generate] button to generate an .RSU file, and store it in the init_firmware folder.

Figure 4.2 Renesas Secure Flash Programmer Initial Firm Tab

https://github.com/renesas/mot-file-converter/releases/tag/2.0.0

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 29 of 33
Jun.21.21

3. Open src/main.c and remove the slashes from the left of the commented-out lines to make them valid.

Build the project once again, and convert the resulting .mot file into an .RSU file. This is the “next
firmware.”

The procedure for converting the .mot file into an .RSU file is as follows.
 Select the [Update Firm] tab and set the parameters as shown in the screenshot below.
 Set the path of secp256r1.private key in Private Key Path of Settings.
 For File Path under Bank 0 User Program, specify the path of the .mot file created as described

above.
 Click the [Generate] button to generate an .RSU file, and store it in the update_firmware folder.

Figure 4.3 Renesas Secure Flash Programmer Update Firm Tab

Lines 84 to 88 in main.c
// printf("[FWUP_main DEMO] Firmware update demonstration completed.\r\n");
// while(1)
// {
// /* infinity loop */
// }

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 30 of 33
Jun.21.21

4.1.2 Updating the Firmware
1. Connect the PC USB port, USB serial converter board, and PMOD1 on the RSK board as shown in

Figure 4.1, RSK RX65N Device Connection Diagram.
2. Launch the terminal software on the PC. Then select the serial COM port assigned to the USB serial

converter board.
3. Enter serial communication settings in the terminal software to match the settings of the sample

application: 115,200 bps, 8 data bits, no parity, 1 stop bit, no flow control.
4. Build the bootloader program, download it to the RSK board, and use the debugger to run the application.
5. When you run the software, the following message is output.

Select the “send file” function in the terminal software, and send the previously created “initial
firmware” .RSU file. (Make sure to select the binary transfer option.) The following messages are output
while the .RSU file data is being received and written to the code flash.

6. When installation and signature verification finish, the application for applying the firmware update is

launched, and a message prompting you to input the firmware application is output.

Select the “send file” function in the terminal software, and send the previously created “next
firmware” .RSU file. (Make sure to select the binary transfer option.) The following messages are output
while the .RSU file data is being received and written to the code flash.

7. When installation and signature verification of the firmware application finish, execution jumps to the

firmware application following a bank swap and other processing.

8. The firmware application outputs the following message indicating that the demo has completed

successfully.

send "userprog.rsu" via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

jump to user program
[R_FWUP_GetPlatformImageState] is called.
Function call: R_FWUP_GetPlatformImageState: [2]
[R_FWUP_CreateFileForRx] is called.
[R_FWUP_CreateFileForRx] Receive file created.
[R_FWUP_GetPlatformImageState] is called.
Function call: R_FWUP_GetPlatformImageState: [2]

Firmware update user program

Send Update firmware via UART.

[R_FWUP_WriteBlock] is called.
[R_FWUP_Operation] Flash Write: Address = 0xFFE00000, length = 1024 ... OK
[R_FWUP_WriteBlock] is called.
[R_FWUP_Operation] Flash Write: Address = 0xFFE00400, length = 1024 ... OK

jump to user program
[R_FWUP_GetPlatformImageState] is called.

[FWUP_main DEMO] Firmware update demonstration completed.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 31 of 33
Jun.21.21

4.1.3 Generating EOL Firmware
1. Build the eol_main_RX65N sample application and convert the resulting .mot file into an .RSU file. This

is the “eol firmware.”
Refer to 4.1.1 above for instructions on converting to .RSU file format.

4.1.4 Firmware EOL
1. Connect the PC USB port, USB serial converter board, and PMOD1 on the RSK board as shown in

Figure 4.1, RSK RX65N Device Connection Diagram.
2. Launch the terminal emulation program (terminal software) on the PC. Then select the serial COM port

assigned to the USB serial converter board.
3. Enter serial communication settings in the terminal software to match the settings of the sample

application: 115,200 bps, 8 data bits, no parity, 1 stop bit, no flow control.
4. Build the bootloader program, download it to the RSK board, and use the debugger to run the application.
5. When you run the software, the following message is output.

Select the “send file” function in the terminal software, and send the previously created “eol
firmware” .RSU file. (Make sure to select the binary transfer option.) The following messages are output
while the .RSU file data is being received and written to the code flash.

6. When installation and signature verification finish, the end of life (EOL) application is launched.

7. When the end of life (EOL) application finishes, processing returns to the bootloader, and EOL processing

is executed within the bootloader.

8. When the following message is output, EOL processing has completed successfully.

send "userprog.rsu" via UART.

installing firmware...0%(1/960KB).
installing firmware...0%(2/960KB).
installing firmware...0%(3/960KB).
installing firmware...0%(4/960KB).

End Of Life (EOL) process of user program

[R_FWUP_SetEndOfLife] erase install area (code flash):OK
[R_FWUP_SetEndOfLife] update bank1 LIFECYCLE_STATE to [LIFECYCLE_STATE_EOL]
[EOL_main] EOL process completely. Bank swap and software reset.
[R_FWUP_ActivateNewImage] Changing the Startup Bank
[R_FWUP_ResetDevice] Resetting the device.
[R_FWUP_ResetDevice] Swap bank...

RX65N secure boot program

Checking flash ROM status.
bank 0 status = 0xe0 [LIFECYCLE_STATE_EOL]
bank 1 status = 0xf8 [LIFECYCLE_STATE_VALID]

End Of Life process finished.

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 32 of 33
Jun.21.21

5. Appendices
5.1 Confirmed Operation Environment
This section describes confirmed operation environment for the FIT module.

Table 5.1 Confirmed Operation Environment (Ver. 1.01)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio 2021 04

C compiler Renesas Electronics C/C++ Compiler for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian order Little endian
Revision of the module Rev.1.01
Board used Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)

Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK50565N2SxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0S00000BE)
Renesas Starter Kit+ for RX72N (product No.: RTK5572NNxxxxxxxBE)

USB serial converter
board

Pmod USBUART (Digilent, Inc.)
https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

https://reference.digilentinc.com/reference/pmod/pmodusbuart/start

RX Family Firmware Update Module Using Firmware Integration Technology

R01AN5824EJ0101 Rev.1.01 Page 33 of 33
Jun.21.21

Revision History

Rev. Date
Description
Page Summary

1.00 Apr.16.2021  First edition issued
1.01 Jun. 21, 2021 Cover RX72N Group, RX66T Group, and RX130 Group added to

Target Devices
 4 Content of 1. Overview revised
 12 Setting options added to 2.6 Compile Settings

• FWUP_CFG_SERIAL_TERM_SCI
• FWUP_CFG_SERIAL_TERM_SCI_BITRATE
• FWUP_CFG_SERIAL_TERM_SCI_INTERRUPT_PRIORITY
Descriptions revised

 15 2.6.1 Note on Compiling for RX130 Environment added
 17 Description of OTA file context added to 2.8 Arguments
  2.12 “for”, “while” and “do while” Statements deleted as it no

longer applies
 24 Special Notes added to 3.13 R_FWUP_ResetDevice Function
 32 Additions made to Table 5.1 Confirmed Operation Environment

(Rev. 1.01)

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the Firmware Update Module
	1.2 Configuration of Firmware Update Module
	1.3 Firmware Update Operation
	1.3.1 Firmware Update Operation Using Dual Mode
	1.3.2 Firmware Update Operation Using Linear Mode

	1.4 API Overview

	2. API Information
	2.6.1 Note on Compiling for RX130 Environment

	3. API Functions
	4. Demo Project
	4.1 Firmware Update Using Serial Communications Interface (SCI) of RX65N
	4.1.1 Generating the Firmware Update
	4.1.2 Updating the Firmware
	4.1.3 Generating EOL Firmware
	4.1.4 Firmware EOL

	5. Appendices
	5.1 Confirmed Operation Environment

