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Abstract 

Mitochondria are central to cellular metabolism, signaling, and apoptosis. Accurate functional 

and molecular analysis requires high-purity mitochondrial preparations. Traditional isolation 

methods, such as differential centrifugation and ultracentrifugation, are often time-consuming, 

yield impure fractions, and show limited reproducibility across diverse tissues. This review 

evaluates the advantages of spin column-based mitochondrial isolation kit (Invent 

Biotechnologies Inc. MP-0-07) across various sample types—including liver, brain, heart, 

kidney, cancer tissues, and cell lines—and downstream applications such as proteomics, 

metabolomics, immunoblotting, and mitochondrial functional assays. The included studies 

highlight the utility of spin column-based methods for high-throughput, reproducible 

mitochondrial isolation even from small, frozen, or challenging samples. The enhanced yield and 

integrity of mitochondria obtained through spin column techniques significantly benefit modern 

bioanalytical workflows, providing an indispensable tool for mitochondrial research. 

Introduction 

Mitochondria play multifaceted roles in energy production, ROS regulation, apoptosis, and 

immune signaling. Isolating intact and functional mitochondria is essential for mechanistic 

studies, especially as mitochondrial dysfunction is implicated in cancer [20, 53], 

neurodegeneration [31, 47], cardiovascular disease [19, 43], renal pathology [4, 76], and 

metabolic disorders [22, 25, 60]. 

Traditional methods based on differential centrifugation can be hampered by incomplete 

separation from lysosomes and ER, physical disruption of organelles, and lengthy protocols 

incompatible with high-throughput workflows [1, 4, 31]. Spin column-based mitochondrial 

isolation, a more recent innovation, addresses many of these limitations by combining 

mechanical homogenization with differential centrifugation using only a table top centrifuge. 

This review discusses its applications and advantages based on over 70 recent publications. 

Applications Across Sample Types 

Cancer Cell Lines and Tumors 

Spin column isolation has been widely used in cancer research. For example, studies of ovarian 

[5, 20], liver [2], breast [7, 18], and colorectal cancer [21, 75] utilized mitochondrial isolates for 

analyzing apoptotic signaling, mitochondrial DNA release, and mitophagy. These assays, such as 

mitochondrial membrane potential measurement, Western blotting for cytochrome c or BAX 

translocation, and Seahorse metabolic flux analyses, depend on mitochondria of high purity and 

intact function—attributes facilitated by spin columns. 



The importance of mitochondrial metabolism in drug resistance is evident in ovarian cancer 

studies exploring cisplatin resistance mediated by mitochondrial biogenesis [6, 22] and 

mitophagy-related HK2 localization [28]. 

Neural and Brain Tissue 

Neurodegenerative models often require brain mitochondria isolation for proteomics or 

ultrastructural analysis. Spin column methods have enabled the study of mitochondrial 

morphology in Parkinson's [31, 47], neuroinflammation [71, 74], and ischemia models [35, 40]. 

Atomic force microscopy [3], TEM, and mitochondrial respiration assessments rely on 

minimally disrupted mitochondria, achievable only through gentle isolation protocols such as 

spin column kits. 

Liver and Kidney Tissue 

In hepatic models, spin column-isolated mitochondria have been central to studying 

mitochondrial permeability transition pores (mPTP), mitophagy, and oxidative stress, as in 

acetaminophen-induced liver injury [52], NASH [27], and ischemia-reperfusion [23]. Kidney 

research—including diabetic nephropathy [4, 50, 76] and acute kidney injury [8]—utilized 

purified mitochondria to assess mitochondrial SOD2 acetylation, HK2 translocation, and 

metabolic rewiring. 

Cardiac and Skeletal Muscle 

Cardiomyocyte and vascular smooth muscle models benefit from high-yield mitochondrial 

isolates when evaluating Drp1-regulated apoptosis [24, 56], ischemic injury [19, 46], and 

inflammation [43, 61]. Spin columns minimize cytosolic contamination, allowing accurate 

measurement of mitochondrial-specific proteins and ROS levels in myocardial injury studies [43, 

62]. 

Intestinal, Lung, and Immune Tissues 

Spin column-isolated mitochondria have enabled detailed exploration of mitochondrial quality 

control in sepsis [64, 65], pulmonary fibrosis [72], and gut barrier integrity [16, 23]. Immuno-

metabolic studies in macrophages and endothelial cells used mitochondria purified via spin 

columns for mass spectrometry and mitophagy detection [19, 42]. 

Stem Cells and Engineered Mitochondria 

Recent advancements using engineered or nanoparticle-loaded mitochondria for therapy or 

delivery in models of ocular disease [70], skeletal muscle dysfunction [46], and brain injury [72] 

rely on mitochondria with preserved membrane integrity and function, which are better retained 

through spin column-based isolation. 

 



Downstream Assays Enhanced by Spin Column-Based Isolation 

• Western Blotting and Subcellular Fractionation: High-purity mitochondrial fractions 

reduce cross-contamination with nuclear or cytosolic markers, increasing the reliability of 

protein quantification [10, 52, 62]. 

• Functional Assays: Studies assessing mitochondrial membrane potential, oxygen 

consumption rate (OCR), and ATP production require mitochondria with intact 

bioenergetics [31, 43, 65]. 

• Mass Spectrometry and Proteomics: Clean mitochondrial preparations are essential for 

meaningful MS-based quantification of mitochondrial proteomes [50, 53, 76]. 

• Imaging and Morphological Analysis: Mitochondrial ultrastructure analysis via TEM 

or AFM benefits from minimal processing damage [3, 31, 47]. 

Advantages Over Traditional Methods 

• Time Efficiency and Reproducibility: Spin column methods standardize isolation steps 

and reduce processing time from hours to under 40 minutes, improving reproducibility 

across operators [2, 21, 52]. 

• Small Sample Input: These methods are particularly effective for small tissue biopsies 

or limited cell numbers, essential for clinical and preclinical research [16, 27, 31]. 

• Preservation of Organelle Function: Gentle handling during column filtration reduces 

mitochondrial rupture and loss of membrane potential, as observed in bioenergetic studies 

[6, 19, 70]. 

• Broad Applicability: Consistent performance across sample types—including frozen 

tissues, primary cells, and tumor xenografts—expands the utility of spin column kits for 

translational research [5, 28, 75]. 

Conclusion 

Spin column-based mitochondrial isolation has transformed experimental capabilities in 

mitochondrial research. Its rapidity, compatibility with diverse tissues, and improved yield of 

intact organelles make it the preferred choice for functional assays, proteomics, and therapeutic 

research. As studies continue to link mitochondrial dysfunction to disease, standardized high-

purity isolation methods will be foundational for reproducible and scalable biomedical discovery. 
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