
Clara Holoscan SDK User Guide
Release 0.3.0

NVIDIA Corporation

Oct 20, 2022

INTRODUCTION

1 Overview 1
1.1 Content . 1

1.1.1 Extensions . 1
1.1.2 Applications . 1
1.1.3 Video Pipeline Latency Tool . 2

1.2 Changes Since Holoscan SDK 0.2.0 . 2
1.2.1 Holoscan C++ API . 3

2 Software Stack Installation 5
2.1 Development Software Stack with Holopack on Clara Developer Kits 5
2.2 Development Software Stack on x86 . 5
2.3 Deployment Software Stack with OpenEmbedded on Clara Developer Kits 5

3 Install and Use the Clara Holoscan SDK 7
3.1 Using the container from NGC . 7
3.2 From source . 7

4 Third Party Hardware Setup 9
4.1 AJA Video Systems . 9

4.1.1 Installing the AJA Hardware . 9
4.1.2 Installing the AJA Software . 11
4.1.3 Using AJA Devices in Containers . 13
4.1.4 Troubleshooting . 13

4.2 Emergent Vision Technologies (EVT) . 14
4.2.1 Installing EVT Hardware . 14
4.2.2 Installing EVT Software . 15
4.2.3 Post EVT Software Installation Steps . 15
4.2.4 Testing the EVT Camera . 16
4.2.5 Troubleshooting . 16

5 Clara Holoscan Development Guide 17
5.1 Holoscan Core Concepts . 17
5.2 Getting Started . 18

5.2.1 Code Example . 19
5.2.2 Build and Run the Application . 22

5.3 Developing Holoscan GXF Extensions . 23
5.3.1 Extension Lifecycle . 23
5.3.2 Implementing an Extension . 24

5.4 Wrapping a GXF Codelet as a Holoscan Operator (C++ API) . 30
5.5 Creating the Holoscan Application (C++ API) . 35

i

5.6 Running the Holoscan MyRecorder Application (C++ API) . 39

6 Clara Holoscan Sample Applications 43
6.1 Endoscopy Tool Tracking Application . 43

6.1.1 Input source: Video Stream Replayer . 43
6.1.2 Input source: AJA . 45

6.2 Hi-Speed Endoscopy Application . 47
6.2.1 Enable G-SYNC for Display . 48
6.2.2 Installing and Enabling GPUDirect RDMA . 48
6.2.3 Enabling Exclusive Display Mode . 51

6.3 Ultrasound Segmentation Application & Customization . 53
6.3.1 Input source: Video Stream Replayer . 53
6.3.2 Input source: AJA . 54
6.3.3 Bring Your Own Model (BYOM) - Customizing the Ultrasound Segmentation Application

For Your Model . 55

7 Clara Holoscan GXF Extensions 59
7.1 GXF Built-in Extensions . 59

7.1.1 Std . 59
7.1.2 Serialization . 59

7.2 Holoscan SDK GXF Extensions . 60
7.2.1 V4L2 . 60
7.2.2 AJA . 61
7.2.3 Stream Playback . 61
7.2.4 Format Converter . 63
7.2.5 TensorRT . 65
7.2.6 OpenGL . 66
7.2.7 Segmentation Post Processor . 67
7.2.8 Segmentation Visualizer . 68
7.2.9 Custom LSTM Inference . 68
7.2.10 Visualizer Tool Tracking . 70
7.2.11 Holoscan Test Mock . 72
7.2.12 Emergent . 73
7.2.13 Bayer Demosaic . 73
7.2.14 Holoviz Viewer . 74

8 Clara Holoviz 77
8.1 Overview . 77
8.2 Concepts . 77
8.3 Usage . 77
8.4 Layers . 78

9 Video Pipeline Latency Tool 79
9.1 Requirements . 79

9.1.1 Hardware . 79
9.1.2 Software . 80

9.2 Installation . 80
9.2.1 Downloading the Source . 80
9.2.2 Installing Software Requirements . 80
9.2.3 Building . 81

9.3 Example Configurations . 81
9.3.1 GPU To Onboard HDMI Capture Card . 83
9.3.2 GPU to AJA HDMI Capture Card . 84
9.3.3 AJA SDI to AJA SDI . 84

9.4 Operation Overview . 85

ii

9.4.1 Frame Measurements . 85
9.4.2 Interpreting The Results . 87
9.4.3 Reducing Latency With RMDA . 90
9.4.4 Simulating GPU Workload . 92

9.5 Graphing Results . 94
9.6 Producers . 98

9.6.1 OpenGL GPU Direct Rendering (HDMI) . 99
9.6.2 GStreamer GPU Rendering (HDMI) . 99
9.6.3 AJA Video Systems (SDI) . 99

9.7 Consumers . 100
9.7.1 V4L2 (Onboard HDMI Capture Card) . 100
9.7.2 GStreamer (Onboard HDMI Capture Card) . 100
9.7.3 AJA Video Systems (SDI and HDMI) . 100

9.8 Troubleshooting . 101

10 NGC Containers 105
10.1 ARM Container . 105
10.2 x86 Container . 105

11 Relevant Technologies 107
11.1 Graph Execution Framework (GXF) . 107

11.1.1 GXF Entities by Example . 108
11.1.2 Data Flow and Triggering Rules . 110
11.1.3 Creating the GXF Application Definition . 111
11.1.4 Running the GXF Recorder Application . 115
11.1.5 GXF User Guide . 116

11.2 Rivermax SDK . 184
11.2.1 Testing Rivermax and GPUDirect . 184

11.3 GPUDirect RDMA . 186
11.4 TensorRT Optimized Inference . 188
11.5 CUDA and OpenGL Interoperability . 188
11.6 Accelerated Image Transformations . 188

iii

iv

CHAPTER

ONE

OVERVIEW

NVIDIA Clara Holoscan is the AI computing platform for medical devices, consisting of Clara Developer Kits and the
Clara Holoscan SDK. Clara Holoscan allows medical device developers to create the next-generation of AI-enabled
medical devices.

The Clara Holoscan SDK version 0.3.0 provides the foundation to run streaming applications on Clara Developer
Kits, enabling real-time AI inference and fast IO. These capabilities are showcased within the reference extensions and
applications described below.

1.1 Content

1.1.1 Extensions

The core of the Clara Holoscan SDK is implemented within extensions. The extensions packaged in the SDK cover tasks
such as IO, machine learning inference, image processing, and visualization. They rely on a set of Core Technologies.

This guide will provide more information on the existing extensions, and how to create your own.

1.1.2 Applications

This SDK includes two core sample applications to show how users can implement their own end-to-end inference
pipeline for streaming use cases, as well as an additional “bring your own model” (BYOM) segmentation ability which
is modality agnostic. This guide provides detailed information on the inner-workings of those applications, and how to
create your own.

See below for some information regarding the sample applications:

Endoscopy Tool Tracking

Leveraging a long-short term memory (LSTM) stateful model, this application demonstrates the use of custom com-
ponents for surgical tool tracking and classification, as well as composition and rendering of text, tool position, and
mask (as heatmap) overlayed on the original frames. This guide provides more details on the inner-workings of the
Endoscopy Tool Tracking application.

The convolutional LSTM model and sample surgical video data were kindly provided by Research Group Camma, IHU
Strasbourg & University of Strasbourg:

Nwoye, C.I., Mutter, D., Marescaux, J. and Padoy, N., 2019. Weakly supervised convolutional LSTM
approach for tool tracking in laparoscopic videos. International journal of computer assisted radiology
and surgery, 14(6), pp.1059-1067

Refer to the sample data resource on NGC for more information related to the model and video.

1

http://camma.u-strasbg.fr/
https://www.ihu-strasbourg.eu/
https://www.ihu-strasbourg.eu/
https://en.unistra.fr/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_endoscopy_sample_data

Clara Holoscan SDK User Guide, Release 0.3.0

Ultrasound Segmentation

Generic visualization of segmentation results based on a spinal scoliosis segmentation model of ultrasound videos.
The model used is stateless, so this workflow could be configured to adapt to any vanilla DNN model. This guide will
provide more details on the inner-workings of the Ultrasound Segmentation application and how to adjust it to use your
own data.

The model is from a King’s College London research project, created by Richard Brown and released under the Apache
2.0 license.

The ultrasound dataset is released under the CC BY 4.0 license. When using this data, please cite the following paper:

Ungi et al., “Automatic Spine Ultrasound Segmentation for Scoliosis Visualization and Measurement,” in IEEE Trans-
actions on Biomedical Engineering, vol. 67, no. 11, pp. 3234-3241, Nov. 2020, doi: 10.1109/TBME.2020.2980540.

Refer to the sample data resource on NGC for more information related to the model and video.

Colonoscopy Polyp Segmentation

As an example of the BYOM ability mentioned above, we show how the same code used for ultrasound segmentation
may be used for a polyp segmentation application.

This model was trained on the Kvasir-SEG dataset1, using the ColonSegNet model architecture2.

Refer to the sample data resource on NGC for more information related to the model and video.

1.1.3 Video Pipeline Latency Tool

To help developers make sense of the overall end-to-end latency that could be added to a video stream by augmenting it
through a GPU-powered Holoscan platform such as the NVIDIA IGX Orin Developer Kit, the Holoscan SDK includes
a Video Pipeline Latency Measurement Tool. This tool can be used to measure and estimate the total end-to-end
latency of a video streaming application including the video capture, processing, and output using various hardware
and software components that are supported by Clara Holoscan platforms. The measurements taken by this tool can
then be displayed with a comprehensive and easy-to-read visualization of the data.

1.2 Changes Since Holoscan SDK 0.2.0

The following table outlines the component versions that have been upgraded or removed in version 0.3.0:

Component Holoscan 0.3.0 Holoscan 0.2.0
Jetpack Holopack 1.1 JP5 HP1
GXF3 2.4.3 2.4.2

1 Jha, Debesh, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen, and Håvard D. Johansen, “Kvasir-seg: A
segmented polyp dataset” Proceedings of the International Conference on Multimedia Modeling, pp. 451-462, 2020.

2 Jha D, Ali S, Tomar NK, Johansen HD, Johansen D, Rittscher J, Riegler MA, Halvorsen P. Real-Time Polyp Detection, Localization and
Segmentation in Colonoscopy Using Deep Learning. IEEE Access. 2021 Mar 4;9:40496-40510. doi: 10.1109/ACCESS.2021.3063716. PMID:
33747684; PMCID: PMC7968127.

3 NVIDIA Graph eXecution Framework (GXF)

2 Chapter 1. Overview

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_ultrasound_sample_data
https://github.com/DebeshJha/ColonSegNet
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_colonoscopy_sample_data

Clara Holoscan SDK User Guide, Release 0.3.0

1.2.1 Holoscan C++ API

The most significant change in Holoscan 0.3.0 is the addition of a new C++ API for the creation of GXF extensions,
giving developers an additional pathway to building their desired applications.

1.2. Changes Since Holoscan SDK 0.2.0 3

Clara Holoscan SDK User Guide, Release 0.3.0

4 Chapter 1. Overview

CHAPTER

TWO

SOFTWARE STACK INSTALLATION

The Clara Holoscan SDK requires a specific software stack to build and run. The SDK can either run on a Development
Stack for Clara Developer Kits based on Holopack and for x86 Linux compute platform or on a Deployment Stack
for Clara Developer Kits based on OpenEmbedded.

The Deployment Stack is recommended if you want to include just software components that are actually needed for
your application. Furthermore, the runtime BSP can be easily optimized with respect to memory usage, speed, security
and power requirements.

2.1 Development Software Stack with Holopack on Clara Developer
Kits

Installation of the Clara Holoscan SDK is automated via the NVIDIA SDK Manager. See the SDK Manager
documentation for details on how to [install and use the SDK Manager to install the Clara Holoscan SDK]
(https://docs.nvidia.com/sdk-manager/install-with-sdkm-clara). Make sure you have joined the Clara Holoscan SDK
Program and, if needed, the RiverMax SDK Program before using the NVIDIA SDK Manager.

For complete instructions on how to set up and flash your Clara Developer Kit, see the Clara AGX Developer Kit User
Guide or NVIDIA IGX Orin Developer Kit User Guide

2.2 Development Software Stack on x86

Since v0.3.0, the Clara Holoscan SDK is also available for x86_64 (amd64) Linux platform and has been exclusively
tested on Ubuntu 20.04. Please refer to the prerequisites located in the Clara Holoscan SDK source code

2.3 Deployment Software Stack with OpenEmbedded on Clara Devel-
oper Kits

NVIDIA Clara Holoscan accelerates deployment of production-quality applications by providing a set of OpenEm-
bedded build recipes and reference configurations that can be leveraged to customize and build Holoscan-compatible
Linux4Tegra (L4T) embedded board support packages (BSP).

Holoscan OpenEmbedded/Yocto recipes add OpenEmbedded recipes and sample build configurations to build BSPs
for NVIDIA Clara Developer Kits that feature support for discrete GPUs (dGPU), AJA Video Systems I/O boards,
and the Clara Holoscan SDK. These BSPs are built on a developer’s host machine and are then flashed onto a Clara
Developer Kit using provided scripts.

5

https://developer.nvidia.com/nvidia-sdk-manager
https://docs.nvidia.com/sdk-manager/
https://docs.nvidia.com/sdk-manager/
https://developer.nvidia.com/clara-holoscan-sdk-program
https://developer.nvidia.com/clara-holoscan-sdk-program
https://developer.nvidia.com/nvidia-rivermax-sdk
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://github.com/nvidia/clara-holoscan-embedded-sdk#prerequisites
https://github.com/NVIDIA/clara-holoscan-embedded-sdk
https://github.com/nvidia/meta-tegra-clara-holoscan-mgx

Clara Holoscan SDK User Guide, Release 0.3.0

There are two options available to set up a build environment and start building Holoscan BSP images using OpenEm-
bedded.

• The first sets up a local build environment in which all dependencies are fetched and installed manually by the
developer directly on their host machine. Please refer to the Holoscan OpenEmbedded/Yocto recipes README
for more information on how to use the local build environment.

• The second uses a Holoscan OpenEmbedded/Yocto Build Container that is provided by NVIDIA on NGC which
contains all of the dependencies and configuration scripts such that the entire process of building and flashing a
BSP can be done with just a few simple commands.

6 Chapter 2. Software Stack Installation

https://github.com/NVIDIA/meta-tegra-clara-holoscan-mgx/blob/main/README.md
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/holoscan-mgx-oe-builder

CHAPTER

THREE

INSTALL AND USE THE CLARA HOLOSCAN SDK

Once the software stack has been installed on your device, Clara Holoscan SDK can be installed from source or using
a pre-built container runtime.

3.1 Using the container from NGC

The Clara Holoscan Sample Applications multi-arch container (for arm64 and amd64/x86_64) is the simplest way to
run the sample applications as it includes all necessary binaries and datasets, and allows for some customization of the
application graph and its parameters.

Refer to the overview of the container on NGC for prerequisites, setup, and run instructions.

Note: The sample applications container from NGC does not include build dependencies to update or generate new
extensions, or to build new applications with other extensions. Refer to the section below to do this from source.

3.2 From source

The Clara Holoscan SDK source code provides reference implementations for the GXF extensions and the sample
applications, as well as infrastructure for building the current extensions and applications or your own.

Refer to the top-level README.md in the open-source repository on Github for prerequisites, setup, and run instructions.

7

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/clara_holoscan_sample_runtime
https://github.com/NVIDIA/clara-holoscan-embedded-sdk

Clara Holoscan SDK User Guide, Release 0.3.0

8 Chapter 3. Install and Use the Clara Holoscan SDK

CHAPTER

FOUR

THIRD PARTY HARDWARE SETUP

GPU compute performance is a key component of Clara Holoscan hardware platforms, and to optimize GPU based
video processing applications and provide lowest possible latency the Clara Holoscan SDK now supports AJA Video
Systems capture cards and Emergent Vision Technologies high-speed cameras. The following sections will provide
more information on how to setup the system with these technologies.

4.1 AJA Video Systems

AJA provides a wide range of proven, professional video I/O devices, and thanks to a partnership between NVIDIA
and AJA, Clara Holoscan supports the AJA NTV2 SDK and device drivers as of the NTV2 SDK 16.1 release.

The AJA drivers and SDK now offer RDMA support for NVIDIA GPUs. This feature allows video data to be captured
directly from the AJA card to GPU memory, which significantly reduces latency and system PCI bandwidth for GPU
video processing applications as sysmem to GPU copies are eliminated from the processing pipeline.

The following instructions describe the steps required to setup and use an AJA device with RDMA support on Clara
Holoscan platforms. Note that the AJA NTV2 SDK support for Clara Holoscan includes all of the AJA Developer
Products, though the following instructions have only been verified for the Corvid 44 12G BNC and KONA HDMI
products, specifically.

Note: The addition of an AJA device to the Clara Holoscan hardware platform is optional. The Holoscan SDK has
elements that can be run with an AJA device with the additional features mentioned above, but those elements can also
run without AJA. For example, there are GXF sample applications that have an AJA live input component, however
they can also take in video replay as input. Similarly, the latency measurement tool can measure the latency of the
video I/O subsystem with or without an AJA device available.

4.1.1 Installing the AJA Hardware

This section describes how to install the AJA hardware on the Clara AGX Developer Kit. Note that the AJA Hardware
is also compatible with the NVIDIA IGX Orin Developer Kit.

To install an AJA Video Systems device into the Clara AGX Developer Kit, remove the side access panel by removing
two screws on the back of the Clara AGX. This provides access to the two available PCIe slots, labelled 13 and 14 in
the Clara AGX Developer Kit User Guide:

While these slots are physically identical PCIe x16 slots, they are connected to the Clara AGX via different PCIe
bridges. Only slot 14 shares the same PCIe bridge as the RTX6000 dGPU, and so the AJA device must be installed
into slot 14 for RDMA support to be available. The following image shows a Corvid 44 12G BNC card installed into
slot 14 as needed to enable RDMA support.

9

https://www.aja.com/
https://www.aja.com/family/developer
https://www.aja.com/family/developer
https://www.aja.com/products/corvid-44-12g-bnc
https://www.aja.com/products/kona-hdmi
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://www.aja.com/products/corvid-44-12g-bnc

Clara Holoscan SDK User Guide, Release 0.3.0

10 Chapter 4. Third Party Hardware Setup

Clara Holoscan SDK User Guide, Release 0.3.0

4.1.2 Installing the AJA Software

The AJA NTV2 SDK includes both the drivers (kernel module) that are required in order to enable an AJA device, as
well as the SDK (headers and libraries) that are used to access an AJA device from an application.

The drivers must be loaded every time the system is rebooted, and they must be loaded natively on the host system (i.e.
not inside a container). The drivers must be loaded regardless of whether applications will be run natively or inside a
container (see Using AJA Devices in Containers).

The SDK only needs to be installed on the native host and/or container that will be used to compile applications
with AJA support. The Holoscan SDK containers already have the NTV2 SDK installed, and so no additional steps are
required to build AJA-enabled applications (such as the reference GXF applications) within these containers. However,
installing the NTV2 SDK and utilities natively on the host is useful for the initial setup and testing of the AJA device,
so the following instructions cover this native installation.

Note: To summarize, the steps in this section must be performed on the native host, outside of a container, with the
following steps required once:

• Downloading the AJA NTV2 SDK Source

• Building the AJA NTV2 Drivers

The following steps required after every reboot:

• Loading the AJA NTV2 Drivers

And the following steps are optional (but recommended during the initial setup):

• Building and Installing the AJA NTV2 SDK

• Testing the AJA Device

Downloading the AJA NTV2 SDK Source

Navigate to a directory where you would like the source code to be downloaded, then perform the following to clone
the NTV2 SDK source code and checkout the correct branch as needed for Holoscan SDK.

$ git clone https://github.com/ibstewart/ntv2.git
$ export NTV2=$(pwd)/ntv2
$ cd ${NTV2}
$ git checkout holoscan-v0.2.0

Note: These instructions use a fork of the official AJA NTV2 Repository that is maintained by NVIDIA and may
contain additional changes that are required for Holoscan SDK support. These changes will be pushed to the official AJA
NTV2 repository whenever possible with the goal to minimize or eliminate divergence between the two repositories.

4.1. AJA Video Systems 11

https://github.com/aja-video/ntv2

Clara Holoscan SDK User Guide, Release 0.3.0

Building the AJA NTV2 Drivers

The following will build the AJA NTV2 drivers with RDMA support enabled. Once built, the kernel module
(ajantv2.ko) and load/unload scripts (load_ajantv2 and unload_ajantv2) will be output to the ${NTV2}/bin di-
rectory.

$ cd ${NTV2}/ajadriver/linux
$ export AJA_RDMA=1
$ make -j

Loading the AJA NTV2 Drivers

Running any application that uses an AJA device requires the AJA kernel drivers to be loaded, even if the application
is being run from within a container. The drivers must be manually loaded every time the machine is rebooted using
the load_ajantv2 script:

$ sudo sh ${NTV2}/bin/load_ajantv2
loaded ajantv2 driver module
created node /dev/ajantv20

Note: The NTV2 environment variable must point to the NTV2 SDK path where the drivers were previ-
ously built as described in Building the AJA NTV2 Drivers.

Building and Installing the AJA NTV2 SDK

Since the AJA NTV2 SDK is already loaded into the Clara Holoscan development and runtime containers, this step is
not strictly required in order to build or run any Clara Holoscan applications. However, this builds and installs various
tools that can be useful for testing the operation of the AJA hardware outside of Clara Holoscan containers, and is
required for the steps provided in Testing the AJA Device.

$ sudo apt-get install -y cmake
$ mkdir ${NTV2}/cmake-build
$ cd ${NTV2}/cmake-build
$ export PATH=/usr/local/cuda/bin:${PATH}
$ cmake ..
$ make -j
$ sudo make install

Testing the AJA Device

The following steps depend on tools that were built and installed by the previous step, Building and Installing the AJA
NTV2 SDK . If any errors occur, see the Troubleshooting section, below.

1. To ensure that an AJA device has been installed correctly, the ntv2enumerateboards utility can be used:

$ ntv2enumerateboards
AJA NTV2 SDK version 16.2.0 build 3 built on Wed Feb 02 21:58:01 UTC 2022
1 AJA device(s) found:
AJA device 0 is called 'KonaHDMI - 0'

(continues on next page)

12 Chapter 4. Third Party Hardware Setup

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

This device has a deviceID of 0x10767400
This device has 0 SDI Input(s)
This device has 0 SDI Output(s)
This device has 4 HDMI Input(s)
This device has 0 HDMI Output(s)
This device has 0 Analog Input(s)
This device has 0 Analog Output(s)

47 video format(s):
1080i50, 1080i59.94, 1080i60, 720p59.94, 720p60, 1080p29.97, 1080p30,
1080p25, 1080p23.98, 1080p24, 2Kp23.98, 2Kp24, 720p50, 1080p50b,
1080p59.94b, 1080p60b, 1080p50a, 1080p59.94a, 1080p60a, 2Kp25, 525i59.94,
625i50, UHDp23.98, UHDp24, UHDp25, 4Kp23.98, 4Kp24, 4Kp25, UHDp29.97,
UHDp30, 4Kp29.97, 4Kp30, UHDp50, UHDp59.94, UHDp60, 4Kp50, 4Kp59.94,
4Kp60, 4Kp47.95, 4Kp48, 2Kp60a, 2Kp59.94a, 2Kp29.97, 2Kp30, 2Kp50a,
2Kp47.95a, 2Kp48a

2. To ensure that RDMA support has been compiled into the AJA driver and is functioning correctly, the testrdma
utility can be used:

$ testrdma -t500

test device 0 start 0 end 7 size 8388608 count 500

frames/errors 500/0

4.1.3 Using AJA Devices in Containers

Accessing an AJA device from a container requires the drivers to be loaded natively on the host (see Loading the AJA
NTV2 Drivers), then the device that is created by the load_ajantv2 script must be shared with the container using the
--device docker argument. For example, when running the runtime container on NGC:

docker run -it --rm \
--runtime=nvidia -e NVIDIA_DRIVER_CAPABILITIES=graphics,video,compute,

→˓utility \
-e DISPLAY=${DISPLAY} -v /tmp/.X11-unix:/tmp/.X11-unix \
--device /dev/ajantv20:/dev/ajantv20 \
nvcr.io/nvidia/clara-holoscan/clara_holoscan_sample_runtime:v0.2.0-arm64

4.1.4 Troubleshooting

1. Problem: The ntv2enumerateboards command does not find any devices.

Solutions:

a. Make sure that the AJA device is installed properly and detected by the system (see Installing the AJA
Hardware):

$ lspci
0000:00:00.0 PCI bridge: NVIDIA Corporation Device 1ad0 (rev a1)

(continues on next page)

4.1. AJA Video Systems 13

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

0000:05:00.0 Multimedia video controller: AJA Video Device eb25 (rev 01)
0000:06:00.0 PCI bridge: Mellanox Technologies Device 1976
0000:07:00.0 PCI bridge: Mellanox Technologies Device 1976
0000:08:00.0 VGA compatible controller: NVIDIA Corporation Device 1e30 (rev a1)

b. Make sure that the AJA drivers are loaded properly (see Loading the AJA NTV2 Drivers):

$ lsmod
Module Size Used by
ajantv2 610066 0
nvidia_drm 54950 4
mlx5_ib 170091 0
nvidia_modeset 1250361 8 nvidia_drm
ib_core 211721 1 mlx5_ib
nvidia 34655210 315 nvidia_modeset

2. Problem: The testrdma command outputs the following error:

error - GPU buffer lock failed

Solution: The AJA drivers need to be compiled with RDMA support enabled. Follow the instructions in Building
the AJA NTV2 Drivers, making sure not to skip the export AJA_RDMA=1 when building the drivers.

4.2 Emergent Vision Technologies (EVT)

Thanks to the collaboration with Emergent Vision Technologies, Clara Holoscan SDK now supports EVT high-speed
cameras. Clara Holoscan SDK application has been developed and verified using HB-9000-G-C: 25GigE camera with
Gpixel GMAX2509

Note: The addition of an EVT camera to the Clara Holoscan hardware platform is optional. The Holoscan SDK has an
application that can be run with the EVT camera, but there are other applications that can be run without EVT camera.

4.2.1 Installing EVT Hardware

The EVT cameras can be connected to Clara devkits though Mellanox ConnectX SmartNIC, with the most simple
connection method being a single cable between a camera and the Clara devkit. For 25 GigE cameras that use the
SFP28 interface, this can be achieved by using SFP28 cable with QSFP28 to SFP28 adaptor.

Note: The recommended length of SFP28 cable is no more than 2 meters due to signal integrity issues.

Refer to the Clara AGX Developer Kit User Guide or NVIDIA IGX Orin Developer Kit User Guide for the location of
the QSFP28 connector on the device.

For EVT camera setup, refer to Hardware Installation in EVT Camera User’s Manual. Users need to log in to find be
able to download Camera User’s Manual.

14 Chapter 4. Third Party Hardware Setup

https://emergentvisiontec.com/
https://emergentvisiontec.com/products/area-scan-cameras/25-gige-area-scan-cameras-hb-series/hb-9000-g/
https://emergentvisiontec.com/products/area-scan-cameras/25-gige-area-scan-cameras-hb-series/hb-9000-g/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://store.nvidia.com/en-us/networking/store/product/MCP2M00-A001E30N/NVIDIAMCP2M00A001E30NDACCableEthernet25GbESFP281m/
https://store.nvidia.com/en-us/networking/store/product/MAM1Q00A-QSA28/NVIDIAMAM1Q00AQSA28CableAdapter100Gbsto25GbsQSFP28toSFP28/
https://developer.nvidia.com/clara-agx-development-kit-user-guide
https://developer.nvidia.com/igx-orin-developer-kit-user-guide
https://emergentvisiontec.com/resources/?tab=umg

Clara Holoscan SDK User Guide, Release 0.3.0

Tip: The EVT cameras require the user to buy the lens. Based on the application of camera, the lens can be bought
from online store.

4.2.2 Installing EVT Software

The Emergent SDK needs to be installed in order to compile and run the Clara Holoscan applications with EVT camera.
The latest tested version of Emergent SDK with Clara Holoscan SDK is eSDK 2.36.02 Linux Ubuntu 20.04.04
Kernel 5.10.65 JP 5.0 HP and can be downloaded from here. The Emergent SDK comes with headers, libraries
and examples. To install the SDK refer to the Software Installation section of EVT Camera User’s Manual. Users need
to log in to find be able to download Camera User’s Manual.

Note:

• The Emergent SDK depends on Rivermax SDK v1.11.11 and Mellanox OFED Network Drivers v5.7 which
needs to be installed by SDK Manager.

• To avoid installing Rivermax SDK and Mellanox OFED Network Drivers as part of Emergent SDK, use following
command.

sudo ./install_eSdk.sh no_mellanox

4.2.3 Post EVT Software Installation Steps

After installation of the software, execute below steps to bring up the camera node on Clara devkit in dGPU mode.

1. Restart openibd to configure Mellanox device, if not already.

sudo /etc/init.d/openibd restart

2. Find out the logical name of the ethernet interface being used to connect EVT camera to Mellanox CX NIC using
below command.

sudo ibdev2netdev -v

An example of what output would look like is:

0007:03:00.0 mlx5_0 (MT4125 - MCX623106AN-CDAT) ConnectX-6 Dx EN adapter card, 100GbE,␣
→˓Dual-port QSFP56, PCIe 4.0 x16, No Crypto fw 22.33.1048 port 1 (ACTIVE) ==> eth1 (Up)
0007:03:00.1 mlx5_1 (MT4125 - MCX623106AN-CDAT) ConnectX-6 Dx EN adapter card, 100GbE,␣
→˓Dual-port QSFP56, PCIe 4.0 x16, No Crypto fw 22.33.1048 port 1 (DOWN) ==> eth2 (Down)

In above example, the camera is connected to ACTIVE port eth1.

Note: The logical name of the ethernet interface can be anything and does not need to be eth1 as in above example.

3. Configure the NIC with IP address, if not already during the Installing EVT hardware step. The following
command uses the logical name of the ethernet interface found in step 2.

4.2. Emergent Vision Technologies (EVT) 15

https://www.bhphotovideo.com/c/search?Ntt=c%20mount%20lens&N=0&InitialSearch=yes&sts=ps
https://emergentvisiontec.com/resources/?tab=ss
https://emergentvisiontec.com/resources/?tab=umg

Clara Holoscan SDK User Guide, Release 0.3.0

sudo ifconfig eth1 down
sudo ifconfig eth1 192.168.1.100 mtu 9000
sudo ifconfig eth1 up

4.2.4 Testing the EVT Camera

To test if the EVT camera and SDK was installed correctly, run the eCapture application with sudo privileges. First,
ensure that a valid Rivermax license file is under /opt/mellanox/rivermax/rivermax.lic, then follow the in-
structions under the eCapture section of EVT Camera User’s Manual.

4.2.5 Troubleshooting

1. Problem: The application fails to find the EVT camera.

Solution:

• Make sure that the ConnectX is configured with the correct IP address. Follow section Post EVT
Software Installation Steps

2. Problem: The application fails to open the EVT camera.

Solutions:

• Make sure that the application was run with sudo priviledges.

• Make sure a valid Rivermax license file is located at /opt/mellanox/rivermax/rivermax.lic.

3. Problem: Fail to find eCapture app in the home window.

Solution:

• Open the terminal and find it under /opt/EVT/eCapture. The applications needs to be run with
sudo priviledges.

4. Problem: The eCapture application fails to connect to the EVT camera with error message “GVCP ack error”.

Solutions: -It could be an issue with the HR12 power connection to the camera. Disconnect the HR12
power connector from the camera and try reconnecting it.

16 Chapter 4. Third Party Hardware Setup

https://emergentvisiontec.com/resources/?tab=umg

CHAPTER

FIVE

CLARA HOLOSCAN DEVELOPMENT GUIDE

Welcome to the Holoscan SDK development guide!

Here you will learn Holoscan core concepts and get started with the simple endoscopy application.

Then, we will walk you through the Graph eXecution Framework (GXF) extensions, and how to use Holoscan C++ API
to wrap them as Holoscan operators, compose/build and run MyRecoder application as an example.

5.1 Holoscan Core Concepts

Since Holoscan Embedded SDK version 0.3.0, we are introducing a new framework with C++ API for the creation of
applications.

The Holoscan API provides an easier and more flexible way to create applications using GXF’s features.

It is designed to be used as a drop-in replacement for the GXF’s API and provides a common interface for GXF
components.

Fig. 5.1: Core concepts: Application

The core concepts of the Holoscan API are:

• Application: An application acquires and processes streaming data. An application is a collection of fragments
where each fragment can be allocated to execute on a physical node of a Holoscan cluster.

• Fragment: A fragment is a building block of the Application. It is a Directed Acyclic Graph (DAG) of operators.
A fragment can be assigned to a physical node of a Holoscan cluster during execution. The run-time execution

17

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 5.2: Core concepts: Port

manages communication across fragments. In a Fragment, Operators (Graph Nodes) are connected to each other
by flows (Graph Edges).

• Operator: An operator is the most basic unit of work in this framework. An Operator receives streaming data at
an input port, processes it, and publishes it to one of its output ports. A Codelet in GXF would be replaced with
an Operator in the Framework. An Operator encapsulates Receivers and Transmitters of a GXF Entity
as Input/Output Ports of the Operator.

• (Operator) Resource: Resources such as system memory or a GPU memory pool that an Operator needs to
perform its job. Resources are allocated during the initialization phase of the application. This matches the
semantics of GXF’s Memory Allocator or any other components derived from the Component class in GXF.

• Condition: A condition is a predicate that can be evaluated at runtime to determine if an operator should execute.
This matches the semantics of GXF’s Scheduling Term.

• Port: An interaction point between two operators. Operators ingest data at Input ports and publish data at
Output ports. Receiver, Transmitter, and MessageRouter in GXF would be replaced with the concept of
Input/Output Port of the Operator and the Flow (Edge) of the Application Workflow (DAG) in the Framework.

• Message: A generic data object used by operators to communicate information.

• Executor: An Executor that manages the execution of a Fragment on a physical node. The framework provides
a default Executor that uses a GXF Scheduler to execute an Application.

As of version 0.3.0, the Holoscan API provides a new convenient way to compose GXF Codelets as GXF Operators
into Application workflows, without the need to write YAML files. The Holoscan API enables a more flexible/scalable
approach to create applications.

5.2 Getting Started

Let’s get started with the Holoscan SDK.

The following figure shows a workflow graph of the simple endoscopy tool tracking application that consists of a single
fragment as an application.

The fragment consists of six operators that we provide as part of the Holoscan SDK. The operators are:

• Video Stream Replayer: This operator replays a video stream from a file. It is a GXF Operator
(VideoStreamReplayerOp) that wraps a GXF Codelet (VideoStreamReplayer).

• Visualizer Format Converter: This operator converts the image format from RGB888 (24-bit pixel)
to RGBA8888(32-bit pixel) for visualization for the Tool Tracking Visualizer. It is a GXF Operator
(FormatConverterOp) that wraps a GXF Codelet (FormatConverter).

18 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 5.3: Simple Endoscopy Workflow

• Tool Tracking Visualizer: This operator visualizes the tool tracking results. It is a GXF Operator
(ToolTrackingVizOp) that wraps a GXF Codelet (visualizer_tool_tracking::Sink).

• Format Converter: This operator converts the data type of the image from uint8 to float32 for feed-
ing into the tool tracking model. It is a GXF Operator (FormatConverterOp) that wraps a GXF Codelet
(FormatConverter).

• LSTM TensorRT Inference: This operator performs the inference of the tool tracking
model. It is a GXF Operator (LSTMTensorRTInferenceOp) that wraps a GXF Codelet
(custom_lstm_inference::TensorRtInference).

• Recorder: This operator records the video stream to a file. It is a GXF Operator (VideoStreamRecorderOp)
that wraps a GXF Codelet (EntityRecorder).

5.2.1 Code Example

Let’s see how we can create the application by composing the operators.

The following code snippet shows how to create the application with Holoscan SDK’s C++ API.

Code Snippet: apps/experiments/simple/simple.cpp

Listing 5.1: apps/experiments/simple/simple.cpp

18 #include <holoscan/holoscan.hpp>
19 #include <holoscan/std_ops.hpp>
20

21 class App : public holoscan::Application {
22 public:
23 void compose() override {
24 using namespace holoscan;
25

26 auto replayer = make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(
→˓"replayer"));

27

(continues on next page)

5.2. Getting Started 19

https://github.com/NVIDIA/clara-holoscan-embedded-sdk/blob/v0.3.0/apps/experiments/simple/simple.cpp

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

28 auto recorder = make_operator<ops::VideoStreamRecorderOp>("recorder", from_config(
→˓"recorder"));

29

30 auto format_converter = make_operator<ops::FormatConverterOp>(
31 "format_converter",
32 from_config("format_converter_replayer"),
33 Arg("pool") = make_resource<BlockMemoryPool>("pool", 1, 4919041, 2));
34

35 auto lstm_inferer = make_operator<ops::LSTMTensorRTInferenceOp>(
36 "lstm_inferer",
37 from_config("lstm_inference"),
38 Arg("pool") = make_resource<UnboundedAllocator>("pool"),
39 Arg("cuda_stream_pool") = make_resource<CudaStreamPool>("cuda_stream", 0, 0, 0,␣

→˓1, 5));
40

41 auto visualizer_format_converter = make_operator<ops::FormatConverterOp>(
42 "visualizer_format_converter",
43 from_config("visualizer_format_converter_replayer"),
44 Arg("pool") = make_resource<BlockMemoryPool>("pool", 1, 6558720, 2));
45

46 auto visualizer = make_operator<ops::ToolTrackingVizOp>(
47 "visualizer",
48 from_config("visualizer"),
49 Arg("pool") = make_resource<UnboundedAllocator>("pool"));
50

51 // Flow definition
52 add_flow(replayer, visualizer_format_converter);
53 add_flow(visualizer_format_converter, visualizer, {{"tensor", "source_video"}});
54

55 add_flow(replayer, format_converter);
56 add_flow(format_converter, lstm_inferer);
57 add_flow(lstm_inferer, visualizer, {{"tensor", "tensor"}});
58

59 add_flow(replayer, recorder);
60 }
61 };
62

63 int main() {
64 App app;
65 app.config("apps/endoscopy_tool_tracking/app_config.yaml");
66 app.run();
67

68 return 0;
69 }

In main() method, we create an instance of the App class that inherits from holoscan::Application. The App
class overrides the compose() function to define the application’s flow graph. The compose() function is called by
the run() function of the holoscan::Application class.

Before we call run(), we need to set the application configuration by calling the config() function.

The configuration file is a YAML file that contains the configuration of the operators and the application. The path to
the configuration file is passed to the config() function as a string.

20 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

The configuration file for the simple application is located at apps/endoscopy_tool_tracking/app_config.yaml.
Let’s take a look at the configuration file.

Code Snippet: apps/endoscopy_tool_tracking/app_config.yaml

Listing 5.2: apps/endoscopy_tool_tracking/app_config.yaml

34 ...
35

36 replayer:
37 directory: "/workspace/test_data/endoscopy/video"
38 basename: "surgical_video"
39 frame_rate: 0 # as specified in timestamps
40 repeat: true # default: false
41 realtime: true # default: true
42 count: 0 # default: 0 (no frame count restriction)
43

44 ...

In compose(), we create the operators and add them to the application flow graph. The operators are created using the
make_operator() function. The make_operator() function takes the operator name and the operator configuration
as arguments. The operator name is used to identify the operator in the flow graph. The operator configuration is
holoscan::ArgList object(s) that contains the operator’s parameter values, or holoscan::Arg object(s).

The operator configuration (holoscan::ArgList object) is created using the from_config() function with a string
argument that contains the name of the key in the configuration file. For example, from_config("replayer") creates
an holoscan::ArgList object that contains the arguments of the replayer operator (such as values for ‘directory’,
‘basename’, ‘frame_rate’, ‘repeat’, ‘realtime’, and ‘count’ parameters).

For the Operator parameters that are not defined in the configuration file, we can pass them as holoscan::Arg objects
to the make_operator() function. For example, the format_converter operator has a pool parameter that is not
defined in the configuration file. We pass the pool parameter as an holoscan::Arg object to the make_operator()
function, using make_resource() function to create the holoscan::Arg object. This section shows the available
resources that can be used to create an operator resource.

After creating the operators, we add the operators to the application flow graph using the add_flow() function.

The add_flow() function takes the source operator, the destination operator, and the optional port pairs. The port
pairs are used to connect the ports of the source operator to the ports of the destination operator. The first element of
the pair is the port of the upstream operator and the second element is the port of the downstream operator. An empty
port name (“”) can be used for specifying a port name if the operator has only one input/output port. If there is only one
output port in the upstream operator and only one input port in the downstream operator, the port pairs can be omitted.

The following code snippet creates edges between the operators in the flow graph as shown in Fig. 5.3.

add_flow(replayer, visualizer_format_converter);
add_flow(visualizer_format_converter, visualizer, {{"tensor", "source_video"}});

add_flow(replayer, format_converter);
add_flow(format_converter, lstm_inferer);
add_flow(lstm_inferer, visualizer, {{"tensor", "tensor"}});

add_flow(replayer, recorder);

5.2. Getting Started 21

https://github.com/NVIDIA/clara-holoscan-embedded-sdk/blob/v0.3.0/apps/endoscopy_tool_tracking/app_config.yaml

Clara Holoscan SDK User Guide, Release 0.3.0

5.2.2 Build and Run the Application

Let’s build and run the application.

The code shown in the previous section is available in Clara Holoscan Embedded SDK repository(https://github.com/
NVIDIA/clara-holoscan-embedded-sdk).

Please make sure that you have NVIDIA Container Toolkit installed on your system and that NVIDIA Container Toolkit
is configured to use the NVIDIA driver installed on your system.

First, we need to clone the Clara Holoscan Embedded SDK repository.

git clone https://github.com/NVIDIA/clara-holoscan-embedded-sdk.git
cd clara-holoscan-embedded-sdk

Next, we need to install GXF package that contains GXF libraries and headers required to build the Holoscan applica-
tion.

./run install_gxf

Now, we can build the application.

./run build

It will take some time to create the Docker image and build the application.

After the build is complete, the sample applications (including the simple endoscopy application whose code is located
at apps/experiment/simple) are available under the build directory.

The simple endoscopy application binary is located at build/apps/experiment/simple/
endoscopy_tool_tracking_simple.

Let’s run the application.

Launch the docker container, mounting the current directory as /workspace/holoscan-sdk
./run launch

Inside the docker container (the current directory would be /workspace/holoscan-sdk/build), we can run the
application.

export LD_LIBRARY_PATH=$(pwd):$(pwd)/lib:$LD_LIBRARY_PATH
./apps/experiments/simple/endoscopy_tool_tracking_simple

When the application is first launched, it will create a TensorRT engine file (.engine) under test_data/endoscopy/
model/tool_loc_convlstm_engines/ directory and it will take some time to create the engine file.

After the engine file is created, the application will start running.

Congratulations! You have successfully built and run the simple endoscopy application.

In the next sections, we will see how to create your application (MyRecorder) that records the video frames from the
video file and save them to the disk.

22 Chapter 5. Clara Holoscan Development Guide

https://github.com/NVIDIA/clara-holoscan-embedded-sdk
https://github.com/NVIDIA/clara-holoscan-embedded-sdk
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://github.com/NVIDIA/clara-holoscan-embedded-sdk/blob/v0.3.0/apps/experiments/simple/

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 5.4: Endoscopy application with tool tracking

5.3 Developing Holoscan GXF Extensions

GXF components in Holoscan can perform a multitude of sub-tasks ranging from data transformations, to memory
management, to entity scheduling. In this section, we will explore an nvidia::gxf::Codelet component which in
Holoscan is known as a “GXF extension”. Holoscan (GXF) extensions are typically concerned with application-specific
sub-tasks such as data transformations, AI model inference, and the like.

5.3.1 Extension Lifecycle

The lifecycle of a Codelet is composed of the following five stages.

1. initialize - called only once when the codelet is created for the first time, and use of light-weight initialization.

2. deinitialize - called only once before the codelet is destroyed, and used for light-weight deinitialization.

3. start - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy initialization tasks such as allocating memory resources.

4. stop - called multiple times over the lifecycle of the codelet according to the order defined in the lifecycle, and
used for heavy deinitialization tasks such as deallocation of all resources previously assigned in start.

5. tick - called when the codelet is triggered, and is called multiple times over the codelet lifecycle; even multiple
times between start and stop.

The flow between these stages is detailed in Fig. 5.5.

5.3. Developing Holoscan GXF Extensions 23

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 5.5: Sequence of method calls in the lifecycle of a Holoscan extension

5.3.2 Implementing an Extension

In this section, we will implement a simple recorder that will highlight the actions we would perform in the lifecycle
methods. The recorder receives data in the input queue and records the data to a configured location on the disk. The
output format of the recorder files is the GXF-formatted index/binary replayer files (the format is also used for the
data in the sample applications), where the gxf_index file contains timing and sequence metadata that refer to the
binary/tensor data held in the gxf_entities file.

Declare the Class That Will Implement the Extension Functionality

The developer can create their Holoscan extension by extending the Codelet class, implementing the extension func-
tionality by overriding the lifecycle methods, and defining the parameters the extension exposes at the application level
via the registerInterface method. To define our recorder component we would need to implement some of the
methods in the Codelet.

First, clone the Holoscan project from here and create a folder to develop our extension such as under
gxf_extensions/my_recorder.

Tip: Using Bash we create a Holoscan extension folder as follows.

git clone https://github.com/NVIDIA/clara-holoscan-embedded-sdk.git
cd clara-holoscan-embedded-sdk
mkdir -p gxf_extensions/my_recorder

In our extension folder, we create a header file my_recorder.hpp with a declaration of our Holoscan component.

24 Chapter 5. Clara Holoscan Development Guide

https://github.com/NVIDIA/clara-holoscan-embedded-sdk

Clara Holoscan SDK User Guide, Release 0.3.0

Listing 5.3: gxf_extensions/my_recorder/my_recorder.hpp

1 #include <string>
2

3 #include "gxf/core/handle.hpp"
4 #include "gxf/std/codelet.hpp"
5 #include "gxf/std/receiver.hpp"
6 #include "gxf/std/transmitter.hpp"
7 #include "gxf/serialization/file_stream.hpp"
8 #include "gxf/serialization/entity_serializer.hpp"
9

10

11 class MyRecorder : public nvidia::gxf::Codelet {
12 public:
13 gxf_result_t registerInterface(nvidia::gxf::Registrar* registrar) override;
14 gxf_result_t initialize() override;
15 gxf_result_t deinitialize() override;
16

17 gxf_result_t start() override;
18 gxf_result_t tick() override;
19 gxf_result_t stop() override;
20

21 private:
22 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
23 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>> my_

→˓serializer_;
24 nvidia::gxf::Parameter<std::string> directory_;
25 nvidia::gxf::Parameter<std::string> basename_;
26 nvidia::gxf::Parameter<bool> flush_on_tick_;
27

28 // File stream for data index
29 nvidia::gxf::FileStream index_file_stream_;
30 // File stream for binary data
31 nvidia::gxf::FileStream binary_file_stream_;
32 // Offset into binary file
33 size_t binary_file_offset_;
34 };

Declare the Parameters to Expose at the Application Level

Next, we can start implementing our lifecycle methods in the my_recorder.cpp file, which we also create in
gxf_extensions/my_recorder path.

Our recorder will need to expose the nvidia::gxf::Parameter variables to the application so the parameters can
be modified by configuration.

Listing 5.4: registerInterface in gxf_extensions/my_recorder/my_recorder.cpp

1 #include "my_recorder.hpp"
2

3 gxf_result_t MyRecorder::registerInterface(nvidia::gxf::Registrar* registrar) {
4 nvidia::gxf::Expected<void> result;
5 result &= registrar->parameter(

(continues on next page)

5.3. Developing Holoscan GXF Extensions 25

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

6 receiver_, "receiver", "Entity receiver",
7 "Receiver channel to log");
8 result &= registrar->parameter(
9 my_serializer_, "serializer", "Entity serializer",

10 "Serializer for serializing input data");
11 result &= registrar->parameter(
12 directory_, "out_directory", "Output directory path",
13 "Directory path to store received output");
14 result &= registrar->parameter(
15 basename_, "basename", "File base name",
16 "User specified file name without extension",
17 nvidia::gxf::Registrar::NoDefaultParameter(), GXF_PARAMETER_FLAGS_OPTIONAL);
18 result &= registrar->parameter(
19 flush_on_tick_, "flush_on_tick", "Boolean to flush on tick",
20 "Flushes output buffer on every `tick` when true", false); // default value `false`
21 return nvidia::gxf::ToResultCode(result);
22 }

If we are creating a pure GXF application (see Creating the GXF Application Definition section in the GXF documen-
tation), in the application YAML, our component’s parameters can be specified in the following format. Don’t worry
about what it means for now. With Holoscan API, the application is defined in C++ code instead of the YAML file,
and the parameter values are set in the application code or via the configuration file (YAML).

Listing 5.5: Example parameters for MyRecorder component

1 name: my_recorder_entity
2 components:
3 - name: my_recorder_component
4 type: MyRecorder
5 parameters:
6 receiver: receiver
7 serializer: my_serializer
8 out_directory: /home/user/out_path
9 basename: my_output_file # optional

10 # flush_on_tick: false # optional

Note that all the parameters exposed at the application level are mandatory except for flush_on_tick, which defaults
to false, and basename, whose default is handled at initialize() below.

Implement the Lifecycle Methods

This extension does not need to perform any heavy-weight initialization tasks, so we will concentrate on
initialize(), tick(), and deinitialize() methods which define the core functionality of our component. At
initialization, we will create a file stream and keep track of the bytes we write on tick() via binary_file_offset.

Listing 5.6: initialize in gxf_extensions/my_recorder/my_recorder.cpp

24 gxf_result_t MyRecorder::initialize() {
25 // Create path by appending receiver name to directory path if basename is not provided
26 std::string path = directory_.get() + '/';
27 if (const auto& basename = basename_.try_get()) {
28 path += basename.value();

(continues on next page)

26 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

29 } else {
30 path += receiver_->name();
31 }
32

33 // Initialize index file stream as write-only
34 index_file_stream_ = nvidia::gxf::FileStream("", path +␣

→˓nvidia::gxf::FileStream::kIndexFileExtension);
35

36 // Initialize binary file stream as write-only
37 binary_file_stream_ = nvidia::gxf::FileStream("", path +␣

→˓nvidia::gxf::FileStream::kBinaryFileExtension);
38

39 // Open index file stream
40 nvidia::gxf::Expected<void> result = index_file_stream_.open();
41 if (!result) {
42 return nvidia::gxf::ToResultCode(result);
43 }
44

45 // Open binary file stream
46 result = binary_file_stream_.open();
47 if (!result) {
48 return nvidia::gxf::ToResultCode(result);
49 }
50 binary_file_offset_ = 0;
51

52 return GXF_SUCCESS;
53 }

When de-initializing, our component will take care of closing the file streams that were created at initialization.

Listing 5.7: deinitialize in gxf_extensions/my_recorder/my_recorder.cpp

55 gxf_result_t MyRecorder::deinitialize() {
56 // Close binary file stream
57 nvidia::gxf::Expected<void> result = binary_file_stream_.close();
58 if (!result) {
59 return nvidia::gxf::ToResultCode(result);
60 }
61

62 // Close index file stream
63 result = index_file_stream_.close();
64 if (!result) {
65 return nvidia::gxf::ToResultCode(result);
66 }
67

68 return GXF_SUCCESS;
69 }

In our recorder, no heavy-weight initialization tasks are required so we implement the following, however, we would
use start() and stop() methods for heavy-weight tasks such as memory allocation and deallocation.

5.3. Developing Holoscan GXF Extensions 27

Clara Holoscan SDK User Guide, Release 0.3.0

Listing 5.8: start/stop in gxf_extensions/my_recorder/my_recorder.cpp

71 gxf_result_t MyRecorder::start() {
72 return GXF_SUCCESS;
73 }
74

75 gxf_result_t MyRecorder::stop() {
76 return GXF_SUCCESS;
77 }

Tip: For a detailed implementation of start() and stop(), and how memory management can be handled therein,
please refer to the implementation of the AJA Video source extension.

Finally, we write the component-specific functionality of our extension by implementing tick().

Listing 5.9: tick in gxf_extensions/my_recorder/my_recorder.cpp

79 gxf_result_t MyRecorder::tick() {
80 // Receive entity
81 nvidia::gxf::Expected<nvidia::gxf::Entity> entity = receiver_->receive();
82 if (!entity) {
83 return nvidia::gxf::ToResultCode(entity);
84 }
85

86 // Write entity to binary file
87 nvidia::gxf::Expected<size_t> size = my_serializer_->serializeEntity(entity.value(), &

→˓binary_file_stream_);
88 if (!size) {
89 return nvidia::gxf::ToResultCode(size);
90 }
91

92 // Create entity index
93 nvidia::gxf::EntityIndex index;
94 index.log_time = std::chrono::system_clock::now().time_since_epoch().count();
95 index.data_size = size.value();
96 index.data_offset = binary_file_offset_;
97

98 // Write entity index to index file
99 nvidia::gxf::Expected<size_t> result = index_file_stream_.writeTrivialType(&index);

100 if (!result) {
101 return nvidia::gxf::ToResultCode(result);
102 }
103 binary_file_offset_ += size.value();
104

105 if (flush_on_tick_) {
106 // Flush binary file output stream
107 nvidia::gxf::Expected<void> result = binary_file_stream_.flush();
108 if (!result) {
109 return nvidia::gxf::ToResultCode(result);
110 }
111

(continues on next page)

28 Chapter 5. Clara Holoscan Development Guide

https://github.com/NVIDIA/clara-holoscan-embedded-sdk/tree/main/gxf_extensions/aja

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

112 // Flush index file output stream
113 result = index_file_stream_.flush();
114 if (!result) {
115 return nvidia::gxf::ToResultCode(result);
116 }
117 }
118

119 return GXF_SUCCESS;
120 }

Register the Extension as a Holoscan Component

As a final step, we must register our extension so it is recognized as a component and loaded by the application executor.
For this we create a simple declaration in my_recorder_ext.cpp as follows.

Listing 5.10: gxf_extensions/my_recorder/my_recorder_ext.cpp

1 #include "gxf/std/extension_factory_helper.hpp"
2

3 #include "my_recorder.hpp"
4

5 GXF_EXT_FACTORY_BEGIN()
6 GXF_EXT_FACTORY_SET_INFO(0xb891cef3ce754825, 0x9dd3dcac9bbd8483, "MyRecorderExtension",
7 "My example recorder extension", "NVIDIA", "0.1.0", "LICENSE");
8 GXF_EXT_FACTORY_ADD(0x2464fabf91b34ccf, 0xb554977fa22096bd, MyRecorder,
9 nvidia::gxf::Codelet, "My example recorder codelet.");

10 GXF_EXT_FACTORY_END()

GXF_EXT_FACTORY_SET_INFO configures the extension with the following information in order:

• UUID which can be generated using scripts/generate_extension_uuids.py which defines the extension
id

• extension name

• extension description

• author

• extension version

• license text

GXF_EXT_FACTORY_ADD registers the newly built extension as a valid Codelet component with the following infor-
mation in order:

• UUID which can be generated using scripts/generate_extension_uuids.py which defines the compo-
nent id (this must be different from the extension id),

• fully qualified extension class,

• fully qualifies base class,

• component description

To build a shared library for our new extension which can be loaded by a Holoscan application at runtime we use a
CMake file under gxf_extensions/my_recorder/CMakeLists.txt with the following content.

5.3. Developing Holoscan GXF Extensions 29

Clara Holoscan SDK User Guide, Release 0.3.0

Listing 5.11: gxf_extensions/my_recorder/CMakeLists.txt

1 # Create library
2 add_library(my_recorder_lib SHARED
3 my_recorder.cpp
4 my_recorder.hpp
5)
6 target_link_libraries(my_recorder_lib
7 PUBLIC
8 GXF::std
9 GXF::serialization

10 yaml-cpp
11)
12

13 # Create extension
14 add_library(my_recorder SHARED
15 my_recorder_ext.cpp
16)
17 target_link_libraries(my_recorder
18 PUBLIC my_recorder_lib
19)
20

21 # Install GXF extension as a component 'holoscan-embedded-gxf_extensions'
22 install_gxf_extension(my_recorder) # this will also install my_recorder_lib
23 # install_gxf_extension(my_recorder_lib) # this statement is not necessary because this␣

→˓library follows `<extension library name>_lib` convention.

Here, we create a library my_recorder_lib with the implementation of the lifecycle methods, and the extension
my_recorder which exposes the C API necessary for the application runtime to interact with our component.

To make our extension discoverable from the project root we add the line

add_subdirectory(my_recorder)

to the CMake file gxf_extensions/CMakeLists.txt.

Tip: To build our extension, we can follow the steps in the README.

At this point, we have a complete extension that records data coming into its receiver queue to the specified location
on the disk using the GXF-formatted binary/index files.

5.4 Wrapping a GXF Codelet as a Holoscan Operator (C++ API)

Now that we know how to write a GXF extension, we can create a simple “identity” application consisting of a replayer,
which reads contents from a file on disk, and our recorder from the last section, which will store the output of the replayer
exactly in the same format. This allows us to see whether the output of the recorder matches the original input files.

With Holoscan C++ API, we can wrap GXF Components (including Codelets) in an Entity as a Holoscan Operator.
Then, we can compose Operators programmatically, to create a Holoscan application.

For our C++ API-based application, we create the directory apps/my_recorder_app with our MyRecorderOp Oper-
ator implementation.

30 Chapter 5. Clara Holoscan Development Guide

https://github.com/NVIDIA/clara-holoscan-embedded-sdk#using-a-development-container

Clara Holoscan SDK User Guide, Release 0.3.0

Listing 5.12: apps/my_recorder_app/my_recorder_op.hpp

1 #ifndef APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP
2 #define APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP
3

4 #include "holoscan/core/gxf/gxf_operator.hpp"
5

6 namespace holoscan::ops {
7

8 class MyRecorderOp : public holoscan::ops::GXFOperator {
9 public:

10 HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(MyRecorderOp, holoscan::ops::GXFOperator)
11

12 MyRecorderOp() = default;
13

14 const char* gxf_typename() const override { return "MyRecorder"; }
15

16 void setup(OperatorSpec& spec) override;
17

18 void initialize() override;
19

20 private:
21 Parameter<holoscan::IOSpec*> receiver_;
22 Parameter<std::shared_ptr<holoscan::Resource>> my_serializer_;
23 Parameter<std::string> directory_;
24 Parameter<std::string> basename_;
25 Parameter<bool> flush_on_tick_;
26 };
27

28 } // namespace holoscan::ops
29

30 #endif /* APPS_MY_RECORDER_APP_MY_RECORDER_OP_HPP */

holoscan::ops::MyRecorderOp class wraps a MyRecorder GXF Codelet by inheriting
holoscan::ops::GXFOperator.

To wrap a GXF Codelet as a Holoscan Operator, we need to implement the following functions:

• const char* gxf_typename() const override: return the GXF type name of the Codelet. The fully-
qualified class name (MyRecorder) for the GXF Codelet is specified.

• void setup(OperatorSpec& spec) override: setup the OperatorSpec with the inputs/outputs and param-
eters of the Operator.

• void initialize() override: initialize the Operator.

HOLOSCAN_OPERATOR_FORWARD_ARGS_SUPER(MyRecorderOp, holoscan::ops::GXFOperator)) macro is
used to forward the arguments of the constructor to the base class.

Then, we need to define the fields of the MyRecorderOp class.

Let’s see the fields of the MyRecorderOp class. You can see that the same fields with the same names (but different
types) are defined in both the MyRecorderOp class and the MyRecorder GXF Codelet.

5.4. Wrapping a GXF Codelet as a Holoscan Operator (C++ API) 31

Clara Holoscan SDK User Guide, Release 0.3.0

Listing 5.13: Parameter declarations in
apps/my_recorder_app/my_recorder_op.hpp

22 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::Receiver>> receiver_;
23 nvidia::gxf::Parameter<nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>> my_

→˓serializer_;
24 nvidia::gxf::Parameter<std::string> directory_;
25 nvidia::gxf::Parameter<std::string> basename_;
26 nvidia::gxf::Parameter<bool> flush_on_tick_;

In the MyRecorderOp class, the followings are changed:

• holoscan::Parameter type is used instead of nvidia::gxf::Parameter type

• holoscan::IOSpec* type is used instead of nvidia::gxf::Handle<nvidia::gxf::Receiver>> or
nvidia::gxf::Handle<nvidia::gxf::Transmitter>> type

• std::shared_ptr<holoscan::Resource>> type is used instead of nvidia::gxf::Handle<T>> type (such
as nvidia::gxf::Handle<nvidia::gxf::EntitySerializer>>)

The implementation of the setup(OperatorSpec& spec) function and the initialize() function are as follows:

Listing 5.14: apps/my_recorder_app/my_recorder_op.cpp

1 #include "./my_recorder_op.hpp"
2

3 #include "holoscan/core/fragment.hpp"
4 #include "holoscan/core/gxf/entity.hpp"
5 #include "holoscan/core/operator_spec.hpp"
6

7 #include "holoscan/core/resources/gxf/video_stream_serializer.hpp"
8

9 namespace holoscan::ops {
10

11 void MyRecorderOp::setup(OperatorSpec& spec) {
12 auto& input = spec.input<::gxf::Entity>("input");
13 // Above is same with the following two lines (a default condition is assigned to the␣

→˓input port if not specified):
14 //
15 // auto& input = spec.input<::gxf::Entity>("input")
16 // .condition(ConditionType::kMessageAvailable, Arg("min_size") =␣

→˓1);
17

18 spec.param(receiver_, "receiver", "Entity receiver", "Receiver channel to log", &
→˓input);

19 spec.param(my_serializer_,
20 "serializer",
21 "Entity serializer",
22 "Serializer for serializing input data");
23 spec.param(directory_, "out_directory", "Output directory path", "Directory path to␣

→˓store received output");
24 spec.param(basename_, "basename", "File base name", "User specified file name without␣

→˓extension");
25 spec.param(flush_on_tick_,
26 "flush_on_tick",

(continues on next page)

32 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

27 "Boolean to flush on tick",
28 "Flushes output buffer on every `tick` when true",
29 false);
30 }
31

32 void MyRecorderOp::initialize() {
33 // Set up prerequisite parameters before calling GXFOperator::initialize()
34 auto frag = fragment();
35 auto serializer =
36 frag->make_resource<holoscan::VideoStreamSerializer>("serializer");
37 add_arg(Arg("serializer") = serializer);
38

39 GXFOperator::initialize();
40 }
41

42 } // namespace holoscan::ops

In the setup(OperatorSpec& spec) function, we set up the inputs/outputs and parameters of the Operator.

Please compare the content of the function with MyRecorder class’s registerInterface function. You can see that
setup(OperatorSpec& spec) function is very similar to the registerInterface(OperatorSpec& spec) func-
tion in the MyRecorder class.

In C++ API, GXF Receiver and Transmitter components (such as DoubleBufferReceiver and
DoubleBufferTransmitter) are considered as input and output ports of the Operator so we register the in-
puts/outputs of the Operator with input<T> and output<T> functions (where T is the data type of the port).

Compared to the pure GXF application that does the same job, the SchedulingTerm) definitions of an Entity
in GXF Application YAML are specified as Conditions (e.g., holoscan::MessageAvailableCondition and
holoscan::DownstreamMessageAffordableCondition) on the input/output ports.

The following statements

auto& input = spec.input<::gxf::Entity>("input");
// Above is same with the following two lines (a default condition is assigned to the␣

→˓input port if not specified):
//
// auto& input = spec.input<::gxf::Entity>("input")
// .condition(ConditionType::kMessageAvailable, Arg("min_size") =␣

→˓1);
spec.param(receiver_, "receiver", "Entity receiver", "Receiver channel to log", &

→˓input);

represent the following highlighted statements of GXF Application YAML:

Listing 5.15: A part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

35 name: recorder
36 components:
37 - name: input
38 type: nvidia::gxf::DoubleBufferReceiver
39 - name: allocator
40 type: nvidia::gxf::UnboundedAllocator
41 - name: component_serializer

(continues on next page)

5.4. Wrapping a GXF Codelet as a Holoscan Operator (C++ API) 33

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

42 type: nvidia::gxf::StdComponentSerializer
43 parameters:
44 allocator: allocator
45 - name: entity_serializer
46 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
47 parameters:
48 component_serializers: [component_serializer]
49 - type: MyRecorder
50 parameters:
51 receiver: input
52 serializer: entity_serializer
53 out_directory: "/tmp"
54 basename: "tensor_out"
55 - type: nvidia::gxf::MessageAvailableSchedulingTerm
56 parameters:
57 receiver: input
58 min_size: 1

In the same way, if we had a Transmitter GXF component, we would have the following statements (Please see
available constants for holoscan::ConditionType):

auto& output = spec.output<::gxf::Entity>("output");
// Above is same with the following two lines (a default condition is assigned to the␣

→˓output port if not specified):
//
// auto& output = spec.output<::gxf::Entity>("output")
// .condition(ConditionType::kDownstreamMessageAffordable, Arg(

→˓"min_size") = 1);

In the initialize() function, we set up the pre-defined parameters such as serializer.

auto frag = fragment();
auto serializer =

frag->make_resource<holoscan::VideoStreamSerializer>("serializer");
add_arg(Arg("serializer") = serializer); // set 'serializer' parameter with 'serializer'␣

→˓resource.

Holoscan C++ API provides holoscan::VideoStreamSerializer class (in-
clude/holoscan/core/resources/gxf/video_stream_serializer.hpp and src/core/resources/gxf/video_stream_serializer.cpp)
for nvidia::holoscan::stream_playback::VideoStreamSerializer GXF component and above statements
covers the highlighed statements of GXF Application YAML:

Listing 5.16: Another part of apps/my_recorder_app_gxf/my_recorder_gxf.yaml

35 name: recorder
36 components:
37 - name: input
38 type: nvidia::gxf::DoubleBufferReceiver
39 - name: allocator
40 type: nvidia::gxf::UnboundedAllocator
41 - name: component_serializer
42 type: nvidia::gxf::StdComponentSerializer

(continues on next page)

34 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

43 parameters:
44 allocator: allocator
45 - name: entity_serializer
46 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
47 parameters:
48 component_serializers: [component_serializer]
49 - type: MyRecorder
50 parameters:
51 receiver: input
52 serializer: entity_serializer
53 out_directory: "/tmp"
54 basename: "tensor_out"
55 - type: nvidia::gxf::MessageAvailableSchedulingTerm
56 parameters:
57 receiver: input
58 min_size: 1

5.5 Creating the Holoscan Application (C++ API)

The following code snippet shows how to create the Holoscan Application using the C++ API.

Listing 5.17: apps/my_recorder_app/main.cpp

1 #include <holoscan/holoscan.hpp>
2 #include <holoscan/std_ops.hpp>
3

4 #include "./my_recorder_op.hpp"
5

6 class App : public holoscan::Application {
7 public:
8

9 void compose() override {
10 using namespace holoscan;
11

12 HOLOSCAN_LOG_DEBUG("In App::compose() method");
13

14 auto replayer = make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(
→˓"replayer"));

15 // auto replayer = make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(
→˓"replayer"),

16 // Arg("frame_rate") = 30.f, // same with Arg("frame_rate", 30.f)
17 // Arg("repeat") = true);
18 auto recorder = make_operator<ops::MyRecorderOp>("recorder", from_config("recorder

→˓"));
19

20 HOLOSCAN_LOG_INFO("replayer.directory: {}", from_config("replayer.directory").as
→˓<std::string>());

21

22 // Flow definition
(continues on next page)

5.5. Creating the Holoscan Application (C++ API) 35

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

23 add_flow(replayer, recorder);
24 // Above is same with:
25 //
26 // // replayer's output port named 'output' is connected to recorder's input port named

→˓'input'
27 // add_flow(replayer, recorder, {{"output", "input"}});
28 // // or,
29 // // replayer has only one output port and recorder has only one input port so␣

→˓names can be omitted
30 // add_flow(replayer, recorder, {{"", ""}});
31 }
32 };
33

34 int main(int argc, char** argv) {
35 holoscan::load_env_log_level();
36

37 auto app = holoscan::make_application<App>();
38 app->config("apps/my_recorder_app/app_config.yaml");
39 app->run();
40

41 return 0;
42 }

The App class is the main class of the Holoscan Application. It inherits from holoscan::Application class.

In the compose() function, we create the operators and flows of the Holoscan Application.

We can call make_operator() to create an operator of type <OperatorT> and pass parameter values to the operator.

from_config() function is used to get parameter values from the configuration file (apps/my_recorder_app/
app_config.yaml) that is passed to the config() function in the main function.

Let’s create a configuration file for the Holoscan Application (C++ API) in the apps/my_recorder_app/
app_config.yaml file.

Listing 5.18: apps/my_recorder_app/app_config.yaml

1 # 'extensions' has the same content with 'build/apps/my_recorder_app_gxf/my_recorder_gxf_
→˓manifest.yaml' file.

2 extensions:
3 - libgxf_std.so
4 - libgxf_cuda.so
5 - libgxf_multimedia.so
6 - libgxf_serialization.so
7 - ./gxf_extensions/my_recorder/libmy_recorder.so
8 - ./gxf_extensions/stream_playback/libstream_playback.so
9

10 # Configururation for 'holoscan::ops::VideoStreamReplayerOp' Operator
11 replayer:
12 directory: "/workspace/test_data/endoscopy/video"
13 basename: "surgical_video"
14 frame_rate: 0 # as specified in timestamps
15 repeat: false # default: false
16 realtime: true # default: true

(continues on next page)

36 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

17 count: 0 # default: 0 (no frame count restriction)
18

19 # Configururation for 'holoscan::ops::MyRecorderOp' Operator
20 recorder:
21 out_directory: "/tmp"
22 basename: "tensor_out"

In app_config.yaml, it has the information of GXF extension paths (that is same with the content of build/apps/
my_recorder_app_gxf/my_recorder_gxf_manifest.yaml file if you have followed the Creating the GXF Appli-
cation Definition section) and some parameter values for VideoStreamReplayerOp and MyRecorderOp operators.

The extensions field in this YAML configuration file is a list of GXF extension paths. The first four paths are the
paths of GXF core extensions that are required for the VideoStreamReplayerOp and MyRecorderOp operators (you
can find the paths under the build/lib directory once you have built the Holoscan SDK). The last two paths are the
paths of GXF extensions that are required for the MyRecorderOp and VideoStreamReplayerOp operator (you can
find the paths under the build directory once you have built the Holoscan SDK).

Compared with my_recorder_gxf.yaml file, app_config.yaml file is concise and easier to read. It is also easier to
modify the parameter values of operators (codelets). In GXF Application YAML, we had to specify graph edges
between graph nodes through nvidia::gxf::Connection component. With C++ API, we can connect Operator
nodes programmatically with add_flow() function.

On top of the parameter values from the configuration file, if you want to override the parameter values, you can pass
them to the operator as an argument of the make_operator() function. For example, if you want to override the
parameter values of replayer, you can do it as follows:

auto replayer = make_operator<ops::VideoStreamReplayerOp>("replayer", from_config(
→˓"replayer"),

Arg("frame_rate") = 30.f, // same with Arg("frame_rate", 30.f)
Arg("repeat") = true);

In main() function, we create the Holoscan Application and pass the configuration file to the config() function.

holoscan::load_env_log_level() function is used to set the log level of the Holoscan Application from the en-
vironment variable HOLOSCAN_LOG_LEVEL:

HOLOSCAN_LOG_LEVEL can be set to one of the following values:

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

• CRITICAL

• OFF

export HOLOSCAN_LOG_LEVEL=TRACE

We can call HOLOSCAN_LOG_XXX() macros to log messages. The format string follows the fmtlib format string
syntax.

An Application object is created in the main() function through make_application() function and it is launched
by calling run() function.

5.5. Creating the Holoscan Application (C++ API) 37

https://fmt.dev/latest/syntax.html
https://fmt.dev/latest/syntax.html

Clara Holoscan SDK User Guide, Release 0.3.0

Once main.cpp file is available, we need to declare a CMake file apps/my_recorder_app/CMakeLists.txt as
follows.

Listing 5.19: apps/my_recorder_app/CMakeLists.txt

1 add_executable(my_recorder_app
2 my_recorder_op.hpp
3 my_recorder_op.cpp
4 main.cpp
5)
6

7 target_link_libraries(my_recorder_app
8 PRIVATE
9 holoscan-embedded

10)
11

12 # Download the associated dataset if needed
13 if(HOLOSCAN_DOWNLOAD_DATASETS)
14 add_dependencies(my_recorder_app endoscopy_data)
15 endif()
16

17 # Copy config file
18 file(COPY "${CMAKE_CURRENT_SOURCE_DIR}/app_config.yaml" DESTINATION "${CMAKE_CURRENT_

→˓BINARY_DIR}")
19

20 # Get relative folder path for the app
21 file(RELATIVE_PATH app_relative_dest_path ${CMAKE_SOURCE_DIR} ${CMAKE_CURRENT_SOURCE_DIR}

→˓)
22

23 # Install the app
24 install(TARGETS "my_recorder_app"
25 DESTINATION "${app_relative_dest_path}"
26 COMPONENT "holoscan-embedded-apps"
27)
28 install(FILES "${CMAKE_CURRENT_SOURCE_DIR}/app_config.yaml"
29 DESTINATION ${app_relative_dest_path}
30 COMPONENT "holoscan-embedded-apps"
31)

In the apps/my_recorder_app/CMakeLists.txt file, we declare the executable my_recorder_app and link the
holoscan-embedded library. We also copy the configuration file apps/my_recorder_app/app_config.yaml to
the same folder under ${CMAKE_CURRENT_BINARY_DIR} to make it available to the application.

Finally, we install the application to the holoscan-embedded-apps component by calling install() function.

To make this Holoscan application discoverable by the build, in the root of the repository, we add the following line

add_subdirectory(my_recorder_app)

to apps/CMakeLists.txt.

38 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

5.6 Running the Holoscan MyRecorder Application (C++ API)

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5 (try clearing the CMake
cache by removing the build folder before compiling).

You can execute the following commands to build

./run install_gxf
./run clear_cache # if you want to clear build/install/cache folders
./run build

2. Our application can now be run in the development container using the command, where $(pwd) is the path to
the build folder:

You can execute ./run launch to run the development container.

./run launch

Then, you can execute the following commands to run the application

LD_LIBRARY_PATH=$(pwd):$(pwd)/lib:$LD_LIBRARY_PATH ./apps/my_recorder_app/my_
→˓recorder_app

inside the development container.

@LINUX:/workspace/holoscan-sdk/build$ LD_LIBRARY_PATH=$(pwd):$(pwd)/lib:$LD_LIBRARY_
→˓PATH ./apps/my_recorder_app/my_recorder_app
2022-08-24 12:36:48.685 INFO /workspace/holoscan-sdk/src/core/executors/gxf/gxf_
→˓executor.cpp@39: Creating context
[2022-08-24 12:36:48.685] [holoscan] [info] [gxf_executor.cpp:64] Loading␣
→˓extensions...
[2022-08-24 12:36:48.692] [holoscan] [info] [main.cpp:20] replayer.directory: /
→˓workspace/test_data/endoscopy/video
[2022-08-24 12:36:48.692] [holoscan] [info] [gxf_executor.cpp:222] Activating Graph.
→˓..
[2022-08-24 12:36:48.693] [holoscan] [info] [gxf_executor.cpp:224] Running Graph...
[2022-08-24 12:36:48.693] [holoscan] [info] [gxf_executor.cpp:226] Waiting for␣
→˓completion...
2022-08-24 12:36:48.693 INFO gxf/std/greedy_scheduler.cpp@170: Scheduling 2␣
→˓entities
2022-08-24 12:37:16.084 INFO /workspace/holoscan-sdk/gxf_extensions/stream_
→˓playback/video_stream_replayer.cpp@144: Reach end of file or playback count␣
→˓reaches to the limit. Stop ticking.
2022-08-24 12:37:16.084 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:␣
→˓Some entities are waiting for execution, but there are no periodic or async␣
→˓entities to get out of the deadlock.
2022-08-24 12:37:16.084 INFO gxf/std/greedy_scheduler.cpp@353: Scheduler finished.
[2022-08-24 12:37:16.084] [holoscan] [info] [gxf_executor.cpp:228] Deactivating␣
→˓Graph...
2022-08-24 12:37:16.085 INFO /workspace/holoscan-sdk/src/core/executors/gxf/gxf_
→˓executor.cpp@49: Destroying context

You can set HOLOSCAN_LOG_LEVEL environment variable to DEBUG (or other levels such as ‘TRACE’) to see
more logs.

5.6. Running the Holoscan MyRecorder Application (C++ API) 39

https://github.com/NVIDIA/clara-holoscan-embedded-sdk#using-a-development-container

Clara Holoscan SDK User Guide, Release 0.3.0

@LINUX:/workspace/holoscan-sdk/build$ export HOLOSCAN_LOG_LEVEL=DEBUG
@LINUX:/workspace/holoscan-sdk/build$ LD_LIBRARY_PATH=$(pwd):$(pwd)/lib:$LD_LIBRARY_
→˓PATH ./apps/my_recorder_app/my_recorder_app
2022-08-24 12:41:01.616 INFO /workspace/holoscan-sdk/src/core/executors/gxf/gxf_
→˓executor.cpp@39: Creating context
[2022-08-24 12:41:01.616] [holoscan] [info] [gxf_executor.cpp:64] Loading␣
→˓extensions...
[2022-08-24 12:41:01.622] [holoscan] [debug] [main.cpp:12] In App::compose() method
[2022-08-24 12:41:01.622] [holoscan] [debug] [fragment.hpp:62] Creating operator
→˓'replayer'
[2022-08-24 12:41:01.622] [holoscan] [debug] [fragment.hpp:84] Creating resource
→˓'entity_serializer'
[2022-08-24 12:41:01.622] [holoscan] [debug] [fragment.hpp:84] Creating resource
→˓'component_serializer'
[2022-08-24 12:41:01.622] [holoscan] [debug] [fragment.hpp:84] Creating resource
→˓'allocator'
[2022-08-24 12:41:01.622] [holoscan] [debug] [fragment.hpp:106] Creating condition
→˓'boolean_scheduling_term'
[2022-08-24 12:41:01.623] [holoscan] [debug] [fragment.hpp:62] Creating operator
→˓'recorder'
[2022-08-24 12:41:01.623] [holoscan] [debug] [fragment.hpp:84] Creating resource
→˓'serializer'
[2022-08-24 12:41:01.623] [holoscan] [debug] [fragment.hpp:84] Creating resource
→˓'component_serializer'
[2022-08-24 12:41:01.623] [holoscan] [debug] [fragment.hpp:84] Creating resource
→˓'allocator'
[2022-08-24 12:41:01.623] [holoscan] [info] [main.cpp:20] replayer.directory: /
→˓workspace/test_data/endoscopy/video
[2022-08-24 12:41:01.623] [holoscan] [debug] [gxf_executor.cpp:107] Operator:␣
→˓replayer
[2022-08-24 12:41:01.623] [holoscan] [debug] [gxf_executor.cpp:115] Next␣
→˓operator: recorder
[2022-08-24 12:41:01.623] [holoscan] [debug] [gxf_executor.cpp:125] Port:␣
→˓output -> input
[2022-08-24 12:41:01.623] [holoscan] [debug] [gxf_executor.cpp:107] Operator:␣
→˓recorder
[2022-08-24 12:41:01.623] [holoscan] [info] [gxf_executor.cpp:222] Activating Graph.
→˓..
[2022-08-24 12:41:01.713] [holoscan] [info] [gxf_executor.cpp:224] Running Graph...
[2022-08-24 12:41:01.713] [holoscan] [info] [gxf_executor.cpp:226] Waiting for␣
→˓completion...
2022-08-24 12:41:01.713 INFO gxf/std/greedy_scheduler.cpp@170: Scheduling 2␣
→˓entities
2022-08-24 12:41:29.093 INFO /workspace/holoscan-sdk/gxf_extensions/stream_
→˓playback/video_stream_replayer.cpp@144: Reach end of file or playback count␣
→˓reaches to the limit. Stop ticking.
2022-08-24 12:41:29.093 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:␣
→˓Some entities are waiting for execution, but there are no periodic or async␣
→˓entities to get out of the deadlock.
2022-08-24 12:41:29.093 INFO gxf/std/greedy_scheduler.cpp@353: Scheduler finished.
[2022-08-24 12:41:29.093] [holoscan] [info] [gxf_executor.cpp:228] Deactivating␣
→˓Graph...
2022-08-24 12:41:29.209 INFO /workspace/holoscan-sdk/src/core/executors/gxf/gxf_
→˓executor.cpp@49: Destroying context (continues on next page)

40 Chapter 5. Clara Holoscan Development Guide

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index and tensor_out.
gxf_entities in /tmp) that match the original input files (surgical_video.gxf_index and surgical_video.
gxf_entities under test_data/endoscopy/video) exactly.

@LINUX:/workspace/holoscan-sdk/build$ ls -al /tmp
total 821392
drwxrwxrwt 1 root root 4096 Aug 24 12:36 .
drwxr-xr-x 1 root root 4096 Aug 24 12:36 ..
drwxrwxrwt 2 root root 4096 Aug 11 21:42 .X11-unix
-rw-r--r-- 1 1000 1000 738674 Aug 24 12:41 gxf_log
-rw-r--r-- 1 1000 1000 840054484 Aug 24 12:41 tensor_out.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Aug 24 12:41 tensor_out.gxf_index

@LINUX:/workspace/holoscan-sdk/build$ ls -al ../test_data/endoscopy/video/
total 839116
drwxr-xr-x 2 1000 1000 4096 Aug 24 02:08 .
drwxr-xr-x 4 1000 1000 4096 Aug 24 02:07 ..
-rw-r--r-- 1 1000 1000 19164125 Jun 17 16:31 raw.mp4
-rw-r--r-- 1 1000 1000 840054484 Jun 17 16:31 surgical_video.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Jun 17 16:31 surgical_video.gxf_index

5.6. Running the Holoscan MyRecorder Application (C++ API) 41

Clara Holoscan SDK User Guide, Release 0.3.0

42 Chapter 5. Clara Holoscan Development Guide

CHAPTER

SIX

CLARA HOLOSCAN SAMPLE APPLICATIONS

This section explains how to run the Clara Holoscan sample applications. Three sample applications are provided with
the SDK:

1. Tool tracking in endoscopy video using an LSTM model

2. Hi-speed endoscopy using high resolution and high frame rate cameras

3. Semantic segmentation bone contours with hyperechoic lines

Each application comes with support for an AJA capture card or replay from a video file included in the sample applica-
tion container. More information regarding the AI models used for these applications can be found under the Overview
section of this document.

Tip: To run the sample applications, please follow the instructions in NGC website or Github repository.

Please also ensure that X11 is configured to allow commands from docker:

xhost +local:docker

6.1 Endoscopy Tool Tracking Application

Digital endoscopy is a key technology for medical screenings and minimally invasive surgeries. Using real-time AI
workflows to process and analyze the video signal produced by the endoscopic camera, this technology helps medical
professionals with anomaly detection and measurements, image enhancements, alerts, and analytics.

The Endoscopy tool tracking application provides an example of how an endoscopy data stream can be captured and
processed using the GXF framework and C++ API on multiple hardware platforms.

6.1.1 Input source: Video Stream Replayer

The GXF pipeline in a graph form is defined at apps/endoscopy_tool_tracking_gxf/tracking_replayer.
yaml in Holoscan Embedded SDK Github Repository.

The pipeline uses a recorded endoscopy video file (generated by convert_video_to_gxf_entities script) for input
frames.

Each input frame in the file is loaded by Video Stream Replayer and Broadcast node passes the frame to the following
two nodes (Entities):

• Format Converter: Convert image format from RGB888 (24-bit pixel) to RGBA8888(32-bit pixel) for visualization
(Tool Tracking Visualizer)

43

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/clara_holoscan_sample_runtime
https://github.com/NVIDIA/clara-holoscan-embedded-sdk#using-a-development-container
https://github.com/NVIDIA/clara-holoscan-embedded-sdk

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 6.1: Endoscopy image from a gallbladder surgery showing AI-powered frame-by-frame tool identification and
tracking. Image courtesy of Research Group Camma, IHU Strasbourg and the University of Strasbourg

Fig. 6.2: Tool tracking application workflow with replay from file

44 Chapter 6. Clara Holoscan Sample Applications

Clara Holoscan SDK User Guide, Release 0.3.0

• Format Converter: Convert the data type of the image from uint8 to float32 for feeding into the tool tracking
model (by Custom TensorRT Inference)

Then, Tool Tracking Visualizer uses outputs from the first Format Converter and Custom TensorRT Inference to render
overlay frames (mask/point/text) on top of the original video frames.

Tip: To run the Endoscopy Tool Tracking Application with the recorded video as source, run the following commands
after setting up the Holoscan SDK :

In the runtime container (from NGC):

cd /opt/holoscan_sdk

Endoscopy tool tracking (GXF) from recorded video
./apps/endoscopy_tool_tracking_gxf/tracking_replayer

Endoscopy tool tracking (C++ API) from recorded video
1. Make sure that 'source' is set to 'replayer' in app_config.yaml
sed -i -e 's#^source:.*#source: replayer#' ./apps/endoscopy_tool_tracking/app_config.yaml
2. Run the application
./apps/endoscopy_tool_tracking/endoscopy_tool_tracking

In the development container (from source):

cd /workspace/holoscan-sdk/build

Endoscopy tool tracking (GXF) from recorded video
./apps/endoscopy_tool_tracking_gxf/tracking_replayer

Endoscopy tool tracking (C++ API) from recorded video
1. Make sure that 'source' is set to 'replayer' in app_config.yaml
sed -i -e 's#^source:.*#source: replayer#' ./apps/endoscopy_tool_tracking/app_config.yaml
2. Run the application
LD_LIBRARY_PATH=$(pwd):$(pwd)/lib:$LD_LIBRARY_PATH ./apps/endoscopy_tool_tracking/
→˓endoscopy_tool_tracking

6.1.2 Input source: AJA

The GXF pipeline in a graph form is defined at apps/endoscopy_tool_tracking_gxf/tracking_aja.yaml in
Holoscan Embedded SDK Github Repository.

The pipeline is similar with Input source: Video Stream Replayer but the input source is replaced with AJA Source.

The pipeline graph also defines an optional Video Stream Recorder that can be enabled to record the original video
stream to disk. This stream recorder (and its associated Format Converter) are commented out in the graph definition
and thus are disabled by default in order to maximize performance. To enable the stream recorder, uncomment all of
the associated components in the graph definition.

• AJA Source: Get video frame from AJA HDMI capture card (pixel format is RGBA8888 with the resolution of
1920x1080)

• Format Converter: Convert image format from RGB8888 (32-bit pixel) to RGBA888 (24-bit pixel) for recording
(Video Stream Recorder)

• Video Stream Recorder: Record input frames into a file

6.1. Endoscopy Tool Tracking Application 45

https://github.com/NVIDIA/clara-holoscan-embedded-sdk

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 6.3: AJA tool tracking app

Please follow these steps to run the Endoscopy Tool Tracking Application:

Tip: To run the Endoscopy Tool Tracking Application with AJA capture, run the following commands after setting
up the Holoscan SDK and your AJA system:

In the runtine container (from NGC):

cd /opt/holoscan_sdk/

Endoscopy tool tracking (GXF) with AJA
./apps/endoscopy_tool_tracking_gxf/tracking_aja

Endoscopy tool tracking (C++ API) with AJA
1. Make sure that 'source' is set to 'aja' in app_config.yaml
(To enable recording, you can also update the value for 'do_record' to 'true'.)
sed -i -e 's#^source:.*#source: aja#' ./apps/endoscopy_tool_tracking/app_config.yaml
2. Run the application
./apps/endoscopy_tool_tracking/endoscopy_tool_tracking

In the development container (from source):

cd /workspace/holoscan-sdk/build

Endoscopy tool tracking (GXF) with AJA
./apps/endoscopy_tool_tracking_gxf/tracking_aja

Endoscopy tool tracking (C++ API) with AJA
1. Make sure that 'source' is set to 'aja' in app_config.yaml
(To enable recording, you can also update the value for 'do_record' to 'true'.)
sed -i -e 's#^source:.*#source: aja#' ./apps/endoscopy_tool_tracking/app_config.yaml
2. Run the application
LD_LIBRARY_PATH=$(pwd):$(pwd)/lib:$LD_LIBRARY_PATH ./apps/endoscopy_tool_tracking/
→˓endoscopy_tool_tracking

46 Chapter 6. Clara Holoscan Sample Applications

Clara Holoscan SDK User Guide, Release 0.3.0

6.2 Hi-Speed Endoscopy Application

The hi-speed endoscopy application showcases how high resolution cameras can be used to capture the scene, processed
on GPU and displayed at high frame rate using the GXF framework. This application requires Emergent Vision Tech-
nologies camera and a display with high refresh rate to keep up with camera’s framerate. This sections also explains
how to enable GSYNC for the display, if GSYNC enabled monitor is available, how to install and enable GPUDirect
RDMA, and how to enable exclusive display mode for better performance.

Note that this application is meant to be run directly on the device without using docker.

The GXF pipeline in a graph form is defined at apps/hi_speed_endoscopy_gxf/hi_speed_endoscopy.yaml in Holoscan
Embedded SDK Github Repository.

Fig. 6.4: Hi-Speed Endoscopy App

The data acquisition happens using emergent-source, by default it is set to 4200x2160 at 240Hz. The acquired data
is then demosaiced in GPU using CUDA via bayer-demosaic and displayed through holoviz-viewer.

Follow below steps to run the Hi-Speed Endoscopy Application:

Tip: To run the Hi-Speed Endoscopy Application, follow below commands after setting up the Holoscan SDK to run
from source and your EVT camera.

On the local environment (from source):

1. Configure and build the project with HOLOSCAN_BUILD_HI_SPEED_ENDO_APP option as ON.

cd ${PATH_TO_SDK_REPOSITORY}
cmake -S . -B build \
-D CMAKE_BUILD_TYPE=Release \
-D CUDAToolkit_ROOT:PATH=/usr/local/cuda \
-D CMAKE_CUDA_COMPILER:PATH=/usr/local/cuda/bin/nvcc \
-D HOLOSCAN_BUILD_HI_SPEED_ENDO_APP=ON

cmake --build build -j

2. Run the application

cd ${PATH_TO_SDK_REPOSITORY}/build
sudo ./apps/hi_speed_endoscopy_gxf/hi_speed_endoscopy

Currently this application has hardcoded the camera controls within the emergent-source. Once the user updated
the gxf-extension, the project would need to be rebuild as mentioned in step 1. above. For more information on the
controls, refer to EVT Camera Attributes Manual.

6.2. Hi-Speed Endoscopy Application 47

https://github.com/NVIDIA/clara-holoscan-embedded-sdk/blob/main/apps/hi_speed_endoscopy_gxf/hi_speed_endoscopy.yaml
https://github.com/NVIDIA/clara-holoscan-embedded-sdk
https://github.com/NVIDIA/clara-holoscan-embedded-sdk
https://emergentvisiontec.com/resources/?tab=umg

Clara Holoscan SDK User Guide, Release 0.3.0

6.2.1 Enable G-SYNC for Display

To get better performance, the application can be run with a G-SYNC enabled display. To enable G-SYNC for the
display, a G-SYNC enabled display is required. This app has been tested with two G-SYNC enabled displays: Asus
ROG Swift PG279QM and Asus ROG Swift 360 Hz PG259QNR.

Follow below steps to enable G-SYNC for the display using nvidia-settings.

1. Open nvidia-settings using terminal. This step requires a graphical user interface.

nvidia-settings

This will open the NVIDIA Settings window.

2. Click on X Server Display Configuration and then Advanced button. This will show option Allow
G-SYNC on monitor not validated as G-SYNC compatible, select the option and click Apply. The
window would look like below.

3. To show the refresh rate and G-SYNC label on the display window, click on OpenGL Settings for the se-
lected display. Now click Allow G-SYNC/G-SYNC Compatible and Enable G-SYNC/G-SYNC Compatible
Visual Indicator options and click Quit. This step is shown in below image. The Gsync indicator will be
at the top right screen once the application is running.

6.2.2 Installing and Enabling GPUDirect RDMA

The GPUDirect drivers must be installed to enable the use of GPUDirect when using an RTX6000 or RTX A6000
add-in dGPU.

Note: The GPUDirect drivers are not installed by SDK Manager, even when Rivermax SDK is installed, so these steps
must always be followed to enable GPUDirect support when using the dGPU.

1. Download GPUDirect Drivers for OFED:

nvidia-peer-memory_1.1.tar.gz If the above link does not work, navigate to the Downloads section on the
GPUDirect page.

2. Install GPUDirect:

mv nvidia-peer-memory_1.1.tar.gz nvidia-peer-memory_1.1.orig.tar.gz
tar -xvf nvidia-peer-memory_1.1.orig.tar.gz
cd nvidia-peer-memory-1.1
dpkg-buildpackage -us -uc
sudo dpkg -i ../nvidia-peer-memory_1.1-0_all.deb
sudo dpkg -i ../nvidia-peer-memory-dkms_1.1-0_all.deb
sudo service nv_peer_mem start

Verify the nv_peer_mem service is running:

sudo service nv_peer_mem status

Enable the nv_peer_mem service at boot time:

sudo systemctl enable nv_peer_mem
sudo /lib/systemd/systemd-sysv-install enable nv_peer_mem

48 Chapter 6. Clara Holoscan Sample Applications

https://rog.asus.com/us/monitors/27-to-31-5-inches/rog-swift-pg279qm-model/
https://rog.asus.com/us/monitors/27-to-31-5-inches/rog-swift-pg279qm-model/
https://rog.asus.com/us/monitors/23-to-24-5-inches/rog-swift-360hz-pg259qnr-model/
https://www.mellanox.com/products/GPUDirect-RDMA
https://www.mellanox.com/sites/default/files/downloads/ofed/nvidia-peer-memory_1.1.tar.gz
https://www.mellanox.com/products/GPUDirect-RDMA

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 6.5: Enable G-SYNC for the current display

6.2. Hi-Speed Endoscopy Application 49

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 6.6: Enable Visual Indicator for the current display

50 Chapter 6. Clara Holoscan Sample Applications

Clara Holoscan SDK User Guide, Release 0.3.0

Note: To enable the GPUDirect RDMA on NVIDIA IGX Orin Developer Kit, update your firmware with instructions
from the NVIDIA IGX Orin Developer Kit User Guide or the below command needs to be executed at every single
bootup.

sudo setpci -s 0007:02:00.0 ecap_acs+6.w=0

3. Update the hi-speed-endoscopy application to set use_rdma as true.

vi ${PATH_TO_SDK_REPOSITORY}/apps/hi_speed_endoscopy_gxf/hi_speed_endoscopy.yaml
Set `use_rdma` as `true`

Save the file and build the application again. To build the source locally please refer to README.md.

4. To run application, use below run command:

cd ${PATH_TO_SDK_REPOSITORY}/build
sudo MELLANOX_RINGBUFF_FACTOR=14 ./apps/hi_speed_endoscopy_gxf/hi_speed_endoscopy

Note: The MELLANOX_RINGBUFF_FACTOR is used by EVT driver to decide how much BAR1 size memory would be
used on the dGPU. It can be changed to different number based for different use cases.

6.2.3 Enabling Exclusive Display Mode

By default, the application uses a borderless fullscreen window which is managed by the window manager. Because
the window manager also manages other applications, the hi-speed-endoscopy application may suffer a performance
hit. To improve performance, exclusive display mode can be used which allows the application to bypass the window
manager and render directly to the display.

To enable exclusive display follow below steps.

1. Find the name of the display connected using xrandr. As an example the output of the xrandr could look like
below.

$ xrandr
Screen 0: minimum 8 x 8, current 4480 x 1440, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)
DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 connected primary 2560x1440+1920+0 (normal left inverted right x axis y axis) 600mm␣
→˓x 340mm

2560x1440 59.98 + 239.97* 199.99 144.00 120.00 99.95
1024x768 60.00
800x600 60.32
640x480 59.94

DP-3 disconnected (normal left inverted right x axis y axis)
DP-4 disconnected (normal left inverted right x axis y axis)
DP-5 disconnected (normal left inverted right x axis y axis)
DP-6 disconnected (normal left inverted right x axis y axis)
DP-7 connected 1920x1080+0+0 (normal left inverted right x axis y axis) 543mm x 302mm

1920x1080 60.00*+ 119.88 59.94 50.00 23.98
1280x720 59.94 50.00
1024x768 60.00

(continues on next page)

6.2. Hi-Speed Endoscopy Application 51

https://developer.nvidia.com/igx-orin-developer-kit-user-guide

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

800x600 60.32
720x576 50.00
720x480 59.94
640x480 59.94 59.93

USB-C-0 disconnected (normal left inverted right x axis y axis)

In this example DP-2 is the name of the display connected to the Clara devkit that will be used for exclusive display.

The name of the display can also be found in tab X Server Display Configuration in nvidia-settings. See
figure Enable G-SYNC for the current display.

2. Update the hi-speed-endoscopy application to use the display name, resolution and framerate used by the con-
nected display. In addition to that, add use_exclusive_display as true otherwise the exclusive display will
not be enabled in the app.

vi ${PATH_TO_SDK_REPOSITORY}/apps/hi_speed_endoscopy_gxf/hi_speed_endoscopy.yaml
Add below lines as parameters for entity holoviz and component␣
→˓nvidia::holoscan::HolovizViewer
display_name: DP-2
width: 2560
height: 1440
framerate: 240
use_exclusive_display: true

Save the file and build the application again. To build the source locally please refer to README.md.

3. If a single display is connected, ssh to Clara devkit and stop the X server.

ssh ${DEVKIT_USER}@${IP_ADDRESS}
export DISPLAY=:1
xhost +
sudo systemctl stop display-manager

Note:

• Set ${DEVKIT_USER} and ${IP_ADDRESS} to your Clara devkit credentials.

• Display :1 is just an example, it could be :0 or different.

• To start the display manager, after done running the application, use command:

sudo systemctl start display-manager

If multiple displays are connected, the display to be used in exclusive mode needs to be disabled in
the nvidia-settings. Open the X Server Display Configuration tab, select the display and under
Confguration select Disabled. Press Apply.

Note: To enable the display after done running the application, start nvidia-settings. Open the X Server
Display Configuration tab, select the display and under Confguration select X screen 0. Press Apply.

Now, run the application.

52 Chapter 6. Clara Holoscan Sample Applications

Clara Holoscan SDK User Guide, Release 0.3.0

6.3 Ultrasound Segmentation Application & Customization

This section describes the details of the ultrasound segmentation sample application as well as how to load a custom
inference model into the application for some limited customization. Out of the box, the ultrasound segmentation
application comes as a “video replayer” and “AJA source”, where the user can replay a pre-recorded ultrasound video
file included in the runtime container or stream data from an AJA capture device directly through the GPU respectively.

This application performs an automatic segmentation of the spine from a trained AI model for the purpose of scoliosis
visualization and measurement.

Fig. 6.7: Spine segmentation of ultrasound data

6.3.1 Input source: Video Stream Replayer

The replayer pipeline is defined in apps/ultrasound_segmentation/segmentation_replayer.yaml in
Holoscan Embedded SDK Github Repository.

Fig. 6.8: Segmentation application with replay from file

The pipeline uses a pre-recorded endoscopy video stream stored in nvidia::gxf::Tensor format as input. The
tensor-formatted file is generated via convert_video_to_gxf_entities from a pre-recorded MP4 video file.

Input frames are loaded by Video Stream Replayer and Broadcast node passes the frame to two branches in the pipeline.

• In the inference branch the video frames are converted to floating-point precision using the format converter,
pixel-wise segmentation is performed, and the segmentation result if post-processed for the visualizer.

6.3. Ultrasound Segmentation Application & Customization 53

https://github.com/NVIDIA/clara-holoscan-embedded-sdk

Clara Holoscan SDK User Guide, Release 0.3.0

• The visualizer receives the original frame as well as the result of the inference branch to show an overlay.

Tip: To run the Ultrasound Segmentation Application with the recorded video as source, run the following commands
after setting up the Holoscan SDK :

In the runtime container (from NGC):

cd /opt/holoscan_sdk
./apps/ultrasound_segmentation_gxf/segmentation_replayer

In the development container (from source):

cd /workspace/holoscan-sdk/build
./apps/ultrasound_segmentation_gxf/segmentation_replayer

6.3.2 Input source: AJA

The AJA pipeline is defined in apps/ultrasound_segmentation/segmentation_aja.yaml in Holoscan Embed-
ded SDK Github Repository.

Fig. 6.9: AJA segmentation app

This pipeline is exactly the same as the pipeline described in the previous section except the Video Stream Replayer
has been substituted with an AJA Video Source.

Tip: To run the Ultrasound Segmentation Application with AJA capture, run the following commands after setting
up the Holoscan SDK and your AJA system:

In the runtime container (from NGC):

cd /opt/holoscan_sdk
./apps/ultrasound_segmentation_gxf/segmentation_aja

In the development container (from source):

cd /workspace/holoscan-sdk/build
./apps/ultrasound_segmentation_gxf/segmentation_aja

54 Chapter 6. Clara Holoscan Sample Applications

https://github.com/NVIDIA/clara-holoscan-embedded-sdk
https://github.com/NVIDIA/clara-holoscan-embedded-sdk

Clara Holoscan SDK User Guide, Release 0.3.0

6.3.3 Bring Your Own Model (BYOM) - Customizing the Ultrasound Segmentation
Application For Your Model

This section shows how the user can easily modify the ultrasound segmentation app to run a different segmentation
model, even of an entirely different modality. In this use case we will use the ultrasound application to implement a
polyp segmentation model to run on a Colonoscopy sample video.

At this time the runtime containers contain only binaries of the sample applications, meaning users may not modify
the extensions. However, the users can substitute the ultrasound model with their own and add, remove, or replace the
extensions used in the application.

As a first step, please go to the Colonoscopy Sample Application Data NGC Resource to download the model and video
data.

Tip: For a comprehensive guide on building your own Holoscan extensions and apps please refer to Clara Holoscan
Development Guide.

The sample ultrasound segmentation model expects a gray-scale image of 256 x 256 and outputs a semantic seg-
mentation of the same size with two channels representing bone contours with hyperechoic lines (foreground) and
hyperechoic acoustic shadow (background).

Warning: Currently, the sample apps are able to load ONNX models, or TensorRT engine files built for the
architecture on which you will be running the model only. TRT engines are automatically generated from ONNX
by the application when it is run.

If you are converting your model from PyTorch to ONNX, chances are your input is NCHW, and will need to
be converted to NHWC. An example transformation script is included with the colonoscopy sample downloaded
above, and is found inside the resource as model/graph_surgeon.py. You may need to modify the dimensions
as needed before modifying your model as:

python graph_surgeon.py {YOUR_MODEL_NAME}.onnx {DESIRED_OUTPUT_NAME}.onnx

Note that this step is optional if you are directly using ONNX models.

To get a better understanding of the model, appplications such as netron.app can be used.

We will now substitute the model and sample video to inference upon as follows.

1. Enter the sample application container, but make sure to load the colonoscopy model from the host into the
container. Assuming your model is in ${my_model_path_dir} and your data is in ${my_data_path_dir}
then you can execute the following:

docker run -it --rm --runtime=nvidia \
-e NVIDIA_DRIVER_CAPABILITIES=graphics,video,compute,utility \
-v ${my_model_path_dir}:/workspace/my_model \
-v ${my_data_path_dir}:/workspace/my_data \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-e DISPLAY=${DISPLAY} \
nvcr.io/nvidia/clara-holoscan/clara_holoscan_sample_runtime:v0.3.0-arm64

2. Check that the model and data correctly appear under /workspace/my_model and /workspace/my_data.

3. Now we are ready to make the required modifications to the ultrasound sample application to have the
colonoscopy model load.

6.3. Ultrasound Segmentation Application & Customization 55

https://github.com/NVIDIA/clara-holoscan-embedded-sdk/blob/main/apps/ultrasound_segmentation/segmentation_replayer.yaml
http://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_colonoscopy_sample_data
https://developer.nvidia.com/tensorrt
https://netron.app/

Clara Holoscan SDK User Guide, Release 0.3.0

cd /opt/holoscan_sdk
vi ./apps/ultrasound_segmentation_gxf/segmentation_replayer.yaml

4. In the editor navigate to the first entity source, and under type nvidia::holoscan::stream_playback::VideoStreamReplayer
we will modify the following for our input video:

a. directory: "/workspace/my_data"

b. basename: "colonoscopy"

Tip: In general, to be able to play a desired video through a custom model we first need to convert the video
file into a GXF replayable tensor format. This step has already been done for the colonoscopy example, but for
a custom video perform the following actions inside the container.

apt update && DEBIAN_FRONTEND=noninteractive apt install -y ffmpeg
cd /workspace
git clone https://github.com/NVIDIA/clara-holoscan-embedded-sdk.git
cd clara-holoscan-embedded-sdk/scripts
ffmpeg -i /workspace/my_data/${my_video} -pix_fmt rgb24 -f rawvideo pipe:1 |␣
→˓python3 convert_video_to_gxf_entities.py --width ${my_width} --height ${my_height}
→˓ --directory /workspace/my_data --basename my_video

The above commands should yield two Holoscan tensor replayer files in /workspace/my_data, namely
my_video.gxf_index and my_video.gxf_entities.

5. In the editor navigate to the segmentation_preprocessor entity. Under type
nvidia::holoscan::formatconverter::FormatConverter we will modify the following parameters to
fit the input dimensions of our colonoscopy model:

a. resize_width: 512

b. resize_height: 512

6. In the editor navigate to the segmentation_inference entity. We will modify the
nvidia::gxf::TensorRtInference type where we want to specify the input and output names.

a. Specify the location of your ONNX files as:

model_file_path: /workspace/my_model/colon.onnx

b. Specify the location of TensorRT engines as:

engine_cache_dir: /workspace/my_model/cache

c. Specify the names of the inputs specified in your model under input_binding_names. In the case of ONNX
models converted from PyTorch inputs names take the form INPUT__0.

d. Specify the names of the inputs specified in your model under output_binding_names. In the case of
ONNX models converted from PyTorch and then the graph_surgeon.py conversion, names take the form
output_old.

Assuming the custom model input and output bindings are MY_MODEL_INPUT_NAME and
MY_MODEL_OUTPUT_NAME, the nvidia::gxf::TensorRtInference component would result in:

- type: nvidia::gxf::TensorRtInference
parameters:
input_binding_names:
- MY_MODEL_INPUT_NAME

(continues on next page)

56 Chapter 6. Clara Holoscan Sample Applications

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

output_binding_names:
- MY_MODEL_OUTPUT_NAME

Tip: The nvidia::gxf::TensorRtInference component binds the names of the Holoscan component in-
puts to the model inputs via the input_tensor_names and input_binding_names lists, where the first spec-
ifies the name of the tensor used by the Holoscan component nvidia::gxf::TensorRtInference and the
latter specifies the name of the model input. Similarly, output_tensor_names and output_binding_names
link the component output names to the model output (see extensions).

7. In the entity segmentation_postprocessor, make the following change: network_output_type:
sigmoid.

8. In the entity segmentation_visualizer, we will make the following changes under
nvidia::holoscan::segmentation_visualizer::Visualizer to correctly input the dimensions of
our video and the output dimensions of our model:

a. image_width: 720

b. image_height: 576

c. class_index_width: 512

d. class_index_height: 512

9. Run the application with the new model and data.

cd /opt/holoscan_sdk
./apps/ultrasound_segmentation_gxf/segmentation_replayer

6.3. Ultrasound Segmentation Application & Customization 57

Clara Holoscan SDK User Guide, Release 0.3.0

58 Chapter 6. Clara Holoscan Sample Applications

CHAPTER

SEVEN

CLARA HOLOSCAN GXF EXTENSIONS

7.1 GXF Built-in Extensions

7.1.1 Std

The GXF::std extension provides the most commonly used interfaces and components in Gxf Core.

Please see GXF Standard Extension for more details.

nvidia::gxf::Broadcast

Messages arrived on the input channel are distributed to all transmitters.

Parameters

• source: Source channel

– type: Handle<Receiver>

• mode: The broadcast mode. Can be Broadcast or RoundRobin (default: 0)

– type: BroadcastMode

– value:

∗ 0: Broadcast mode. Publishes income message to all transmitters

∗ 1: RoundRobin mode. Publishes income message to one of the transmitters in round-robin fashion

7.1.2 Serialization

The GXF::serialization extension provides components for serializing messages.

Please see GXF Serialization Extension for more details.

59

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::EntityRecorder

Serializes incoming messages and writes them to a file.

Parameters

• receiver: Receiver channel to log

– type: Handle<Receiver>

• entity_serializer: Serializer for serializing entities

– type: Handle<EntitySerializer>

• directory: Directory path for storing files

– type: std::string

• basename: User specified file name without extension (optional)

– type: std::string

• flush_on_tick: Flushes output buffer on every tick when true (default: false)

– type: bool

7.2 Holoscan SDK GXF Extensions

7.2.1 V4L2

The v4l2_source extension provides a codelet for a realtime Video for Linux 2 source supporting USB cameras and
other media inputs. The output is a VideoBuffer object.

nvidia::holoscan::V4L2Source

V4L2 Source Codelet.

Parameters

• signal: Output channel

– type: gxf::Handle<gxf::Transmitter>

• allocator: Output Allocator

– type: gxf::Handle<gxf::Allocator>

• device: Path to the V4L2 device (default: /dev/video0)

– type: std::string

• width: Width of the V4L2 image (default: 640)

– type: uint32_t

• height: Height of the V4L2 image (default: 480)

– type: uint32_t

60 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

• numBuffers: Number of V4L2 buffers to use (default: 2)

– type: uint32_t

7.2.2 AJA

The aja_source extension provides a codelet for supporting AJA capture card as a source. It offers support for
GPUDirect-RDMA on Quadro GPUs. The output is a VideoBuffer object.

nvidia::holoscan::AJASource

AJA Source Codelet.

Parameters

• signal: Output signal

– type: gxf::Handle<gxf::Transmitter>

• device: Device specifier (default: 0)

– type: std::string

• channel: NTV2Channel to use (default: 0 (NTV2_CHANNEL1))

– type: NTV2Channel

• width: Width of the stream (default: 1920)

– type: uint32_t

• height: Height of the stream (default: 1080)

– type: uint32_t

• framerate: Framerate of the stream (default: 60)

– type: uint32_t

• rdma: Enable RDMA (default: false)

– type: bool

7.2.3 Stream Playback

The stream_playback extension provides components for the video stream playback module to output video frames
as a Tensor object.

7.2. Holoscan SDK GXF Extensions 61

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::holoscan::stream_playback::VideoStreamReplayer

VideoStreamReplayer codelet.

Parameters

• transmitter: Transmitter channel for replaying entities

– type: gxf::Handle<gxf::Transmitter>

• entity_serializer: Serializer for serializing entities

– type: gxf::Handle<gxf::EntitySerializer>

• boolean_scheduling_term: BooleanSchedulingTerm to stop the codelet from ticking after all messages are
published

– type: gxf::Handle<gxf::BooleanSchedulingTerm>

• directory: Directory path for storing files

– type: std::string

• basename: User specified file name without extension (optional)

– type: std::string

• batch_size: Number of entities to read and publish for one tick (default: 1)

– type: size_t

• ignore_corrupted_entities: If an entity could not be deserialized, it is ignored by default; otherwise a
failure is generated (default: true)

– type: bool

• frame_rate: Frame rate to replay. If zero value is specified, it follows timings in timestamps (default: 0.f)

– type: float

• realtime: Playback video in realtime, based on frame_rate or timestamps (default: true)

– type: bool

• repeat: Repeat video stream (default: false)

– type: bool

• count: Number of frame counts to playback. If zero value is specified, it is ignored. If the count is less than the
number of frames in the video, it would be finished early (default: 0)

– type: uint64_t

62 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::holoscan::stream_playback::VideoStreamSerializer

The VideoStreamSerializer codelet is based on the nvidia::gxf::StdEntitySerializer with the addition
of a repeat feature. (If the repeat parameter is true and the frame count is out of the maximum frame index,
unnecessary warning messages are printed with nvidia::gxf::StdEntitySerializer.)

7.2.4 Format Converter

The format_converter extension includes a codelet that provides common video or tensor operations in inference
pipelines to change datatypes, resize images, reorder channels, and normalize and scale values.

nvidia::holoscan::formatconverter::FormatConverter

This codelet executes the following processes:

• Resize the input image before converting data type

– if resize_width > 0 && resize_height > 0

• Adjust output shape if the conversion involves the change in the channel dimension

– if format conversion is one of the following:

∗ rgb888 to rgba8888 (out channels: 4)

∗ rgba8888 to rgb888 (out channels: 3)

∗ rgba8888 to float32 (out channels: 3)

• Convert data type

– The following conversions are supported:

∗ ""(None): if in_dtype and out_dtype are the same

· dst_order (default: [0,1,2] or [0,1,2,3] depending on out_dtype) needs to be set

∗ uint8(rgb888) to float32

· scale_min and scale_max need to be set

· dst_order (default: [0,1,2]) needs to be set

∗ float32 to uint8(rgb888)

· scale_min and scale_max need to be set

· dst_order (default: [0,1,2]) needs to be set

∗ uint8(rgb888) to rgba8888

· dst_order (default: [0,1,2,3]) and alpha_value (default: 255) need to be set

∗ rgba8888 to uint8(rgb888)

· dst_order (default: [0,1,2]) needs to be set

7.2. Holoscan SDK GXF Extensions 63

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

• in: Input channel

– type: gxf::Handle<gxf::Receiver>

• in_tensor_name: Name of the input tensor (default: "")

– type: std::string

• in_dtype: Source data type (default: "")

– type: std::string

– If not specified, input data type is guessed from the input tensor.

• out: Output channel

– type: gxf::Handle<gxf::Transmitter>

• out_tensor_name: Name of the output tensor (default: "")

– type: std::string

• out_dtype: Destination data type

– type: std::string

• scale_min: Minimum value of the scale (default: 0.f)

– type: float

• scale_max: Maximum value of the scale (default: 1.f)

– type: float

• alpha_value: Alpha value that can be used to fill the alpha channel when converting RGB888 to RGBA8888
(default: 255)

– type: uint8_t

• resize_width: Width for resize. No actions if this value is zero (default: 0)

– type: int32_t

• resize_height: Height for resize. No actions if this value is zero (default: 0)

– type: int32_t

• resize_mode: Mode for resize. 4 (NPPI_INTER_CUBIC) if this value is zero (default: 0)

– type: int32_t

0 = NPPI_INTER_CUBIC
1 = NPPI_INTER_NN /**< Nearest neighbor␣

→˓filtering. */
2 = NPPI_INTER_LINEAR /**< Linear interpolation. */
4 = NPPI_INTER_CUBIC /**< Cubic interpolation. */
5 = NPPI_INTER_CUBIC2P_BSPLINE /**< Two-parameter cubic␣

→˓filter (B=1, C=0) */
6 = NPPI_INTER_CUBIC2P_CATMULLROM /**< Two-parameter cubic␣

→˓filter (B=0, C=1/2) */
7 = NPPI_INTER_CUBIC2P_B05C03, /**< Two-parameter cubic␣

→˓filter (B=1/2, C=3/10) */
8 = NPPI_INTER_SUPER /**< Super sampling. */

(continues on next page)

64 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

16 = NPPI_INTER_LANCZOS /**< Lanczos filtering. */
17 = NPPI_INTER_LANCZOS3_ADVANCED /**< Generic Lanczos filtering␣

→˓with order 3. */
(int)0x8000000 = NPPI_SMOOTH_EDGE /**< Smooth edge filtering.␣
→˓(0x8000000 = 134217728)*/

• out_channel_order: Host memory integer array describing how channel values are permutated (default: [])

– type: std::vector<int>

• pool: Pool to allocate the output message

– type: gxf::Handle<gxf::Allocator>

7.2.5 TensorRT

The tensor_rt extension provides the TensorRT inference codelet.

nvidia::holoscan::TensorRtInference

Codelet taking input tensors and feeding them into TensorRT for inference. Based on
nvidia::gxf::TensorRtInference, with the addition of the engine_cache_dir to be able to provide a
directory of engine files for multiple GPUs instead of a single one.

Parameters

• model_file_path: Path to ONNX model to be loaded

– type: std::string

• engine_cache_dir: Path to a directory containing cached generated engines to be serialized and loaded from

– type: std::string

• plugins_lib_namespace: Namespace used to register all the plugins in this library (default: "")

– type: std::string

• force_engine_update: Always update engine regard less of existing engine file. Such conversion may take
minutes (default: false)

– type: bool

• input_tensor_names: Names of input tensors in the order to be fed into the model

– type: std::vector<std::string>

• input_binding_names: Names of input bindings as in the model in the same order of what is provided in
input_tensor_names

– type: std::vector<std::string>

• output_tensor_names: Names of output tensors in the order to be retrieved from the model

– type: std::vector<std::string>

• output_binding_names: Names of output bindings in the model in the same order of of what is provided in
output_tensor_names

7.2. Holoscan SDK GXF Extensions 65

Clara Holoscan SDK User Guide, Release 0.3.0

– type: std::vector<std::string>

• pool: Allocator instance for output tensors

– type: gxf::Handle<gxf::Allocator>

• cuda_stream_pool: Instance of gxf::CudaStreamPool to allocate CUDA stream

– type: gxf::Handle<gxf::CudaStreamPool>

• max_workspace_size: Size of working space in bytes (default: 67108864 (64MB))

– type: int64_t

• dla_core: DLA Core to use. Fallback to GPU is always enabled. Default to use GPU only (optional)

– type: int64_t

• max_batch_size: Maximum possible batch size in case the first dimension is dynamic and used as batch size
(default: 1)

– type: int32_t

• enable_fp16_: Enable inference with FP16 and FP32 fallback (default: false)

– type: bool

• verbose: Enable verbose logging on console (default: false)

– type: bool

• relaxed_dimension_check: Ignore dimensions of 1 for input tensor dimension check (default: true)

– type: bool

• clock: Instance of clock for publish time (optional)

– type: gxf::Handle<gxf::Clock>

• rx: List of receivers to take input tensors

– type: std::vector<gxf::Handle<gxf::Receiver>>

• tx: Transmitter to publish output tensors

– type: gxf::Handle<gxf::Transmitter>

7.2.6 OpenGL

The opengl_renderer extension provides a codelet that displays a VideoBuffer, leveraging OpenGL/CUDA interop.

nvidia::holoscan::OpenGLRenderer

OpenGL Renderer Codelet.

66 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

• signal: Input Channel

– type: gxf::Handle<gxf::Receiver>

• width: Width of the rendering window

– type: unsigned int

• height: Height of the rendering window

– type: unsigned int

• window_close_scheduling_term: BooleanSchedulingTerm to stop the codelet from ticking after all mes-
sages are published

– type: gxf::Handle<gxf::BooleanSchedulingTerm>

7.2.7 Segmentation Post Processor

The segmentation_postprocessor extension provides a codelet that converts inference output to the highest-
probability class index, including support for sigmoid, softmax, and activations.

nvidia::holoscan::segmentation_postprocessor::Postprocessor

Segmentation Postprocessor codelet.

Parameters

• in: Input channel

– type: gxf::Handle<gxf::Receiver>

• in_tensor_name: Name of the input tensor (default: "")

– type: std::string

• network_output_type: Network output type (default: softmax)

– type: std::string

• out: Output channel

– type: gxf::Handle<gxf::Transmitter>

• data_format: Data format of network output (default: hwc)

– type: std::string

• allocator: Output Allocator

– type: gxf::Handle<gxf::Allocator>

7.2. Holoscan SDK GXF Extensions 67

Clara Holoscan SDK User Guide, Release 0.3.0

7.2.8 Segmentation Visualizer

The segmentation_visualizer extension provides an OpenGL renderer codelet that combines segmentation output
overlayed on video input, using CUDA/OpenGL interop.

nvidia::holoscan::segmentation_visualizer::Visualizer

OpenGL Segmentation Visualizer codelet.

Parameters

• image_in: Tensor input

– type: gxf::Handle<gxf::Receiver>

• image_width: Width of the input image (default: 1920)

– type: int32_t

• image_height: Height of the input image (default: 1080)

– type: int32_t

• class_index_in: Tensor input

– type: gxf::Handle<gxf::Receiver>

• class_index_width: Width of the segmentation class index tensor (default: 1920)

– type: int32_t

• class_index_height: Height of the segmentation class index tensor (default: 1080)

– type: int32_t

• class_color_lut: Overlay Image Segmentation Class Colormap

– type: std::vector<std::vector<float>>

• window_close_scheduling_term: BooleanSchedulingTerm to stop the codelet from ticking after all mes-
sages are published

– type: gxf::Handle<gxf::BooleanSchedulingTerm>

7.2.9 Custom LSTM Inference

The custom_lstm_inference extension provides LSTM (Long-Short Term Memory) stateful inference module using
TensorRT.

68 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::holoscan::custom_lstm_inference::TensorRtInference

Codelet, taking input tensors and feeding them into TensorRT for LSTM inference.

This implementation is based on nvidia::gxf::TensorRtInference. input_state_tensor_names and
output_state_tensor_names parameters are added to specify tensor names for states in LSTM model.

Parameters

• model_file_path: Path to ONNX model to be loaded

– type: std::string

• engine_cache_dir: Path to a directory containing cached generated engines to be serialized and loaded from

– type: std::string

• plugins_lib_namespace: Namespace used to register all the plugins in this library (default: "")

– type: std::string

• force_engine_update: Always update engine regard less of existing engine file. Such conversion may take
minutes (default: false)

– type: bool

• input_tensor_names: Names of input tensors in the order to be fed into the model

– type: std::vector<std::string>

• input_state_tensor_names: Names of input state tensors that are used internally by TensorRT

– type: std::vector<std::string>

• input_binding_names: Names of input bindings as in the model in the same order of what is provided in
input_tensor_names

– type: std::vector<std::string>

• output_tensor_names: Names of output tensors in the order to be retrieved from the model

– type: std::vector<std::string>

• input_state_tensor_names: Names of output state tensors that are used internally by TensorRT

– type: std::vector<std::string>

• output_binding_names: Names of output bindings in the model in the same order of of what is provided in
output_tensor_names

– type: std::vector<std::string>

• pool: Allocator instance for output tensors

– type: gxf::Handle<gxf::Allocator>

• cuda_stream_pool: Instance of gxf::CudaStreamPool to allocate CUDA stream

– type: gxf::Handle<gxf::CudaStreamPool>

• max_workspace_size: Size of working space in bytes (default: 67108864l (64MB))

– type: int64_t

• dla_core: DLA Core to use. Fallback to GPU is always enabled. Default to use GPU only (optional)

– type: int64_t

7.2. Holoscan SDK GXF Extensions 69

Clara Holoscan SDK User Guide, Release 0.3.0

• max_batch_size: Maximum possible batch size in case the first dimension is dynamic and used as batch size
(default: 1)

– type: int32_t

• enable_fp16_: Enable inference with FP16 and FP32 fallback (default: false)

– type: bool

• verbose: Enable verbose logging on console (default: false)

– type: bool

• relaxed_dimension_check: Ignore dimensions of 1 for input tensor dimension check (default: true)

– type: bool

• clock: Instance of clock for publish time (optional)

– type: gxf::Handle<gxf::Clock>

• rx: List of receivers to take input tensors

– type: std::vector<gxf::Handle<gxf::Receiver>>

• tx: Transmitter to publish output tensors

– type: gxf::Handle<gxf::Transmitter>

7.2.10 Visualizer Tool Tracking

The visualizer_tool_tracking extension provides a custom visualizer codelet that handles compositing, blending,
and visualization of tool labels, tips, and masks given the output tensors of the custom_lstm_inference.

nvidia::holoscan::visualizer_tool_tracking::Sink

Surgical Tool Tracking Viz codelet.

Parameters

• videoframe_vertex_shader_path: Path to vertex shader to be loaded

– type: std::string

• videoframe_fragment_shader_path: Path to fragment shader to be loaded

– type: std::string

• tooltip_vertex_shader_path: Path to vertex shader to be loaded

– type: std::string

• tooltip_fragment_shader_path: Path to fragment shader to be loaded

– type: std::string

• num_tool_classes: Number of different tool classes

– type: int32_t

• num_tool_pos_components: Number of components of the tool position vector (default: 2)

– type: int32_t

70 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

• tool_tip_colors: Color of the tool tips, a list of RGB values with components between 0 and 1 (default: 12
qualitative classes color scheme from colorbrewer2)

– type: std::vector<std::vector<float>>

• overlay_img_vertex_shader_path: Path to vertex shader to be loaded

– type: std::string

• overlay_img_fragment_shader_path: Path to fragment shader to be loaded

– type: std::string

• overlay_img_width: Width of overlay image

– type: int32_t

• overlay_img_height: Height of overlay image

– type: int32_t

• overlay_img_channels: Number of Overlay Image Channels

– type: int32_t

• overlay_img_layers: Number of Overlay Image Layers

– type: int32_t

• overlay_img_colors: Color of the image overlays, a list of RGB values with components between 0 and 1
(default: 12 qualitative classes color scheme from colorbrewer2)

– type: std::vector<std::vector<float>>

• tool_labels: List of tool names (default: [])

– type: std::vector<std::string>

• label_sans_font_path: Path for sans font to be loaded

– type: std::string

• label_sans_bold_font_path: Path for sans bold font to be loaded

– type: std::string

• in: List of input channels

– type: std::vector<gxf::Handle<gxf::Receiver>>

• in_tensor_names: Names of input tensors (default: "")

– type: std::vector<std::string>

• in_width: Width of the image (default: 640)

– type: int32_t

• in_height: Height of the image (default: 480)

– type: int32_t

• in_channels: Number of channels (default: 3)

– type: int16_t

• in_bytes_per_pixel: Number of bytes per pixel of the image (default: 1)

– type: uint8_t

• alpha_value: Alpha value that can be used when converting RGB888 to RGBA8888 (default: 255)

7.2. Holoscan SDK GXF Extensions 71

Clara Holoscan SDK User Guide, Release 0.3.0

– type: uint8_t

• pool: Pool to allocate the output message.

– type: gxf::Handle<gxf::Allocator>

• window_close_scheduling_term: BooleanSchedulingTerm to stop the codelet from ticking after all mes-
sages are published.

– type: gxf::Handle<gxf::BooleanSchedulingTerm>

7.2.11 Holoscan Test Mock

The mocks extension provides mock codelets that can be used for testing GXF applications.

nvidia::holoscan::mocks::VideoBufferMock

VideoBuffer Mock codelet. It creates RGB strips as an output message of gxf::VideoBuffer type to mimic the
output of AJA extension.

Parameters

• in_width: Width of the image (default: 640)

– type: int32_t

• in_height: Height of the image (default: 480)

– type: int32_t

• in_channels: Number of input channels (default: 3)

– type: int16_t

• in_bytes_per_pixel: Number of bytes per pixel of the image (default: 1)

– type: int8_t

• out_tensor_name: Name of the output tensor (default: "")

– type: std::string

• out: Output channel

– type: gxf::Handle<gxf::Transmitter>

• pool: Pool to allocate the output message

– type: gxf::Handle<gxf::Allocator>

72 Chapter 7. Clara Holoscan GXF Extensions

Clara Holoscan SDK User Guide, Release 0.3.0

7.2.12 Emergent

The emergent_source extension supports an Emergent Vision Technologies camera as the video source. The datas-
tream from this camera is transferred through Mellanox ConnectX SmartNIC using Rivermax SDK.

nvidia::holoscan::EmergentSource

Emergent Source codelet

Parameters

• signal: Output signal

– type: gxf::Handle<gxf::Transmitter>

• width: Width of the stream (default: 4200)

– type: uint32_t

• height: Height of the stream (default: 2160)

– type: uint32_t

• framerate: Framerate of the stream (default: 240)

– type: uint32_t

• rdma: Enable RDMA (default: false)

– type: bool

7.2.13 Bayer Demosaic

The bayer_demosaic extension performs color filter array (CFA) interpolation for 1-channel inputs of 8 or 16-bit
unsigned integer and outputs an RGB or RGBA image.

nvidia::holoscan::BayerDemosaic

Bayer Demosaic codelet

Parameters

• receiver: Input queue to component accepting gxf::Tensor or gxf::VideoBuffer

– type: gxf::Handle<gxf::Receiver>

• transmitter: Output queue of component for gxf::Tensor types

– type: gxf::Handle<gxf::Transmitter>

• in_tensor_name: Name of the expected input tensor (default: "")

– type: std::string

• out_tensor_name: Name of the output tensor generated by component (default: "")

– type: std::string

7.2. Holoscan SDK GXF Extensions 73

Clara Holoscan SDK User Guide, Release 0.3.0

• pool: Pool to allocate output message contents

– type: gxf::Handle<gxf::Allocator>

• cuda_stream_pool: Instance of gxf::CudaStreamPool to allocate CUDA streams

– type: gxf::Handle<gxf::CudaStreamPool>

• interpolation_mode: Interpolation model to be used for demosaicing (default: 0 (UNDEFINED)). For de-
tails on possible interpolation modes consult NPP documentation. Currently NPP only supports UNDEFINED as
interpolation mode

– type: int

• bayer_grid_pos: Bayer grid position (default: 2 (GBRG)). For details on possible Bayer grid position values
consult NPP documentation

– type: int

• generate_alpha: Boolean value indicating whether output image should be RGB (false) or RGBA (true)
(default: false)

– type: bool

• alpha_value: Alpha value desired at the output of the component when generate_alpha is set to true

– type: int

7.2.14 Holoviz Viewer

The holoviz_viewer extension provides a high-speed viewer (built on Vulkan SDK) to visualize RGB or RGBA
images.

nvidia::holoscan::HolovizViewer

Holoviz Viewer codelet

Parameters

• receiver: Input queue to component accepting gxf::Tensor

– type: gxf::Handle<gxf::Receiver>

• input_image_name: Name of the expected input tensor (default: "")

– type: std::string

• window_title: Title on window canvas (default: Holoviz Viewer)

– type: std::string

• display_name: Name of Display as shown with xrandr (default: DP-0)

– type: std::string

• width: Width of the stream (default: 2560)

– type: uint32_t

• height: Height of the stream (default: 1440)

– type: uint32_t

74 Chapter 7. Clara Holoscan GXF Extensions

https://docs.nvidia.com/cuda/npp/group__typedefs__npp.html#ga2b58ebd329141d560aa4367f1708f191
https://docs.nvidia.com/cuda/npp/group__typedefs__npp.html#ga5597309d6766fb2dffe155990d915ecb

Clara Holoscan SDK User Guide, Release 0.3.0

• framerate: Framerate of the stream (deafult: 240)

– type: uint32_t

• use_exclusive_display: Enable exclusive display (default: false)

– type: bool

7.2. Holoscan SDK GXF Extensions 75

Clara Holoscan SDK User Guide, Release 0.3.0

76 Chapter 7. Clara Holoscan GXF Extensions

CHAPTER

EIGHT

CLARA HOLOVIZ

8.1 Overview

Clara Holoviz is a SDK used by Clara Holoscan for visualizing data. Clara Holoviz composites real time streams of
frames with multiple different other layers like segmentation mask layers, geometry layers and GUI layers.

For maximum performance Clara Holoviz makes use of Vulkan, which is already installed as part of the Nvidia driver.

8.2 Concepts

Clara Holoviz uses the concept of the immediate mode design pattern for its API, inspired by the Dear ImGui library.
The difference to the retained mode, for which most APIs are designed for, is, that there are no objects created and
stored by the application. This makes it easy to quickly build and change an Clara Holoviz app.

8.3 Usage

The code below creates a window and displays an image.

namespace viz = clara::holoviz;

viz::Init("Holoviz Example");

viz::Begin();
viz::BeginImageLayer();
viz::ImageHost(width, height, viz::ImageFormat::R8G8B8A8_UNORM, image_data);
viz::EndLayer();
viz::End();

Result:

77

https://www.vulkan.org/
https://github.com/ocornut/imgui

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 8.1: Holoviz example app

8.4 Layers

The core entity of Clara Holoviz are layers. A layer is a two-dimensional image object, multiple layers are composited
to form the final output.

These layer types are supported by Clara HoloViz:

• image layer

• geometry layer

• GUI layer

Layers have opacity and priority. The priority determines the rendering order of the layers. Opacity is used to blend
transparent layers over other layers.

78 Chapter 8. Clara Holoviz

CHAPTER

NINE

VIDEO PIPELINE LATENCY TOOL

The Clara Developer Kits excel as a high-performance computing platform by combining high-bandwidth video I/O
components and the compute capabilities of an NVIDIA GPU to meet the needs of the most demanding video process-
ing and inference applications.

For many video processing applications located at the edge–especially those designed to augment medical instruments
and aid live medical procedures–minimizing the latency added between image capture and display, often referred to as
the end-to-end latency, is of the utmost importance.

While it is generally easy to measure the individual processing time of an isolated compute or inference algorithm by
simply measuring the time that it takes for a single frame (or a sequence of frames) to be processed, it is not always
so easy to measure the complete end-to-end latency when the video capture and display is incorporated as this usually
involves external capture hardware (e.g. cameras and other sensors) and displays.

In order to establish a baseline measurement of the minimal end-to-end latency that can be achieved with the Clara
Developer Kits and various video I/O hardware and software components, the Clara Holoscan SDK includes a sample
latency measurement tool.

9.1 Requirements

9.1.1 Hardware

The latency measurement tool requires the use of a Clara AGX Developer Kit in dGPU mode, and operates by having
an output component generate a sequence of known video frames that are then transferred back to an input component
using a physical loopback cable.

Testing the latency of any of the HDMI modes that output from the GPU requires a DisplayPort to HDMI adapter
or cable (see Example Configurations, below). Note that this cable must support the mode that is being tested — for
example, the UHD mode will only be available if the cable is advertised to support “4K Ultra HD (3840 x 2160) at 60
Hz”.

Testing the latency of an optional AJA Video Systems device requires a supported AJA SDI or HDMI capture device
(see AJA Video Systems for the list of supported devices), along with the HDMI or SDI cable that is required for the
configuration that is being tested (see Example Configurations, below).

79

Clara Holoscan SDK User Guide, Release 0.3.0

9.1.2 Software

The following additional software components are required and are installed either by the Clara Holoscan SDK instal-
lation or in the Installation steps below:

• CUDA 11.1 or newer (https://developer.nvidia.com/cuda-toolkit)

• CMake 3.10 or newer (https://cmake.org/)

• GLFW 3.2 or newer (https://www.glfw.org/)

• GStreamer 1.14 or newer (https://gstreamer.freedesktop.org/)

• GTK 3.22 or newer (https://www.gtk.org/)

• pkg-config 0.29 or newer (https://www.freedesktop.org/wiki/Software/pkg-config/)

The following is optional to enable DeepStream support (for RDMA support from the GStreamer Producer):

• DeepStream 5.1 or newer (https://developer.nvidia.com/deepstream-sdk)

The following is optional to enable AJA Video Systems support:

• AJA NTV2 SDK 16.1 or newer (See AJA Video Systems for details on installing the AJA NTV2 SDK and drivers).

9.2 Installation

9.2.1 Downloading the Source

The Video Pipeline Latency Tool can be found in the loopback-latency folder of the Clara Holoscan Performance
Tools GitHub repository, which is cloned with the following:

$ git clone -b v0.2.0 https://github.com/NVIDIA/clara-holoscan-perf-tools.git

9.2.2 Installing Software Requirements

CUDA is installed automatically during the dGPU setup. The rest of the software requirements are installed with the
following:

$ sudo apt-get update && sudo apt-get install -y \
cmake \
libglfw3-dev \
libgstreamer1.0-dev \
libgstreamer-plugins-base1.0-dev \
libgtk-3-dev \
pkg-config

80 Chapter 9. Video Pipeline Latency Tool

https://developer.nvidia.com/cuda-toolkit
https://cmake.org/
https://www.glfw.org/
https://gstreamer.freedesktop.org/
https://www.gtk.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://developer.nvidia.com/deepstream-sdk
https://github.com/NVIDIA/clara-holoscan-perf-tools
https://github.com/NVIDIA/clara-holoscan-perf-tools

Clara Holoscan SDK User Guide, Release 0.3.0

9.2.3 Building

Start by creating a build folder within the loopback-latency directory:

$ cd clara-holoscan-perf-tools/loopback-latency
$ mkdir build
$ cd build

CMake is then used to build the tool and output the loopback-latency binary to the current directory:

$ cmake ..
$ make -j

Note: If the error No CMAKE_CUDA_COMPILER could be found is encountered, make sure that the nvcc executable
can be found by adding the CUDA runtime location to your PATH variable:

$ export PATH=$PATH:/usr/local/cuda/bin

Enabling DeepStream Support

DeepStream support enables RDMA when using the GStreamer Producer. To enable DeepStream support, the
DEEPSTREAM_SDK path must be appended to the cmake command with the location of the DeepStream SDK. For
example, when building against DeepStream 5.1, replace the cmake command above with the following:

$ cmake -DDEEPSTREAM_SDK=/opt/nvidia/deepstream/deepstream-5.1 ..

Enabling AJA Support

To enable AJA support, the NTV2_SDK path must be appended to the cmake command with the location of the NTV2
SDK in which both the headers and compiled libraries (i.e. libajantv2) exist. For example, if the NTV2 SDK is in
/home/nvidia/ntv2, replace the cmake command above with the following:

$ cmake -DNTV2_SDK=/home/nvidia/ntv2 ..

9.3 Example Configurations

Note: When testing a configuration that outputs from the GPU, the tool currently only supports a display-less environ-
ment in which the loopback cable is the only cable attached to the GPU. Because of this, any tests that output from the
GPU must be performed using a remote connection such as SSH from another machine. When this is the case, make
sure that the DISPLAY environment variable is set to the ID of the X11 display you are using (e.g. in ~/.bashrc):

export DISPLAY=:0

It is also required that the system is logged into the desktop and that the system does not sleep or lock when the latency
tool is being used. This can be done by temporarily attaching a display to the system to do the following:

1. Open the Ubuntu System Settings

9.3. Example Configurations 81

Clara Holoscan SDK User Guide, Release 0.3.0

2. Open User Accounts, click Unlock at the top right, and enable Automatic Login:

3. Return to All Settings (top left), open Brightness & Lock, and disable sleep and lock as pictured:

Make sure that the display is detached again after making these changes.

See the Producers section for more details about GPU-based producers (i.e. OpenGL and GStreamer).

82 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

9.3.1 GPU To Onboard HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to the onboard HDMI capture card.
This configuration supports the OpenGL and GStreamer producers, and the V4L2 and GStreamer consumers.

Fig. 9.1: DP-to-HDMI Cable Between GPU and Onboard HDMI Capture Card

For example, an OpenGL producer to V4L2 consumer can be measured using this configuration and the following
command:

$./loopback-latency -p gl -c v4l2

9.3. Example Configurations 83

Clara Holoscan SDK User Guide, Release 0.3.0

9.3.2 GPU to AJA HDMI Capture Card

In this configuration, a DisplayPort to HDMI cable is connected from the GPU to an HDMI input channel on an AJA
capture card. This configuration supports the OpenGL and GStreamer producers, and the AJA consumer using an AJA
HDMI capture card.

Fig. 9.2: DP-to-HDMI Cable Between GPU and AJA KONA HDMI Capture Card (Channel 1)

For example, an OpenGL producer to AJA consumer can be measured using this configuration and the following
command:

$./loopback-latency -p gl -c aja -c.device 0 -c.channel 1

9.3.3 AJA SDI to AJA SDI

In this configuration, an SDI cable is attached between either two channels on the same device or between two separate
devices (pictured is a loopback between two channels of a single device). This configuration must use the AJA producer
and AJA consumer.

For example, the following can be used to measure the pictured configuration using a single device with a loopback
between channels 1 and 2. Note that the tool defaults to use channel 1 for the producer and channel 2 for the consumer,
so the channel parameters can be omitted.

$./loopback-latency -p aja -c aja

If instead there are two AJA devices being connected, the following can be used to measure a configuration in which
they are both connected to channel 1:

84 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 9.3: SDI Cable Between Channel 1 and 2 of a Single AJA Corvid 44 Capture Card

$./loopback-latency -p aja -p.device 0 -p.channel 1 -c aja -c.device 1 -c.
channel 1

9.4 Operation Overview

The latency measurement tool operates by having a producer component generate a sequence of known video frames
that are output and then transferred back to an input consumer component using a physical loopback cable. Timestamps
are compared throughout the life of the frame to measure the overall latency that the frame sees during this process,
and these results are summarized when all of the frames have been received and the measurement completes. See
Producers, Consumers, and Example Configurations for more details.

9.4.1 Frame Measurements

Each frame that is generated by the tool goes through the following steps in order, each of which has its time measured
and then reported when all frames complete.

1. CUDA Processing

In order to simulate a real-world GPU workload, the tool first runs a CUDA kernel for a user-specified amount
of loops (defaults to zero). This step is described below in Simulating GPU Workload.

2. Render on GPU

After optionally simulating a GPU workload, every producer then generates its frames using the GPU, either
by a common CUDA kernel or by another method that is available to the producer’s API (such as the OpenGL

9.4. Operation Overview 85

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 9.4: Latency Tool Frame Lifespan (RDMA Disabled)

producer).

This step is expected to be very fast (<100us), but higher times may be seen if overall system load is high.

3. Copy To Host

Once the frame has been generated on the GPU, it may be necessary to copy the frame to host memory in order
for the frame to be output by the producer component (for example, an AJA producer with RDMA disabled).

If a host copy is not required (i.e. RDMA is enabled for the producer), this time should be zero.

4. Write to HW

Some producer components require frames to be copied to peripheral memory before they can be output (for
example, an AJA producer requires frames to be copied to the external frame stores on the AJA device). This
copy may originate from host memory if RDMA is disabled for the producer, or from GPU memory if RDMA
is enabled.

If this copy is not required, e.g. the producer outputs directly from the GPU, this time should be zero.

5. VSync Wait

Once the frame is ready to be output, the producer hardware must wait for the next VSync interval before the
frame can be output.

The sum of this VSync wait and all of the preceding steps is expected to be near a multiple of the frame interval.
For example, if the frame rate is 60Hz then the sum of the times for steps 1 through 5 should be near a multiple
of 16666us.

6. Wire Time

The wire time is the amount of time that it takes for the frame to transfer across the physical loopback cable. This
should be near the time for a single frame interval.

7. Read From HW

Once the frame has been transferred across the wire and is available to the consumer, some consumer compo-
nents require frames to be copied from peripheral memory into host (RDMA disabled) or GPU (RDMA enable)
memory. For example, an AJA consumer requires frames to be copied from the external frame store of the AJA
device.

If this copy is not required, e.g. the consumer component writes received frames directly to host/GPU memory,
this time should be zero.

86 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

8. Copy to GPU

If the consumer received the frame into host memory, the final step required for processing the frame with the
GPU is to copy the frame into GPU memory.

If RDMA is enabled for the consumer and the frame was previously written directly to GPU memory, this time
should be zero.

Note that if RDMA is enabled on the producer and consumer sides then the GPU/host copy steps above, 3 and 8
respectively, are effectively removed since RDMA will copy directly between the video HW and the GPU. The following
shows the same diagram as above but with RDMA enabled for both the producer and consumer.

Fig. 9.5: Latency Tool Frame Lifespan (RDMA Enabled)

9.4.2 Interpreting The Results

The following shows example output of the above measurements from the tool when testing a 4K stream at 60Hz from
an AJA producer to an AJA consumer, both with RDMA disabled, and no GPU/CUDA workload simulation. Note that
all time values are given in microseconds.

$./loopback-latency -p aja -p.rdma 0 -c aja -c.rdma 0 -f 4k

9.4. Operation Overview 87

Clara Holoscan SDK User Guide, Release 0.3.0

While this tool measures the producer times followed by the consumer times, the expectation for real-world video
processing applications is that this order would be reversed. That is to say, the expectation for a real-world application
is that it would capture, process, and output frames in the following order (with the component responsible for measuring
that time within this tool given in parentheses):

1. Read from HW (consumer)

2. Copy to GPU (consumer)

3. Process Frame (producer)

4. Render Results to GPU (producer)

5. Copy to Host (producer)

6. Write to HW (producer)

Fig. 9.6: Real Application Frame Lifespan

To illustrate this, the tool sums and displays the total producer and consumer times, then provides the Estimated
Application Times as the total sum of all of these steps (i.e. steps 1 through 6, above).

(continued from above)

88 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

Once a real-world application captures, processes, and outputs a frame, it would still be required that this final output
waits for the next VSync interval before it is actually sent across the physical wire to the display hardware. Using this
assumption, the tool then estimates one final value for the Final Estimated Latencies by doing the following:

1. Take the Estimated Application Time (from above)

2. Round it up to the next VSync interval

3. Add the physical wire time (i.e. a frame interval)

Fig. 9.7: Final Estimated Latency with VSync and Physical Wire Time

Continuing this example using a frame interval of 16666us (60Hz), this means that the average Final Estimated La-
tency is determined by:

1. Average application time = 26772

2. Round up to next VSync interval = 33332

3. Add physical wire time (+16666) = 49998

These times are also reported as a multiple of frame intervals.

(continued from above)

9.4. Operation Overview 89

Clara Holoscan SDK User Guide, Release 0.3.0

Using this example, we should then expect that the total end-to-end latency that is seen by running this pipeline using
these components and configuration is 3 frame intervals (49998us).

9.4.3 Reducing Latency With RMDA

The previous example uses an AJA producer and consumer for a 4K @ 60Hz stream, however RDMA was disabled
for both components. Because of this, the additional copies between the GPU and host memory added more than
10000us of latency to the pipeline, causing the application to exceed one frame interval of processing time per frame
and therefore a total frame latency of 3 frames. If RDMA is enabled, these GPU and host copies can be avoided so the
processing latency is reduced by more than 10000us. More importantly, however, this also allows the total processing
time to fit within a single frame interval so that the total end-to-end latency can be reduced to just 2 frames.

Fig. 9.8: Reducing Latency With RDMA

The following shows the above example repeated with RDMA enabled.

$./loopback-latency -p aja -p.rdma 1 -c aja -c.rdma 1 -f 4k

90 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

9.4. Operation Overview 91

Clara Holoscan SDK User Guide, Release 0.3.0

9.4.4 Simulating GPU Workload

By default the tool measures what is essentially a pass-through video pipeline; that is, no processing of the video frames
is performed by the system. While this is useful for measuring the minimum latency that can be achieved by the video
input and output components, it’s not very indicative of a real-world use case in which the GPU is used for compute-
intensive processing operations on the video frames between the input and output — for example, an object detection
algorithm that applies an overlay to the output frames.

While it may be relatively simple to measure the runtime latency of the processing algorithms that are to be applied
to the video frames — by simply measuring the runtime of running the algorithm on a single or stream of frames —
this may not be indicative of the effects that such processing might have on the overall system load, which may further
increase the latency of the video input and output components.

In order to estimate the total latency when an additional GPU workload is added to the system, the latency tool has an
-s {count} option that can be used to run an arbitrary CUDA loop the specified number of times before the producer
actually generates a frame. The expected usage for this option is as follows:

1. The per-frame runtime of the actual GPU processing algorithm is measured outside of the latency measurement
tool.

2. The latency tool is repeatedly run with just the -s {count} option, adjusting the {count} parameter until the
time that it takes to run the simulated loop approximately matches the actual processing time that was measured
in the previous step.

$./loopback-latency -s 2000

3. The latency tool is run with the full producer (-p) and consumer (-c) options used for the video I/O, along with
the -s {count} option using the loop count that was determined in the previous step.

Note: The following example shows that approximately half of the frames received by the consumer
were duplicate/repeated frames. This is due to the fact that the additional processing latency of the
producer causes it to exceed a single frame interval, and so the producer is only able to output a new
frame every second frame interval.

$./loopback-latency -p aja -c aja -s 2000

92 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

9.4. Operation Overview 93

Clara Holoscan SDK User Guide, Release 0.3.0

Tip: To get the most accurate estimation of the latency that would be seen by a real world application, the best thing
to do would be to run the actual frame processing algorithm used by the application during the latency measurement.
This could be done by modifying the SimulateProcessing function in the latency tool source code.

9.5 Graphing Results

The latency tool includes a -o {file} option that can be used to output a CSV file with all of the measured times for
every frame. This file can then be used with the graph_results.py script that is included with the tool in order to
generate a graph of the measurements.

For example, if the latencies are measured using:

$./loopback-latency -p aja -c aja -o latencies.csv

The graph can then be generated using the following, which will open a window on the desktop to display the graph:

$./graph_results.py --file latencies.csv

The graph can also be output to a PNG image file instead of opening a window on the desktop by providing the --png
{file} option to the script. The following shows an example graph for an AJA to AJA measurement of a 4K @ 60Hz
stream with RDMA disabled (as shown as an example in Interpreting The Results, above).

94 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

Note that this is showing the times for 600 frames, from left to right, with the life of each frame beginning at the bottom
and ending at the top. The dotted black lines represent frame VSync intervals (every 16666us).

The above example graphs the times directly as measured by the tool. To instead generate a graph for the Final Esti-
mated Latencies as described above in Interpreting The Results, the --estimate flag can be provided to the script.
As is done by the latency tool when it reports the estimated latencies, this reorders the producer and consumer steps
then adds a VSync interval followed by the physical wire latency.

The following graphs the Final Estimated Latencies using the same data file as the graph above. Note that this shows
a total of 3 frames of expected latency.

9.5. Graphing Results 95

Clara Holoscan SDK User Guide, Release 0.3.0

For the sake of comparison, the following graph shows the same test but with RDMA enabled. Note that the Copy To
GPU and Copy To SYS times are now zero due to the use of RDMA, and this now shows just 2 frames of expected
latency.

96 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

As a final example, the following graph duplicates the above test with RDMA enabled, but adds roughly 34ms of
additional GPU processing time (-s 1000) to the pipeline to produce a final estimated latency of 4 frames.

9.5. Graphing Results 97

Clara Holoscan SDK User Guide, Release 0.3.0

9.6 Producers

There are currently 3 producer types supported by the Holoscan latency tool. See the following sections for a description
of each supported producer.

98 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

9.6.1 OpenGL GPU Direct Rendering (HDMI)

This producer (gl) uses OpenGL to render frames directly on the GPU for output via the HDMI connectors on the
GPU. This is currently expected to be the lowest latency path for GPU video output.

OpenGL Producer Notes:

• The video generated by this producer is rendered full-screen to the primary display. As of this version, this
component has only been tested in a display-less environment in which the loop-back HDMI cable is the only
cable attached to the GPU (and thus is the primary display). It may also be required to use the xrandr tool to
configure the HDMI output — the tool will provide the xrandr commands needed if this is the case.

• Since OpenGL renders directly to the GPU, the p.rdma flag is not supported and RDMA is always considered
to be enabled for this producer.

9.6.2 GStreamer GPU Rendering (HDMI)

This producer (gst) uses the nveglglessink GStreamer component that is included with Holopack in order to render
frames that originate from a GStreamer pipeline to the HDMI connectors on the GPU.

GStreamer Producer Notes:

• The tool must be built with DeepStream support in order for this producer to support RDMA (see Enabling
DeepStream Support for details).

• The video generated by this producer is rendered full-screen to the primary display. As of this version, this
component has only been tested in a display-less environment in which the loop-back HDMI cable is the only
cable attached to the GPU (and thus is the primary display). It may also be required to use the xrandr tool to
configure the HDMI output — the tool will provide the xrandr commands needed if this is the case.

• Since the output of the generated frames is handled internally by the nveglglessink plugin, the timing of
when the frames are output from the GPU are not known. Because of this, the Wire Time that is reported by this
producer includes all of the time that the frame spends between being passed to the nveglglessink and when
it is finally received by the consumer.

9.6.3 AJA Video Systems (SDI)

This producer (aja) outputs video frames from an AJA Video Systems device that supports video playback.

AJA Producer Notes:

• The latency tool must be built with AJA Video Systems support in order for this producer to be available (see
Building for details).

• The following parameters can be used to configure the AJA device and channel that are used to output the frames:

-p.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-p.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies NTV2_CHANNEL_1). Defaults
to 1.

• The p.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the producer. If RDMA is to be
used, the AJA drivers loaded on the system must also support RDMA.

• The only AJA device that have currently been verified to work with this producer is the Corvid 44 12G BNC
(SDI).

9.6. Producers 99

https://www.aja.com/products/corvid-44-12g-bnc

Clara Holoscan SDK User Guide, Release 0.3.0

9.7 Consumers

There are currently 3 consumer types supported by the Holoscan latency tool. See the following sections for a descrip-
tion of each supported consumer.

9.7.1 V4L2 (Onboard HDMI Capture Card)

This consumer (v4l2) uses the V4L2 API directly in order to capture frames using the HDMI capture card that is
onboard the Clara Developer Kit.

V4L2 Consumer Notes:

• The onboard HDMI capture card is locked to a specific frame resolution and and frame rate (1080p @ 60Hz),
and so 1080 is the only supported format when using this consumer.

• The -c.device {device} parameter can be used to specify the path to the device that is being used to capture
the frames (defaults to /dev/video0).

• The V4L2 API does not support RDMA, and so the c.rdma option is ignored.

9.7.2 GStreamer (Onboard HDMI Capture Card)

This consumer (gst) also captures frames from the onboard HDMI capture card, but uses the v4l2src GStreamer
plugin that wraps the V4L2 API to support capturing frames for using within a GStreamer pipeline.

GStreamer Consumer Notes:

• The onboard HDMI capture card is locked to a specific frame resolution and and frame rate (1080p @ 60Hz),
and so 1080 is the only supported format when using this consumer.

• The -c.device {device} parameter can be used to specify the path to the device that is being used to capture
the frames (defaults to /dev/video0).

• The v4l2src GStreamer plugin does not support RDMA, and so the c.rdma option is ignored.

9.7.3 AJA Video Systems (SDI and HDMI)

This consumer (aja) captures video frames from an AJA Video Systems device that supports video capture. This can
be either an SDI or an HDMI video capture card.

AJA Consumer Notes:

• The latency tool must be built with AJA Video Systems support in order for this producer to be available (see
Building for details).

• The following parameters can be used to configure the AJA device and channel that are used to capture the
frames:

-c.device {index}

Integer specifying the device index (i.e. 0 or 1). Defaults to 0.

-c.channel {channel}

Integer specifying the channel number, starting at 1 (i.e. 1 specifies NTV2_CHANNEL_1). Defaults
to 2.

• The c.rdma flag can be used to enable (1) or disable (0) the use of RDMA with the consumer. If RDMA is to
be used, the AJA drivers loaded on the system must also support RDMA.

100 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

• The only AJA devices that have currently been verified to work with this consumer are the KONA HDMI (for
HDMI) and Corvid 44 12G BNC (for SDI).

9.8 Troubleshooting

If any of the loopback-latency commands described above fail with errors, the following steps may help resolve the
issue.

1. Problem: The following error is output:

ERROR: Failed to get a handle to the display (is the DISPLAY environment variable␣
→˓set?)

Solution: Ensure that the DISPLAY environment variable is set with the ID of the X11 display you are using;
e.g. for display ID 0:

$ export DISPLAY=:0

If the error persists, try changing the display ID; e.g. replacing 0 with 1:

$ export DISPLAY=:1

It might also be convenient to set this variable in your ~/.bashrc file so that it is set automatically whenever
you login.

2. Problem: An error like the following is output:

ERROR: The requested format (1920x1080 @ 60Hz) does not match
the current display mode (1024x768 @ 60Hz)
Please set the display mode with the xrandr tool using
the following comand:

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60

But using the xrandr command provided produces an error:

$ xrandr --output DP-5 --mode 1920x1080 --panning 1920x1080 --rate 60
xrandr: cannot find mode 1920x1080

Solution: Try the following:

1. Ensure that no other displays are connected to the GPU.

2. Check the output of an xrandr command to see that the requested format is supported. The following shows
an example of what the onboard HDMI capture card should support. Note that each row of the supported
modes shows the resolution on the left followed by all of the supported frame rates for that resolution to the
right.

$ xrandr
Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)
DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 disconnected (normal left inverted right x axis y axis)
DP-3 disconnected (normal left inverted right x axis y axis)
DP-4 disconnected (normal left inverted right x axis y axis)

(continues on next page)

9.8. Troubleshooting 101

https://www.aja.com/products/kona-hdmi
https://www.aja.com/products/corvid-44-12g-bnc

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

DP-5 connected primary 1920x1080+0+0 (normal left inverted right x axis y axis)␣
→˓1872mm x 1053mm

1920x1080 60.00*+ 59.94 50.00 29.97 25.00 23.98
1680x1050 59.95
1600x900 60.00
1440x900 59.89
1366x768 59.79
1280x1024 75.02 60.02
1280x800 59.81
1280x720 60.00 59.94 50.00
1152x864 75.00
1024x768 75.03 70.07 60.00
800x600 75.00 72.19 60.32
720x576 50.00
720x480 59.94
640x480 75.00 72.81 59.94

DP-6 disconnected (normal left inverted right x axis y axis)
DP-7 disconnected (normal left inverted right x axis y axis)
USB-C-0 disconnected (normal left inverted right x axis y axis)

3. If a UHD or 4K mode is being requested, ensure that the DisplayPort to HDMI cable that is being used
supports that mode.

4. If the xrandr output still does not show the mode that is being requested but it should be supported by the
cable and capture device, try rebooting the device.

3. Problem: One of the following errors is output:

ERROR: Select timeout on /dev/video0

ERROR: Failed to get the monitor mode (is the display cable attached?)

ERROR: Could not find frame color (0,0,0) in producer records.

These errors mean that either the capture device is not receiving frames, or the frames are empty (the producer
will never output black frames, (0,0,0)).

Solution: Check the output of xrandr to ensure that the loopback cable is connected and the capture device
is recognized as a display. If the following is output, showing no displays attached, this could mean that the
loopback cable is either not connected properly or is faulty. Try connecting the cable again and/or replacing the
cable.

$ xrandr
Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x 32767
DP-0 disconnected (normal left inverted right x axis y axis)
DP-1 disconnected (normal left inverted right x axis y axis)
DP-2 disconnected (normal left inverted right x axis y axis)
DP-3 disconnected (normal left inverted right x axis y axis)
DP-4 disconnected (normal left inverted right x axis y axis)
DP-5 disconnected primary 1920x1080+0+0 (normal left inverted right x axis y axis)␣
→˓0mm x 0mm
DP-6 disconnected (normal left inverted right x axis y axis)
DP-7 disconnected (normal left inverted right x axis y axis)

102 Chapter 9. Video Pipeline Latency Tool

Clara Holoscan SDK User Guide, Release 0.3.0

4. Problem: An error like the following is output:

ERROR: Could not find frame color (27,28,26) in producer records.

Colors near this particular value (27,28,26) are displayed on the Ubuntu lock screen, which prevents the latency
tool from rendering frames properly. Note that the color value may differ slightly from (27,28,26).

Solution:

Follow the steps provided in the note at the top of the Example Configurations section to enable automatic login
and disable the Ubuntu lock screen.

9.8. Troubleshooting 103

Clara Holoscan SDK User Guide, Release 0.3.0

104 Chapter 9. Video Pipeline Latency Tool

CHAPTER

TEN

NGC CONTAINERS

In addition to the samples and packages that are installed locally as part of the Clara Holoscan SDK, containerized
samples are also provided via the NVIDIA GPU Cloud (NGC).

In order to access the Clara Holoscan containers, you must first create an account and login to NGC via https://ngc.
nvidia.com/signin. Once logged into NGC, the Catalog will provide access to all of the NVIDIA-provided containers,
models, and other resources. In order to narrow this down to display just the containers provided as part of Clara
Holoscan, the Clara Holoscan label can be used as a search query by typing label: Clara Holoscan into the
search bar, or you can find containers by looking through the Clara Holoscan collections link:

Clara Holoscan Collection on NGC

To pull these Docker images to your system, generate an API key and set up the NGC CLI via the instructions at
https://ngc.nvidia.com/setup.

The Clara Holoscan containers that are posted to NGC may be updated separately from the Clara Holoscan SDK
releases, and so these containers may not be documented here. Please refer to the description page for the individual
containers on NGC for any additional documentation related to these containers.

10.1 ARM Container

Clara Holoscan Sample Applications container is available for Clara developer kits.

10.2 x86 Container

Beginning with SDK v0.3, an x86_64 version of the Clara Holoscan Sample Applications container is available as
well.
The main requirement for this version of the container is the Ubuntu 20.04 operating system, and the container requires
a Turing or Ampere GPU.

We recommend specifically either of these GPUs:

• NVIDIA RTX 6000

• NVIDIA RTX A6000

105

https://ngc.nvidia.com/signin
https://ngc.nvidia.com/signin
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/collections/clara_holoscan
https://ngc.nvidia.com/setup
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/clara_holoscan_sample_runtime
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/containers/clara_holoscan_sample_runtime

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 10.1: NGC Catalog

106 Chapter 10. NGC Containers

CHAPTER

ELEVEN

RELEVANT TECHNOLOGIES

Clara Holoscan accelerates streaming AI applications by leveraging both hardware and software. On the software
side, the Clara Holoscan SDK 0.3.0 relies on multiple core technologies to achieve low latency and high throughput,
including:

11.1 Graph Execution Framework (GXF)

Holoscan GXF applications are built as compute graphs, based on GXF. This design provides modularity at the
application level since existing entities can be swapped or updated without needing to recompile any extensions or
application.

Those are the key terms used throughout this guide:

• Each node in the graph is known as an entity

• Each edge in the graph is known as a connection

• Each entity is a collection of components

• Each component performs a specific set of subtasks in that entity

• The implementation of a component’s task is known as a codelet

• Codelets are grouped in extensions

Similarly, the componentization of the entity itself allows for even more isolated changes. For example, if in an entity
we have an input, an output, and a compute component, we can update the compute component without changing the
input and output.

At its core, GXF provides a very thin API with a plug-in model to load in custom extensions. Applications built on top
of GXF are composed of components. The primary component is a Codelet that provides an interface for start(),
tick(), and stop() functions. Configuration parameters are bound within the registerInterface() function.

In addition to the Codelet class, there are several others providing the underpinnings of GXF:

• Scheduler and Scheduling Terms: components that determine how and when the tick() of a Codelet executes.
This can be single or multithreaded, support conditional execution, asynchronous scheduling, and other custom
behavior.

• Memory Allocator: provides a system for up-front allocating a large contiguous memory pool and then re-using
regions as needed. Memory can be pinned to the device (enabling zero-copy between Codelets when messages
are not modified) or host or customized for other potential behavior.

• Receivers, Transmitters, and Message Router: a message passing system between Codelets that supports
zero-copy.

107

Clara Holoscan SDK User Guide, Release 0.3.0

• Tensor: the common message type is a tensor. It provides a simple abstraction for numeric data that can be
allocated, serialized, sent between Codelets, etc. Tensors can be rank 1 to 7 supporting a variety of common data
types like arrays, vectors, matrices, multi-channel images, video, regularly sampled time-series data, and higher
dimensional constructs popular with deep learning flows.

• Parameters: configuration variables that specify constants used by the Codelet loaded from the application yaml
file modifiable without recompiling.

11.1.1 GXF Entities by Example

Let us look at an example of a Holoscan entity to try to understand its general anatomy. As an example let’s start with
the entity definition for an image format converter entity named format_converter_entity as shown below.

Listing 11.1: An example GXF Application YAML snippet

1 %YAML 1.2
2 ---
3 # other entities declared
4 ---
5 name: format_converter_entity
6 components:
7 - name: in_tensor
8 type: nvidia::gxf::DoubleBufferReceiver
9 - type: nvidia::gxf::MessageAvailableSchedulingTerm

10 parameters:
11 receiver: in_tensor
12 min_size: 1
13 - name: out_tensor
14 type: nvidia::gxf::DoubleBufferTransmitter
15 - type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
16 parameters:
17 transmitter: out_tensor
18 min_size: 1
19 - name: pool
20 type: nvidia::gxf::BlockMemoryPool
21 parameters:
22 storage_type: 1
23 block_size: 4919040 # 854 * 480 * 3 (channel) * 4 (bytes per pixel)
24 num_blocks: 2
25 - name: format_converter_component
26 type: nvidia::holoscan::formatconverter::FormatConverter
27 parameters:
28 in: in_tensor
29 out: out_tensor
30 out_tensor_name: source_video
31 out_dtype: "float32"
32 scale_min: 0.0
33 scale_max: 255.0
34 pool: pool
35 ---
36 # other entities declared
37 ---
38 components:

(continues on next page)

108 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

39 - name: input_connection
40 type: nvidia::gxf::Connection
41 parameters:
42 source: upstream_entity/output
43 target: format_converter/in_tensor
44 ---
45 components:
46 - name: output_connection
47 type: nvidia::gxf::Connection
48 parameters:
49 source: format_converter/out_tensor
50 target: downstream_entity/input
51 ---
52 name: scheduler
53 components:
54 - type: nvidia::gxf::GreedyScheduler

Above:

1. The entity format_converter_entity receives a message in its in_tensor message from an upstream entity
upstream_entity as declared in the input_connection.

2. The received message is passed to the format_converter_component component to convert the tensor element
precision from uint8 to float32 and scale any input in the [0, 255] intensity range.

3. The format_converter_component component finally places the result in the out_tensor message so that
its result is made available to a downstream entity (downstream_ent as declared in output_connection).

4. The Connection components tie the inputs and outputs of various components together, in
the above case upstream_entity/output -> format_converter_entity/in_tensor and
format_converter_entity/out_tensor -> downstream_entity/input.

5. The scheduler entity declares a GreedyScheduler “system component” which orchestrates the execution
of the entities declared in the graph. In the specific case of GreedyScheduler entities are scheduled to run
exclusively, where no more than one entity can run at any given time.

The YAML snippet above can be visually represented as follows.

Fig. 11.1: Arrangement of components and entities in a Holoscan application

In the image, as in the YAML, you will notice the use of MessageAvailableSchedulingTerm,
DownstreamReceptiveSchedulingTerm, and BlockMemoryPool. These are components that play a “supporting”
role to in_tensor, out_tensor, and format_converter_component components respectively. Specifically:

11.1. Graph Execution Framework (GXF) 109

Clara Holoscan SDK User Guide, Release 0.3.0

• MessageAvailableSchedulingTerm is a component that takes a Receiver`` (in this case Double-
BufferReceivernamedin_tensor) and alerts the graph Executorthat a message is available.
This alert triggersformat_converter_component`.

• DownstreamReceptiveSchedulingTerm is a component that takes a Transmitter (in this case
DoubleBufferTransmitter named out_tensor) and alerts the graph Executor that a message has been
placed on the output.

• BlockMemoryPool provides two blocks of almost 5MB allocated on the GPU device and is used by
format_converted_ent to allocate the output tensor where the converted data will be placed within the format
converted component.

Together these components allow the entity to perform a specific function and coordinate communication with other
entities in the graph via the declared scheduler.

More generally, an entity can be thought of as a collection of components where components can be passed to one
another to perform specific subtasks (e.g. event triggering or message notification, format conversion, memory alloca-
tion), and an application as a graph of entities.

The scheduler is a component of type nvidia::gxf::System which orchestrates the execution components in each
entity at application runtime based on triggering rules.

11.1.2 Data Flow and Triggering Rules

Entities communicate with one another via messages which may contain one or more payloads. Messages are
passed and received via a component of type nvidia::gxf::Queue from which both nvidia::gxf::Receiver
and nvidia::gxf::Transmitter are derived. Every entity that receives and transmits messages has at least one
receiver and one transmitter queue.

Holoscan uses the nvidia::gxf::SchedulingTerm component to coordinate data access and component orchestra-
tion for a Scheduler which invokes execution through the tick() function in each Codelet.

Tip: A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s
ready for execution.

In the above example, we used a MessageAvailableSchedulingTerm to trigger the execution of the components
waiting for data from in_tensor receiver queue, namely format_converter_component.

Listing 11.2: MessageAvailableSchedulingTerm

1 - type: nvidia::gxf::MessageAvailableSchedulingTerm
2 parameters:
3 receiver: in_tensor
4 min_size: 1

Similarly, DownStreamReceptiveSchedulingTerm checks whether the out_tensor transmitter queue has at least
one outgoing message in it. If there are one or more outgoing messages, DownStreamReceptiveSchedulingTerm
will notify the scheduler which in turn attempts to place the message in the receiver queue of a downstream entity. If,
however, the downstream entity has a full receiver queue, the message is held in the out_tensor queue as a means to
handle back-pressure.

Listing 11.3: DownstreamReceptiveSchedulingTerm

1 - type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
2 parameters:

(continues on next page)

110 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

3 transmitter: out_tensor
4 min_size: 1

If we were to draw the entity in Fig. 11.1 in greater detail it would look something like the following.

Fig. 11.2: Receive and transmit Queues and SchedulingTerms in entities.

Up to this point, we have covered the “entity component system” at a high level and showed the functional parts of an
entity, namely, the messaging queues and the scheduling terms that support the execution of components in the entity.
To complete the picture, the next section covers the anatomy and lifecycle of a component, and how to handle events
within it.

11.1.3 Creating the GXF Application Definition

Please follow Developing Holoscan GXF Extensions section first for a detailed explanation of the GXF extension
development process.

For our application, we create the directory apps/my_recorder_app_gxf with the application definition file
my_recorder_gxf.yaml. The my_recorder_gxf.yaml application is as follows:

Listing 11.4: apps/my_recorder_app_gxf/my_recorder_gxf.yaml

1 %YAML 1.2
2 ---
3 name: replayer
4 components:
5 - name: output

(continues on next page)

11.1. Graph Execution Framework (GXF) 111

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

6 type: nvidia::gxf::DoubleBufferTransmitter
7 - name: allocator
8 type: nvidia::gxf::UnboundedAllocator
9 - name: component_serializer

10 type: nvidia::gxf::StdComponentSerializer
11 parameters:
12 allocator: allocator
13 - name: entity_serializer
14 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
15 parameters:
16 component_serializers: [component_serializer]
17 - type: nvidia::holoscan::stream_playback::VideoStreamReplayer
18 parameters:
19 transmitter: output
20 entity_serializer: entity_serializer
21 boolean_scheduling_term: boolean_scheduling
22 directory: "/workspace/test_data/endoscopy/video"
23 basename: "surgical_video"
24 frame_rate: 0 # as specified in timestamps
25 repeat: false # default: false
26 realtime: true # default: true
27 count: 0 # default: 0 (no frame count restriction)
28 - name: boolean_scheduling
29 type: nvidia::gxf::BooleanSchedulingTerm
30 - type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
31 parameters:
32 transmitter: output
33 min_size: 1
34 ---
35 name: recorder
36 components:
37 - name: input
38 type: nvidia::gxf::DoubleBufferReceiver
39 - name: allocator
40 type: nvidia::gxf::UnboundedAllocator
41 - name: component_serializer
42 type: nvidia::gxf::StdComponentSerializer
43 parameters:
44 allocator: allocator
45 - name: entity_serializer
46 type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
47 parameters:
48 component_serializers: [component_serializer]
49 - type: MyRecorder
50 parameters:
51 receiver: input
52 serializer: entity_serializer
53 out_directory: "/tmp"
54 basename: "tensor_out"
55 - type: nvidia::gxf::MessageAvailableSchedulingTerm

(continues on next page)

112 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

56 parameters:
57 receiver: input
58 min_size: 1
59 ---
60 components:
61 - name: input_connection
62 type: nvidia::gxf::Connection
63 parameters:
64 source: replayer/output
65 target: recorder/input
66 ---
67 name: scheduler
68 components:
69 - name: clock
70 type: nvidia::gxf::RealtimeClock
71 - name: greedy_scheduler
72 type: nvidia::gxf::GreedyScheduler
73 parameters:
74 clock: clock

Above:

• The replayer reads data from /workspace/test_data/endoscopy/video/surgical_video.
gxf_[index|entities] files, deserializes the binary data to a nvidia::gxf::Tensor using
VideoStreamSerializer, and puts the data on an output message in the replayer/output transmit-
ter queue.

• The input_connection component connects the replayer/output transmitter queue to the recorder/
input receiver queue.

• The recorder reads the data in the input receiver queue, uses StdEntitySerializer to convert the received
nvidia::gxf::Tensor to a binary stream, and outputs to the /tmp/tensor_out.gxf_[index|entities]
location specified in the parameters.

• The scheduler component, while not explicitly connected to the application-specific entities, performs the
orchestration of the components discussed in the Data Flow and Triggering Rules.

Note the use of the component_serializer in our newly built recorder. This component is declared separately in the
entity

- name: entity_serializer
type: nvidia::holoscan::stream_playback::VideoStreamSerializer # inheriting from␣

→˓nvidia::gxf::EntitySerializer
parameters:
component_serializers: [component_serializer]

and passed into MyRecorder via the serializer parameter which we exposed in the extension development section
(Declare the Parameters to Expose at the Application Level).

- type: MyRecorder
parameters:
receiver: input
serializer: entity_serializer
directory: "/tmp"
basename: "tensor_out"

11.1. Graph Execution Framework (GXF) 113

Clara Holoscan SDK User Guide, Release 0.3.0

For our app to be able to load (and also compile where necessary) the extensions required at runtime, we need to declare
a CMake file apps/my_recorder_app_gxf/CMakeLists.txt as follows.

Listing 11.5: apps/my_recorder_app_gxf/CMakeLists.txt

1 list(APPEND APP_COMMON_EXTENSIONS
2 GXF::std
3 GXF::cuda
4 GXF::multimedia
5 GXF::serialization
6)
7

8 create_gxe_application(
9 NAME my_recorder_gxf

10 YAML my_recorder_gxf.yaml
11 EXTENSIONS
12 ${APP_COMMON_EXTENSIONS}
13 my_recorder
14 stream_playback
15)
16

17 # Support automatic datasets download at build time
18

19 # Create a CMake target for the my recorder test
20 add_custom_target(my_recorder_gxf ALL)
21

22 # Download the associated dataset if needed
23 if(HOLOSCAN_DOWNLOAD_DATASETS)
24 add_dependencies(my_recorder_gxf endoscopy_data)
25 endif()

In the declaration of create_gxe_application we list:

• my_recorder component declared in the CMake file of the extension development section under the
EXTENSIONS argument

• the existing stream_playback Holoscan extension which reads data from disk

We also create a dependency between my_recorder_gxf and endoscopy_data targets so that it downloads en-
doscopy test data when building the application.

To make our newly built application discoverable by the build, in the root of the repository, we add the following line

add_subdirectory(my_recorder_app_gxf)

to apps/CMakeLists.txt.

We now have a minimal working application to test the integration of our newly built MyRecorder extension.

114 Chapter 11. Relevant Technologies

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_endoscopy_sample_data
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_endoscopy_sample_data

Clara Holoscan SDK User Guide, Release 0.3.0

11.1.4 Running the GXF Recorder Application

To run our application in a local development container:

1. Follow the instructions under the Using a Development Container section steps 1-5 (try clearing the CMake
cache by removing the build folder before compiling).

You can execute the following commands to build

./run install_gxf

./run build
./run clear_cache # if you want to clear build/install/cache folders

2. Our test application can now be run in the development container using the command

./apps/my_recorder_app_gxf/my_recorder_gxf

from inside the development container.

(You can execute ./run launch to run the development container.)

@LINUX:/workspace/holoscan-sdk/build$./apps/my_recorder_app_gxf/my_recorder_gxf
2022-08-24 04:46:47.333 INFO gxf/gxe/gxe.cpp@230: Creating context
2022-08-24 04:46:47.339 INFO gxf/gxe/gxe.cpp@107: Loading app: 'apps/my_recorder_
→˓app_gxf/my_recorder_gxf.yaml'
2022-08-24 04:46:47.339 INFO gxf/std/yaml_file_loader.cpp@117: Loading GXF␣
→˓entities from YAML file 'apps/my_recorder_app_gxf/my_recorder_gxf.yaml'...
2022-08-24 04:46:47.340 INFO gxf/gxe/gxe.cpp@291: Initializing...
2022-08-24 04:46:47.437 INFO gxf/gxe/gxe.cpp@298: Running...
2022-08-24 04:46:47.437 INFO gxf/std/greedy_scheduler.cpp@170: Scheduling 2␣
→˓entities
2022-08-24 04:47:14.829 INFO /workspace/holoscan-sdk/gxf_extensions/stream_
→˓playback/video_stream_replayer.cpp@144: Reach end of file or playback count␣
→˓reaches to the limit. Stop ticking.
2022-08-24 04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@329: Scheduler stopped:␣
→˓Some entities are waiting for execution, but there are no periodic or async␣
→˓entities to get out of the deadlock.
2022-08-24 04:47:14.829 INFO gxf/std/greedy_scheduler.cpp@353: Scheduler finished.
2022-08-24 04:47:14.829 INFO gxf/gxe/gxe.cpp@320: Deinitializing...
2022-08-24 04:47:14.863 INFO gxf/gxe/gxe.cpp@327: Destroying context
2022-08-24 04:47:14.863 INFO gxf/gxe/gxe.cpp@333: Context destroyed.

A successful run (it takes about 30 secs) will result in output files (tensor_out.gxf_index and tensor_out.
gxf_entities in /tmp) that match the original input files (surgical_video.gxf_index and surgical_video.
gxf_entities under test_data/endoscopy/video) exactly.

@LINUX:/workspace/holoscan-sdk/build$ ls -al /tmp/
total 821384
drwxrwxrwt 1 root root 4096 Aug 24 04:37 .
drwxr-xr-x 1 root root 4096 Aug 24 04:36 ..
drwxrwxrwt 2 root root 4096 Aug 11 21:42 .X11-unix
-rw-r--r-- 1 1000 1000 729309 Aug 24 04:47 gxf_log
-rw-r--r-- 1 1000 1000 840054484 Aug 24 04:47 tensor_out.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Aug 24 04:47 tensor_out.gxf_index

(continues on next page)

11.1. Graph Execution Framework (GXF) 115

https://github.com/NVIDIA/clara-holoscan-embedded-sdk#using-a-development-container

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

@LINUX:/workspace/holoscan-sdk/build$ ls -al ../test_data/endoscopy/video/
total 839116
drwxr-xr-x 2 1000 1000 4096 Aug 24 02:08 .
drwxr-xr-x 4 1000 1000 4096 Aug 24 02:07 ..
-rw-r--r-- 1 1000 1000 19164125 Jun 17 16:31 raw.mp4
-rw-r--r-- 1 1000 1000 840054484 Jun 17 16:31 surgical_video.gxf_entities
-rw-r--r-- 1 1000 1000 16392 Jun 17 16:31 surgical_video.gxf_index

11.1.5 GXF User Guide

Overview

GXF is a modular and extensible framework to build high-performance AI applications.

• Enable developers to reuse components and app graphs between different products to build their own applications.

• Enable developers to use common data formats.

• Enable developers with tools to build and analyze their applications.

GXF Core

GXF Core implements basic framework for entity, component and parameters which enable developers to implement
GXF extensions on top of it. A short description of GXF terms used throughout the document:

Term Description
Compo-
nent

Functional block. Defines the data and behavior aspects of an entity.

Entity Composition of functional blocks. An entity is a lightweight, uniquely identifiable container of com-
ponents

System Governs a set of components across different nodes
Connec-
tion

Connection between two components

Extension Collection of functional blocks, matched 1-1 with a file on disk (library)
Graph Data-driven representation of an application using entities and connections
Sub-graph Graph wrapped in entity as functional block

GXF Extensions

A GXF extension is a shared library and/or header file containing one or more components.

116 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Graph Specification

Graph Specification is a format to describe high-performance AI applications in a modular and extensible way. It
allows writing applications in a standard format and sharing components across multiple applications without code
modification. Graph Specification is based on entity-composition pattern. Every object in graph is represented with
entity (aka Node) and components. Developers implement custom components which can be added to entity to achieve
the required functionality.

Concepts

The graph contains nodes which follow an entity-component design pattern implementing the “composition over in-
heritance” paradigm. A node itself is just a light-weight object which owns components. Components define how a
node interacts with the rest of the applications. For example, nodes be connected to pass data between each other. A
special component, called compute component, is used to execute the code based on certain rules. Typically a compute
component would receive data, execute some computation and publish data.

Graph

A graph is a data-driven representation of an AI application. Implementing an application by using programming
code to create and link objects results in a monolithic and hard to maintain program. Instead a graph object is used to
structure an application. The graph can be created using specialized tools and it can be analyzed to identify potential
problems or performance bottlenecks. The graph is loaded by the graph runtime to be executed.

The functional blocks of a graph are defined by the set of nodes which the graph owns. Nodes can be queried via the
graph using certain query functions. For example, it is possible to search for a node by its name.

SubGraph

A subgraph is a graph with additional node for interfaces. It points to the components which are accessible outside
this graph. In order to use a subgraph in an existing graph or subgraph, the developer needs to create an entity where
a component of the type nvidia::gxf::Subgraph is contained. Inside the Subgraph component a corresponding
subgraph can be loaded from the yaml file indicated by location property and instantiated in the parent graph.

System makes the components from interface available to the parent graph when a sub-graph is loaded in the parent
graph. It allows users to link sub-graphs in parent with defined interface.

A subgraph interface can be defined as follows:

interfaces:
- name: iname # the name of the interface for the access from the parent graph
target: n_entity/n_component # the true component in the subgraph that is represented␣

→˓by the interface

11.1. Graph Execution Framework (GXF) 117

Clara Holoscan SDK User Guide, Release 0.3.0

Node

Graph Specification uses an entity-component design principle for nodes. This means that a node is a light-weight
object whose main purpose is to own components. A node is a composition of components. Every component is in
exactly one node. In order to customize a node a developer does not derive from node as a base class, but instead
composes objects out of components. Components can be used to provide a rich set of functionality to a node and thus
to an application.

Components

Components are the main functional blocks of an application. Graph runtime provides a couple of components which
implement features like properties, code execution, rules and message passing. It also allows a developer to extend the
runtime by injecting her own custom components with custom features to fit a specific use case.

The most common component is a codelet or compute component which is used for data processing and code execution.
To implement a custom codelet you’ll need to implement a certain set of functions like start and stop. A special system
- the scheduler - will call these functions at the specified time. Typical examples of triggering code execution are:
receiving a new message from another node, or performing work on a regular schedule based on a time trigger.

Edges

Nodes can receive data from other nodes by connecting them with an edge. This essential feature allows a graph to
represent a compute pipeline or a complicated AI application. An input to a node is called sink while an output is called
source. There can be zero, one or multiple inputs and outputs. A source can be connected to multiple sinks and a sink
can be connected to multiple sources.

Extension

An extension is a compiled shared library of a logical group of component type definitions and their implementations
along with any other asset files that are required for execution of the components. Some examples of asset files are
model files, shared libraries that the extension library links to and hence required to run, header and development files
that enable development of additional components and extensions that use components from the extension.

An extension library is a runtime loadable module compiled with component information in a standard format that
allows the graph runtime to load the extension and retrieve further information from it to:

• Allow the runtime to create components using the component types in the extension.

• Query information regarding the component types in the extension:

– The component type name

– The base type of the component

– A string description of the component

– Information of parameters of the component – parameter name, type, description etc.,

• Query information regarding the extension itself - Name of the extension, version, license, author and a string
description of the extension.

118 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Graph File Format

Graph file stores list of dependencies and list of entities. Each entity has a unique name and list of components.
Each component has a name, a type and properties. Properties are stored as key-value pairs. Dependencies describe
extensions used in graph with version required. Dependencies information is used by registry to download the correct
versions of all the required extensions.

%YAML 1.2

dependencies:

- extension: StandardExtension
uuid: 8ec2d5d6-b5df-48bf-8dee-0252606fdd7e
version: 1.0.0

- extension: test
uuid: 346eecbc-9039-37da-8456-44fe9ac6492c
version: 1.0.0

name: source
components:
- name: signal
type: sample::test::ping

- type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 10

components:
- type: nvidia::gxf::GreedyScheduler
parameters:
realtime: false
max_duration_ms: 1000000

Graph Execution Engine

Graph Execution Engine is used to execute AI application graphs. It accepts multiple graph files as input, and all graphs
are executed in same process context. It also needs manifest files as input which includes list of extensions to load. It
must list all extensions required for the graph.

gxe --help
Flags from gxf/gxe/gxe.cpp:
-app (GXF app file to execute. Multiple files can be comma-separated)
type: string default: ""

-graph_directory (Path to a directory for searching graph files.)
type: string default: ""

-log_file_path (Path to a file for logging.) type: string default: ""
-manifest (GXF manifest file with extensions. Multiple files can be
comma-separated) type: string default: ""

-severity (Set log severity levels: 0=None, 1=Error, 2=Warning, 3=Info,
4=Debug. Default: Info) type: int32 default: 3

11.1. Graph Execution Framework (GXF) 119

Clara Holoscan SDK User Guide, Release 0.3.0

GXF Core C APIs

Context

Create context

gxf_result_t GxfContextCreate(gxf_context_t* context);

Creates a new GXF context

A GXF context is required for all almost all GXF operations. The context must be destroyed with ‘GxfContextDestroy’.
Multiple contexts can be created in the same process, however they can not communicate with each other.

parameter: context The new GXF context is written to the given pointer.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Create a context from a shared context

gxf_result_t GxfContextCreate1(gxf_context_t shared, gxf_context_t* context);

Creates a new runtime context from shared context.

A shared runtime context is used for sharing entities between graphs running within the same process.

parameter: shared A valid GXF shared context.

parameter: context The new GXF context is written to the given pointer

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Destroy context

gxf_result_t GxfContextDestroy(gxf_context_t context);

Destroys a GXF context

Every GXF context must be destroyed by calling this function. The context must have been previously created with
‘GxfContextCreate’. This will also destroy all entities and components which were created as part of the context.

parameter: context A valid GXF context.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Extensions

Maximum number of extensions in a context can be 1024.

120 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Load Extensions from a file

gxf_result_t GxfLoadExtension(gxf_context_t context, const char* filename);

Loads extension in the given context from file.

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

This function will be deprecated.

Load Extension libraries

gxf_result_t GxfLoadExtensions(gxf_context_t context, const GxfLoadExtensionsInfo* info);

Loads GXF extension libraries

Loads one or more extensions either directly by their filename or indirectly by loading manifest files. Before a com-
ponent can be added to a GXF entity the GXF extension shared library providing the component must be loaded. An
extensions must only be loaded once.

To simplify loading multiple extensions at once the developer can create a manifest file which lists all extensions he
needs. This function will then load all extensions listed in the manifest file. Multiple manifest may be loaded, however
each extensions may still be loaded only a single time.

Example manifest YAML file
extensions:
- gxf/std/libgxf_std.so
- gxf/npp/libgxf_npp.so

A manifest file is a YAML file with a single top-level entry ‘extensions’ followed by a list of filenames of GXF extension
shared libraries.

parameter: context A valid GXF context

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

gxf_result_t GxfLoadExtensionManifest(gxf_context_t context, const char*
manifest_filename);

Loads extensions from manifest file.

parameter: context A valid GXF context.

parameter: filename A valid filename.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

This function will be deprecated.

11.1. Graph Execution Framework (GXF) 121

Clara Holoscan SDK User Guide, Release 0.3.0

Load Metadata files

gxf_result_t GxfLoadExtensionMetadataFiles(gxf_context_t context, const char* const*
filenames, uint32_t count);

Loads an extension registration metadata file

Reads a metadata file of the contents of an extension used for registration. These metadata files can be used to resolve
typename and TID’s of components for other extensions which depend on them. Metadata files do not contain the
actual implementation of the extension and must be loaded only to run the extension query API’s on extension libraries
which have the actual implementation and only depend on the metadata for type resolution.

If some components of extension B depend on some components in extension A: - Load metadata file for extension A
- Load extension library for extension B using ‘GxfLoadExtensions’ - Run extension query api’s on extension B and
it’s components.

parameter: context A valid GXF context.

parameter: filenames absolute paths of metadata files generated by the registry during extension regis-
tration

parameter: count The number of metadata files to be loaded

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Register component

gxf_result_t GxfRegisterComponent(gxf_context_t context, gxf_tid_t tid, const char* name,
const char* base_name);

Registers a component with a GXF extension

A GXF extension need to register all of its components in the extension factory function. For convenience the helper
macros in gxf/std/extension_factory_helper.hpp can be used.

The developer must choose a unique GXF tid with two random 64-bit integers. The developer must ensure that every
GXF component has a unique tid. The name of the component must be the fully qualified C++ type name of the
component. A component may only have a single base class and that base class must be specified with its fully qualified
C++ type name as the parameter ‘base_name’.

ref: gxf/std/extension_factory_helper.hpp ref: core/type_name.hpp

parameter: context A valid GXF context

parameter: tid The chosen GXF tid

parameter: name The type name of the component

parameter: base_name The type name of the base class of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

122 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Graph Execution

Loads a list of entities from YAML file

gxf_result_t GxfGraphLoadFile(gxf_context_t context, const char* filename, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context

parameter: filename A valid YAML filename.

parameter: params_override An optional array of strings used for override parameters in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Set the root folder for searching YAML files during loading

gxf_result_t GxfGraphSetRootPath(gxf_context_t context, const char* path);

parameter: context A valid GXF context

parameter: path Path to root folder for searching YAML files during loading

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Loads a list of entities from YAML text

gxf_result_t GxfGraphParseString(gxf_context_t context, const char* tex, const char*
parameters_override[], const uint32_t num_overrides);

parameter: context A valid GXF context

parameter: text A valid YAML text.

parameter: params_override An optional array of strings used for override parameters in yaml file.

parameter: num_overrides Number of optional override parameter strings.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Activate all system components

gxf_result_t GxfGraphActivate(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

11.1. Graph Execution Framework (GXF) 123

Clara Holoscan SDK User Guide, Release 0.3.0

Deactivate all System components

gxf_result_t GxfGraphDeactivate(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Starts the execution of the graph asynchronously

gxf_result_t GxfGraphRunAsync(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Interrupt the execution of the graph

gxf_result_t GxfGraphInterrupt(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Waits for the graph to complete execution

gxf_result_t GxfGraphWait(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.`

Runs all System components and waits for their completion

gxf_result_t GxfGraphRun(gxf_context_t context);

parameter: context A valid GXF context

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Entities

Create an entity

gxf_result_t GxfEntityCreate(gxf_context_t context, gxf_uid_t* eid);

Creates a new entity and updates the eid to the unique identifier of the newly created entity.

This method will be deprecated.

gxf_result_t GxfCreateEntity((gxf_context_t context, const GxfEntityCreateInfo* info,
gxf_uid_t* eid);

Create a new GXF entity.

124 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Entities are light-weight containers to hold components and form the basic building blocks of a GXF application.
Entities are created when a GXF file is loaded, or they can be created manually using this function. Entities created
with this function must be destroyed using ‘GxfEntityDestroy’. After the entity was created components can be added
to it with ‘GxfComponentAdd’. To start execution of codelets on an entity the entity needs to be activated first. This
can happen automatically using ‘GXF_ENTITY_CREATE_PROGRAM_BIT’ or manually using ‘GxfEntityActivate’.

parameter context: GXF context that creates the entity. parameter info: pointer to a GxfEntityCre-
ateInfo structure containing parameters affecting the creation of the entity. parameter eid: pointer to a
gxf_uid_t handle in which the resulting entity is returned. returns: GXF_SUCCESS if the operation was
successful, or otherwise one of the GXF error codes.

Activate an entity

gxf_result_t GxfEntityActivate(gxf_context_t context, gxf_uid_t eid);

Activates a previously created and inactive entity

Activating an entity generally marks the official start of its lifetime and has multiple implications: - If mandatory
parameters, i.e. parameter which do not have the flag “optional”, are not set the operation will fail.

• All components on the entity are initialized.

• All codelets on the entity are scheduled for execution. The scheduler will start calling start, tick and stop functions
as specified by scheduling terms.

• After activation trying to change a dynamic parameters will result in a failure.

• Adding or removing components of an entity after activation will result in a failure.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

Deactivate an entity

gxf_result_t GxfEntityDeactivate(gxf_context_t context, gxf_uid_t eid);

Deactivates a previously activated entity

Note: In case that the entity is currently executing this function will wait and block until the current execution is
finished.

Deactivating an entity generally marks the official end of its lifetime and has multiple implications:

• All codelets are removed from the schedule. Already running entities are run to completion.

• All components on the entity are deinitialized.

• Components can be added or removed again once the entity was deactivated.

• Mandatory and non-dynamic parameters can be changed again.

parameter: context A valid GXF context

parameter: eid UID of a valid entity

returns: GXF error code

11.1. Graph Execution Framework (GXF) 125

Clara Holoscan SDK User Guide, Release 0.3.0

Destroy an entity

gxf_result_t GxfEntityDestroy(gxf_context_t context, gxf_uid_t eid);

Destroys a previously created entity

Destroys an entity immediately. The entity is destroyed even if the reference count has not yet reached 0. If the entity
is active it is deactivated first.

Note: This function can block for the same reasons as ‘GxfEntityDeactivate’.

parameter: context A valid GXF context

parameter: eid The returned UID of the created entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find an entity

gxf_result_t GxfEntityFind(gxf_context_t context, const char* name, gxf_uid_t* eid);

Finds an entity by its name

parameter: context A valid GXF context

parameter: name A C string with the name of the entity. Ownership is not transferred.

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find all entities

gxf_result_t GxfEntityFindAll(gxf_context_t context, uint64_t* num_entities, gxf_uid_t*
entities);

Finds all entities in the current application

Finds and returns all entity ids for the current application. If more than max_entities exist only max_entities will be
returned. The order and selection of entities returned is arbitrary.

parameter: context A valid GXF context

parameter: num_entities In/Out: the max number of entities that can fit in the buffer/the number of
entities that exist in the application

parameter: entities A buffer allocated by the caller for returned UIDs of all entities, with capacity for
num_entities.

returns: GXF_SUCCESS if the operation was successful, GXF_QUERY_NOT_ENOUGH_CAPACITY
if more entites exist in the application than max_entities, or otherwise one of the GXF error codes.

126 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Increase reference count of an entity

gxf_result_t GxfEntityRefCountInc(gxf_context_t context, gxf_uid_t eid);

Increases the reference count for an entity by 1.

By default reference counting is disabled for an entity. This means that entities created with ‘GxfEntityCreate’ are
not automatically destroyed. If this function is called for an entity with disabled reference count, reference counting is
enabled and the reference count is set to 1. Once reference counting is enabled an entity will be automatically destroyed
if the reference count reaches zero, or if ‘GxfEntityCreate’ is called explicitly.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Decrease reference count of an entity

gxf_result_t GxfEntityRefCountDec(gxf_context_t context, gxf_uid_t eid);

Decreases the reference count for an entity by 1.

See ‘GxfEntityRefCountInc’ for more details on reference counting.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get status of an entity

gxf_result_t GxfEntityGetStatus(gxf_context_t context, gxf_uid_t eid,
gxf_entity_status_t* entity_status);

Gets the status of the entity.

See ‘gxf_entity_status_t’ for the various status.

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_status output; status of an entity eid

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get state of an entity

gxf_result_t GxfEntityGetState(gxf_context_t context, gxf_uid_t eid, entity_state_t*
entity_state);

Gets the state of the entity.

See ‘gxf_entity_status_t’ for the various status.

11.1. Graph Execution Framework (GXF) 127

Clara Holoscan SDK User Guide, Release 0.3.0

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

parameter: entity_state output; behavior status of an entity eid used by the behavior tree parent codelet

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Notify entity of an event

gxf_result_t GxfEntityEventNotify(gxf_context_t context, gxf_uid_t eid);

Notifies the occurrence of an event and inform the scheduler to check the status of the entity

The entity must have an ‘AsynchronousSchedulingTerm’ scheduling term component and it must be in
“EVENT_WAITING” state for the notification to be acknowledged.

See ‘AsynchronousEventState’ for various states

parameter: context A valid GXF context

parameter: eid The UID of a valid entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Components

Maximum number of components in an entity or an extension can be up to 1024.

Get component type identifier

gxf_result_t GxfComponentTypeId(gxf_context_t context, const char* name, gxf_tid_t* tid);

Gets the GXF unique type ID (TID) of a component

Get the unique type ID which was used to register the component with GXF. The function expects the fully qualified
C++ type name of the component including namespaces.

Example of a valid component type name: “nvidia::gxf::test::PingTx”

parameter: context A valid GXF context

parameter: name The fully qualified C++ type name of the component

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get component type name

gxf_result_t GxfComponentTypeName(gxf_context_t context, gxf_tid_t tid, const char**
name);

Gets the fully qualified C++ type name GXF component typename

Get the unique typename of the component with which it was registered using one of the
GXF_EXT_FACTORY_ADD*() macros

128 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

parameter: context A valid GXF context

parameter: tid The unique type ID (TID) of the component with which the component was registered

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get component name

gxf_result_t GxfComponentName(gxf_context_t context, gxf_uid_t cid, const char** name);

Gets the name of a component

Each component has a user-defined name which was used in the call to ‘GxfComponentAdd’. Usually the name is
specified in the GXF application file.

parameter: context A valid GXF context

parameter: cid The unique object ID (UID) of the component

parameter: name The returned name of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get unique identifier of the entity of given component

gxf_result_t GxfComponentEntity(gxf_context_t context, gxf_uid_t cid, gxf_uid_t* eid);

Gets the unique object ID of the entity of a component

Each component has a unique ID with respect to the context and is stored in one entity. This function can be used to
retrieve the ID of the entity to which a given component belongs.

parameter: context A valid GXF context

parameter: cid The unique object ID (UID) of the component

parameter: eid The returned UID of the entity

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Add a new component

gxf_result_t GxfComponentAdd(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, gxf_uid_t* cid);

Adds a new component to an entity

An entity can contain multiple components and this function can be used to add a new component to an entity. A
component must be added before an entity is activated, or after it was deactivated. Components must not be added
to active entities. The order of components is stable and identical to the order in which components are added (see
‘GxfComponentFind’).

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is added.

parameter: tid The unique type ID (TID) of the component to be added to the entity.

parameter: name The name of the new component. Ownership is not transferred.

11.1. Graph Execution Framework (GXF) 129

Clara Holoscan SDK User Guide, Release 0.3.0

parameter: cid The returned UID of the created component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Add component to entity interface

gxf_result_t GxfComponentAddToInterface(gxf_context_t context, gxf_uid_t eid, gxf_uid_t
cid, const char* name);

Adds an existing component to the interface of an entity

An entity can holds references to other components in its interface, so that when finding a component in an entity, both
the component this entity holds and those it refers to will be returned. This supports the case when an entity contains
a subgraph, then those components that has been declared in the subgraph interface will be put to the interface of the
parent entity.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity to which the component is added.

parameter: cid The unique object ID of the component.

parameter: name The name of the new component. Ownership is not transferred.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Find a component in an entity

gxf_result_t GxfComponentFind(gxf_context_t context, gxf_uid_t eid, gxf_tid_t tid, const
char* name, int32_t* offset, gxf_uid_t* cid);

Finds a component in an entity

Searches components in an entity which satisfy certain criteria: component type, component name, and component
min index. All three criteria are optional; in case no criteria is given the first component is returned. The main use case
for “component min index” is a repeated search which continues at the index which was returned by a previous search.

In case no entity with the given criteria was found GXF_ENTITY_NOT_FOUND is returned.

parameter: context A valid GXF context

parameter: eid The unique object ID (UID) of the entity which is searched.

parameter: tid The component type ID (TID) of the component to find (optional)

parameter: name The component name of the component to find (optional). Ownership not transferred.

parameter: offset The index of the first component in the entity to search. Also contains the index of the
component which was found.

parameter: cid The returned UID of the searched component

returns: GXF_SUCCESS if a component matching the criteria was found, GXF_ENTITY_NOT_FOUND
if no component matching the criteria was found, or otherwise one of the GXF error codes.

130 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Get type identifier for a component

gxf_result_t GxfComponentType(gxf_context_t context, gxf_uid_t cid, gxf_tid_t* tid);

Gets the component type ID (TID) of a component

parameter: context A valid GXF context

parameter: cid The component object ID (UID) for which the component type is requested.

parameter: tid The returned TID of the component

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Gets pointer to component

gxf_result_t GxfComponentPointer(gxf_context_t context, gxf_uid_t uid, gxf_tid_t tid,
void** pointer);

Verifies that a component exists, has the given type, gets a pointer to it.

parameter: context A valid GXF context

parameter: uid The component object ID (UID).

parameter: tid The expected component type ID (TID) of the component

parameter: pointer The returned pointer to the component object.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Primitive Parameters

64-bit floating point

Set

gxf_result_t GxfParameterSetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value a double value

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

11.1. Graph Execution Framework (GXF) 131

Clara Holoscan SDK User Guide, Release 0.3.0

Get

gxf_result_t GxfParameterGetFloat64(gxf_context_t context, gxf_uid_t uid, const char*
key, double* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the double value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

64-bit signed integer

Set

gxf_result_t GxfParameterSetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
int64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

64-bit unsigned integer

Set

gxf_result_t GxfParameterSetUInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
uint64_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

132 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

parameter: value unsigned 64-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetUInt64(gxf_context_t context, gxf_uid_t uid, const char* key,
uint64_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the unsigned 64-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

32-bit signed integer

Set

gxf_result_t GxfParameterSetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value 32-bit integer value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetInt32(gxf_context_t context, gxf_uid_t uid, const char* key,
int32_t* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the 32-bit integer value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

11.1. Graph Execution Framework (GXF) 133

Clara Holoscan SDK User Guide, Release 0.3.0

String parameter

Set

gxf_result_t GxfParameterSetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value A char array containing value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetStr(gxf_context_t context, gxf_uid_t uid, const char* key,
const char** value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to a char* array to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Boolean

Set

gxf_result_t GxfParameterSetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value A boolean value to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

134 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Get

gxf_result_t GxfParameterGetBool(gxf_context_t context, gxf_uid_t uid, const char* key,
bool* value);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value pointer to get the boolean value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Handle

Set

gxf_result_t GxfParameterSetHandle(gxf_context_t context, gxf_uid_t uid, const char* key,
gxf_uid_t cid);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: cid Unique identifier to set.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get

gxf_result_t GxfParameterGetHandle(gxf_context_t context, gxf_uid_t uid, const char* key,
gxf_uid_t* cid);

parameter: context A valid GXF context.

parameter: uid A valid component identifier.

parameter: key A valid name of a component to set.

parameter: value Pointer to a unique identifier to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Vector Parameters

To set or get the vector parameters of a component, users can use the following C-APIs for various data types:

11.1. Graph Execution Framework (GXF) 135

Clara Holoscan SDK User Guide, Release 0.3.0

Set 1-D Vector Parameters

Users can call gxf_result_t GxfParameterSet1D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type* value, uint64_t length)

value should point to an array of the data to be set of the corresponding type. The size of the stored array should
match the length argument passed.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: length The length of the vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Table 11.1: Supported Data Types to Set 1D Vector Parameters
Function Name data_type
GxfParameterSet1DFloat64Vector(...) double
GxfParameterSet1DInt64Vector(...) int64_t
GxfParameterSet1DUInt64Vector(...) uint64_t
GxfParameterSet1DInt32Vector(...) int32_t

Set 2-D Vector Parameters

Users can call gxf_result_t GxfParameterSet2D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type** value, uint64_t height, uint64_t width)

value should point to an array of array (and not to the address of a contiguous array of data) of the data to be set of
the corresponding type. The length of the first dimension of the array should match the height argument passed and
similarly the length of the second dimension of the array should match the width passed.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: height The height of the 2-D vector parameter

parameter: width The width of the 2-D vector parameter

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Table 11.2: Supported Data Types to Set 2D Vector Parameters
Function Name data_type
GxfParameterSet2DFloat64Vector(...) double
GxfParameterSet2DInt64Vector(...) int64_t
GxfParameterSet2DUInt64Vector(...) uint64_t
GxfParameterSet2DInt32Vector(...) int32_t

136 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Get 1-D Vector Parameters

Users can call gxf_result_t GxfParameterGet1D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type** value, uint64_t* length) to get the value of a 1-D vector.

Before calling this method, users should call GxfParameterGet1D"DataType"VectorInfo(gxf_context_t
context, gxf_uid_t uid, const char* key, uint64_t* length) to obtain the length of the vector param-
eter and then allocate at least that much memory to retrieve the value.

value should point to an array of size greater than or equal to length allocated by user of the corresponding type to
retrieve the data. If the length doesn’t match the size of stored vector then it will be updated with the expected size.

See the table below for all the supported data types and their corresponding function signatures.

parameter: key The name of the parameter

parameter: value The value to set of the parameter

parameter: length The length of the 1-D vector parameter obtained by calling
GxfParameterGet1D"DataType"VectorInfo(...)

Table 11.3: Supported Data Types to Get the Value of 1D Vector Param-
eters

Function Name data_type
GxfParameterGet1DFloat64Vector(...) double
GxfParameterGet1DInt64Vector(...) int64_t
GxfParameterGet1DUInt64Vector(...) uint64_t
GxfParameterGet1DInt32Vector(...) int32_t

Get 2-D Vector Parameters

Users can call gxf_result_t GxfParameterGet2D"DataType"Vector(gxf_context_t context, gxf_uid_t
uid, const char* key, data_type** value, uint64_t* height, uint64_t* width) to get the value of
a -2D vector.

Before calling this method, users should call GxfParameterGet1D"DataType"VectorInfo(gxf_context_t
context, gxf_uid_t uid, const char* key, uint64_t* height, uint64_t* width) to obtain the
height and width of the 2D-vector parameter and then allocate at least that much memory to retrieve the value.

value should point to an array of array of height (size of first dimension) greater than or equal to height and width
(size of the second dimension) greater than or equal to width allocated by user of the corresponding type to get the
data. If the height or width don’t match the height and width of the stored vector then they will be updated with the
expected values.

See the table below for all the supported data types and their corresponding function signatures.

parameter”: key The name of the parameter

parameter”: value Allocated array to get the value of the parameter

parameter”: height The height of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

parameter”: width The width of the 2-D vector parameter obtained by calling
GxfParameterGet2D"DataType"VectorInfo(...)

11.1. Graph Execution Framework (GXF) 137

Clara Holoscan SDK User Guide, Release 0.3.0

Table 11.4: Supported Data Types to Get the Value of 2D Vector Param-
eters

Function Name data_type
GxfParameterGet2DFloat64Vector(...) double
GxfParameterGet2DInt64Vector(...) int64_t
GxfParameterGet2DUInt64Vector(...) uint64_t
GxfParameterGet2DInt32Vector(...) int32_t

Information Queries

Get Meta Data about the GXF Runtime

gxf_result_t GxfRuntimeInfo(gxf_context_t context, gxf_runtime_info* info);

parameter: context A valid GXF context.

parameter: info pointer to gxf_runtime_info object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get description and list of components in loaded Extension

gxf_result_t GxfExtensionInfo(gxf_context_t context, gxf_tid_t tid, gxf_extension_info_t*
info);

parameter: context A valid GXF context.

parameter: tid The unique identifier of the extension.

parameter: info pointer to gxf_extension_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Get description and list of parameters of Component

gxf_result_t GxfComponentInfo(gxf_context_t context, gxf_tid_t tid, gxf_component_info_t*
info);

Note: Parameters are only available after at least one instance is created for the Component.

parameter: context A valid GXF context.

parameter: tid The unique identifier of the component.

parameter: info pointer to gxf_component_info_t object to get the meta data.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

138 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Get parameter type description

Gets a string describing the parameter type

const char* GxfParameterTypeStr(gxf_parameter_type_t param_type);

parameter: param_type Type of parameter to get info about.

returns: C-style string description of the parameter type.

Get flag type description

Gets a string describing the flag type

const char* GxfParameterFlagTypeStr(gxf_parameter_flags_t_ flag_type);

parameter: flag_type Type of flag to get info about.

returns: C-style string description of the flag type.

Get parameter description

Gets description of specific parameter. Fails if the component is not instantiated yet.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, gxf_tid_t cid, const char* key,
gxf_parameter_info_t* info);

parameter: context A valid GXF context.

parameter: cid The unique identifier of the component.

parameter: key The name of the parameter.

parameter: info Pointer to a gxf_parameter_info_t object to get the value.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

Redirect logs to a file

Redirect console logs to the provided file.

gxf_result_t GxfGetParameterInfo(gxf_context_t context, FILE* fp);

parameter: context A valid GXF context.

parameter: fp File path for the redirected logs.

returns: GXF_SUCCESS if the operation was successful, or otherwise one of the GXF error codes.

11.1. Graph Execution Framework (GXF) 139

Clara Holoscan SDK User Guide, Release 0.3.0

Miscellaneous

Get string description of error

const char* GxfResultStr(gxf_result_t result);

Gets a string describing an GXF error code.

The caller does not get ownership of the return C string and must not delete it.

parameter: result A GXF error code

returns: A pointer to a C string with the error code description.

The GXF Scheduler

The execution of entities in a graph is governed by the scheduler and the scheduling terms associated with every
entity. A scheduler is a component responsible for orchestrating the execution of all the entities defined in a graph.
A scheduler typically keeps track of the graph entities and their current execution states and passes them on to a
nvidia::gxf::EntityExecutor component when ready for execution. The following diagram depicts the flow for an entity
execution.

Fig. 11.3: Entity execution sequence

As shown in the sequence diagram, the schedulers begin executing the graph entities via the
nvidia::gxf::System::runAsync_abi() interface and continue this process until it meets the certain ending crite-
ria. A single entity can have multiple codelets. These codelets are executed in the same order in which they were
defined in the entity. A failure in execution of any single codelet stops the execution of all the entities. Entities are
naturally unscheduled from execution when any one of their scheduling term reaches NEVER state.

Scheduling terms are components used to define the execution readiness of an entity. An entity can have multiple
scheduling terms associated with it and each scheduling term represents the state of an entity using SchedulingCondi-
tion.

The table below shows various states of nvidia::gxf::SchedulingConditionType described us-
ing nvidia::gxf::SchedulingCondition.

140 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

SchedulingConditionType Description
NEVER Entity will never execute again
READY Entity is ready for execution
WAIT Entity may execute in the future
WAIT_TIME Entity will be ready for execution after specified duration
WAIT_EVENT Entity is waiting on an asynchronous event with unknown time interval

Schedulers define deadlock as a condition when there are no entities which are
in READY, WAIT_TIME or WAIT_EVENT state which guarantee execution at a future point in time. This
implies all the entities are in WAIT state for which the scheduler does not know if they ever will reach the READY state
in the future. The scheduler can be configured to stop when it reaches such a state using the stop_on_deadlock pa-
rameter, else the entities are polled to check if any of them have reached READY state. max_duration configuration
parameter can be used to stop execution of all entities regardless of their state after a specified amount of time has
elapsed.

There are two types of schedulers currently supported by GXF:

1. Greedy Scheduler

2. Multithread Scheduler

Greedy Scheduler

This is a basic single threaded scheduler which tests scheduling term greedily. It is great for simple use cases and
predictable execution but may incur a large overhead of scheduling term execution, making it unsuitable for large
applications. The scheduler requires a clock to keep track of time. Based on the choice of clock the scheduler will
execute differently. If a Realtime clock is used the scheduler will execute in real-time. This means pausing execution
- sleeping the thread, until periodic scheduling terms are due again. If a ManualClock is used scheduling will happen
“time-compressed”. This means flow of time is altered to execute codelets in immediate succession.

The GreedyScheduler maintains a running count of entities which are in READY, WAIT_TIME and WAIT_EVENT states.
The following activity diagram depicts the gist of the decision making for scheduling an entity by the greedy scheduler:

Greedy Scheduler Configuration

The greedy scheduler takes in the following parameters from the configuration file

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choices are

RealtimeClock or ManualClock
max_duration_ms The maximum duration for which the scheduler will execute (in ms). If not

specified, the scheduler will run until all work is done. If periodic terms are
present this means the application will run indefinitely

stop_on_deadlock If stop_on_deadlock is disabled, the GreedyScheduler constantly polls for the
status of all the waiting entities to check if any of them are ready for execution.

The following code snippet configures a Greedy scheduler with a ManualClock option specified.

name: scheduler
components:
- type: nvidia::gxf::GreedyScheduler
parameters:

(continues on next page)

11.1. Graph Execution Framework (GXF) 141

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 11.4: Greedy Scheduler Activity Diagram

142 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

max_duration_ms: 3000
clock: misc/clock
stop_on_deadlock: true

name: misc
components:
- name: clock
type: nvidia::gxf::ManualClock

Multithread Scheduler

The MultiThread scheduler is more suitable for large applications with complex execution patterns. The scheduler
consists of a dispatcher thread which checks the status of an entity and dispatches it to a thread pool of worker threads
responsible for executing them. Worker threads enqueue the entity back on to the dispatch queue upon completion of
execution. The number of worker threads can be configured using worker_thread_number parameter. The MultiThread
scheduler also manages a dedicated queue and thread to handle asynchronous events. The following activity diagram
demonstrates the gist of the multithread scheduler implementation.

Fig. 11.5: MultiThread Scheduler Activity Diagram

As depicted in the diagram, when an entity reaches WAIT_EVENT state, it’s moved to a queue where they wait to
receive event done notification. The asynchronous event handler thread is responsible for moving entities to the dis-
patcher upon receiving event done notification. The dispatcher thread also maintains a running count of the number

11.1. Graph Execution Framework (GXF) 143

Clara Holoscan SDK User Guide, Release 0.3.0

of entities in READY, WAIT_EVENT and WAIT_TIME states and uses these statistics to check if the scheduler has
reached a deadlock. The scheduler also needs a clock component to keep track of time and it is configured using
the clock parameter.

MultiThread scheduler is more resource efficient compared to the Greedy Scheduler and does not incur any additional
overhead for constantly polling the states of scheduling terms. The check_recession_period_ms parameter can be used
to configure the time interval the scheduler must wait to poll the state of entities which are in WAIT state.

Multithread Scheduler Configuration

The multithread scheduler takes in the following parameters from the configuration file

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choices are

RealtimeClock or ManualClock.
max_duration_ms The maximum duration for which the scheduler will execute (in ms). If not

specified, the scheduler will run until all work is done. If periodic terms are
present this means the application will run indefinitely.

check_recess_period_ms Duration to sleep before checking the condition of an entity again [ms]. This is
the maximum duration for which the scheduler would wait when an entity is not
yet ready to run.

stop_on_deadlock If enabled the scheduler will stop when all entities are in a waiting state, but no
periodic entity exists to break the dead end. Should be disabled when scheduling
conditions can be changed by external actors, for example by clearing queues
manually.

worker_thread_number Number of threads.

The following code snippet configures a Multithread scheduler with the number of worked threads and max duration
specified:

name: scheduler
components:
- type: nvidia::gxf::MultiThreadScheduler
parameters:
max_duration_ms: 5000
clock: misc/clock
worker_thread_number: 5
check_recession_period_ms: 3
stop_on_deadlock: false

name: misc
components:
- name: clock
type: nvidia::gxf::RealtimeClock

144 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Epoch Scheduler

The Epoch scheduler is used for running loads in externally managed threads. Each run is called an Epoch. The
scheduler goes over all entities that are known to be active and executes them one by one. If the epoch budget is
provided (in ms), it would keep running all codelets until the budget is consumed or no codelet is ready. It might run
over budget since it guarantees to cover all codelets in epoch. In case the budget is not provided, it would go over all
the codelets once and execute them only once.

The epoch scheduler takes in the following parameters from the configuration file:

Parameter name Description
clock The clock used by the scheduler to define the flow of time. Typical choice is a

RealtimeClock.

The following code snippet configures an Epoch scheduler:

name: scheduler
components:
- name: clock
type: nvidia::gxf::RealtimeClock

- name: epoch
type: nvidia::gxf::EpochScheduler
parameters:
clock: clock

Note that the epoch scheduler is intended to run from an external thread. The runEpoch(float budget_ms); can
be used to set the budget_ms and run the scheduler from the external thread. If the specified budget is not positive, all
the nodes are executed once.

SchedulingTerms

A SchedulingTerm defines a specific condition that is used by an entity to let the scheduler know when it’s ready for
execution. There are various scheduling terms currently supported by GXF.

PeriodicSchedulingTerm

An entity associated with nvidia::gxf::PeriodicSchedulingTerm is ready for execution after periodic time intervals spec-
ified using its recess_period parameter. The PeriodicSchedulingTerm can either be in READY or WAIT_TIME state.

Example usage:

- name: scheduling_term
type: nvidia::gxf::PeriodicSchedulingTerm
parameters:
recess_period: 50000000

11.1. Graph Execution Framework (GXF) 145

Clara Holoscan SDK User Guide, Release 0.3.0

CountSchedulingTerm

An entity associated with nvidia::gxf::CountSchedulingTerm is executed for a specific number of times specified using
its count parameter. The CountSchedulingTerm can either be in READY or NEVER state. The scheduling term reaches
the NEVER state when the entity has been executed count number of times.

Example usage:

- name: scheduling_term
type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 42

MessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MessageAvailableSchedulingTerm is executed when the associated
receiver queue has at least a certain number of elements. The receiver is specified using the receiver parameter
of the scheduling term. The minimum number of messages that permits the execution of the entity is specified by
min_size. An optional parameter for this scheduling term is front_stage_max_size, the maximum front stage
message count. If this parameter is set, the scheduling term will only allow execution if the number of messages in the
queue does not exceed this count. It can be used for codelets which do not consume all messages from the queue.

In the example shown below, the minimum size of the queue is configured to be 4. This means the entity will not be
executed until there are at least 4 messages in the queue.

- type: nvidia::gxf::MessageAvailableSchedulingTerm
parameters:
receiver: tensors
min_size: 4

MultiMessageAvailableSchedulingTerm

An entity associated with nvidia::gxf::MultiMessageAvailableSchedulingTerm is executed when a list of
provided input receivers combined have at least a given number of messages. The receivers parameter is used to
specify a list of the input channels/receivers. The minimum number of messages needed to permit the entity execution
is set by min_size parameter.

Consider the example shown below. The associated entity will be executed when the number of messages combined
for all the three receivers is at least the min_size, i.e. 5.

- name: input_1
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10

- name: input_2
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10

- name: input_3
type: nvidia::gxf::test::MockReceiver
parameters:
max_capacity: 10

(continues on next page)

146 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

- type: nvidia::gxf::MultiMessageAvailableSchedulingTerm
parameters:
receivers: [input_1, input_2, input_3]
min_size: 5

BooleanSchedulingTerm

An entity associated with nvidia::gxf::BooleanSchedulingTerm is executed when its internal state is set to
tick. The parameter enable_tick is used to control the entity execution. The scheduling term also has two APIs
enable_tick() and disable_tick() to toggle its internal state. The entity execution can be controlled by call-
ing these APIs. If enable_tick is set to false, the entity is not executed (Scheduling condition is set to NEVER). If
enable_tick is set to true, the entity will be executed (Scheduling condition is set to READY). Entities can toggle the
state of the scheduling term by maintaining a handle to it.

Example usage:

- type: nvidia::gxf::BooleanSchedulingTerm
parameters:
enable_tick: true

AsynchronousSchedulingTerm

AsynchronousSchedulingTerm is primarily associated with entities which are working with asynchronous events hap-
pening outside of their regular execution performed by the scheduler. Since these events are non-periodic in na-
ture, AsynchronousSchedulingTerm prevents the scheduler from polling the entity for its status regularly and reduces
CPU utilization. AsynchronousSchedulingTerm can either be in READY, WAIT, WAIT_EVENT or NEVER states
based on asynchronous event it’s waiting on.

The state of an asynchronous event is described using nvidia::gxf::AsynchronousEventState and is updated using
the setEventState API.

AsynchronousEventState Description
READY Init state, first tick is pending
WAIT Request to an async service yet to be sent, nothing to do but wait
EVENT_WAITING Request sent to an async service, pending event done notification
EVENT_DONE Event done notification received, entity ready to be ticked
EVENT_NEVER Entity does not want to be ticked again, end of execution

Entities associated with this scheduling term most likely have an asynchronous thread which can update the state
of the scheduling term outside of it’s regular execution cycle performed by the gxf scheduler. When the schedul-
ing term is in WAIT state, the scheduler regularly polls for the state of the entity. When the scheduling term is
in EVENT_WAITING state, schedulers will not check the status of the entity again until they receive an event
notification which can be triggered using the GxfEntityEventNotify api. Setting the state of the scheduling term
to EVENT_DONE automatically sends this notification to the scheduler. Entities can use the EVENT_NEVER state
to indicate the end of its execution cycle.

Example usage:

- name: async_scheduling_term
type: nvidia::gxf::AsynchronousSchedulingTerm

11.1. Graph Execution Framework (GXF) 147

Clara Holoscan SDK User Guide, Release 0.3.0

DownsteamReceptiveSchedulingTerm

This scheduling term specifies that an entity shall be executed if the receiver for a given transmitter can accept new
messages.

Example usage:

- name: downstream_st
type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: output
min_size: 1

TargetTimeSchedulingTerm

This scheduling term permits execution at a user-specified timestamp. The timestamp is specified on the clock provided.

Example usage:

- name: target_st
type: nvidia::gxf::TargetTimeSchedulingTerm
parameters:
clock: clock/manual_clock

ExpiringMessageAvailableSchedulingTerm

This scheduling waits for a specified number of messages in the receiver. The entity is executed when the first message
received in the queue is expiring or when there are enough messages in the queue. The receiver parameter is used
to set the receiver to watch on. The parameters max_batch_size and max_delay_ns dictate the maximum number
of messages to be batched together and the maximum delay from first message to wait before executing the entity
respectively.

In the example shown below, the associated entity will be executed when the number of messages in the queue is greater
than max_batch_size, i.e 5, or when the delay from the first message to current time is greater than max_delay_ns,
i.e 10000000.

- name: target_st
type: nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
parameters:
receiver: signal
max_batch_size: 5
max_delay_ns: 10000000
clock: misc/clock

148 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

AND Combined

An entity can be associated with multiple scheduling terms which define it’s execution behavior. Scheduling terms
are AND combined to describe the current state of an entity. For an entity to be executed by the scheduler, all the
scheduling terms must be in READY state and conversely, the entity is unscheduled from execution whenever any
one of the scheduling term reaches NEVER state. The priority of various states during AND combine follows the
order NEVER, WAIT_EVENT, WAIT, WAIT_TIME, and READY.

Example usage:

components:
- name: integers
type: nvidia::gxf::DoubleBufferTransmitter

- name: fibonacci
type: nvidia::gxf::DoubleBufferTransmitter

- type: nvidia::gxf::CountSchedulingTerm
parameters:
count: 100

- type: nvidia::gxf::DownstreamReceptiveSchedulingTerm
parameters:
transmitter: integers
min_size: 1

StandardExtension

Most commonly used interfaces and components in Gxf Core.

• UUID: 8ec2d5d6-b5df-48bf-8dee-0252606fdd7e

• Version: 2.0.0

• Author: NVIDIA

Interfaces

nvidia::gxf::Codelet

Interface for a component which can be executed to run custom code.

• Component ID: 5c6166fa-6eed-41e7-bbf0-bd48cd6e1014

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/codelet.hpp

11.1. Graph Execution Framework (GXF) 149

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::Clock

Interface for clock components which provide time.

• Component ID: 779e61c2-ae70-441d-a26c-8ca64b39f8e7

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/clock.hpp

nvidia::gxf::System

Component interface for systems which are run as part of the application run cycle.

• Component ID: d1febca1-80df-454e-a3f2-715f2b3c6e69

• Base Type: nvidia::gxf::Component

nvidia::gxf::Queue

Interface for storing entities in a queue.

• Component ID: 792151bf-3138-4603-a912-5ca91828dea8

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/queue.hpp

nvidia::gxf::Router

Interface for classes which are routing messages in and out of entities.

• Component ID: 8b317aad-f55c-4c07-8520-8f66db92a19e

• Defined in: gxf/std/router.hpp

nvidia::gxf::Transmitter

Interface for publishing entities.

• Component ID: c30cc60f-0db2-409d-92b6-b2db92e02cce

• Base Type: nvidia::gxf::Queue

• Defined in: gxf/std/transmitter.hpp

150 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::Receiver

Interface for receiving entities.

• Component ID: a47d2f62-245f-40fc-90b7-5dc78ff2437e

• Base Type: nvidia::gxf::Queue

• Defined in: gxf/std/receiver.hpp

nvidia::gxf::Scheduler

A simple poll-based single-threaded scheduler which executes codelets.

• Component ID: f0103b75-d2e1-4d70-9b13-3fe5b40209be

• Base Type: nvidia::gxf::System

• Defined in: nvidia/gxf/system.hpp

nvidia::gxf::SchedulingTerm

Interface for terms used by a scheduler to determine if codelets in an entity are ready to step.

• Component ID: 184d8e4e-086c-475a-903a-69d723f95d19

• Base Type: nvidia::gxf::Component

• Defined in: gxf/std/scheduling_term.hpp

nvidia::gxf::Allocator

Provides allocation and deallocation of memory.

• Component ID: 3cdd82d0-2326-4867-8de2-d565dbe28e03

• Base Type: nvidia::gxf::Component

• Defined in: nvidia/gxf/allocator.hpp

nvidia::gxf::Monitor

Monitors entities during execution.

• Component ID: 9ccf9421-b35b-8c79-e1f0-97dc23bd38ea

• Base Type: nvidia::gxf::Component

• Defined in: nvidia/gxf/monitor.hpp

11.1. Graph Execution Framework (GXF) 151

Clara Holoscan SDK User Guide, Release 0.3.0

Components

nvidia::gxf::RealtimeClock

A real-time clock which runs based off a system steady clock.

• Component ID: 7b170b7b-cf1a-4f3f-997c-bfea25342381

• Base Type: nvidia::gxf::Clock

Parameters

initial_time_offset

The initial time offset used until time scale is changed manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_FLOAT64

initial_time_scale

The initial time scale used until time scale is changed manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_FLOAT64

use_time_since_epoch

If true, clock time is time since epoch + initial_time_offset at initialize().Otherwise clock time is
initial_time_offset at initialize().

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::ManualClock

A manual clock which is instrumented manually.

• Component ID: 52fa1f97-eba8-472a-a8ca-4cff1a2c440f

• Base Type: nvidia::gxf::Clock

152 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

initial_timestamp

The initial timestamp on the clock (in nanoseconds).

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::SystemGroup

A group of systems.

• Component ID: 3d23d470-0aed-41c6-ac92-685c1b5469a0

• Base Type: nvidia::gxf::System

nvidia::gxf::MessageRouter

A router which sends transmitted messages to receivers.

• Component ID: 84fd5d56-fda6-4937-0b3c-c283252553d8

• Base Type: nvidia::gxf::Router

nvidia::gxf::RouterGroup

A group of routers.

• Component ID: ca64ee14-2280-4099-9f10-d4b501e09117

• Base Type: nvidia::gxf::Router

nvidia::gxf::DoubleBufferTransmitter

A transmitter which uses a double-buffered queue where messages are pushed to a backstage after they are published.

• Component ID: 0c3c0ec7-77f1-4389-aef1-6bae85bddc13

• Base Type: nvidia::gxf::Transmitter

Parameters

capacity

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 1

11.1. Graph Execution Framework (GXF) 153

Clara Holoscan SDK User Guide, Release 0.3.0

policy

0: pop, 1: reject, 2: fault.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 2

nvidia::gxf::DoubleBufferReceiver

A receiver which uses a double-buffered queue where new messages are first pushed to a backstage.

• Component ID: ee45883d-bf84-4f99-8419-7c5e9deac6a5

• Base Type: nvidia::gxf::Receiver

Parameters

capacity

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 1

policy

0: pop, 1: reject, 2: fault

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

• Default: 2

nvidia::gxf::Connection

A component which establishes a connection between two other components.

• Component ID: cc71afae-5ede-47e9-b267-60a5c750a89a

• Base Type: nvidia::gxf::Component

154 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

source

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

target

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

nvidia::gxf::PeriodicSchedulingTerm

A component which specifies that an entity shall be executed periodically.

• Component ID: d392c98a-9b08-49b4-a422-d5fe6cd72e3e

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

recess_period

The recess period indicates the minimum amount of time which has to pass before the entity is permitted to execute
again. The period is specified as a string containing of a number and an (optional) unit. If no unit is given the value is
assumed to be in nanoseconds. Supported units are: Hz, s, ms. Example: 10ms, 10000000, 0.2s, 50Hz.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::CountSchedulingTerm

A component which specifies that an entity shall be executed exactly a given number of times.

• Component ID: f89da2e4-fddf-4aa2-9a80-1119ba3fde05

• Base Type: nvidia::gxf::SchedulingTerm

11.1. Graph Execution Framework (GXF) 155

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

count

The total number of time this term will permit execution.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::TargetTimeSchedulingTerm

A component where the next execution time of the entity needs to be specified after every tick.

• Component ID: e4aaf5c3-2b10-4c9a-c463-ebf6084149bf

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

The clock used to define target time.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

nvidia::gxf::DownstreamReceptiveSchedulingTerm

A component which specifies that an entity shall be executed if receivers for a certain transmitter can accept new
messages.

• Component ID: 9de75119-8d0f-4819-9a71-2aeaefd23f71

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The term permits execution if the receiver connected to the transmitter has at least the specified number of free slots in
its back buffer.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

transmitter

156 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

The term permits execution if this transmitter can publish a message, i.e. if the receiver which is connected to this
transmitter can receive messages.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::MessageAvailableSchedulingTerm

A scheduling term which specifies that an entity can be executed when the total number of messages over a set of input
channels is at least a given number of messages.

• Component ID: fe799e65-f78b-48eb-beb6-e73083a12d5b

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

front_stage_max_size

If set the scheduling term will only allow execution if the number of messages in the front stage does not exceed this
count. It can for example be used in combination with codelets which do not clear the front stage in every tick.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_UINT64

min_size

The scheduling term permits execution if the given receiver has at least the given number of messages available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

receiver

The scheduling term permits execution if this channel has at least a given number of messages available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

11.1. Graph Execution Framework (GXF) 157

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::MultiMessageAvailableSchedulingTerm

A component which specifies that an entity shall be executed when a queue has at least a certain number of elements.

• Component ID: f15dbeaa-afd6-47a6-9ffc-7afd7e1b4c52

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

min_size

The scheduling term permits execution if all given receivers together have at least the given number of messages
available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

receivers

The scheduling term permits execution if the given channels have at least a given number of messages available.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

nvidia::gxf::ExpiringMessageAvailableSchedulingTerm

A component which tries to wait for specified number of messages in queue for at most specified time.

• Component ID: eb22280c-76ff-11eb-b341-cf6b417c95c9

• Base Type: nvidia::gxf::SchedulingTerm

Parameters

clock

Clock to get time from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

158 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

max_batch_size

The maximum number of messages to be batched together.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

max_delay_ns

The maximum delay from first message to wait before submitting workload anyway.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

receiver

Receiver to watch on.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

nvidia::gxf::BooleanSchedulingTerm

A component which acts as a boolean AND term that can be used to control the execution of the entity.

• Component ID: e07a0dc4-3908-4df8-8134-7ce38e60fbef

• Base Type: nvidia::gxf::SchedulingTerm

nvidia::gxf::AsynchronousSchedulingTerm

A component which is used to inform of that an entity is dependent upon an async event for its execution.

• Component ID: 56be1662-ff63-4179-9200-3fcd8dc38673

• Base Type: nvidia::gxf::SchedulingTerm

11.1. Graph Execution Framework (GXF) 159

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::GreedyScheduler

A simple poll-based single-threaded scheduler which executes codelets.

• Component ID: 869d30ca-a443-4619-b988-7a52e657f39b

• Base Type: nvidia::gxf::Scheduler

Parameters

clock

The clock used by the scheduler to define flow of time. Typical choices are a RealtimeClock or a ManualClock.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the scheduler will run until all
work is done. If periodic terms are present this means the application will run indefinitely.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_INT64

realtime

This parameter is deprecated. Assign a clock directly.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_BOOL

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be changed by external actors, for example by clearing queues
manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

160 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::MultiThreadScheduler

A multi thread scheduler that executes codelets for maximum throughput.

• Component ID: de5e0646-7fa5-11eb-a5c4-330ebfa81bbf

• Base Type: nvidia::gxf::Scheduler

Parameters

check_recession_perios_ms

The maximum duration for which the scheduler would wait (in ms) when an entity is not ready to run yet.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

clock

The clock used by the scheduler to define flow of time. Typical choices are a RealtimeClock or a ManualClock.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

max_duration_ms

The maximum duration for which the scheduler will execute (in ms). If not specified the scheduler will run until all
work is done. If periodic terms are present this means the application will run indefinitely.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_INT64

stop_on_deadlock

If enabled the scheduler will stop when all entities are in a waiting state, but no periodic entity exists to break the dead
end. Should be disabled when scheduling conditions can be changed by external actors, for example by clearing queues
manually.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

11.1. Graph Execution Framework (GXF) 161

Clara Holoscan SDK User Guide, Release 0.3.0

worker_thread_number

Number of threads.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

• Default: 1

nvidia::gxf::BlockMemoryPool

A memory pools which provides a maximum number of equally sized blocks of memory.

• Component ID: 92b627a3-5dd3-4c3c-976c-4700e8a3b96a

• Base Type: nvidia::gxf::Allocator

Parameters

block_size

The size of one block of memory in byte. Allocation requests can only be fulfilled if they fit into one block. If less
memory is requested still a full block is issued.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of cudaMallocHost.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: True

num_blocks

The total number of blocks which are allocated by the pool. If more blocks are requested allocation requests will fail.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

162 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

storage_type

The memory storage type used by this allocator. Can be kHost (0) or kDevice (1) or kSystem (2).

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default: 0

nvidia::gxf::UnboundedAllocator

Allocator that uses dynamic memory allocation without an upper bound.

• Component ID: c3951b16-a01c-539f-d87e-1dc18d911ea0

• Base Type: nvidia::gxf::Allocator

Parameters

do_not_use_cuda_malloc_host

If enabled operator new will be used to allocate host memory instead of cudaMallocHost.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: True

nvidia::gxf::Tensor

A component which holds a single tensor.

• Component ID: 377501d6-9abf-447c-a617-0114d4f33ab8

• Defined in: gxf/std/tensor.hpp

nvidia::gxf::Timestamp

Holds message publishing and acquisition related timing information.

• Component ID: d1095b10-5c90-4bbc-bc89-601134cb4e03

• Defined in: gxf/std/timestamp.hpp

nvidia::gxf::Metric

Collects, aggregates, and evaluates metric data.

• Component ID: f7cef803-5beb-46f1-186a-05d3919842ac

• Base Type: nvidia::gxf::Component

11.1. Graph Execution Framework (GXF) 163

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

aggregation_policy

Aggregation policy used to aggregate individual metric samples. Choices:{mean, min, max}.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_STRING

lower_threshold

Lower threshold of the metric’s expected range.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_FLOAT64

upper_threshold

Upper threshold of the metric’s expected range.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_FLOAT64

nvidia::gxf::JobStatistics

Collects runtime statistics.

• Component ID: 2093b91a-7c82-11eb-a92b-3f1304ecc959

• Base Type: nvidia::gxf::Component

Parameters

clock

The clock component instance to retrieve time from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

164 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

codelet_statistics

If set to true, JobStatistics component will collect performance statistics related to codelets.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_BOOL

json_file_path

If provided, all the collected performance statistics data will be dumped into a json file.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_STRING

nvidia::gxf::Broadcast

Messages arrived on the input channel are distributed to all transmitters.

• Component ID: 3daadb31-0bca-47e5-9924-342b9984a014

• Base Type: nvidia::gxf::Codelet

Parameters

mode

The broadcast mode. Can be Broadcast or RoundRobin.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

source

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

11.1. Graph Execution Framework (GXF) 165

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::Gather

All messages arriving on any input channel are published on the single output channel.

• Component ID: 85f64c84-8236-4035-9b9a-3843a6a2026f

• Base Type: nvidia::gxf::Codelet

Parameters

sink

The output channel for gathered messages.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

tick_source_limit

Maximum number of messages to take from each source in one tick. 0 means no limit.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

nvidia::gxf::TensorCopier

Copies tensor either from host to device or from device to host.

• Component ID: c07680f4-75b3-189b-8886-4b5e448e7bb6

• Base Type: nvidia::gxf::Codelet

Parameters

allocator

Memory allocator for tensor data

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Allocator

mode

Configuration to select what tensors to copy:

166 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

1. kCopyToDevice (0) - copies to device memory, ignores device allocation

2. kCopyToHost (1) - copies to pinned host memory, ignores host allocation

3. kCopyToSystem (2) - copies to system memory, ignores system allocation.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

receiver

Receiver for incoming entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

transmitter

Transmitter for outgoing entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::TimedThrottler

Publishes the received entity respecting the timestamp within the entity.

• Component ID: ccf7729c-f62c-4250-5cf7-f4f3ec80454b

• Base Type: nvidia::gxf::Codelet

Parameters

execution_clock

Clock on which the codelet is executed by the scheduler.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

receiver

Channel to receive messages that need to be synchronized.

11.1. Graph Execution Framework (GXF) 167

Clara Holoscan SDK User Guide, Release 0.3.0

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

scheduling_term

Scheduling term for executing the codelet.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::TargetTimeSchedulingTerm

throttling_clock

Clock which the received entity timestamps are based on.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

transmitter

Transmitter channel publishing messages at appropriate timesteps.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

nvidia::gxf::Vault

Safely stores received entities for further processing.

• Component ID: 1108cb8d-85e4-4303-ba02-d27406ee9e65

• Base Type: nvidia::gxf::Codelet

168 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Parameters

drop_waiting

If too many messages are waiting the oldest ones are dropped.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

max_waiting_count

The maximum number of waiting messages. If exceeded the codelet will stop pulling messages out of the input queue.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

source

Receiver from which messages are taken and transferred to the vault.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

nvidia::gxf::Subgraph

Helper component to import a subgraph.

• Component ID: 576eedd7-7c3f-4d2f-8c38-8baa79a3d231

• Base Type: nvidia::gxf::Component

Parameters

location

Yaml source of the subgraph.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

11.1. Graph Execution Framework (GXF) 169

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::EndOfStream

A component which represents end-of-stream notification.

• Component ID: 8c42f7bf-7041-4626-9792-9eb20ce33cce

• Defined in: gxf/std/eos.hpp

nvidia::gxf::Synchronization

Component to synchronize messages from multiple receivers based on the acq_time.

• Component ID: f1cb80d6-e5ec-4dba-9f9e-b06b0def4443

• Base Type: nvidia::gxf::Codelet

Parameters

inputs

All the inputs for synchronization. Number of inputs must match that of the outputs.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

outputs

All the outputs for synchronization. Number of outputs must match that of the inputs.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

signed char

• Component ID: 83905c6a-ca34-4f40-b474-cf2cde8274de

unsigned char

• Component ID: d4299e15-0006-d0bf-8cbd-9b743575e155

170 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

short int

• Component ID: 9e1dde79-3550-307d-e81a-b864890b3685

short unsigned int

• Component ID: 958cbdef-b505-bcc7-8a43-dc4b23f8cead

int

• Component ID: b557ec7f-49a5-08f7-a35e-086e9d1ea767

unsigned int

• Component ID: d5506b68-5c86-fedb-a2a2-a7bae38ff3ef

long int

• Component ID: c611627b-6393-365f-d234-1f26bfa8d28f

long unsigned int

• Component ID: c4385f5b-6e25-01d9-d7b5-6e7cadc704e8

float

• Component ID: a81bf295-421f-49ef-f24a-f59e9ea0d5d6

double

• Component ID: d57cee59-686f-e26d-95be-659c126b02ea

bool

• Component ID: c02f9e93-d01b-1d29-f523-78d2a9195128

11.1. Graph Execution Framework (GXF) 171

Clara Holoscan SDK User Guide, Release 0.3.0

CudaExtension

Extension for CUDA operations.

• UUID: d63a98fa-7882-11eb-a917-b38f664f399c

• Version: 2.0.0

• Author: NVIDIA

Components

nvidia::gxf::CudaStream

Holds and provides access to native cudaStream_t.

nvidia::gxf::CudaStream handle must be allocated by nvidia::gxf::CudaStreamPool. Its lifecycle is
valid until explicitly recycled through nvidia::gxf::CudaStreamPool.releaseStream() or implicitly until
nvidia::gxf::CudaStreamPool is deactivated.

You may call stream() to get the native cudaStream_t handle, and to submit GPU operations. After the submis-
sion, GPU takes over the input tensors/buffers and keeps them in use. To prevent host carelessly releasing these in-use
buffers, CUDA Codelet needs to call record(event, input_entity, sync_cb) to extend input_entity’s lifecy-
cle until GPU completely consumes it. Alternatively, you may call record(event, event_destroy_cb) for native
cudaEvent_t operations and free in-use resource via event_destroy_cb.

It is required to have a nvidia::gxf::CudaStreamSync in the graph pipeline after all the CUDA operations. See
more details in nvidia::gxf::CudaStreamSync

• Component ID: 5683d692-7884-11eb-9338-c3be62d576be

• Defined in: gxf/cuda/cuda_stream.hpp

nvidia::gxf::CudaStreamId

Holds CUDA stream Id to deduce nvidia::gxf::CudaStream handle.

stream_cid should be nvidia::gxf::CudaStream component id.

• Component ID: 7982aeac-37f1-41be-ade8-6f00b4b5d47c

• Defined in: gxf/cuda/cuda_stream_id.hpp

nvidia::gxf::CudaEvent

Holds and provides access to native cudaEvent_t handle.

When a nvidia::gxf::CudaEvent is created, you’ll need to initialize a native cudaEvent_t through init(flags,
dev_id), or set third party event through initWithEvent(event, dev_id, free_fnc). The event keeps valid
until deinit is called explicitly otherwise gets recycled in destructor.

• Component ID: f5388d5c-a709-47e7-86c4-171779bc64f3

• Defined in: gxf/cuda/cuda_event.hpp

172 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

nvidia::gxf::CudaStreamPool

CudaStream allocation.

You must explicitly call allocateStream() to get a valid nvidia::gxf::CudaStream handle. This component
would hold all the its allocated nvidia::gxf::CudaStream entities until releaseStream(stream) is called ex-
plicitly or the CudaStreamPool component is deactivated.

• Component ID: 6733bf8b-ba5e-4fae-b596-af2d1269d0e7

• Base Type: nvidia::gxf::Allocator

Parameters

dev_id

GPU device id.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0

stream_flags

Flag values to create CUDA streams.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0

stream_priority

Priority values to create CUDA streams.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0

reserved_size

User-specified file name without extension.

• Flags: GXF_PARAMETER_FLAGS_NONE

11.1. Graph Execution Framework (GXF) 173

Clara Holoscan SDK User Guide, Release 0.3.0

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 1

max_size

Maximum Stream Size.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default Value: 0, no limitation.

nvidia::gxf::CudaStreamSync

Synchronize all CUDA streams which are carried by message entities.

This codelet is required to get connected in the graph pipeline after all CUDA ops codelets. When a mes-
sage entity is received, it would find all of the nvidia::gxf::CudaStreamId in that message, and ex-
tract out each nvidia::gxf::CudaStream. With each CudaStream handle, it synchronizes all previous
nvidia::gxf::CudaStream.record() events, along with all submitted GPU operations before this point.

Note: CudaStreamSync must be set in the graph when nvidia::gxf::CudaStream.record() is used, otherwise
it may cause memory leak.

• Component ID: 0d1d8142-6648-485d-97d5-277eed00129c

• Base Type: nvidia::gxf::Codelet

Parameters

rx

Receiver to receive all messages carrying nvidia::gxf::CudaStreamId.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

tx

Transmitter to send messages to downstream.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

174 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

MultimediaExtension

Extension for multimedia related data types, interfaces and components in GXF Core.

• UUID: 6f2d1afc-1057-481a-9da6-a5f61fed178e

• Version: 2.0.0

• Author: NVIDIA

Components

nvidia::gxf::AudioBuffer

AudioBuffer is similar to Tensor component in the standard extension and holds memory and metadata corresponding
to an audio buffer.

• Component ID: a914cac6-5f19-449d-9ade-8c5cdcebe7c3

AudioBufferInfo structure captures the following metadata:

Field Description
channels Number of channels in an audio frame
samples Number of samples in an audio frame
sampling_rate sampling rate in Hz
bytes_per_sample Number of bytes required per sample
audio_format AudioFormat of an audio frame
audio_layout AudioLayout of an audio frame

Supported AudioFormat types:

AudioFormat Description
GXF_AUDIO_FORMAT_S16LE 16-bit signed PCM audio
GXF_AUDIO_FORMAT_F32LE 32-bit floating-point audio

Supported AudioLayout types:

AudioLayout Description
GXF_AUDIO_LAYOUT_INTERLEAVED Data from all the channels to be interleaved - LRLRLR
GXF_AUDIO_LAYOUT_NON_INTERLEAVED Data from all the channels not to be interleaved - LLLRRR

nvidia::gxf::VideoBuffer

VideoBuffer is similar to Tensor component in the standard extension and holds memory and metadata corresponding
to a video buffer.

• Component ID: 16ad58c8-b463-422c-b097-61a9acc5050e

VideoBufferInfo structure captures the following metadata:

11.1. Graph Execution Framework (GXF) 175

Clara Holoscan SDK User Guide, Release 0.3.0

Field Description
width width of a video frame
height height of a video frame
color_format VideoFormat of a video frame
color_planes ColorPlane(s) associated with the VideoFormat
surface_layout SurfaceLayout of the video frame

Supported VideoFormat types:

VideoFormat Description
GXF_VIDEO_FORMAT_YUV420 BT.601 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT_YUV420_ER BT.601 multi planar 4:2:0 YUV ER
GXF_VIDEO_FORMAT_YUV420_709 BT.709 multi planar 4:2:0 YUV
GXF_VIDEO_FORMAT_YUV420_709_ER BT.709 multi planar 4:2:0 YUV ER
GXF_VIDEO_FORMAT_NV12 BT.601 multi planar 4:2:0 YUV with interleaved UV
GXF_VIDEO_FORMAT_NV12_ER BT.601 multi planar 4:2:0 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_NV12_709 BT.709 multi planar 4:2:0 YUV with interleaved UV
GXF_VIDEO_FORMAT_NV12_709_ER BT.709 multi planar 4:2:0 YUV ER with interleaved UV
GXF_VIDEO_FORMAT_RGBA RGBA-8-8-8-8 single plane
GXF_VIDEO_FORMAT_BGRA BGRA-8-8-8-8 single plane
GXF_VIDEO_FORMAT_ARGB ARGB-8-8-8-8 single plane
GXF_VIDEO_FORMAT_ABGR ABGR-8-8-8-8 single plane
GXF_VIDEO_FORMAT_RGBX RGBX-8-8-8-8 single plane
GXF_VIDEO_FORMAT_BGRX BGRX-8-8-8-8 single plane
GXF_VIDEO_FORMAT_XRGB XRGB-8-8-8-8 single plane
GXF_VIDEO_FORMAT_XBGR XBGR-8-8-8-8 single plane
GXF_VIDEO_FORMAT_RGB RGB-8-8-8 single plane
GXF_VIDEO_FORMAT_BGR BGR-8-8-8 single plane
GXF_VIDEO_FORMAT_R8_G8_B8 RGB - unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_B8_G8_R8 BGR - unsigned 8 bit multiplanar
GXF_VIDEO_FORMAT_GRAY 8 bit GRAY scale single plane

Supported SurfaceLayout types:

SurfaceLayout Description
GXF_SURFACE_LAYOUT_PITCH_LINEAR pitch linear surface memory
GXF_SURFACE_LAYOUT_BLOCK_LINEAR block linear surface memory

SerializationExtension

Extension for serializing messages.

• UUID: bc573c2f-89b3-d4b0-8061-2da8b11fe79a

• Version: 2.0.0

• Author: NVIDIA

176 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

Interfaces

nvidia::gxf::ComponentSerializer

Interface for serializing components.

• Component ID: 8c76a828-2177-1484-f841-d39c3fa47613

• Base Type: nvidia::gxf::Component

• Defined in: gxf/serialization/component_serializer.hpp

Components

nvidia::gxf::EntityRecorder

Serializes incoming messages and writes them to a file.

• Component ID: 9d5955c7-8fda-22c7-f18f-ea5e2d195be9

• Base Type: nvidia::gxf::Codelet

Parameters

receiver

Receiver channel to log.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

serializers

List of component serializers to serialize entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

directory

Directory path for storing files.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

11.1. Graph Execution Framework (GXF) 177

Clara Holoscan SDK User Guide, Release 0.3.0

basename

User specified file name without extension.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_STRING

flush_on_tick

Flushes output buffer on every tick when true.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::EntityReplayer

De-serializes and publishes messages from a file.

• Component ID: fe827c12-d360-c63c-8094-32b9244d83b6

• Base Type: nvidia::gxf::Codelet

Parameters

transmitter

Transmitter channel for replaying entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

serializers

List of component serializers to serialize entities.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_CUSTOM

• Custom Type: std::vector<nvidia::gxf::Handle<nvidia::gxf::ComponentSerializer>>

178 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

directory

Directory path for storing files.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

batch_size

Number of entities to read and publish for one tick.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_UINT64

ignore_corrupted_entities

If an entity could not be de-serialized, it is ignored by default; otherwise a failure is generated.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

nvidia::gxf::StdComponentSerializer

Serializer for Timestamp and Tensor components.

• Component ID: c0e6b36c-39ac-50ac-ce8d-702e18d8bff7

• Base Type: nvidia::gxf::ComponentSerializer

Parameters

allocator

Memory allocator for tensor components.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Allocator

11.1. Graph Execution Framework (GXF) 179

Clara Holoscan SDK User Guide, Release 0.3.0

TensorRTExtension

Components with TensorRT inference capability.

• UUID: d43f23e4-b9bf-11eb-9d18-2b7be630552b

• Version: 2.0.0

• Author: NVIDIA

Components

nvidia::gxf::TensorRtInference

Codelet taking input tensors and feed them into TensorRT for inference.

• Component ID: 06a7f0e0-b9c0-11eb-8cd6-23c9c2070107

• Base Type: nvidia::gxf::Codelet

Parameters

model_file_path

Path to ONNX model to be loaded.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

engine_file_path

Path to the generated engine to be serialized and loaded from.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

force_engine_update

Always update engine regard less of existing engine file. Such conversion may take minutes. Default to false.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: False

180 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

input_tensor_names

Names of input tensors in the order to be fed into the model.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

input_binding_names

Names of input bindings as in the model in the same order of what is provided in input_tensor_names.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

output_tensor_names

Names of output tensors in the order to be retrieved from the model.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

output_binding_names

Names of output bindings in the model in the same order of of what is provided in output_tensor_names.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_STRING

pool

Allocator instance for output tensors.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Allocator

11.1. Graph Execution Framework (GXF) 181

Clara Holoscan SDK User Guide, Release 0.3.0

cuda_stream_pool

Instance of gxf::CudaStreamPool to allocate CUDA stream.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::CudaStreamPool

max_workspace_size

Size of working space in bytes. Default to 64MB

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT64

• Default: 67108864

dla_core

DLA Core to use. Fallback to GPU is always enabled. Default to use GPU only.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_INT64

max_batch_size

Maximum possible batch size in case the first dimension is dynamic and used as batch size.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_INT32

• Default: 1

enable_fp16_

Enable inference with FP16 and FP32 fallback.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: False

182 Chapter 11. Relevant Technologies

Clara Holoscan SDK User Guide, Release 0.3.0

verbose

Enable verbose logging on console. Default to false.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: False

relaxed_dimension_check

Ignore dimensions of 1 for input tensor dimension check.

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_BOOL

• Default: True

clock

Instance of clock for publish time.

• Flags: GXF_PARAMETER_FLAGS_OPTIONAL

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Clock

rx

List of receivers to take input tensors

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Receiver

tx

Transmitter to publish output tensors

11.1. Graph Execution Framework (GXF) 183

Clara Holoscan SDK User Guide, Release 0.3.0

• Flags: GXF_PARAMETER_FLAGS_NONE

• Type: GXF_PARAMETER_TYPE_HANDLE

• Handle Type: nvidia::gxf::Transmitter

11.2 Rivermax SDK

Clara Developer Kits can be used along with the NVIDIA Rivermax SDK to provide an extremely efficient network
connection using the onboard ConnectX network adapter that is further optimized for GPU workloads by using GPUDi-
rect. This technology avoids unnecessary memory copies and CPU overhead by copying data directly to or from pinned
GPU memory, and supports both the integrated GPU or the discrete GPU.

The instructions below describe the steps to test the Rivermax SDK with the Developer Kits. The test applications used
by these instructions, generic_sender and generic_receiver, can then be used as samples in order to develop
custom applications that use the Rivermax SDK to optimize data transfers using GPUDirect.

Note: The Rivermax SDK can be installed onto the Developer Kit via SDK Manager by selecting it as an additional
SDK during the HoloPack installation.

Note: Access to the Rivermax SDK Developer Program as well as a valid Rivermax software license is required to
use the Rivermax SDK.

11.2.1 Testing Rivermax and GPUDirect

Running the Rivermax sample applications requires two systems, a sender and a receiver, connected via ConnectX
network adapters. If two Developer Kits are used then the onboard ConnectX can be used on each system, but if
only one Developer Kit is available then it is expected that another system with an add-in ConnectX network adapter
will need to be used. Rivermax supports a wide array of platforms, including both Linux and Windows, but these
instructions assume that another Linux based platform will be used as the sender device while the Developer Kit is
used as the receiver.

1. Determine the logical name for the ConnectX devices that are used by each system. This can be done by using
the lshw -class network command, finding the product: entry for the ConnectX device, and making note
of the logical name: that corresponds to that device. For example, this output on a Developer Kit shows
the onboard ConnectX device using the enp9s0f01 logical name (lshw output shortened for demonstration
purposes).

$ sudo lshw -class network
*-network:0

description: Ethernet interface
product: MT28908 Family [ConnectX-6]
vendor: Mellanox Technologies
physical id: 0
bus info: pci@0000:09:00.0
logical name: enp9s0f0
version: 00
serial: 48:b0:2d:13:9b:6b
capacity: 10Gbit/s
width: 64 bits

(continues on next page)

184 Chapter 11. Relevant Technologies

https://developer.nvidia.com/networking/rivermax
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

clock: 33MHz
capabilities: pciexpress vpd msix pm bus_master cap_list ethernet physical␣

→˓1000bt-fd 10000bt-fd autonegotiation
configuration: autonegotiation=on broadcast=yes driver=mlx5_core␣

→˓driverversion=5.4-1.0.3 duplex=full firmware=20.27.4006 (NVD0000000001) ip=10.0.0.
→˓2 latency=0 link=yes multicast=yes

resources: iomemory:180-17f irq:33 memory:1818000000-1819ffffff

The instructions that follow will use the enp9s0f0 logical name for ifconfig commands, but these names
should be replaced with the corresponding logical names as determined by this step.

2. Run the generic_sender application on the sending system.

a. Bring up the network:

$ sudo ifconfig enp9s0f0 up 10.0.0.1

b. Build the sample apps:

$ cd 1.8.21/apps
$ make

Note: The 1.8.21 path above corresponds to the path where the Rivermax SDK package was installed. If the
Rivermax SDK was installed via SDK Manager, this path will be $HOME/Documents/Rivermax/1.8.21.

e. Launch the ```generic_sender` application:

$ sudo ./generic_sender -l 10.0.0.1 -d 10.0.0.2 -p 5001 -y 1462 -k 8192 -z 500 -v
...
+###
| Sender index: 0
| Thread ID: 0x7fa1ffb1c0
| CPU core affinity: -1
| Number of streams in this thread: 1
| Memory address: 0x7f986e3010
| Memory length: 59883520[B]
| Memory key: 40308
+###
| Stream index: 0
| Source IP: 10.0.0.1
| Destination IP: 10.0.0.2
| Destination port: 5001
| Number of flows: 1
| Rate limit bps: 0
| Rate limit max burst in packets: 0
| Memory address: 0x7f986e3010
| Memory length: 59883520[B]
| Memory key: 40308
| Number of user requested chunks: 1
| Number of application chunks: 5
| Number of packets in chunk: 8192

(continues on next page)

11.2. Rivermax SDK 185

Clara Holoscan SDK User Guide, Release 0.3.0

(continued from previous page)

| Packet's payload size: 1462
+**

3. Run the generic_receiver application on the receiving system.

a. Bring up the network:

$ sudo ifconfig enp9s0f0 up 10.0.0.2

b. Build the sample apps with GPUDirect support (```CUDA=y`):

$ cd 1.8.21/apps
$ make CUDA=y

Note: The 1.8.21 path above corresponds to the path where the Rivermax SDK package was installed. If the
Rivermax SDK was installed via SDK Manager, this path will be $HOME/Documents/Rivermax/1.8.21.

c. Launch the generic_receiver application:

$ sudo ./generic_receiver -i 10.0.0.2 -m 10.0.0.2 -s 10.0.0.1 -p 5001 -g 0
...
Attached flow 1 to stream.
Running main receive loop...
Got 5877704 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
Got 5877704 GPU packets | 68.75 Gbps during 1.00 sec
Got 5878240 GPU packets | 68.75 Gbps during 1.00 sec
...

With both the generic_sender and generic_receiver processes active, the receiver will continue to print out
received packet statistics every second. Both processes can then be terminated with <ctrl-c>

11.3 GPUDirect RDMA

Copying data between a third party PCIe device and a GPU traditionally requires two DMA operations: first the data
is copied from the PCIe device to system memory, then it’s copied from system memory to the GPU.

For data that will be processed exclusively by the GPU, this additional data copy to system memory goes unused and
wastes both time and system resources. GPUDirect RDMA optimizes this use case by enabling third party PCIe devices
to DMA directly to or from GPU memory, bypassing the need to first copy to system memory.

NVIDIA takes advantage of RDMA in many of its SDKs, including Rivermax for GPUDirect support with ConnectX
network adapters, and GPUDirect Storage for transfers between a GPU and storage device. NVIDIA is also committed
to supporting hardware vendors enable RDMA within their own drivers, an example of which is provided by AJA Video
Systems as part of a partnership with NVIDIA for the Clara Holoscan SDK. The AJASource extension is an example
of how the SDK can leverage RDMA.

For more information about GPUDirect RDMA, see the following:

• GPUDirect RDMA Documentation

186 Chapter 11. Relevant Technologies

https://developer.nvidia.com/networking/rivermax
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://developer.nvidia.com/gpudirect-storage
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

Clara Holoscan SDK User Guide, Release 0.3.0

Fig. 11.6: Data Transfer Between PCIe Device and GPU Without GPUDirect RDMA

Fig. 11.7: Data Transfer Between PCIe Device and GPU With GPUDirect RDMA

11.3. GPUDirect RDMA 187

Clara Holoscan SDK User Guide, Release 0.3.0

• Minimal GPUDirect RDMA Demonstration source code, which provides a real hardware example of using
RDMA and includes both kernel drivers and userspace applications for the RHS Research PicoEVB and HiTech
Global HTG-K800 FPGA boards.

11.4 TensorRT Optimized Inference

NVIDIA TensorRT is a deep learning inference framework based on CUDA that provided the highest optimizations to
run on NVIDIA GPUs, including the Clara Developer Kits.

GXF comes with a TensorRT base extension which is extended in the Holoscan SDK: the updated TensorRT extension
is able to selectively load a cached TensorRT model based on the system GPU specifications, making it ideal to interface
with the Clara Developer Kits.

11.5 CUDA and OpenGL Interoperability

OpenGL is commonly used for realtime visualization, and like CUDA, is executed on the GPU. This provides an
opportunity for efficient sharing of resources between CUDA and OpenGL.

The OpenGL and Segmentation Visualizer extensions use the OpenGL interoperability functions provided by the CUDA
runtime API. This API is documented further in the CUDA Toolkit Documentation.

This concept can be extended to other rendering frameworks such as Vulkan.

11.6 Accelerated Image Transformations

Streaming image processing often requires common 2D operations like resizing, converting bit widths, and changing
color formats. NVIDIA has built the CUDA accelerated NVIDIA Performance Primitive Library (NPP) that can help
with many of these common transformations. NPP is extensively showcased in the Format Converter extension of the
Clara Holoscan SDK.

188 Chapter 11. Relevant Technologies

https://github.com/NVIDIA/jetson-rdma-picoevb
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/cuda/archive/11.6.1/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL
https://docs.nvidia.com/cuda/npp/index.html

	Overview
	Content
	Extensions
	Applications
	Endoscopy Tool Tracking
	Ultrasound Segmentation
	Colonoscopy Polyp Segmentation

	Video Pipeline Latency Tool

	Changes Since Holoscan SDK 0.2.0
	Holoscan C++ API

	Software Stack Installation
	Development Software Stack with Holopack on Clara Developer Kits
	Development Software Stack on x86
	Deployment Software Stack with OpenEmbedded on Clara Developer Kits

	Install and Use the Clara Holoscan SDK
	Using the container from NGC
	From source

	Third Party Hardware Setup
	AJA Video Systems
	Installing the AJA Hardware
	Installing the AJA Software
	Downloading the AJA NTV2 SDK Source
	Building the AJA NTV2 Drivers
	Loading the AJA NTV2 Drivers
	Building and Installing the AJA NTV2 SDK
	Testing the AJA Device

	Using AJA Devices in Containers
	Troubleshooting

	Emergent Vision Technologies (EVT)
	Installing EVT Hardware
	Installing EVT Software
	Post EVT Software Installation Steps
	Testing the EVT Camera
	Troubleshooting

	Clara Holoscan Development Guide
	Holoscan Core Concepts
	Getting Started
	Code Example
	Build and Run the Application

	Developing Holoscan GXF Extensions
	Extension Lifecycle
	Implementing an Extension
	Declare the Class That Will Implement the Extension Functionality
	Declare the Parameters to Expose at the Application Level
	Implement the Lifecycle Methods
	Register the Extension as a Holoscan Component

	Wrapping a GXF Codelet as a Holoscan Operator (C++ API)
	Creating the Holoscan Application (C++ API)
	Running the Holoscan MyRecorder Application (C++ API)

	Clara Holoscan Sample Applications
	Endoscopy Tool Tracking Application
	Input source: Video Stream Replayer
	Input source: AJA

	Hi-Speed Endoscopy Application
	Enable G-SYNC for Display
	Installing and Enabling GPUDirect RDMA
	Enabling Exclusive Display Mode

	Ultrasound Segmentation Application & Customization
	Input source: Video Stream Replayer
	Input source: AJA
	Bring Your Own Model (BYOM) - Customizing the Ultrasound Segmentation Application For Your Model

	Clara Holoscan GXF Extensions
	GXF Built-in Extensions
	Std
	nvidia::gxf::Broadcast
	Parameters

	Serialization
	nvidia::gxf::EntityRecorder
	Parameters

	Holoscan SDK GXF Extensions
	V4L2
	nvidia::holoscan::V4L2Source
	Parameters

	AJA
	nvidia::holoscan::AJASource
	Parameters

	Stream Playback
	nvidia::holoscan::stream_playback::VideoStreamReplayer
	Parameters

	nvidia::holoscan::stream_playback::VideoStreamSerializer

	Format Converter
	nvidia::holoscan::formatconverter::FormatConverter
	Parameters

	TensorRT
	nvidia::holoscan::TensorRtInference
	Parameters

	OpenGL
	nvidia::holoscan::OpenGLRenderer
	Parameters

	Segmentation Post Processor
	nvidia::holoscan::segmentation_postprocessor::Postprocessor
	Parameters

	Segmentation Visualizer
	nvidia::holoscan::segmentation_visualizer::Visualizer
	Parameters

	Custom LSTM Inference
	nvidia::holoscan::custom_lstm_inference::TensorRtInference
	Parameters

	Visualizer Tool Tracking
	nvidia::holoscan::visualizer_tool_tracking::Sink
	Parameters

	Holoscan Test Mock
	nvidia::holoscan::mocks::VideoBufferMock
	Parameters

	Emergent
	nvidia::holoscan::EmergentSource
	Parameters

	Bayer Demosaic
	nvidia::holoscan::BayerDemosaic
	Parameters

	Holoviz Viewer
	nvidia::holoscan::HolovizViewer
	Parameters

	Clara Holoviz
	Overview
	Concepts
	Usage
	Layers

	Video Pipeline Latency Tool
	Requirements
	Hardware
	Software

	Installation
	Downloading the Source
	Installing Software Requirements
	Building
	Enabling DeepStream Support
	Enabling AJA Support

	Example Configurations
	GPU To Onboard HDMI Capture Card
	GPU to AJA HDMI Capture Card
	AJA SDI to AJA SDI

	Operation Overview
	Frame Measurements
	Interpreting The Results
	Reducing Latency With RMDA
	Simulating GPU Workload

	Graphing Results
	Producers
	OpenGL GPU Direct Rendering (HDMI)
	GStreamer GPU Rendering (HDMI)
	AJA Video Systems (SDI)

	Consumers
	V4L2 (Onboard HDMI Capture Card)
	GStreamer (Onboard HDMI Capture Card)
	AJA Video Systems (SDI and HDMI)

	Troubleshooting

	NGC Containers
	ARM Container
	x86 Container

	Relevant Technologies
	Graph Execution Framework (GXF)
	GXF Entities by Example
	Data Flow and Triggering Rules
	Creating the GXF Application Definition
	Running the GXF Recorder Application
	GXF User Guide
	Overview
	GXF Core
	GXF Extensions

	Graph Specification
	Concepts
	Graph
	SubGraph
	Node
	Components
	Edges
	Extension

	Graph File Format

	Graph Execution Engine
	GXF Core C APIs
	Context
	Create context
	Create a context from a shared context
	Destroy context

	Extensions
	Load Extensions from a file
	Load Extension libraries
	Load Metadata files
	Register component

	Graph Execution
	Loads a list of entities from YAML file
	Set the root folder for searching YAML files during loading
	Loads a list of entities from YAML text
	Activate all system components
	Deactivate all System components
	Starts the execution of the graph asynchronously
	Interrupt the execution of the graph
	Waits for the graph to complete execution
	Runs all System components and waits for their completion

	Entities
	Create an entity
	Activate an entity
	Deactivate an entity
	Destroy an entity
	Find an entity
	Find all entities
	Increase reference count of an entity
	Decrease reference count of an entity
	Get status of an entity
	Get state of an entity
	Notify entity of an event

	Components
	Get component type identifier
	Get component type name
	Get component name
	Get unique identifier of the entity of given component
	Add a new component
	Add component to entity interface
	Find a component in an entity
	Get type identifier for a component
	Gets pointer to component

	Primitive Parameters
	64-bit floating point
	Set
	Get
	64-bit signed integer
	Set
	Get
	64-bit unsigned integer
	Set
	Get
	32-bit signed integer
	Set
	Get
	String parameter
	Set
	Get
	Boolean
	Set
	Get
	Handle
	Set
	Get

	Vector Parameters
	Set 1-D Vector Parameters
	Set 2-D Vector Parameters
	Get 1-D Vector Parameters
	Get 2-D Vector Parameters

	Information Queries
	Get Meta Data about the GXF Runtime
	Get description and list of components in loaded Extension
	Get description and list of parameters of Component
	Get parameter type description
	Get flag type description
	Get parameter description
	Redirect logs to a file

	Miscellaneous
	Get string description of error

	The GXF Scheduler
	Greedy Scheduler
	Greedy Scheduler Configuration

	Multithread Scheduler
	Multithread Scheduler Configuration

	Epoch Scheduler
	SchedulingTerms
	PeriodicSchedulingTerm
	CountSchedulingTerm
	MessageAvailableSchedulingTerm
	MultiMessageAvailableSchedulingTerm
	BooleanSchedulingTerm
	AsynchronousSchedulingTerm
	DownsteamReceptiveSchedulingTerm
	TargetTimeSchedulingTerm
	ExpiringMessageAvailableSchedulingTerm
	AND Combined

	StandardExtension
	Interfaces
	nvidia::gxf::Codelet
	nvidia::gxf::Clock
	nvidia::gxf::System
	nvidia::gxf::Queue
	nvidia::gxf::Router
	nvidia::gxf::Transmitter
	nvidia::gxf::Receiver
	nvidia::gxf::Scheduler
	nvidia::gxf::SchedulingTerm
	nvidia::gxf::Allocator
	nvidia::gxf::Monitor

	Components
	nvidia::gxf::RealtimeClock
	Parameters
	nvidia::gxf::ManualClock
	Parameters
	nvidia::gxf::SystemGroup
	nvidia::gxf::MessageRouter
	nvidia::gxf::RouterGroup
	nvidia::gxf::DoubleBufferTransmitter
	Parameters
	nvidia::gxf::DoubleBufferReceiver
	Parameters
	nvidia::gxf::Connection
	Parameters
	nvidia::gxf::PeriodicSchedulingTerm
	Parameters
	nvidia::gxf::CountSchedulingTerm
	Parameters
	nvidia::gxf::TargetTimeSchedulingTerm
	Parameters
	nvidia::gxf::DownstreamReceptiveSchedulingTerm
	Parameters
	nvidia::gxf::MessageAvailableSchedulingTerm
	Parameters
	nvidia::gxf::MultiMessageAvailableSchedulingTerm
	Parameters
	nvidia::gxf::ExpiringMessageAvailableSchedulingTerm
	Parameters
	nvidia::gxf::BooleanSchedulingTerm
	nvidia::gxf::AsynchronousSchedulingTerm
	nvidia::gxf::GreedyScheduler
	Parameters
	nvidia::gxf::MultiThreadScheduler
	Parameters
	nvidia::gxf::BlockMemoryPool
	Parameters
	nvidia::gxf::UnboundedAllocator
	Parameters
	nvidia::gxf::Tensor
	nvidia::gxf::Timestamp
	nvidia::gxf::Metric
	Parameters
	nvidia::gxf::JobStatistics
	Parameters
	nvidia::gxf::Broadcast
	Parameters
	nvidia::gxf::Gather
	Parameters
	nvidia::gxf::TensorCopier
	Parameters
	nvidia::gxf::TimedThrottler
	Parameters
	nvidia::gxf::Vault
	Parameters
	nvidia::gxf::Subgraph
	Parameters
	nvidia::gxf::EndOfStream
	nvidia::gxf::Synchronization
	Parameters
	signed char
	unsigned char
	short int
	short unsigned int
	int
	unsigned int
	long int
	long unsigned int
	float
	double
	bool

	CudaExtension
	Components
	nvidia::gxf::CudaStream
	nvidia::gxf::CudaStreamId
	nvidia::gxf::CudaEvent
	nvidia::gxf::CudaStreamPool
	Parameters
	nvidia::gxf::CudaStreamSync
	Parameters

	MultimediaExtension
	Components
	nvidia::gxf::AudioBuffer
	nvidia::gxf::VideoBuffer

	SerializationExtension
	Interfaces
	nvidia::gxf::ComponentSerializer

	Components
	nvidia::gxf::EntityRecorder
	Parameters
	nvidia::gxf::EntityReplayer
	Parameters
	nvidia::gxf::StdComponentSerializer
	Parameters

	TensorRTExtension
	Components
	nvidia::gxf::TensorRtInference
	Parameters

	Rivermax SDK
	Testing Rivermax and GPUDirect

	GPUDirect RDMA
	TensorRT Optimized Inference
	CUDA and OpenGL Interoperability
	Accelerated Image Transformations

