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Chapter 1

Vitis AI Overview
The Vitis™ AI development environment accelerates AI inference on Xilinx® hardware platforms,
including both Edge devices and Alveo™ accelerator cards. It consists of optimized IP cores, tools,
libraries, models, and example designs. It is designed with high efficiency and ease of use in mind
to unleash the full potential of AI acceleration on Xilinx FPGAs and on adaptive compute
acceleration platforms (ACAPs). It makes it easier for users without FPGA knowledge to develop
deep-learning inference applications, by abstracting the intricacies of the underlying FPGA and
ACAP.

Figure 1: Vitis AI Stack
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Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. This document covers the following design
processes:

• Machine Learning and Data Science: Importing a machine learning model from a Caffe,
Pytorch, TensorFlow, or other popular framework onto Vitis™ AI, and then optimizing and
evaluating its effectiveness. Topics in this document that apply to this design process include:

• Chapter 2: Getting Started

• Chapter 4: Quantizing the Model

• Chapter 5: Compiling the Model

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine. Topics in this document that apply to this design process include:

• Chapter 3: Understanding the Vitis AI Model Zoo Networks

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs. Topics in this document that apply to this design process include:

• Chapter 10: Integrating the DPU into Custom Platforms

• Host Software Development: Developing the application code, accelerator development,
including library, XRT, and Graph API use. Topics in this document that apply to this design
process include:

• Chapter 6: Deploying and Running the Model

• Chapter 9: Accelerating Subgraph with ML Frameworks

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Chapter 10: Integrating the DPU into Custom Platforms

• System Integration and Validation: Integrating and validating the system functional
performance, including timing, resource use, and power closure. Topics in this document that
apply to this design process include:

• Chapter 7: Profiling the Model
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Features
Vitis AI includes the following features:

• Supports mainstream frameworks and the latest models capable of diverse deep learning
tasks.

• Provides a comprehensive set of pre-optimized models that are ready to deploy on Xilinx
devices.

• Provides a powerful quantizer that supports model quantization, calibration, and fine tuning.
For advanced users, Xilinx also offers an optional AI optimizer that can prune a model by up to
90%.

• The AI profiler provides layer by layer analysis to help with bottlenecks.

• The AI library offers unified high-level C++ and Python APIs for maximum portability from
Edge to Cloud.

• Customizes efficient and scalable IP cores to meet your needs for many different applications
from a throughput, latency, and power perspective.

Vitis AI Tools Overview
Deep-Learning Processor Unit
The Deep-Learning Processor Unit (DPU) is a programmable engine optimized for deep neural
networks. It is a group of parameterizable IP cores pre-implemented on the hardware with no
place and route required. It is designed to accelerate the computing workloads of deep learning
inference algorithms widely adopted in various computer vision applications, such as image/
video classification, semantic segmentation, and object detection/tracking. The DPU is released
with the Vitis AI specialized instruction set, thus facilitating the efficient implementation of deep
learning networks.

An efficient tensor-level instruction set is designed to support and accelerate various popular
convolutional neural networks, such as VGG, ResNet, GoogLeNet, YOLO, SSD, and MobileNet,
among others. The DPU is scalable to fit various Xilinx Zynq®-7000 devices, Zynq UltraScale+
MPSoCs, and Alveo boards from Edge to Cloud to meet the requirements of many diverse
applications.

Chapter 1: Vitis AI Overview

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=7


A configuration file, arch.json, is generated during the Vitis flow. The arch.json file is used
by the Vitis AI compiler for model compilation. Once the configuration of the DPU is modified, a
new arch.json must be generated. The models must be regenerated using the new
arch.json file. In the DPU-TRD, the arch.json file is located at $TRD_HOME/prj/Vitis/
binary_container_1/link/vivado/vpl/prj/prj.gen/sources_1/bd/
xilinx_zcu102_base/ip/xilinx_zcu102_base_DPUCZDX8G_1_0/arch.json.

Vitis AI offers a series of different DPUs for both embedded devices such as Xilinx Zynq®-7000,
Zynq® UltraScale+™ MPSoC, and Alveo cards such as U50, U200, U250, and U280, enabling
unique differentiation and flexibility in terms of throughput, latency, scalability, and power.

Figure 2: DPU Options

DPU Naming

Vitis AI 1.2 and later releases use a new DPU naming scheme to differentiate various DPUs
designed for different purposes. The old DPUv1/v2/v3 naming is deprecated.

The new DPU naming convention is shown in the following figure:
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Figure 3: DPU Naming Convention

DPU Naming Example

To understand the mapping between the old DPU naming scheme and the current naming
scheme, see the following table:

Table 1: DPU Naming Examples

Example DPU Applicati
on

Hardwar
e

Platform

Quantizati
on

Method

Quantiza
tion

Bitwidth
Design
Target

Majo
r

Min
or

Patc
h DPU Name

DPUv1 DPU C AD X 8 G 3 0 0 DPUCADX8G-3.0.0

DPUv2 DPU C ZD X 8 G 1 4 1 DPUCZDX8G-1.4.1

DPUv3e DPU C AH X 8 H 1 0 0 DPUCAHX8H-1.0.0

DPUv3me DPU C AH X 8 L 1 0 0 DPUCAHX8L-1.0.0

DPUv3int
8

DPU C AD F 8 H 1 0 0 DPUCADF8H-1.0.0

XRNN DPU R AH R 16 L 1 0 0 DPURAHR16L-1.0.0

Notes:
1. For Application: C-CNN, R-RNN
2. For Hardware Platform: AD-Alveo DDR; AH-Alveo HBM; VD-Versal DDR with AI Engine and PL; ZD-Zynq DDR
3. For Quantization method: X-Decent; F- Float threshold; I-Integer threshold; R-RNN
4. For Quantization bandwidth: 4-4 bit; 8-8 bit; 16-16 bit; M- Mixed precision
5. For Design target: G-General purpose; H-High throughput; L-Low latency; C-Cost optimized

Alveo U200/U250: DPUCADX8G

DPUCADX8G (previously known as xDNN) IP cores are high performance general CNN
processing engines (PE).
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Figure 4: DPUCADX8G Architecture
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The key features of this engine are:

• 96x16 DSP Systolic Array operating at 700 MHz

• Instruction-based programming model for simplicity and flexibility to represent a variety of
custom neural network graphs.

• 9 MB on-chip Tensor Memory composed of UltraRAM

• Distributed on-chip filter cache

• Utilizes external DDR memory for storing Filters and Tensor data
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• Pipelined Scale, ReLU, and Pooling Blocks for maximum efficiency

• Standalone Pooling/Eltwise execution block for parallel processing with Convolution layers

• Hardware-Assisted Tiling Engine to sub-divide tensors to fit in on-chip Tensor Memory and
pipelined instruction scheduling

• Standard AXI-MM and AXI4-Lite top-level interfaces for simplified system-level integration

• Optional pipelined RGB tensor Convolution engine for efficiency boost

Note: For increased throughput in Cloud applications, a new DPU, DPUCADF8H, for Alveo U200/U250 is
supported in Vitis AI 1.3 and later releases.

Zynq MPSoC: DPUCZDX8G

The DPUCZDX8G IP has been optimized for Xilinx MPSoC devices. This IP can be integrated as a
block in the programmable logic (PL) of the selected Zynq-7000 SoC and
Zynq UltraScale+ MPSoCs with direct connections to the processing system (PS). The
configurable version DPU IP is released together with Vitis AI. DPU is user-configurable and
exposes several parameters which can be specified to optimize PL resources or customize
enabled features. If you want to integrate the DPU in the customized AI projects or products, see
the https://github.com/Xilinx/Vitis-AI/tree/master/dsa/DPU-TRD.
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Figure 5: DPUCZDX8G Architecture
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Alveo U50/U280: DPUCAHX8H

The Xilinx DPUCAHX8H DPU is a programmable engine optimized for convolutional neural
networks, mainly for high throughput applications. This unit includes a high performance
scheduler module, a hybrid computing array module, an instruction fetch unit module, and a
global memory pool module. The DPU uses a specialized instruction set, which allows efficient
implementation of many convolutional neural networks. Some examples of convolutional neural
networks that are deployed include VGG, ResNet, GoogLeNet, YOLO, SSD, MobileNet, FPN, and
many others.

The DPU IP can be implemented in the PL of the selected Alveo board. The DPU requires
instructions to implement a neural network and accessible memory locations for input images as
well as temporary and output data. A user-defined unit running on PL is also required to do
necessary configuration, inject instructions, service interrupts and coordinate data transfers.
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The top-level block diagram of DPU is shown in the following figure.

Figure 6: DPUCAHX8H Top-Level Block Diagram

DPU

Batch Engine

Computing Array

Local Memory Pool

PE PE PE PE...

Batch 
Engine

Instruction
FetchGlobal Memory Pool

DPU0
DPU1

DPU2

HBM

User 
Logic and 
External 
Interface

P
C
I
E

XDMA/
MLShell

X24606-091620

Alveo U50/U50LV/U280: DPUCAHX8L

The DPUCAHX8L IP is a new general purpose CNN accelerator which is optimized for HBM
cards, such as U50/U50LV and U280, and designed for low latency applications. It has a new low
latency DPU micro-architecture with an HBM memory sub-system supporting 4TOPs to 5.3TOPs
MAC array. It supports the back-to-back convolution and depthwise convolution engines to
increase computing parallelism. It also supports hierarchical memory system, URAM and HBM, to
maximize data movement. With this low latency DPU IP, the Xcompiler supports the super layer
interface and many new compiling strategies for kernel fusion and graph partition.
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Figure 7: DPUCAHX8L Architecture
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Alveo U200/U250: DPUCADF8H

The DPUCADF8H is the DPU optimized for Alveo U200/U250 and targeted for high-throughput
applications. The key features of the DPUCADF8H are as follows:

• Throughput oriented and high-efficiency computing engines: throughput is improved by
1.5X~2.0X on different workloads

• Wide range of convolution neural network support

• Friendly to compressed convolution neural networks

• Optimized for high-resolution images

The top-level block diagram is shown in the following figure:
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Figure 8: DPUCADF8H Architecture
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Versal AI Core Series: DPUCVDX8G

The DPUCVDX8G is a high-performance general CNN processing engine optimized for the
Versal AI Core Series. The Versal devices can provide superior performance/watt over
conventional FPGAs, CPUs, and GPUs. The DPUCVDX8G comprises of AI Engines and PL. This
IP is user-configurable and exposes several parameters which can be specified to optimize AI
Engines and PL resources or customize enable features.

The top-level block diagram of DPUCVDX8G is shown in the following figure.
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Figure 9: DPUCVDX8G Architecture
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AI Model Zoo
The AI Model Zoo includes optimized deep learning models to speed up the deployment of deep
learning inference on Xilinx platforms. These models cover different applications, including
ADAS/AD, video surveillance, robotics, and data center. You can get started with these pre-
trained models to enjoy the benefits of deep learning acceleration.

For more information, see Vitis AI Model Zoo on GitHub.
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Figure 10: AI Model Zoo

AI Optimizer
With world-leading model compression technology, you can reduce model complexity by 5x to
50x with minimal accuracy degradation. Deep Compression takes the performance of your AI
inference to the next level. See Vitis AI Optimizer User Guide (UG1333) for information on the AI
Optimizer.

The AI optimizer requires a commercial license to run. Contact your Xilinx sales representative
for more information.

Figure 11: AI Optimizer
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AI Quantizer
By converting the 32-bit floating-point weights and activations to fixed-point like INT8, the AI
quantizer can reduce the computing complexity without losing prediction accuracy. The fixed-
point network model requires less memory bandwidth, thus providing faster speed and higher
power efficiency than the floating-point model.

Figure 12: AI Quantizer

AI Compiler
The AI compiler maps the AI model to a highly-efficient instruction set and dataflow model. It
also performs sophisticated optimizations such as layer fusion, instruction scheduling, and reuses
on-chip memory as much as possible.

Figure 13: AI Complier
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AI Profiler
The Vitis AI profiler profiles and visualizes AI applications to find bottlenecks and allocates
computing resources among different devices. It is easy to use and requires no code changes. It
can trace function calls and run time, and also collect hardware information, including CPU, DPU,
and memory utilization.

Figure 14: AI Profiler

AI Library
The Vitis AI Library is a set of high-level libraries and APIs built for efficient AI inference with
DPUs. It fully supports XRT and is built on Vitis AI runtime with Vitis runtime unified APIs.

The Vitis AI Library provides an easy-to-use and unified interface by encapsulating many efficient
and high-quality neural networks. This simplifies the use of deep-learning neural networks, even
for users without knowledge of deep-learning or FPGAs. The Vitis AI Library allows you to focus
more on developing your applications rather than the underlying hardware.
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Figure 15: AI Library
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AI Runtime
The AI runtime enables applications to use the unified high-level runtime API for both Cloud and
Edge making Cloud-to-Edge deployments seamless and efficient.

Following are the features for the AI runtime API:

• Asynchronous submission of jobs to the accelerator

• Asynchronous collection of jobs from the accelerator

• C++ and Python implementations

• Support for multi-threading and multi-process execution

For Cloud

The cloud accelerator has multiple independent Compute Units (CU) that can be programmed to
each work on a different AI model, or to work on the same AI model for maximum throughput.

The cloud runtime introduces a new AI resource manager, to simplify scaling applications over
multiple FPGA resources. The application no longer needs to designate a specific FPGA card to
be used. Applications can make requests for a single CU or a single FPGA, and the AI resource
manager returns a free resource compatible with your request. The AI resource manager works
with Docker containers, as well as with multiple users and multiple tenants on the same host.
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Vitis AI Runtime

The Vitis AI Runtime (VART) is the next generation runtime suitable for devices based on
DPUCZDX8G, DPUCADX8G, DPUCADF8H, and DPUCAHX8H. DPUCZDX8G and
DPUCADF8H are used for Edge devices, such as ZCU102 and ZCU104. DPUCADX8G is used for
cloud devices, such as Alveo U200 and U250. DPUCAHX8H is used for cloud devices, such as
Alveo U50, U50LV, and U280. DPUCVDX8G is used for Versal evaluation boards, such as
VCK190. The framework of VART is shown in the following figure. For the Vitis AI release, VART
is based on the XRT.

Currently, Vitis AI ships with two kinds of runtime:

• VART: Based on Xilinx intermediate representation (XIR). This is a graph-based intermediate
representation, which is the official data exchange standard for Vitis AI.

• n2cube: Included in the legacy Deep Neural Network Development Kit (DNNDK) and is
available for compatibility.

Note: DNNDK is deprecated in the Vitis AI 1.4 and future releases.

Figure 16: VART Stack
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Vitis AI Containers
Vitis AI 1.3 release uses container technology to distribute the AI software. The release consists
of the following components.

• Tools container

• Runtime package for Zynq UltraScale+ MPSoC

• Public GitHub for examples (https://github.com/Xilinx/Vitis-AI)

• Vitis AI Model Zoo (https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo)

Tools Container

The tools container consists of the following:

• Containers distributed through Docker Hub: https://hub.docker.com/r/xilinx/vitis-ai/tags

• Unified compiler flow includes:

○ Compiler flow for DPUCZDX8G (Embedded)

○ Compiler flow for DPUCAHX8H (Cloud)

○ Compiler flow for DPUCAHX8L (Cloud)

○ Compiler flow for DPUCVDX8G (Edge)

○ Compiler flow for DPUCVDX8H (Cloud)

○ Compiler flow for DPUCADX8G (Cloud)

○ Compiler flow for DPUCADF8H (Cloud)

• Pre-built conda environment to run frameworks:

○ conda activate vitis-ai-caffe for Caffe-based flows

○ conda activate vitis-ai-tensorflow for TensorFlow-based flows

○ conda activate vitis-ai-tensorflow2 for TensorFlow2-based flows

○ conda activate vitis-ai-pytorch for PyTorch-based flows

• Alveo Runtime tools

Runtime Package for MPSoC Devices

• Container path URL: https://www.xilinx.com/bin/public/openDownload?
filename=vitis_ai_2020.2-r1.3.0.tar.gz
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• Contents

○ PetaLinux SDK and Cross compiler tool chain

○ Vitis AI board packages based on 2020.2 release, including Vitis AI new generation runtime
VART.

• Models and overlaybins at https://github.com/Xilinx/Vitis-AI

○ All public pre-trained models

○ All Zynq UltraScale+ MPSoCs and Alveo accelerator cards overlays

○ Scripts are included to automate download and install models and overlays.

Minimum System Requirements
The following table lists system requirements for running containers as well as Alveo boards.

Table 2: Minimum System Requirements

Component Requirement
FPGA Xilinx Alveo U50, U50LV, U200, U250, U280, Xilinx ZCU102, ZCU104,

VCK190

Motherboard PCI Express® 3.0-compliant with one dual-width x16 slot.

System Power Supply 225W

Operating System • Linux, 64-bit
• Ubuntu 16.04, 18.04
• CentOS 7.4, 7.5
• RHEL 7.4, 7.5

GPU (Optional to accelerate quantization) NVIDIA GPU supports CUDA 9.0 or higher, like NVIDIA P100, V100

CUDA Driver (Optional to accelerate
quantization)

Driver compatible to CUDA version, NVIDIA-384 or higher for CUDA 9.0,
NVIDIA-410 or higher for CUDA 10.0

Docker version 19.03 or higher

Development Flow Overview
The recommended development flow for Vitis™ AI is illustrated as the following figure. Vitis AI
and Vitis IDE are needed for this flow which has three basic steps:
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Figure 17: Vitis AI Flow
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1. The Vitis AI toolchain in the host machine is used to build the model. It takes the pre-trained
floating models as the input and runs them through the AI Optimizer (optional).

2. A custom hardware platform is built using the Vitis software platform based on the Vitis
Target Platform. The generated hardware includes the DPU IP and other kernels. In the Vitis
AI release package, pre-built SD card images (for ZCU102/104) and Alveo™ shells are
included for quick start and application development. You can also use the Vivado® Design
Suite to integrate the DPU and build the custom hardware to suit your need. For more
information, see Chapter 10: Integrating the DPU into Custom Platforms.

3. You can build executable software which runs on the built hardware. You can write your
applications with C++ or Python which calls the Vitis AI Runtime and Vitis AI Library to load
and run the compiled model files.
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Chapter 2

Getting Started

Installation and Setup
Downloading Vitis AI Development Kit
The Vitis™ AI software is made available through Docker Hub. Vitis AI consists of the following
two packages:

• Vitis AI tools docker xilinx/vitis-ai:latest

• Vitis AI runtime package for Edge

The tools container contains the Vitis AI quantizer, AI compiler, and AI runtime for cloud DPU.
The Vitis AI runtime package for edge is for edge DPU development, which holds Vitis AI
runtime installation package for Xilinx® ZCU102 and ZCU104 evaluation boards, and Arm® GCC
cross-compilation toolchain.

Xilinx FPGA devices and evaluation boards supported by the Vitis AI development kit v1.3
release are:

• Cloud: Alveo™ cards U200, U250, U280, U50, U50LV, and Versal ACAP evaluation board
VCK190.

• Edge: Zynq® UltraScale+™ MPSoC evaluation boards ZCU102 and ZCU104.

Setting Up the Host
The following two options are available for installing the containers with the Vitis AI tools and
resources.

1. Pre-built containers on Docker Hub: xilinx/vitis-ai

2. Build containers locally with Docker recipes: Docker Recipes

Use the following steps for installation:

1. Install Docker, if Docker not installed on your machine.
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2. Follow the Post-installation steps for Linux to ensure that your Linux user is in the group
Docker.

3. Clone the Vitis AI repository to obtain the examples, reference code, and scripts.

git clone --recurse-submodules https://github.com/Xilinx/Vitis-AI  

cd Vitis-AI

4. Run Docker Container

• Run the CPU image from Docker Hub

docker pull xilinx/vitis-ai:latest
./docker_run.sh xilinx/vitis-ai

• Build the CPU image locally and run it

cd docker
./docker_build_cpu.sh

# After build finished
cd ..
./docker_run.sh xilinx/vitis-ai-cpu:latest

• Build the GPU image locally and run it

cd docker
./docker_build_gpu.sh

# After build finished
cd ..
./docker_run.sh xilinx/vitis-ai-gpu:latest

Setting Up the Host (Using VART)

For Edge (DPUCZDX8G)

Use the following steps to set up the host for Edge:

1. Download sdk-2020.2.0.0.sh from here.

2. Install the cross-compilation system environment.

./sdk-2020.2.0.0.sh

3. Follow the prompts to install. The following figure shows the installation process.

RECOMMENDED: The ~/petalinux_sdk  path is recommended for installation. Regardless of
the path you choose for the installation, ensure that your chosen path has write permissions. In this
section, it is installed in ~/petalinux_sdk.

4. When the installation is complete, follow the prompts and enter the following command.

source ~/petalinux_sdk/environment-setup-aarch64-xilinx-linux
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Note: If you close the current terminal, you need to re-execute the above instructions in the new
terminal to set up the environment.

5. Download the vitis_ai_2020.2-r1.3.0.tar.gz from here and install it to the
PetaLinux system.

tar -xzvf vitis_ai_2020.2-r1.3.0.tar.gz -C ~/petalinux_sdk/sysroots/
aarch64-xilinx-linux

6. Cross compile the sample taking resnet50 as an example.

cd Vitis-AI/demo/VART/resnet50
bash –x build.sh

If the compilation process does not report any error and the executable file resnet50 is
generated, then the host environment is installed correctly.

For Cloud (DPUCAHX8H)

Use the following steps to set up the host for cloud. These steps apply to U50, U50LV, and U280
cards.

1. Start the Docker container. After the Docker image is loaded and running, the Vitis AI
runtime is automatically installed in the docker system.

2. Download the xclbin files from here. Untar it, choose the Alveo card and install it. Take U50
as an example.

tar -xzvf alveo_xclbin-1.3.0.tar.gz
cd alveo_xclbin-1.3.0/U50/6E300M
sudo cp dpu.xclbin hbm_address_assignment.txt /usr/lib

For DPUCAHX8L, take U50lv as an example.

tar -xzvf alveo_xclbin-1.3.0.tar.gz
cd alveo_xclbin-1.3.0/U50lv-V3ME/1E250M
sudo cp dpu.xclbin /opt/xilinx/overlaybins/
export XLNX_VART_FIRMWARE=/opt/xilinx/overlaybins/dpu.xclbin

Note: If there is more than one card installed on the server and you want to specify some cards to run the
program, set XLNX_ENABLE_DEVICES. It takes the following options:

• To use device 0 for the DPU, set export XLNX_ENABLE_DEVICES=0.

• To use device 0, device 1, and device 2 for the DPU, set export XLNX_ENABLE_DEVICES=0,1,2.

• By default, all available devices are used for the DPU if you do not set this environment variable.
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Setting Up the Evaluation Board

Setting Up the ZCU102/104 Evaluation Board

The Xilinx ZCU102 evaluation board uses the mid-range ZU9 Zynq® UltraScale+™ MPSoC to
enable you to jumpstart your machine learning applications. For more information on the
ZCU102 board, see the ZCU102 product page on the Xilinx website: https://www.xilinx.com/
products/boards-and-kits/ek-u1-zcu102-g.html.

The main connectivity interfaces for ZCU102 are shown in the following figure.

Figure 18: Xilinx ZCU102 Evaluation Board and Peripheral Connections
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The Xilinx ZCU104 evaluation board uses the mid-range ZU7 Zynq UltraScale+ device to enable
you to jumpstart your machine learning applications. For more information on the ZCU104
board, see the Xilinx website: https://www.xilinx.com/products/boards-and-kits/zcu104.html.

The main connectivity interfaces for ZCU104 are shown in the following figure.

Figure 19: Xilinx ZCU104 Evaluation Board and Peripheral Connections

In the following sections, ZCU102 is used as an example to show the steps to setup the Vitis AI
running environment on the evaluation boards.

Flashing the OS Image to the SD Card

For ZCU102, the system images can be downloaded from here; for ZCU104, it can be
downloaded from here. One suggested software application for flashing the SD card is Etcher. It
is a cross-platform tool for flashing OS images to SD cards, available for Windows, Linux, and
Mac systems. The following example uses Windows.

1. Download Etcher from: https://etcher.io/ and save the file as shown in the following figure.
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2. Install Etcher, as shown in the following figure.

3. Eject any external storage devices such as USB flash drives and backup hard disks. This
makes it easier to identify the SD card. Then, insert the SD card into the slot on your
computer, or into the reader.

4. Run the Etcher program by double clicking on the Etcher icon shown in the following figure,
or select it from the Start menu.
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Etcher launches, as shown in the following figure.

5. Select the image file by clicking Select Image. You can select a .zip or .gz compressed file.

6. Etcher tries to detect the SD drive. Verify the drive designation and the image size.

7. Click Flash!.

Booting the Evaluation Board

This example uses a ZCU102 board to illustrate how to boot a Vitis AI evaluation board. Follow
the steps below to boot the evaluation board.

1. Connect the power supply (12V ~ 5A).

2. Connect the UART debug interface to the host and other peripherals as required.

3. Turn on the power and wait for the system to boot.
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4. Login to the system.

5. The system needs to perform some configurations for its first boot. Then reboot the board
for these configurations to take effect.

Accessing the Evaluation Board

There are three ways to access the ZCU102 board:

• UART port

• Ethernet connection

• Standalone

UART Port

Apart from monitoring the boot process and checking Linux kernel messages for debugging, you
can login to the board through the UART. The configuration parameters of the UART are shown
in the following example. Log in to the system with username “root” and password “root”.

• baud rate: 115200 bps

• data bit: 8

• stop bit: 1

• no parity

Note: On a Linux system, you can use Minicom to connect to the target board directly; for a Windows
system, a USB to UART driver is needed before connecting to the board through a serial port.

Using the Ethernet Interface

The ZCU102 board has an Ethernet interface, and SSH service is enabled by default. You can log
into the system using an SSH client after the board has booted.

Use the ifconfig command via the UART interface to set the IP address of the board, then use
the SSH client to log into the system.

Using the Board as a Standalone Embedded System

The ZCU102 board allows a keyboard, mouse, and monitor to be connected. After a successful
boot, a Linux GUI desktop is displayed. You can then access the board as a standalone embedded
system.
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Installing Vitis AI Runtime on the Evaluation Board

To improve the user experience, the Vitis AI Runtime packages, VART samples, Vitis-AI-Library
samples and models have been built into the board image. The examples are precompiled.
Therefore, you do not need to install Vitis AI Runtime packages and model package on the board
separately. However, you can still install the model or Vitis AI Runtime on your own image or on
the official image by following these steps.

With an Ethernet connection established, copy the Vitis™ AI runtime (VART) package from
github to the evaluation board and set up a Vitis AI running environment for the ZCU102 board.

1. Download the vitis-ai-runtime-1.3.x.tar.gz from here. Untar it and copy the
following files to the board using scp.

tar -xzvf vitis-ai-runtime-1.3.x.tar.gz
scp -r vitis-ai-runtime-1.3.x/aarch64/centos root@IP_OF_BOARD:~/

Note: You can take the rpm package as a normal archive, and extract the contents on the host side, if
you only need some of the libraries. Only model libraries can be independent, while the others are
common libraries. The operation command is as follows.

rpm2cpio libvart-1.3.0-r<x>.aarch64.rpm | cpio -idmv

2. Log in to the board using ssh. You can also use the serial port to login.

3. Install the Vitis AI runtime. Execute the following commands in order.

cd ~/centos
rpm -ivh --force libunilog-1.3.0-r<x>.aarch64.rpm
rpm -ivh --force libxir-1.3.0-r<x>.aarch64.rpm
rpm -ivh --force libtarget-factory-1.3.0-r<x>.aarch64.rpm
rpm -ivh --force libvart-1.3.0-r<x>.aarch64.rpm

If you want to run the example based on Vitis-AI-Library, execute the following command to
install the Vitis-AI-Library runtime package.

rpm -ivh --force libvitis_ai_library-1.3.0-r<x>.aarch64.rpm

After the installation is complete, the Vitis AI Runtime library will be installed under /usr/
lib.

Setting Up the Custom Board
Vitis AI supports the official ZCU102/ZCU104 as well as user-defined boards.

If you want to run Vitis AI on your custom board, you need to preform the following steps in
order. Ensure that you complete a step before proceeding to the next step.

1. Create the platform system of your custom board. For more information, see Vitis Unified
Software Platform Documentation: Embedded Software Development (UG1400) and https://
github.com/Xilinx/Vitis_Embedded_Platform_Source/tree/master/Xilinx_Official_Platforms.
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2. Integrate DPU IP. Refer to https://github.com/Xilinx/Vitis-AI/tree/master/dsa/DPU-TRD to
complete the integration of DPU IP.

Note: After this step is completed, an sd_card directory and an sd_card.img image with DPU are
created. For more known issues, see to Known issues.

3. Install the dependent libraries of Vitis AI.

There are two ways to install the dependent libraries of Vitis AI. One is to rebuild system
through the configuration of PetaLinux, the other is to install the Vitis AI dependent libraries
online.

a. Rebuild the system using PetaLinux configuration by executing the following command:

petalinux-config -c rootfs

b. Ensure that packagegroup-petalinux-vitisai is selected, as shown in the following figure:
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c. Execute the following command to recompile the system.

petalinux-build

d. You can also install the Vitis AI dependent libraries online by executing dnf install
packagegroup-petalinux-vitisai to complete the installation, as shown in the
following code:

root@xilinx-zcu104-2020_1:/media/sd-mmcblk0p1# dnf install 
packagegroup-petalinux-vitisai
Last metadata expiration check: 1 day, 18:12:25 ago on Wed Jun 17 
09:35:01 2020.
Package packagegroup-petalinux-vitisai-1.0-r0.noarch is already 
installed.
Dependencies resolved.
Nothing to do.
Complete!

Note: If you use this method, you need to ensure that the board is connected to the Internet.

Note: After this step is completed, the 1.2 version of VART is also installed into the system and the
system image for Vitis AI is available.

Note: If you want to compile the example on the target, select the packagegroup-petalinux-
vitisai-dev and packagegroup-petalinux-self-hosted and recompile the system.

4. Flash the image to the SD card.

See Flashing the OS Image to the SD Card to flash the new image to the SD card.

5. Update the Vitis AI Runtime libraries to VAI1.3, if needed.

After the custom board boots up with the above system image, the 1.2 version of VART is
installed. If you want to update them to the 1.3, you have to update the following five library
packages, as shown below.

• libunilog

• libxir

• libtarget-factory

• libvart

• libvitis_ai_library

See Installing Vitis AI Runtime on the Evaluation Board to install the Vitis AI Runtime
libraries.

After you install the Vitis AI Runtime, a vart.conf file is generated under /etc to indicate
the dpu.xclbin file location, as shown below. The Vitis AI examples fetch the
dpu.xclbin file by reading vart.conf file. If the dpu.xclbin file on your board is not in
the same location as the default, change the dpu.xclbin path in vart.conf.

Note: This step generates a system that can run the Vitis AI examples.
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6. Run the Vitis AI examples. See Running Examples to run the Vitis AI examples.

Running Examples
For Vitis AI development kit v1.3 release, there are two kinds of examples. They are;

• VART-based examples demonstrating the using of the Vitis AI unified high-level C++/Python
APIs (which are available across Cloud-to-Edge).

• DNNDK-based examples demonstrating the usage of the Vitis AI advanced low-level C++/
Python APIs (only available for the Edge DPUCZDX8G).

These samples can be found at https://github.com/Xilinx/Vitis-AI/demo. If you are using Xilinx
ZCU102 and ZCU104 boards to run samples, make sure to enable X11 forwarding with the "ssh -
X" option, or the command export DISPLAY=192.168.0.10:0.0 (assuming the IP address of host
machine is 192.168.0.10), when logging in to the board using an SSH terminal, as all the
examples require X11 to work properly.

Note: The examples will not work through a UART connection due to the lack of X11 support.
Alternatively, you can connect boards with a monitor directly instead of using the Ethernet.

Vitis AI Examples
Vitis AI provides several C++ and Python examples to demonstrate the use of the unified cloud-
edge runtime programming APIs.

Note: The sample code helps you get started with the new runtime (VART). They are not meant for
performance benchmarking.

To familiarize yourself with the unified APIs, use the VART examples. These examples are only to
understand the APIs and do not provide high performance. These APIs are compatible between
the edge and cloud, though cloud boards may have different software optimizations such as
batching and on the edge would require multi-threading to achieve higher performance. If you
desire higher performance, see the Vitis AI Library samples and demo software.

If you want to do optimizations to achieve high performance, here are some suggestions:

• Rearrange the thread pipeline structure so that every DPU thread has its own "DPU" runner
object.

• Optimize display thread so that when DPU FPS is higher than display rate, skipping some
frames. 200 FPS is too high for video display.

• Pre-decoding. The video file might be H.264 encoded. The decoder is slower than the DPU
and consumes a lot of CPU resources. The video file has to be first decoded and transformed
into raw format.
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• Batch mode on Alveo boards need special consideration as it may cause video frame jittering.
ZCU102 has no batch mode support.

• OpenCV cv::imshow is slow, so you need to use libdrm.so. This is only for local display, not
through X server.

The following table below describes these Vitis AI examples.

Table 3: Vitis AI Examples

ID Example Name Models Framework Notes
1 resnet50 ResNet-50 Caffe Image classification with Vitis AI unified C++

APIs.

2 resnet50_mt_py ResNet-50 TensorFlow Multi-threading image classification with Vitis
AI unified Python APIs.

3 inception_v1_mt_py Inception-v1 TensorFlow Multi-threading image classification with Vitis
AI unified Python APIs.

4 pose_detection SSD, Pose detection Caffe Pose detection with Vitis AI unified C++ APIs.

5 video_analysis SSD Caffe Traffic detection with Vitis AI unified C++ APIs.

6 adas_detection YOLOv3 Caffe ADAS detection with Vitis AI unified C++ APIs.

7 segmentation FPN Caffe Semantic segmentation with Vitis AI unified C+
+ APIs.

8 squeezenet_pytorch Squeezenet PyTorch Image classification with Vitis AI unified C++
APIs.

The typical code snippet to deploy models with Vitis AI unified C++ high-level APIs is as follows:

// get dpu subgraph by parsing model file
auto runner = vart::Runner::create_runner(subgraph, "run");
//populate input/output tensors
auto job_id = runner->execute_async(inputsPtr, outputsPtr);
runner->wait(job_id.first, -1);
//process outputs

The typical code snippet to deploy models with Vitis AI unified Python high-level APIs is shown
below:

dpu_runner = runner.Runner(subgraph，"run")
# populate input/output tensors
jid = dpu_runner.execute_async(fpgaInput, fpgaOutput)
dpu_runner.wait(jid)
# process fpgaOutput

Running Vitis AI Examples on DPUCZD8G and
DPUCAHX8H
Before running Vitis™ AI examples on Edge or on Cloud, download the
vitis_ai_runtime_r1.3.0_image_video.tar.gz from here. The images and videos
used in the following example can be found in the package.
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To improve the user experience, the Vitis AI Runtime packages, VART samples, Vitis-AI-Library
samples and models have been built into the board image, and the examples are precompiled.
You can directly run the example program on the target.

For Edge (DPUCZDX8G)

1. Download the vitis_ai_runtime_r1.3.0_image_video.tar.gz from host to the
target using scp with the following command.

scp vitis_ai_runtime_r1.3.0_image_video.tar.gz root@[IP_OF_BOARD]:~/

2. Unzip the vitis_ai_runtime_r1.3.0_image_video.tar.gz package.

tar -xzvf vitis_ai_runtime_r1.3.0_image_video.tar.gz -C ~/Vitis-AI/demo/
VART

3. Download the model. The download link of the model is described in the yaml file of the
model. You can find the yaml file in Vitis-AI/models/AI-Model-Zoo and download the
model of the corresponding platform. Take resnet50 as an example:

wget https://www.xilinx.com/bin/public/openDownload?filename=resnet50-
zcu102_zcu104-r1.3.0.tar.gz -O resnet50-zcu102_zcu104-r1.3.0.tar.gz

scp resnet50-zcu102_zcu104-r1.3.0.tar.gz root@[IP_OF_BOARD]:~/

4. Untar the model on the target and install it.

Note: If the /usr/share/vitis_ai_library/models folder does not exist, create it first.

mkdir -p /usr/share/vitis_ai_library/models

To install the model package, run the following command:

tar -xzvf resnet50-zcu102_zcu104-r1.3.0.tar.gz
cp resnet50 /usr/share/vitis_ai_library/models -r

5. Enter the directory of samples in the target board. Take resnet50 as an example.

cd ~/Vitis-AI/demo/VART/resnet50

6. Run the example.

./resnet50 /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel

Note: If the above executable program does not exist, cross-compile it on the host first.

Note: For examples with video input, only `webm` and `raw` format are supported by default with the
official system image. If you want to support video data in other formats, install the relevant packages on
the system.

The following table shows the run commands for all the Vitis AI samples.
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Table 4: Launching Commands for Vitis AI Samples on ZCU102/ZCU104

ID Example Name Command
1 resnet50 ./resnet50 /usr/share/vitis_ai_library/models/resnet50/

resnet50.xmodel

2 resnet50_mt_py python3 resnet50.py 1 /usr/share/vitis_ai_library/models/resnet50/
resnet50.xmodel

3 inception_v1_mt_py python3 inception_v1.py 1 /usr/share/vitis_ai_library/models/
inception_v1_tf/inception_v1_tf.xmodel

4 pose_detection ./pose_detection video/pose.webm /usr/share/vitis_ai_library/models/
sp_net/sp_net.xmodel /usr/share/vitis_ai_library/models/
ssd_pedestrian_pruned_0_97/ssd_pedestrian_pruned_0_97.xmodel

5 video_analysis ./video_analysis video/structure.webm /usr/share/vitis_ai_library/
models/ssd_traffic_pruned_0_9/ssd_traffic_pruned_0_9.xmodel

6 adas_detection ./adas_detection video/adas.webm /usr/share/vitis_ai_library/models/
yolov3_adas_pruned_0_9/yolov3_adas_pruned_0_9.xmodel

7 segmentation ./segmentation video/traffic.webm /usr/share/vitis_ai_library/
models/fpn/fpn.xmodel

8 squeezenet_pytorch ./squeezenet_pytorch /usr/share/vitis_ai_library/models/
squeezenet_pt/squeezenet_pt.xmodel

For Cloud (DPUCAHX8H)

Before running the samples on the cloud, make sure that the Alveo card, such as U50, U50LV, or
U280, is installed on the server and the docker system is loaded and running.

If you have downloaded Vitis-AI, entered Vitis-AI directory, and then started Docker.

Thus, VART examples is located in the path of /workspace/demo/VART/ in the docker system.

1. Download the vitis_ai_runtime_r1.3.0_image_video.tar.gz package and unzip
it.

tar -xzvf vitis_ai_runtime_r1.3.0_image_video.tar.gz -C /workspace/demo/
VART

2. Compile the sample, take resnet50 as an example.

cd /workspace/demo/VART/resnet50
bash –x build.sh

When the compilation is complete, the executable resnet50 is generated in the current
directory.

3. Download the model. The download link of the model is described in yaml file of the model.
You can find the yaml file in Vitis-AI/models/AI-Model-Zoo and download the model
of the corresponding model. Take resnet50 as an example:

wget https://www.xilinx.com/bin/public/openDownload?filename=resnet50-
u50-r1.3.0.tar.gz -O resnet50-u50-r1.3.0.tar.gz

4. Untar the model on the target and install it.
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If the /usr/share/vitis_ai_library/models folder does not exist, create it first.

sudo mkdir -p /usr/share/vitis_ai_library/models

Then install the model package.

tar -xzvf resnet50-u50-r1.3.0.tar.gz
sudo cp resnet50 /usr/share/vitis_ai_library/models -r

5. Run the sample.

./resnet50 /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel

The following table shows the run commands for all the Vitis AI samples in the cloud.

Table 5: Launching Commands for Vitis AI Samples on U50/U50LV/U280

ID Example Name Command
1 resnet50 ./resnet50 /usr/share/vitis_ai_library/models/resnet50/

resnet50.xmodel

2 resnet50_mt_py /usr/bin/python3 resnet50.py 1 /usr/share/vitis_ai_library/models/
resnet50/resnet50.xmodel

3 inception_v1_mt_py /usr/bin/python3 inception_v1.py 1 /usr/share/vitis_ai_library/
models/inception_v1_tf/inception_v1_tf.xmodel

4 pose_detection ./pose_detection video/pose.mp4 /usr/share/vitis_ai_library/models/
sp_net/sp_net.xmodel /usr/share/vitis_ai_library/models/
ssd_pedestrian_pruned_0_97/ssd_pedestrian_pruned_0_97.xmodel

5 video_analysis ./video_analysis video/structure.mp4 /usr/share/vitis_ai_library/
models/ssd_traffic_pruned_0_9/ssd_traffic_pruned_0_9.xmodel

6 adas_detection ./adas_detection video/adas.avi /usr/share/vitis_ai_library/models/
yolov3_adas_pruned_0_9/yolov3_adas_pruned_0_9.xmodel

7 segmentation ./segmentation video/traffic.mp4 /usr/share/vitis_ai_library/
models/fpn/fpn.xmodel

8 squeezenet_pytorch ./squeezenet_pytorch /usr/share/vitis_ai_library/models/
squeezenet_pt/squeezenet_pt.xmodel

Support
You can visit the Vitis AI Library community forum on the Xilinx website for topic discussions,
knowledge sharing, FAQs, and requests for technical support.
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Chapter 3

Understanding the Vitis AI Model
Zoo Networks

The Vitis™ AI Model Zoo includes optimized deep learning models to speed up the deployment
of deep learning inference applications on Xilinx® platforms. These models cover different
application fields, including but not limited to ADAS/AD, video surveillance, robotics, data center,
etc. You can get started with these free pre-trained models to enjoy the benefits of deep learning
acceleration.

In Vitis 1.3 AI Model Zoo, a variety of Neural Network models with three popular frameworks,
Caffe, TensorFlow and PyTorch, are provided. For every model, a .yaml file that provides a
description of model name, framework, task type, network backbone, train & validation dataset,
float OPS, prune or not, download link, license, and md5 checksum is released. You can browse a
model list in Vitis 1.3 AI Model Zoo and select a Neural Network model that you are interested in
and get its basic information from a specified .yaml file. With the download link in the .yaml file,
you can download the model freely.

For example, if you need a ResNet-50 model used for general image classification on TensorFlow,
then find a model named tf_resnetv1_50_imagenet_224_224_6.97G_1.3. According to standard
naming rules, models are named using this format: F_M_(D)_H_W_(P)_C_V.

• F specifies training framework: cf is caffe, tf is TensorFlow, dk is Darknet, pt is PyTorch.

• M specifies the model feature.

• D specifies the dataset. It is optional depending on whether the dataset is public or private.
Mixed means a mixture of multiple public datasets.

• H specifies the height of input data.

• W specifies the width of input data.

• P specifies the pruning ratio, it means how much computation is reduced. It is optional
depending on whether the model is pruned or not.

• C specifies the computation of the model: how many Gops per image.

• V specifies the version of Vitis AI.

As such, tf_resnetv1_50_imagenet_224_224_6.97G_1.3 is a ResNet v1-50 model trained with
TensorFlow using the Imagenet dataset, input data size is 224*224, not pruned, the computation
per image is 6.97 Gops and Vitis AI version is 1.3.
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Then you can choose this model and download it manually using the link provided in
tf_resnetv1_50_imagenet_224_224_6.97G_1.3.yaml or through tools that can read .yaml
information.

For more information about models list, see https://github.com/Xilinx/Vitis-AI/tree/master/
models/AI-Model-Zoo/model-list.
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Chapter 4

Quantizing the Model

Overview
The process of inference is computation intensive and requires a high memory bandwidth to
satisfy the low-latency and high-throughput requirement of Edge applications.

Quantization and channel pruning techniques are employed to address these issues while
achieving high performance and high energy efficiency with little degradation in accuracy.
Quantization makes it possible to use integer computing units and to represent weights and
activations by lower bits, while pruning reduces the overall required operations. In the Vitis™ AI
quantizer, only the quantization tool is included. The pruning tool is packaged in the Vitis AI
optimizer. Contact the support team for the Vitis AI development kit if you require the pruning
tool.

Figure 20: Pruning and Quantization Flow

Generally, 32-bit floating-point weights and activation values are used when training neural
networks. By converting the 32-bit floating-point weights and activations to 8-bit integer (INT8)
format, the Vitis AI quantizer can reduce computing complexity without losing prediction
accuracy. The fixed-point network model requires less memory bandwidth, thus providing faster
speed and higher power efficiency than the floating-point model. The Vitis AI quantizer supports
common layers in neural networks, including, but not limited to, convolution, pooling, fully
connected, and batchnorm.
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The Vitis AI quantizer now supports TensorFlow (both 1.x and 2.x), PyTorch, and Caffe. The
quantizer names are vai_q_tensorflow, vai_q_pytorch, and vai_q_caffe, respectively. The Vitis AI
quantizer for TensorFlow 1.x and TensorFlow 2.x are implemented in different ways and are
released separately. For TensorFlow 1.x, the Vitis AI quantizer is based on TensorFlow 1.15. After
adding quantization features, the Vitis AI quantizer rebuilds and redistributes a standalone
package. For TensorFlow 2.x, the Vitis AI quantizer is a Python package with several quantization
APIs. You can import this package and the Vitis AI quantizer works like a plugin for TensorFlow.

Table 6: Vitis AI Quantizer Supported Frameworks and Features

Versions

Features
Quantize Calibration

(post-training
quantization)

Quantize Finetuning
(quantize-aware

training)

Fast Finetuning
( Advanced
Calibration)

TensorFlow 1.x Based on 1.15 Yes Yes No

TensorFlow 2.x Supports 2.3 Yes Yes No. This feature is
currently in development.

PyTorch Supports 1.2 - 1.4 Yes Yes Yes

Caffe - Yes Yes No

In the quantize calibration process, only a small set of unlabeled images are required to analyze
the distribution of activations. The running time of quantize calibration varies from a few
seconds to several minutes, depending on the size of the neural network. Generally, there is
some drop in accuracy after quantization. However, for some networks such as Mobilenet, the
accuracy loss might be large. In this situation, quantize finetuning can be used to further improve
the accuracy of quantized models. Quantize finetuning requires the original training dataset.
According to experiments, several epochs of finetuning are needed and the finetune time varies
from several minutes to several hours. It is recommended to use small learning rates when
performing quantize finetuning.

For quantize calibration, cross layer equalization 1 algorithm is implemented in Vitis AI 1.3. Cross
layer equalization can improve the calibration performance, especially for networks including
depth-wise convolution.

With a small set of unlabeled data, the AdaQuant algorithm 2 not only calibrates the activations
but also finetunes the weights. AdaQuant uses a small set of unlabeled data similar to calibration
but it changes the model, which is like finetuning. Vitis AI quantizer implements this algorithm
and call it "fast finetuning" or "advanced calibration". Fast finetuning can achieve better
performance than quantize calibration but it is slightly slower. One thing worth nothing is that for
fast finetuning, each run will get different result. This is similar to quantize finetuning.

Note:
1. Markus Nagel et al., Data-Free Quantization through Weight Equalization and Bias Correction,

arXiv:1906.04721, 2019.
2. Itay Hubara et.al., Improving Post Training Neural Quantization: Layer-wise Calibration and Integer

Programming, arXiv:2006.10518, 2020.
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Vitis AI Quantizer Flow
The overall model quantization flow is detailed in the following figure.

Figure 21: VAI Quantizer Workflow
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The Vitis AI quantizer takes a floating-point model as input and performs pre-processing (folds
batchnorms and removes useless nodes), and then quantizes the weights/biases and activations
to the given bit width.

To capture activation statistics and improve the accuracy of quantized models, the Vitis AI
quantizer must run several iterations of inference to calibrate the activations. A calibration image
dataset input is, therefore, required. Generally, the quantizer works well with 100–1000
calibration images. Because there is no need for back propagation, the un-labeled dataset is
sufficient.

After calibration, the quantized model is transformed into a DPU deployable model (named
deploy_model.pb for vai_q_tensorflow, model_name.xmodel for vai_q_pytorch, and
deploy.prototxt / deploy.caffemodel for vai_q_caffe), which follows the data format of
a DPU. This model can then be compiled by the Vitis AI compiler and deployed to the DPU. The
quantized model cannot be taken in by the standard version of TensorFlow, PyTorch, or Caffe
framework.
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TensorFlow 1.x Version (vai_q_tensorflow)
Installing vai_q_tensorflow
There are two ways to install the vai_q_tensorflow:

Install using Docker Containers

Vitis AI provides a Docker container for quantization tools, including vai_q_tensorflow. After
running a container, activate the Conda environment "vitis-ai-tensorflow".

conda activate vitis-ai-tensorflow

Install using Source Code

vai_q_tensorflow is a fork of TensorFlow from branch "r1.15". It is open source in 
Vitis_AI_Quantizer. vai_q_tensorflow building process is the same as TensorFlow 1.15. See the 
TensorFlow documentation for more information.

Running vai_q_tensorflow

Preparing the Float Model and Related Input Files

Before running vai_q_tensorflow, prepare the frozen inference TensorFlow model in floating-
point format and calibration set, including the files listed in the following table.

Table 7: Input Files for vai_q_tensorflow

No. Name Description
1 frozen_graph.pb Floating-point frozen inference graph. Ensure that the graph is the inference graph

rather than the training graph.

2 calibration dataset A subset of the training dataset containing 100 to 1000 images.

3 input_fn An input function to convert the calibration dataset to the input data of the
frozen_graph during quantize calibration. Usually performs data pre-processing and
augmentation.

Getting the Frozen Inference Graph

In most situations, training a model with TensorFlow 1.x creates a folder containing a GraphDef
file (usually ending with a .pb or .pbtxt extension) and a set of checkpoint files. What you
need for mobile or embedded deployment is a single GraphDef file that has been “frozen”, or had
its variables converted into inline constants so everything is in one file. To handle the conversion,
TensorFlow provides freeze_graph.py, which is automatically installed with the
vai_q_tensorflow quantizer.
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An example of command-line usage is as follows:

$ freeze_graph \
    --input_graph  /tmp/inception_v1_inf_graph.pb \
    --input_checkpoint  /tmp/checkpoints/model.ckpt-1000 \
    --input_binary  true \
    --output_graph  /tmp/frozen_graph.pb \
    --output_node_names  InceptionV1/Predictions/Reshape_1

The –input_graph should be an inference graph other than the training graph. Because the
operations of data preprocessing and loss functions are not needed for inference and
deployment, the frozen_graph.pb should only include the main part of the model. In
particular, the data preprocessing operations should be taken in the Input_fn to generate
correct input data for quantize calibration.

Note: Some operations, such as dropout and batchnorm, behave differently in the training and inference
phases. Ensure that they are in the inference phase when freezing the graph. For examples, you can set the
flag is_training=false when using tf.layers.dropout/tf.layers.batch_normalization.
For models using tf.keras, call tf.keras.backend.set_learning_phase(0) before building the
graph.

TIP: Type freeze_graph --help  for more options.

The input and output node names vary depending on the model, but you can inspect and
estimate them with the vai_q_tensorflow quantizer. See the following code snippet for an
example:

$ vai_q_tensorflow inspect --input_frozen_graph=/tmp/
inception_v1_inf_graph.pb

The estimated input and output nodes cannot be used for quantization if the graph has in-graph
pre- and post-processing. This is because some operations are not quantizable and can cause
errors when compiled by the Vitis AI compiler, if you deploy the quantized model to the DPU.

Another way to get the input and output name of the graph is by visualizing the graph. Both
TensorBoard and Netron can do this. See the following example, which uses Netron:

$ pip install netron
$ netron /tmp/inception_v3_inf_graph.pb

Getting the Calibration Dataset and Input Function

The calibration set is usually a subset of the training/validation dataset or actual application
images (at least 100 images for performance). The input function is a Python importable function
to load the calibration dataset and perform data preprocessing. The vai_q_tensorflow quantizer
can accept an input_fn to do the preprocessing which is not saved in the graph. If the pre-
processing subgraph is saved into the frozen graph, the input_fn only needs to read the images
from dataset and return a feed_dict.
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The format of input function is module_name.input_fn_name, (for example,
my_input_fn.calib_input). The input_fn takes an int object as input, indicating the
calibration step number, and returns a dict("placeholder_name, numpy.Array") object for
each call, which is fed into the placeholder nodes of the model when running inference. The
shape of numpy.array must be consistent with the placeholders. See the following pseudo
code example:

$ “my_input_fn.py”
def calib_input(iter):
“””A function that provides input data for the calibration
Args:
iter: A `int` object, indicating the calibration step number
Returns:
    dict( placeholder_name, numpy.array): a `dict` object, which will be 
fed into the model
“””
  image = load_image(iter)
  preprocessed_image = do_preprocess(image)
  return {"placeholder_name": preprocessed_images}

Quantizing the Model using vai_q_tensorflow

Run the following commands to quantize the model:

$vai_q_tensorflow quantize \
                    --input_frozen_graph  frozen_graph.pb \
                    --input_nodes  ${input_nodes} \
                    --input_shapes  ${input_shapes} \
                    --output_nodes   ${output_nodes} \
                    --input_fn  input_fn \
                    [options]
                

The input_nodes and output_nodes arguments are the name list of input nodes of the quantize
graph. They are the start and end points of quantization. The main graph between them is
quantized if it is quantizable, as shown in the following figure.
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Figure 22: Quantization Flow for TensorFlow
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It is recommended to set –input_nodes to be the last nodes of the preprocessing part and to set -
output_nodes to be the last nodes of the main graph part, because some operations in the pre-
and post-processing parts are not quantizable and might cause errors when compiled by the Vitis
AI quantizer if you need to deploy the quantized model to the DPU.

The input nodes might not be the same as the placeholder nodes of the graph. If no in-graph
preprocessing part is present in the frozen graph, the placeholder nodes should be set to
input_nodes.

The input_fn should be consistent with the placeholder nodes.

[options] stands for optional parameters. The most commonly used options are as follows:

• weight_bit: Bit width for quantized weight and bias (default is 8).

• activation_bit: Bit width for quantized activation (default is 8)

• method: Quantization methods, including 0 for non-overflow and 1 for min-diffs. The non-
overflow method ensures that no values are saturated during quantization. The results can be
affected by outliers. The min-diffs method allows saturation for quantization to achieve a
lower quantization difference. It is more robust to outliers and usually results in a narrower
range than the non-overflow method.

Outputing the Quantized Model

After the successful execution of the vai_q_tensorflow command, two files are generated in $
{output_dir}:
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• quantize_eval_model.pb is used to evaluate on CPU/GPUs, and can be used to simulate
the results on hardware. Run import tensorflow.contrib.decent_q explicitly to register
the custom quantize operation, because tensorflow.contrib is now lazy-loaded.

• deploy_model.pb is used to compile the DPU codes and deploy on it. It can be used as the
input file for the Vitis AI compiler.

Table 8:  vai_q_tensorflow Output Files

No. Name Description
1 deploy_model.pb Quantized model for VAI compiler (extended TensorFlow format) for targeting

DPUCZDX8G implementations.

2 quantize_eval_model.pb Quantized model for evaluation (also, VAI compiler input for most DPU
architectures, like DPUCAHX8H, DPUCAHX8L, and DPUCADF8H)

(Optional) Evaluating the Quantized Model

If you have scripts to evaluate floating point models, like the models in Vitis AI Model Zoo, apply
the following two changes to evaluate the quantized model:

• Prepend the float evaluation script with from tensorflow.contrib import decent_q
to register the quantize operation.

• Replace the float model path in the scripts to quantization output model
"quantize_results/quantize_eval_model.pb".

• Run the modified script to evaluate the quantized model.

(Optional) Dumping the Simulation Results

Sometimes it is necessary to compare the simulation results on the CPU/GPU with the output
values on the DPU. vai_q_tensorflow supports dumping the simulation results with the
quantize_eval_model.pb generated by the quantizer.

Run the following commands to dump the quantize simulation results:

$vai_q_tensorflow dump \
                    --input_frozen_graph  quantize_results/
quantize_eval_model.pb \
                    --input_fn  dump_input_fn \
                    --max_dump_batches 1 \
                    --dump_float 0 \
                    --output_dir quantize_results

The input_fn for dumping is similar to the input_fn for quantize calibration, but the batch size is
often set to 1 to be consistent with the DPU results.
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After the previous command has executed successfully, dump results are generated in $
{output_dir}. There are folders in ${output_dir}, and each folder contains the dump
results for a batch of input data. In the folders, results for each node are saved separately. For
each quantized node, results are saved in *_int8.bin and *_int8.txt format. If dump_float is set to
1, the results for unquantized nodes are dumped. The / symbol is replaced by _ for simplicity.
Examples for dump results are shown in the following table.

Table 9: Examples for Dump Results

Batch No. Quant Node Name Saved files
1 Yes resnet_v1_50/conv1/biases/

wquant
{output_dir}/dump_results_1/
resnet_v1_50_conv1_biases_wquant_int8.bin
{output_dir}/dump_results_1/
resnet_v1_50_conv1_biases_wquant_int8.txt

2 No resnet_v1_50/conv1/biases {output_dir}/dump_results_2/resnet_v1_50_conv1_biases.bin
{output_dir}/dump_results_2/resnet_v1_50_conv1_biases.txt

vai_q_tensorflow Quantize Finetuning
Quantize finetuning is similar to float model finetuning but in the former, the vai_q_tensorflow
APIs are used to rewrite the float graph to convert it to a quantized graph before the training
starts. The typical workflow is as follows:

1. Preparation: Before finetuning, prepare the following files:

Table 10: Input Files for vai_q_tensorflow Quantize Finetuning

No. Name Description
1 Checkpoint files Floating-point checkpoint files to start from. Can be omitted if train from scratch.

2 Dataset The training dataset with labels.

3 Train Scripts The python scripts to run float train/finetuning of the model.

2. Evaluate the float model (Optional): Evaluate the float checkpoint files first before doing
quantize finetuning to check the correctness of the scripts and dataset. The accuracy and loss
values of the float checkpoint can also be a baseline for the quantize finetuning.

3. Modify the training scripts: To create the quantize training graph, modify the training scripts
to call the function after the float graph is built. The following is an example:

# train.py

# ...

# Create the float training graph
model = model_fn(is_training=True)

# *Set the quantize configurations
from tensorflow.contrib import decent_q
q_config = decent_q.QuantizeConfig(input_nodes=['net_in'],
                                   output_nodes=['net_out'], 
                                   input_shapes=[[-1, 224, 224, 3]])
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# *Call Vai_q_tensorflow api to create the quantize training graph
decent_q.CreateQuantizeTrainingGraph(config=q_config)

# Create the optimizer 
optimizer = tf.train.GradientDescentOptimizer()

# start the training/finetuning, you can use sess.run(), tf.train, 
tf.estimator, tf.slim and so on
# ...

The QuantizeConfig contains the configurations for quantization.

Some basic configurations like input_nodes, output_nodes, input_shapes need to be
set according to your model structure.

Other configurations like weight_bit, activation_bit, method have default values and
can be modified as needed. See vai_q_tensorflow Usage for detailed information of all the
configurations.

• input_nodes/output_nodes: They are used together to determine the subgraph
range you want to quantize. The pre-processing and post-processing part are usually not
quantizable and should be out of this range. The input_nodes and output_nodes should be
the same for the float training graph and the float evaluation graph to match the
quantization operations between them.

Note: Operations with multiple output tensors (such as FIFO) are currently not supported. In such a
case, you can add a tf.identity node to make a alias for the input_tensor to make a single output
input node.

• input_shapes: The shape list of input_nodes, must be a 4-dimension shape for each
node, comma separated, for example, [[1,224,224,3] [1, 128, 128, 1]]; support unknown
size for batch_size, for example, [[-1,224,224,3]].

4. Evaluate the quantized model and generate the deploy model: After quantize finetuning,
generate the deploy model. Before that, you need to evaluate the quantized graph with a
checkpoint file. This can be done by calling the following function after building the float
evaluation graph. As the deploy process needs to run based on the quantize evaluation graph,
so they are often called together.

# eval.py

# ...

# Create the float evaluation graph
model = model_fn(is_training=False)

# *Set the quantize configurations
from tensorflow.contrib import decent_q
q_config = decent_q.QuantizeConfig(input_nodes=['net_in'],
                                   output_nodes=['net_out'], 
                                   input_shapes=[[-1, 224, 224, 3]])
# *Call Vai_q_tensorflow api to create the quantize evaluation graph
decent_q.CreateQuantizeEvaluationGraph(config=q_config)
# *Call Vai_q_tensorflow api to freeze the model and generate the deploy 
model
decent_q.CreateQuantizeDeployGraph(checkpoint="path to checkpoint 
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folder", config=q_config)

# start the evaluation, users can use sess.run, tf.train, tf.estimator, 
tf.slim and so on
# ...

Generated Files

After you have performed the previous steps, the following files are generated file in the $
{output_dir}:

Table 11: Generated File Information

Name TensorFlow
Compatible Usage Description

quantize_train_graph.pb Yes Train The quantize train graph.

quantize_eval_graph_{suffix}.pb Yes Evaluation with
checkpoint

The quantize evaluation graph with quantize
information frozen inside. No weights inside,
should be used together with the checkpoint
file in evaluation.

quantize_eval_model_{suffix}.pb Yes 1. Evaluation; 2.
Dump; 3. Input to
VAI compiler
(DPUCAHX8H)

The frozen quantize evaluation graph,
weights in the checkpoint and quantize
information are frozen inside. It can be used
to evaluate the quantized model on the host
or to dump the outputs of each layer for cross
check with DPU outputs. XIR compiler uses it
as input.

deploy_model_{suffix}.pb No Input to VAI
compiler
(DPUCZDX8G)

The deploy model, operations and quantize
information are fused. DNNC compiler uses it
as input.

The suffix contains the iteration information from the checkpoint file and the date information to
make it clear to combine it to checkpoints files. For example, if the checkpoint file is
"model.ckpt-2000.*" and the date is 20200611, then the suffix is "2000_20200611000000".

Quantize Finetuning APIs for TensorFlow 1.x

Generally, there is a small accuracy loss after quantization, but for some networks such as
Mobilenets, the accuracy loss can be large. In this situation, quantize finetuning can be used to
further improve the accuracy of quantized models.

There are three APIs for quantize finetuning in the Python package, tf.contrib.decent_q.

tf.contrib.decent_q.CreateQuantizeTrainingGraph(config)

Convert the float training graph to a quantize training graph by in-place rewriting on the default
graph.
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Arguments

• config: A tf.contrib.decent_q.QuantizeConfig object, containing the
configurations for quantization.

tf.contrib.decent_q.CreateQuantizeEvaluationGraph(config)

Convert the float evaluation graph to quantize evaluation graph, this is done by in-place rewriting
on the default graph.

Arguments

• config: A tf.contrib.decent_q.QuantizeConfig object, containing the
configurations for quantization.

tf.contrib.decent_q.CreateQuantizeDeployGraph(checkpoint, config)

Freeze the checkpoint into the quantize evaluation graph and convert the quantize evaluation
graph to deploy graph.

Arguments

• checkpoint: A string object, the path to checkpoint folder of file.

• config: A tf.contrib.decent_q.QuantizeConfig object, containing the
configurations for quantization.

Tips for Quantize Finetuning

The following are some tips for quantize finetuning.

• Dropout: Experiments shows that quantize finetuning works better without dropout ops. This
tool does not support quantize finetuning with dropouts at the moment and they should be
removed or disabled before running the quantize finetuning. This can be done by setting
is_training=false when using tf.layers or call
tf.keras.backend.set_learning_phase(0) when using tf.keras.layers.

• Hyper-param: Quantize finetuning is like float finetuning, so the techniques for float
finetuning are also needed. The optimizer type and the learning rate curve are some important
parameters to tune.

vai_q_tensorflow Supported Operations and APIs
The following table lists the supported operations and APIs for vai_q_tensorflow.
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Table 12: Supported Operations and APIs for vai_q_tensorflow

Type Operation Type tf.nn tf.layers tf.keras.layers
Convolution Conv2D

DepthwiseConv2dNati
ve

atrous_conv2d
conv2d
conv2d_transpose
depthwise_conv2d_nat
ive
separable_conv2d

Conv2D
Conv2DTranspose
SeparableConv2D

Conv2D
Conv2DTranspose
DepthwiseConv2D
SeparaleConv2D

Fully Connected MatMul / Dense Dense

BiasAdd BiasAdd
Add

bias_add / /

Pooling AvgPool
Mean
MaxPool

avg_pool
max_pool

AveragePooling2D
MaxPooling2D

AveragePooling2D
MaxPool2D

Activation Relu
Relu6

relu
relu6
leaky_relu

/ ReLU
LeakyReLU

BatchNorm[#1] FusedBatchNorm batch_normalization
batch_norm_with_glob
al_normalization
fused_batch_norm

BatchNormalization BatchNormalization

Upsampling ResizeBilinear
ResizeNearestNeighbo
r

/ / UpSampling2D

Concat Concat
ConcatV2

/ / Concatenate

Others Placeholder
Const
Pad
Squeeze
Reshape
ExpandDims

dropout[#2]
softmax[#3]

Dropout[#2]
Flatten

Input
Flatten
Reshape
Zeropadding2D
Softmax

Notes:
1. Only supports Conv2D/DepthwiseConv2D/Dense+BN. BN is folded to speed up inference.
2. Dropout is deleted to speed up inference.
3. There is no need to quantize softmax output and vai_q_tensorflow does not quantize it.

vai_q_tensorflow Usage
The options supported by vai_q_tensorflow are shown in the following tables.

Table 13: vai_q_tensorflow Options

Name Type Description
Common Configuration

--input_frozen_graph String TensorFlow frozen inference GraphDef file for the floating-point
model, used for quantize calibration.
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Table 13: vai_q_tensorflow Options (cont'd)

Name Type Description
--input_nodes String The name list of input nodes of the quantize graph, used together with

–output_nodes, comma separated. Input nodes and output_nodes are
the start and end points of quantization. The subgraph between them
is quantized if it is quantizable.
It is recommended to set –input_nodes to be the last nodes of the
preprocessing part and to set –output_nodes to be the last nodes
before the post-processing part, because some operations in the pre-
and postprocessing parts are not quantizable and might cause errors
when compiled by the Vitis AI compiler if you need to deploy the
quantized model to the DPU. The input nodes might not be the same
as the placeholder nodes of the graph.

--output_nodes String The name list of output nodes of the quantize graph, used together
with –input_nodes, comma separated. Input nodes and output nodes
are the start and end points of quantization. The subgraph between
them is quantized if it is quantizable.
It is recommended to set –input_nodes to be the last nodes of the
preprocessing part and to set –output_nodes to be the last nodes
before the post-processing part, because some operations in the pre-
and post-processing parts are not quantizable and might cause errors
when compiled by the Vitis AI compiler if you need to deploy the
quantized model to the DPU.

--input_shapes String The shape list of input_nodes. Must be a 4-dimension shape for each
node, comma separated, for example 1,224,224,3; support unknown
size for batch_size, for example ?,224,224,3. In case of multiple input
nodes, assign the shape list of each node separated by :, for
example, ?,224,224,3:?,300,300,1.

--input_fn String This function provides input data for the graph used with the
calibration dataset. The function format is
module_name.input_fn_name (for example, my_input_fn.input_fn). The
input_fn should take an int object as input which indicates the
calibration step, and should return a dict`(placeholder_node_name,
numpy.Array)` object for each call, which is then fed into the
placeholder operations of the model.
For example, assign –input_fn to my_input_fn.calib_input, and write
calib_input function in my_input_fn.py as:

def calib_input_fn:
# read image and do some preprocessing
return {“placeholder_1”: input_1_nparray, 
“placeholder_2”: input_2_nparray}

Note: You do not need to do in-graph preprocessing again in input_fn,
because the subgraph before –input_nodes remains during
quantization. Remove the pre-defined input functions (including
default and random) because they are not commonly used. The
preprocessing part which is not in the graph file should be handled in
in the input_fn.

Quantize Configuration

--weight_bit Int32 Bit width for quantized weight and bias.
Default: 8

--activation_bit Int32 Bit width for quantized activation.
Default: 8

--nodes_bit String Specify bit width of nodes, nodes name and bit width form a pair of
parameter joined by a colon, and parameters are comma separated.
When specify conv op name only vai_q_tensorflow will quantize
weights of conv op using specified bit width.e.g 'conv1/Relu:16,conv1/
weights:8,conv1:16'
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Table 13: vai_q_tensorflow Options (cont'd)

Name Type Description
--method Int32 The method for quantization.

0: Non-overflow method. Makes sure that no values are saturated
during quantization. Sensitive to outliers.
1: Min-diffs method. Allows saturation for quantization to get a lower
quantization difference. Higher tolerance to outliers. Usually ends with
narrower ranges than the non-overflow method.
Choices: [0, 1]
Default: 1

--nodes_method String Specify method of nodes, nodes name and method form a pair of
parameter joined by a colon, and parameter pairs are comma
separated. When specify conv op name only vai_q_tensorflow will
quantize weights of conv op using specified method. e.g 'conv1/
Relu:1,depthwise_conv1/weights:2,conv1:1'

--calib_iter Int32 The iterations of calibration. Total number of images for calibration =
calib_iter * batch_size.
Default: 100

--ignore_nodes String The name list of nodes to be ignored during quantization. Ignored
nodes are left unquantized during quantization.

--skip_check Int32 If set to 1, the check for float model is skipped. Useful when only part
of the input model is quantized.
Choices: [0, 1]
Default: 0

--align_concat Int32 The strategy for the alignment of the input quantizeposition for concat
nodes. Set to 0 to align all concat nodes, 1 to align the output concat
nodes, and 2 to disable alignment.
Choices: [0, 1, 2]
Default: 0

--simulate_dpu Int32 Set to 1 to enable the simulation of the DPU. The behavior of DPU for
some operations is different from TensorFlow. For example, the
dividing in LeakyRelu and AvgPooling are replaced by bit-shifting, so
there might be a slight difference between DPU outputs and CPU/GPU
outputs. The vai_q_tensorflow quantizer simulates the behavior for
these operations if this flag is set to 1.
Choices: [0, 1]
Default: 1

--adjust_shift_bias Int32 The strategy for shift bias check and adjustment for DPU compiler. Set
to 0 to disable shift bias check and adjustment, 1 to enable with static
constraints, 2 to enable with dynamic constraints.
choices: [0, 1, 2]
default: 1

--adjust_shift_cut Int32 The strategy for shift cut check and adjustment for DPU compiler. Set
to 0 to disable shift cut check and adjustment, 1 to enable with static
constraints.
choices: [0, 1]
default: 1

--arch_type String Specify the arch type for fix neuron. 'DEFAULT' means quantization
range of both weights and activations are [-128, 127]. 'DPUCADF8H'
means weights quantization range is [-128, 127] while activation is
[-127, 127]

--output_dir String The directory in which to save the quantization results.
Default: “./quantize_results”
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Table 13: vai_q_tensorflow Options (cont'd)

Name Type Description
--max_dump_batches Int32 The maximum number of batches for dumping.

Default: 1

--dump_float Int32 If set to 1, the float weights and activations will also be dumped.
Choices: [0, 1]
Default: 0

--dump_input_tensors String Specify input tensor name of Graph when graph entrance is not a
placeholder. We will add a placeholder according to the
dump_input_tensor, so that input_fn can feed data.

Session Configurations

--gpu String The ID of the GPU device used for quantization, comma separated.

--gpu_memory_fraction Float The GPU memory fraction used for quantization, between 0-1.
Default: 0.5

Others

--help Show all available options of vai_q_tensorflow.

--version Show vai_q_tensorflow version information.

Examples

show help: vai_q_tensorflow --help
quantize: 
vai_q_tensorflow quantize --input_frozen_graph frozen_graph.pb \
                          --input_nodes inputs \
                          --output_nodes predictions \
                          --input_shapes ?,224,224,3 \
                          --input_fn my_input_fn.calib_input
dump quantized model: 
vai_q_tensorflow dump --input_frozen_graph quantize_results/
quantize_eval_model.pb \
                      --input_fn my_input_fn.dump_input

Refer to Xilinx Model Zoo for more TensorFlow model quantization examples.

TensorFlow 2.x Version (vai_q_tensorflow2)
Installing vai_q_tensorflow2
You can install vai_q_tensorflow2 in the following two ways:
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Install Using Docker Container

Vitis AI provides a Docker container for quantization tools, including vai_q_tensorflow. After
running a container, activate the Conda environment vitis-ai-tensorflow2.

conda activate vitis-ai-tensorflow2

Install from Source Code

vai_q_tensorflow2 is a fork of TensorFlow Model Optimization Toolkit. It is open source in 
Vitis_AI_Quantizer. To build vai_q_tensorflow2, run the following command:

$ sh build.sh
$ pip install pkgs/*.whl

Running vai_q_tensorflow2
Use the following steps to run vai_q_tensorflow.

Preparing the Float Model and Calibration Set

Before running vai_q_tensorflow2, prepare the float model and calibration set, including the files
listed in the following table.

Table 14: Input Files for vai_q_tensorflow2

No. Name Description
1 float model Floating-point TensorFlow 2 models, either in h5 format or saved model

format.

2 calibration dataset A subset of the training dataset or validation dataset to represent the input
data distribution, usually 100 to 1000 images are enough.

Quantizing Using the vai_q_tensorflow2 API

float_model = tf.keras.models.load_model(‘float_model.h5’)
from tensorflow_model_optimization.quantization.keras import vitis_quantize
quantizer = vitis_quantize.VitisQuantizer(float_model)
quantized_model = quantizer.quantize_model(calib_dataset=eval_dataset)   

Here, "eval_dataset" is used as a representative calibration dataset for calibration as an
example. You can also use train_dataset or other datasets. The quantizer reads the whole dataset
to calibrate it. If you use the tf.data.Dataset object, the batch size is controlled by the
dataset itself. If you use the numpy.array object, the default batch size is 50.
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Saving the Quantized Model

The quantized model object is a standard tf.keras model object. You can save it by running
the following command:

quantized_model.save('quantized_model.h5')

The generated quantized_model.h5 file can be fed to the vai_c_tensorflow compiler and
then deployed on the DPU.

(Optional) Evaluating the Quantized Model

If you have scripts to evaluate float models, like the models in Xilinx Model Zoo, you can replace
the float model file with the quantized model for evaluation. To support the customized quantize
layers, the quantized model should be loaded to "quantize_scope", for example:

from tensorflow_model_optimization.quantization.keras import vitis_quantize
with vitis_quantize.quantize_scope():
    model = tf.keras.models.load_model('quantized_model.h5')

After that, evaluate the quantized model just as the float model, for example:

model.compile(    loss=tf.keras.losses.SparseCategoricalCrossentropy(),
    metrics= keras.metrics.SparseTopKCategoricalAccuracy())
model.evaluate(eval_dataset)

(Optional) Dumping the Simulation Results

Sometimes after deploying the quantized model, it is necessary to compare the simulation results
on the CPU/GPU and the output values on the DPU. You can use the
VitisQuantizer.dump_model API of vai_q_tensorflow2 to dump the simulation results with
the quantized_model.

from tensorflow_model_optimization.quantization.keras import vitis_quantize
quantizer = vitis_quantize.VitisQuantizer.dump_model(quantized_model, 
dump_dataset, dump_output_dir)

Note: The batch_size of the dump_dataset should be set to 1 for DPU debugging.

Dump results are generated in ${dump_output_dir} after the command has successfully
executed. Results for weights and activation of each layer are saved separately in the folder. For
each quantized layer, results are saved in *.bin and *.txt formats. If the output of the layer is not
quantized (such as for the softmax layer), the float activation results are saved in *_float.bin and
*_float.txt. The / symbol is replaced by _ for simplicity. Examples for dumping results are shown
in the following table.
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Table 15: Example of Dumping Results

Batch
No.

Quant
ized Layer Name

Saved files
Weights Biases Activation

1 Yes resnet_v1_50/
conv1

{output_dir}/
dump_results_weights/
quant_resnet_v1_50_conv1
_kernel.bin
{output_dir}/
dump_results_weights/
quant_resnet_v1_50_conv1
_kernel.txt

{output_dir}/
dump_results_weights/
quant_resnet_v1_50_conv1
_bias.bin
{output_dir}/
dump_results_weights/
quant_resnet_v1_50_conv1
_bias.txt

{output_dir}/
dump_results_0/
quant_resnet_v1_50_conv1.
bin
{output_dir}/
dump_results_0/
quant_resnet_v1_50_conv1.
txt

2 No resnet_v1_50/
softmax

N/A N/A {output_dir}/
dump_results_0/
quant_resnet_v1_50_softm
ax_float.bin
{output_dir}/
dump_results_0/
quant_resnet_v1_50_softm
ax_float.txt

vai_q_tensorflow2 Quantize Finetuning
Generally, there is a small accuracy loss after quantization but for some networks such as
MobileNets, the accuracy loss can be large. In this situation, quantize finetuning can be used to
further improve the accuracy of quantized models.

Technically, quantize finetuning is similar to float model finetuning. The difference is that
quantize finetuning uses the APIs of the vai_q_tensorflow2 to rewrite the float graph to convert
it to a quantized model before the training starts. The typical workflow is as follows:

1. Preparation.

Before finetuning, please prepare the following files:

Table 16: Input Files for vai_q_tensorflow2 Quantize Finetuning 

No. Name Description
1 Float model file Floating-point model files to start from. Can be omitted if training from

scratch.

2 Dataset The training dataset with labels.

3 Training Scripts The Python scripts to run float train/finetuning of the model.

2. (Optional) Evaluate the Float Model

It is suggested to evaluate the float model first before doing quantize finetuning, which can
check the correctness of the scripts and dataset. The accuracy and loss values of the float
checkpoint can also be a baseline for the quantize finetuning.

3. Modify the Training Scripts

Chapter 4: Quantizing the Model

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=61


Use the vai_q_tensorflow2 API, VitisQuantizer.get_qat_model, to do the
quantization. The following is an example:

model = tf.keras.models.load_model(‘float_model.h5’)

# *Call Vai_q_tensorflow2 api to create the quantize training model
from tensorflow_model_optimization.quantization.keras import 
vitis_quantize
quantizer = vitis_quantize.VitisQuantizer(model)
model = quantizer.get_qat_model()

# Compile the model
model.compile(
    optimizer= RMSprop(learning_rate=lr_schedule),        
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
    metrics=keras.metrics.SparseTopKCategoricalAccuracy())

# Start the training/finetuning
model.fit(train_dataset)

4. Save the Model

Call model.save() to save the trained model or use callbacks in model.fit() to save the
model periodically. For example:

# save model manually
model.save(‘trained_model.h5’)

# save the model periodically during fit using callbacks
model.fit(
    train_dataset, 
    callbacks = [
              keras.callbacks.ModelCheckpoint(
              filepath=’./quantize_train/’
              save_best_only=True,
              monitor="sparse_categorical_accuracy",
              verbose=1,
      )])

5. (Optional) Evaluate the Quantized Model

Call model.evaluate() on the eval_dataset to evaluate the quantized model, just like
evaluation of the float model.

Note: Quantize finetuning works like float finetuning, so it will be of great help to have some
experience on float model training and finetuning. For example, how to choose hyper-parameters like
optimizer type and learning rate.

vai_q_tensorflow2 Supported Operations and APIs
The following table lists the supported operations and APIs for vai_q_tensorflow2.

Table 17: vai_q_tensorflow2 Supported Layers

Supported Layers
tf.keras.layers.Conv2D
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Table 17: vai_q_tensorflow2 Supported Layers (cont'd)

Supported Layers
tf.keras.layers.Conv2DTranspose

tf.keras.layers.DepthwiseConv2D

tf.keras.layers.Dense

tf.keras.layers.AveragePooling2D

tf.keras.layers.MaxPooling2D

tf.keras.layers.GlobalAveragePooling

tf.keras.layers.UpSampling2D

tf.keras.layers.BatchNormalization

tf.keras.layers.Concatenate

tf.keras.layers.Zeropadding2D

tf.keras.layers.Flatten

tf.keras.layers.Reshape

tf.keras.layers.ReLU

tf.keras.layers.Activation

tf.keras.layers.Add

vai_q_tensorflow2 Usage
vitis_quantize.VitisQuantizer(model, custom_quantize_strategy=None)

The construction function of class VitisQuantizer.

Arguments:

• model: A tf.keras.Model object, containing the configurations for quantization.

• custom_quantize_strategy: A custom quantize strategy json file.

vitis_quantize.VitisQuantizer.quantize_model(
calib_dataset=None,
fold_conv_bn=True,
fold_bn=True,
replace_relu6=True,
include_cle=True,
cle_steps=10)

This function quantizes the float model, including model optimization, weights quantization and
activation quantize calibration.

Arguments:

• calib_dataset: A tf.data.Dataset or np.numpy object, the calibration dataset.
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• fold_conv_bn: A bool object, whether to fold the batchnorm layers into previous Conv2D/
DepthwiseConv2D/TransposeConv2D/Dense layers

• fold_bn: A bool object, whether to fold the batchnorm layer’s moving_mean and
moving_variance values into the gamma and beta values.

• replace_relu6: A bool object, whether to replace the Relu6 layers with Relu layers.

• include_cle: A bool object, whether to do Cross Layer Equalization before quantization.

• cle_steps: A int object, the iteration steps to do Cross Layer Equalization.

vitis_quantize.VitisQuantizer.dump_model(
dataset=None,
output_dir=’./dump_results’,
weights_only=False)

This function dumps the simulation results of the quantized model, including model optimization,
weights quantizing and activation quantize calibration.

Arguments:

• dataset: A tf.data.Dataset or np.numpy object, the dataset used to dump, not needed
if weights_only is set to True.

• output_dir: A string object, the directory to save the dump results.

• weights_only: A bool object, set to True to only dump the weights, set to False will also
dump the activation results.

Examples

• Quantize: 

from tensorflow_model_optimization.quantization.keras import 
vitis_quantize
quantizer = vitis_quantize.VitisQuantizer(model)
quantized_model = quantizer.quantize_model(calib_dataset=eval_dataset)

• Evaluate quantized model: 

quantized_model.compile(loss=your_loss, metrics=your_metrics)
quantized_model.evaluate(eval_dataset)

• Load quantized model: 

from tensorflow_model_optimization.quantization.keras import 
vitis_quantize
with vitis_quantize.quantize_scope():
    model = keras.models.load_model('./quantized_model.h5')
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• Dump quantized model: 

from tensorflow_model_optimization.quantization.keras import 
vitis_quantize
vitis_quantize.VitisQuantizer.dump_model(quantized_model, 
dump_dataset=eval_dataset)

PyTorch Version (vai_q_pytorch)
Installing vai_q_pytorch
vai_q_pytorch has GPU and CPU versions. It supports PyTorch version 1.2-1.4 but does not
support PyTorch data parallelism. There are two ways to install vai_q_pytorch:

Install using Docker Containers

The Vitis AI provides a Docker container for quantization tools, including vai_q_pytorch. After
running a GPU/CPU container, activate the Conda environment, vitis-ai-pytorch.

conda activate vitis-ai-pytorch

Note: In some cases, if you want to install some packages in the conda environment and meet permission
problems, you can create a separate conda environment based on vitis-ai-pytorch instead of using
vitis-ai-pytorch directly. The pt_pointpillars_kitti_12000_100_10.8G_1.3 model in 
Xilinx Model Zoo is an example of this.

Install from Source Code

vai_q_pytorch is a Python package designed to work as a PyTorch plugin. It is an open source in 
Vitis_AI_Quantizer. It is recommended to install vai_q_pytorch in the Conda environment. To do
so, follow these steps:

1. Add the CUDA_HOME environment variable in .bashrc.

For the GPU version, if the CUDA library is installed in /usr/local/cuda, add the
following line into .bashrc. If CUDA is in other directory, change the line accordingly.

export CUDA_HOME=/usr/local/cuda

For the CPU version, remove all CUDA_HOME environment variable setting in your .bashrc.
It is recommended to cleanup it in command line of a shell window by running the following
command:

unset CUDA_HOME

2. Install PyTorch (1.2-1.4) and torchvision.
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The following code takes PyTorch 1.4 and torchvision 0.5.0 as an example. You can find
detailed instructions for other versions on the PyTorch website.

pip install torch==1.4.0 torchvision==0.5.0

3. Install other dependencies.

pip install -r requirements.txt

4. Install vai_q_pytorch.

cd ./pytorch_binding 
python setup.py install (for user) 
python setup.py develop (for developer)

5. Verify the installation.

python -c "import pytorch_nndct"

Note: If the PyTorch version you installed < 1.4, import pytorch_nndct before importing torch in your script.
This is caused by a PyTorch bug before version 1.4. Refer to PyTorch GitHub issue 28536 and 19668 for
details.

import pytorch_nndct
import torch

Running vai_q_pytorch
vai_q_pytorch is designed to work as a PyTorch plugin. Xilinx provides the simplest APIs to
introduce the FPGA-friendly quantization feature. For a well-defined model, you only need to
add a few lines to get a quantize model object. To do so, follow these steps:

Preparing Files for vai_q_pytorch

Prepare the following files for vai_q_pytorch.

Table 18: Input Files for vai_q_pytorch

No. Name Description
1 model.pth Pre-trained PyTorch model, generally pth file.

2 model.py A Python script including float model definition.

3 calibration dataset A subset of the training dataset containing 100 to 1000 images.

Modifying the Model Definition

To make a PyTorch model quantizable, it is necessary to modify the model definition to make sure
the modified model meets the following conditions. An example is available in Vitis AI Github
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1. The model to be quantized should include forward method only. All other functions should be
moved outside or move to a derived class. These functions usually work as pre-processing
and post-processing. If they are not moved outside, the API removes them in the quantized
module, which causes unexpected behavior when forwarding the quantized module.

2. The float model should pass the jit trace test. Set the float module to evaluation status, then
use the torch.jit.trace function to test the float model.

Adding vai_q_pytorch APIs to Float Scripts

If, before quantization, there is a trained float model and some Python scripts to evaluate
accuracy/mAP of the model, the Quantizer API replaces the float module with a quantized
module. The normal evaluate function encourages quantized module forwarding. Quantize
calibration determines quantization steps of tensors in evaluation process if flag quant_mode is
set to "calib". After calibration, evaluate the quantized model by setting quant_mode to "test".

1. Import the vai_q_pytorch module.

from pytorch_nndct.apis import torch_quantizer, dump_xmodel

2. Generate a quantizer with quantization needed input and get the converted model.

input = torch.randn([batch_size, 3, 224, 224])
    quantizer = torch_quantizer(quant_mode, model, (input))
    quant_model = quantizer.quant_model

3. Forward a neural network with the converted model.

acc1_gen, acc5_gen, loss_gen = evaluate(quant_model, val_loader, loss_fn)

4. Output the quantization result and deploy the model.

if quant_mode == 'calib':
  quantizer.export_quant_config()
if deploy:
  quantizer.export_xmodel())

Running Quantization and Getting the Result
Note: vai_q_pytorch log messages have special colors and a special keyword, "NNDCT". "NNDCT" is an
internal project name and you can change it later. vai_q_pytorch log message types include "error",
"warning", and "note". Pay attention to vai_q_pytorch log messages to check the flow status.

1. Run command with "--quant_mode calib" to quantize model.

python resnet18_quant.py --quant_mode calib --subset_len 200

When calibrating forward, borrow the float evaluation flow to minimize code change from
float script. If there are loss and accuracy messages displayed in the end, you can ignore
them. Note the colorful log messages with the special keyword, "NNDCT".
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It is important to control iteration numbers during quantization and evaluation. Generally,
100-1000 images are enough for quantization and the whole validation set is required for
evaluation. The iteration numbers can be controlled in the data loading part. In this case,
argument "subset_len" controls how many images are used for network forwarding. If the
float evaluation script does not have an argument with a similar role, add one; otherwise, it
should be changed manually.

If this quantization command runs successfully, two important files are generated in the
output directory "./quantize_result".

ResNet.py: converted vai_q_pytorch format model, 
Quant_info.json: quantization steps of tensors got. (Keep it for 
evaluation of quantized model)

2. To evaluate the quantized model, run the following command:

python resnet18_quant.py --quant_mode test

The accuracy displayed after the command has executed successfully is the right accuracy for
the quantized model.

3. To generate the xmodel for compilation, the batch size should be 1. Set subset_len=1 to avoid
redundant iterations and run the following command:

python resnet18_quant.py --quant_mode test --subset_len 1 --batch_size=1 
--deploy

Skip loss and accuracy displayed in log during running. The xmodel file for the Vitis AI
compiler is generated in the output directory, ./quantize_result. It is further used to
deploy to the FPGA.

ResNet_int.xmodel: deployed model

Note: XIR is ready in "vitis-ai-pytorch" conda environment in the Vitis-AI docker but if vai_q_pytorch is
installed from source code, you have to install XIR in advance. If XIR is not installed, the xmodel file
cannot be generated and the command will return an error. However, you can still check the accuracy
in the output log.

Module Partial Quantization
You can use module partial quantization if not all the sub-modules in a model need to be
quantized. Besides using general vai_q_pytorch APIs, the QuantStub/DeQuantStub operator
pair can be used to realize it. The following example demonstrates how to quantize subm0 and
subm2, but not quantize subm1.

from pytorch_nndct.nn import QuantStub, DeQuantStub

class WholeModule(torch.nn.module):
    def __init__(self,...):
        self.subm0 = ...
        self.subm1 = ...
        self.subm2 = ...
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        # define QuantStub/DeQuantStub submodules
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def forward(self, input):
        input = self.quant(input) # begin of part to be quantized
        output0 = self.subm0(input)
        output0 = self.dequant(output0) # end of part to be quantized

        output1 = self.subm1(output0)

        output1 = self.quant(output1) # begin of part to be quantized
        output2 = self.subm2(output1)
        output2 = self.dequant(output2) # end of part to be quantized

vai_q_pytorch Fast Finetuning
Generally, there is a small accuracy loss after quantization, but for some networks such as
MobileNets, the accuracy loss can be large. In this situation, first try fast finetune. If fast finetune
still does not get satisfactory results, quantize finetuning can be used to further improve the
accuracy of quantized models.

With a small set of unlabeled data, the AdaQuant algorithm1 not only calibrates the activations
but also finetunes the weights. AdaQuant uses a small set of unlabeled data. This is similar to
calibration but it finetunes the model. The Vitis AI quantizer implements this algorithm and call it
"fast finetuning" or "advanced calibration". Though slightly slower, fast finetuning can achieve
better performance than quantize calibration. Similar to quantize finetuning, each run of fast
finetuning produces a different result.

Fast finetuning is not real training of the model, and only needs limited number of iterations. For
classification models on Imagenet dataset, 1000 images are enough. Fast finetuning only needs
some modification based on the model evaluation script. There is no need to set up the optimizer
for training. To use fast finetuning, a function for model forwarding iteration is needed and will
be called among fast finetuning. Re-calibration with the original inference code is highly
recommended.

You can find a complete example in the open source example

# fast finetune model or load finetuned parameter before test 
  if fast_finetune == True:
      ft_loader, _ = load_data(
          subset_len=1024,
          train=False,
          batch_size=batch_size,
          sample_method=None,
          data_dir=args.data_dir,
          model_name=model_name)
      if quant_mode == 'calib':
        quantizer.fast_finetune(evaluate, (quant_model, ft_loader, loss_fn))
      elif quant_mode == 'test':
        quantizer.load_ft_param()
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For parameter finetuning and re-calibration of this ResNet18 example, run the following
command:

python resnet18_quant.py --quant_mode calib --fast_finetune

To test finetuned quantized model accuracy, run the following command:

python resnet18_quant.py --quant_mode test --fast_finetune

Note:
1. Itay Hubara et.al., Improving Post Training Neural Quantization: Layer-wise Calibration and Integer

Programming, arXiv:2006.10518, 2020.

vai_q_pytorch Quantize Finetuning
Assuming that there is a pre-defined model architecture, use the following steps to do
quantization-aware training. Take the ResNet18 model from torchvision as an example. The
complete model definition is here.

1. Check if there are non-module operations to be quantized

ResNet18 uses ‘+’ to add two tensors. Replace them with
pytorch_nndct.nn.modules.functional.Add.

2. Check if there are modules to be called multiple times

Usually such modules have no weights; the most common one is the torch.nn.ReLu
module. Define multiple such modules and then call them separately in a forward pass. The
revised definition that meets the requirements is as follows:

class BasicBlock(nn.Module):
  expansion = 1

  def __init__(self,
               inplanes,
               planes,
               stride=1,
               downsample=None,
               groups=1,
               base_width=64,
               dilation=1,
               norm_layer=None):
    super(BasicBlock, self).__init__()
    if norm_layer is None:
      norm_layer = nn.BatchNorm2d
    if groups != 1 or base_width != 64:
      raise ValueError('BasicBlock only supports groups=1 and 
base_width=64')
    if dilation > 1:
      raise NotImplementedError("Dilation > 1 not supported in 
BasicBlock")
    # Both self.conv1 and self.downsample layers downsample the input 
when stride != 1
    self.conv1 = conv3x3(inplanes, planes, stride)
    self.bn1 = norm_layer(planes)
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    self.relu1 = nn.ReLU(inplace=True)
    self.conv2 = conv3x3(planes, planes)
    self.bn2 = norm_layer(planes)
    self.downsample = downsample
    self.stride = stride

    # Use a functional module to replace ‘+’
self.skip_add = functional.Add()

# Additional defined module
    self.relu2 = nn.ReLU(inplace=True)

  def forward(self, x):
    identity = x

    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu1(out)

    out = self.conv2(out)
    out = self.bn2(out)

    if self.downsample is not None:
      identity = self.downsample(x)
    
# Use function module instead of ‘+’
# out += identity
    out = self.skip_add(out, identity)
    out = self.relu2(out)

    return out

3. Insert QuantStub and DeQuantStub.

Use QuantStub to quantize the inputs of the network and DeQuantStub to de-quantize
the outputs of the network. Any sub-network from QuantStub to DeQuantStub in a
forward pass will be quantized. Multiple QuantStub-DeQuantStub pairs are allowed.

class ResNet(nn.Module):

  def __init__(self,
               block,
               layers,
               num_classes=1000,
               zero_init_residual=False,
               groups=1,
               width_per_group=64,
               replace_stride_with_dilation=None,
               norm_layer=None):
    super(ResNet, self).__init__()
    if norm_layer is None:
      norm_layer = nn.BatchNorm2d
    self._norm_layer = norm_layer

    self.inplanes = 64
    self.dilation = 1
    if replace_stride_with_dilation is None:
      # each element in the tuple indicates if we should replace
      # the 2x2 stride with a dilated convolution instead
      replace_stride_with_dilation = [False, False, False]
    if len(replace_stride_with_dilation) != 3:
      raise ValueError(
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          "replace_stride_with_dilation should be None "
          "or a 3-element tuple, got 
{}".format(replace_stride_with_dilation))
    self.groups = groups
    self.base_width = width_per_group
    self.conv1 = nn.Conv2d(
        3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
    self.bn1 = norm_layer(self.inplanes)
    self.relu = nn.ReLU(inplace=True)
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(
        block, 128, layers[1], stride=2, 
dilate=replace_stride_with_dilation[0])
    self.layer3 = self._make_layer(
        block, 256, layers[2], stride=2, 
dilate=replace_stride_with_dilation[1])
    self.layer4 = self._make_layer(
        block, 512, layers[3], stride=2, 
dilate=replace_stride_with_dilation[2])
    self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
    self.fc = nn.Linear(512 * block.expansion, num_classes)

    self.quant_stub = nndct_nn.QuantStub()
    self.dequant_stub = nndct_nn.DeQuantStub()

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode='fan_out', 
nonlinearity='relu')
      elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
        nn.init.constant_(m.weight, 1)
        nn.init.constant_(m.bias, 0)

    # Zero-initialize the last BN in each residual branch,
    # so that the residual branch starts with zeros, and each residual 
block behaves like an identity.
    # This improves the model by 0.2~0.3% according to https://
arxiv.org/abs/1706.02677
    if zero_init_residual:
      for m in self.modules():
        if isinstance(m, Bottleneck):
          nn.init.constant_(m.bn3.weight, 0)
        elif isinstance(m, BasicBlock):
          nn.init.constant_(m.bn2.weight, 0)

  def forward(self, x):
    x = self.quant_stub(x)

    x = self.conv1(x)
    x = self.bn1(x)
    x = self.relu(x)
    x = self.maxpool(x)

    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)
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    x = self.avgpool(x)
    x = torch.flatten(x, 1)
    x = self.fc(x)
x = self.dequant_stub(x)
    return x

4. Use quantize finetuning APIs to create the quantizer and train the model.

def _resnet(arch, block, layers, pretrained, progress, **kwargs):
  model = ResNet(block, layers, **kwargs)
  if pretrained:
    #state_dict = load_state_dict_from_url(model_urls[arch], 
progress=progress)
    state_dict = torch.load(model_urls[arch])
    model.load_state_dict(state_dict)
  return model

def resnet18(pretrained=False, progress=True, **kwargs):
  r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://
arxiv.org/pdf/1512.03385.pdf>'_

    Args:
        pretrained (bool): If True, returns a model pre-trained on 
ImageNet
        progress (bool): If True, displays a progress bar of the 
download to stderr
    """
  return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, 
progress,
                 **kwargs)

model = resnet18(pretrained=True)

# Generate dummy inputs.
input = torch.randn([batch_size, 3, 224, 224], dtype=torch.float32)

# Create a quantizer
quantizer = torch_quantizer(quant_mode = 'calib',
                           module = model, 
                           input_args = input,
                           bitwidth = 8,
                           qat_proc = True)
quantized_model = quantizer.quant_model
optimizer = torch.optim.Adam(
quantized_model.parameters(), lr, weight_decay=weight_decay)

# Use the optimizer to train the model, just like a normal float model.
…

5. Convert the trained model to a deployable model.

After training, dump the quantized model to xmodel. (batch size=1 is must for
compilation of xmodel).

# vai_q_pytorch interface function: deploy the trained model and convert 
xmodel
  # need at least 1 iteration of inference with batch_size=1 
  quantizer.deploy(quantized_model)
  deployable_model = quantizer.deploy_model
  val_dataset2 = torch.utils.data.Subset(val_dataset, list(range(1)))
  val_loader2 = torch.utils.data.DataLoader(
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      val_dataset,
      batch_size=1,
      shuffle=False,
      num_workers=workers,
      pin_memory=True)
  validate(val_loader2, deployable_model, criterion, gpu)
  quantizer.export_xmodel()

vai_q_pytorch Quantize Finetuning Requirements

Generally, there is a small accuracy loss after quantization, but for some networks such as
MobileNets, the accuracy loss can be large. In this situation, first try fast finetune. If fast finetune
still does not get satisfactory results, quantize finetuning can be used to further improve the
accuracy of quantized models.

The quantize finetuning APIs have some requirements for the model to be trained.

1. All operations to be quantized must be an instance of torch.nn.Module object, rather
than torch functions or Python operators. For example, it is common to use ‘+’ to add two
tensors in PyTorch, however, this is not supported in quantize finetuning. Thus, replace ‘+’
with pytorch_nndct.nn.modules.functional.Add. A list of operations that need
replacement is shown in the following table.

Table 19: Operation-Replacement Mapping

Operation Replacement
+ pytorch_nndct.nn.modules.functional.Add

- pytorch_nndct.nn.modules.functional.Sub

torch.add pytorch_nndct.nn.modules.functional.Add

torch.sub pytorch_nndct.nn.modules.functional.Sub

IMPORTANT! A module to be quantized cannot be called multiple times in the forward pass.

2. Use pytorch_nndct.nn.QuantStub and pytorch_nndct.nn.DeQuantStub at the
beginning and end of the network to be quantized. The network can be the whole complete
network or a partial sub-network.

vai_q_pytorch Usage
This section introduces the usage of execution tools and APIs to implement quantization and
generate a model to be deployed on the target hardware. The APIs in the module
pytorch_binding/pytorch_nndct/apis/quant_api.py are as follows:

class torch_quantizer(): 
  def __init__(self,
               quant_mode: str, # ['calib', 'test']
               module: torch.nn.Module,
               input_args: Union[torch.Tensor, Sequence[Any]] = None,
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               state_dict_file: Optional[str] = None,
               output_dir: str = "quantize_result",
               bitwidth: int = 8,
               device: torch.device = torch.device("cuda"),
               qat_proc: bool = False): 

Class torch_quantizer will create a quantizer object.

Arguments:

• quant_mode: An integer that indicates which quantization mode the process is using. "calib"
for calibration of quantization, and "test" for evaluation of quantized model.

• Module: Float module to be quantized.

• Input_args: Input tensor with the same shape as real input of float module to be quantized,
but the values can be random numbers.

• State_dict_file: Float module pretrained parameters file. If float module has read parameters
in, the parameter is not needed to be set.

• Output_dir: Directory for quantization result and intermediate files. Default is
“quantize_result”.

• Bitwidth: Global quantization bit width. Default is 8.

• Device: Run model on GPU or CPU.

• Qat_proc: Turn on quantize finetuning, also named quantization-aware-training (QAT).

def export_quant_config(self):

This function exports quantization steps information

def export_xmodel(self, output_dir, deploy_check):

This function export xmodel and dump operators' output data for detailed data comparison

Arguments:

• Output_dir: Directory for quantization result and intermediate files. Default is
“quantize_result”.

• Deploy_check: Flags to control dump of data for detailed data comparison. Default is False. If
it is set to True, binary format data will be dumped to output_dir/
deploy_check_data_int/.
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Caffe Version (vai_q_caffe)
Installing vai_q_caffe
There are two ways to install vai_q_caffe:

Install using Docker Containers

Vitis AI provides a Docker container for quantization tools, including vai_q_caffe. After running a
container, activate the Conda environment vitis-ai-caffe.

conda activate vitis-ai-caffe

Install from Source Code

vai_q_caffe is an open source in the caffe_xilinx repository. It is a fork of the NVIDIA Caffe from
branch "caffe-0.15" maintained by Xilinx. Building process is the same as BVLC Caffe. Refer to
installation instructions here.

Running vai_q_caffe
Use the following steps to run vai_q_caffe.

1. Prepare the Neural Network Model

Table 20: vai_q_caffe Input Files

No. Name Description
1 float.prototxt Floating-point model for ResNet-50. The data layer in the

prototxt should be consistent with the path of the calibration
dataset.

2 float.caffemodel Pre-trained weights file for ResNet-50.

3 calibration dataset A subset of the training set containing 100 to 1000 images.

Before running vai_q_caffe, prepare the Caffe model in floating-point format with the
calibration data set, including the following:

• Caffe floating-point network model prototxt file.

• Pre-trained Caffe floating-point network model caffemodel file.

Chapter 4: Quantizing the Model

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  76Send Feedback

https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo/caffe-xilinx
https://github.com/NVIDIA/caffe
https://github.com/BVLC/caffe
http://caffe.berkeleyvision.org/installation.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=76


• Calibration data set. The calibration set is usually a subset of the training set or actual
application images (at least 100 images). Make sure to set the source and root_folder in
image_data_param to the actual calibration image list and image folder path. For quantize
calibration, calibration data without a label is enough. But due to the implementation, an
image list file with two columns is required. Just set the second column to a random value
or zero. This is an example of "calibration.txt".

n01440764_985.JPEG 0
n01443537_9347.JPEG 0
n01484850_8799.JPEG 0
...

Figure 23: Sample Caffe Layer for Quantization

Note: Three mean_value parameters for channels are recommended. If three mean_value parameters
are specified, following the order BGR.

2. Run vai_q_caffe to generate a quantized model:

vai_q_caffe quantize -model float.prototxt -weights float.caffemodel 
[options]

Because there are small differences between hardware platforms, the output formats of
vai_q_caffe are also different. If the target hardware platform is DPUCAHX8H, the -
keep_fixed_neuron option should be added to the command.

vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -
keep_fixed_neuron[options]
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3. After successful execution of the above command, four files are generated in the output
directory (default directory, /quantize_results/). The deploy.prototxt and
deploy.caffemodel files are used as input files to the compiler. The
quantize_train_test.prototxt and quantize_train_test.caffemodel files are
used to test the accuracy on the GPU/CPU, and can be used as input files to quantize
finetuning.

Table 21: vai_q_caffe Output Files

No. Name Description
1 deploy.prototxt For Vitis AI compiler, quantized network description

file.

2 deploy.caffemodel For Vitis AI compiler, quantized Caffe model
parameter file (non-standard Caffe format).

3 quantize_train_test.prototxt For testing and finetuning, quantized network
description file.

4 quantize_train_test.caffemodel For testing and finetuning, quantized Caffe model
parameter file (non-standard Caffe format).

To evaluate the accuracy of the quantized model, use a command similar to the following, or
add an -auto_test in step 2. Refer to the next section for vai_q_caffe argument details.

vai_q_caffe test -model ./quantize_results/quantize_train_test.prototxt -
weights ./quantize_results/quantize_train_test.caffemodel -gpu 0 -
test_iter 1000

vai_q_caffe Quantize Finetuning
Generally, there is a small accuracy loss after quantization, but for some networks such as
Mobilenets, the accuracy loss can be large. In such a scenario, quantize finetuning can be used to
further improve the accuracy of quantized models.

Finetuning is almost the same as model training, which needs the original training dataset and a
solver.prototxt. To start finetuning with the quantize_train_test.prototxt and
Caffe Model, follow these steps:

1. Assign the training dataset to the input layer of quantize_train_test.prototxt.

2. Create a solver.prototxt file for finetuning. An example of a solver.prototxt file is
provided below. You can adjust the hyper-parameters to get good results. The most
important parameter is base_lr, which is usually much smaller than the one used in training.
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3. Run the following command to start finetuning:

./vai_q_caffe finetune -solver solver.prototxt -weights quantize_results/
quantize_train_test.caffemodel -gpu all

4. Deploy the finetuned model. The finetuned model is generated in the snapshot_prefix
settings of the solver.prototxt file, such as ${snapshot_prefix}/
finetuned_iter10000.caffemodel. You can use the test command to test its accuracy.

5. Finally, you can use the deploy command to generate the deploy model (prototxt and
caffemodel) for the Vitis AI compiler.

./vai_q_caffe deploy -model quantize_results/
quantize_train_test.prototxt -weights finetuned_iter10000.caffemodel -
gpu 0 -output_dir deploy_output

vai_q_caffe Usage
The vai_q_caffe quantizer takes a floating-point model as an input model and uses a calibration
dataset to generate a quantized model. In the following command line, [options] stands for
optional parameters.

vai_q_caffe quantize -model float.prototxt -weights float.caffemodel 
[options]

The options supported by vai_q_caffe are shown in the following table. The three most
commonly used options are weights_bit, data_bit, and method.

Table 22: vai_q_caffe Options List

Name Type Optional Default Description
model String Required - Floating-point prototxt file (such as

float.prototxt).
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Table 22: vai_q_caffe Options List (cont'd)

Name Type Optional Default Description
weights String Required - The pre-trained floating-point weights

(such as float.caffemodel).

weights_bit Int32 Optional 8 Bit width for quantized weight and bias.

data_bit Int32 Optional 8 Bit width for quantized activation.

method Int32 Optional 1 Quantization methods, including 0 for
non-overflow and 1 for min-diffs.
The non-overflow method ensures that
no values are saturated during
quantization. It is sensitive to outliers.
The min-diffs method allows saturation
for quantization to achieve a lower
quantization difference. It is more robust
to outliers and usually results in a
narrower range than the non-overflow
method.

calib_iter Int32 Optional 100 Maximum iterations for calibration.

auto_test - Optional Absent Adding this option will perform testing
after calibration using a test dataset
specified in the prototxt file. To turn on
this option, the floating-point prototxt file
must be a workable prototxt for accuracy
calculation both in TRAIN and TEST
mode.

test_iter Int32 Optional 50 Maximum iterations for testing.

output_dir String Optional quantize_result
s

Output directory for the quantized
results.

gpu String Optional 0 GPU device ID for calibration and test.

ignore_layers String Optional none List of layers to ignore during
quantization.

ignore_layers_file String Optional none Protobuf file which defines the layers to
ignore during quantization, starting with
ignore_layers

sigmoided_layers String Optional none List of layers before sigmoid operation, to
be quantized with optimization for
sigmoid accuracy

input_blob String Optional data Name of input data blob

keep_fixed_neuro
n

Bool Optional FALSE Retain FixedNeuron layers in the
deployed model. Set this flag if your
targeting hardware platform is
DPUCAHX8H

Examples:

• Quantize: 

vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -gpu 
0
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• Quantize with Auto-Test: 

vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -gpu 
0 -auto_test -test_iter 50

• Quantize with the Non-Overflow Method: 

vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -gpu 
0 -method 0

• Finetune the Quantized Model: 

vai_q_caffe finetune -solver solver.prototxt -weights quantize_results/
float_train_test.caffemodel -gpu 0

• Deploy Quantized Model: 

vai_q_caffe deploy -model quantize_results/quantize_train_test.prototxt -
weights quantize_results/float_train_test.caffemodel -gpu 0
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Chapter 5

Compiling the Model

Vitis AI Compiler
The Vitis™ AI compiler (VAI_C) is the unified interface to a compiler family targeting the
optimization of neural-network computations to a family of DPUs. Each compiler maps a
network model to a highly optimized DPU instruction sequence.

The simplified description of VAI_C framework is shown in the following figure. After parsing the
topology of optimized and quantized input model, VAI_C constructs an internal computation
graph as intermediate representation (IR). Therefore, a corresponding control flow and a data
flow representation. It then performs multiple optimizations, for example, computation nodes
fusion such as when batch norm is fused into a presiding convolution, efficient instruction
scheduling by exploit inherent parallelism, or exploiting data reuse.

Figure 24: Vitis AI Compiler Framework

The Vitis AI Compiler generates the compiled model based on the DPU microarchitecture. There
are a number of different DPUs supported in Vitis AI for different platforms and applications. It is
important to understand the relations between available compilers and associate DPUs. See DPU
Naming for the DPU naming scheme.

To better understand how to map the compilers with DPUs, please refer to the following table.
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Table 23: Mapping Compilers with DPUs

DPU Name Compiler Hardware platform
DPUCZDX8G

XCompiler

Zynq UltraScale+ MPSoC, Zynq-7000 devices

DPUCAHX8H U50, U280

DPUCAHX8L U50, U280

DPUCADF8H U200, U250

DPUCVDX8G VCK190, Versal AI Core Series

DPUCVDX8H VCK5000

DPUCADX8G xfDNN Compiler U200, U250

XCompiler stands for XIR based Compiler. It can support DPUCZDX8G, DPUCAHX8H,
DPUCAHX8L, DPUCVDX8G and DPUCVDX8H. xfDNN Compiler is the compiler from the legacy
ML Suite which supports DPUCADX8G only. This has been retained in the Vitis AI 1.3 release for
backward compatibility and will be deprecated in the Vitis AI 1.4 release.

Compiling with an XIR-based Toolchain
Xilinx Intermediate Representation (XIR) is a graph-based intermediate representation of the AI
algorithms which is designed for compilation and efficient deployment of the DPU on the FPGA
platform. If you are an advanced user, you can apply whole application acceleration to allow the
FPGA to be used to its maximum potential by extending the XIR to support customized IPs in the
Vitis AI flow. It is the current foundation for the Vitis AI quantizer, compiler, runtime, and other
tools.

XIR
XIR includes the Op, Tensor, Graph, and Subgraph libraries, which provide a clear and flexible
representation of the computational graph. XIR has in-memory format and file format for
different usage. The in-memory format XIR is a graph object and the file format is an xmodel. A
graph object can be serialized to an xmodel while an xmodel can be deserialized to a graph
object.

In the Op library, there is a well-defined set of operators to cover the popular deep learning
frameworks, e.g., TensorFlow, PyTorch and Caffe, and all of the built-in DPU operators. This
enhances the expression ability and achieves one of the core goals, which is eliminating the
difference between these frameworks and providing a unified representation for users and
developers.
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XIR also provides Python APIs named PyXIR, which enables Python users to fully access the XIR
in a Python environment, e.g., co-develop and integrate users' Python projects with the current
XIR-based tools without having to perform a huge amount of work to fix the gap between
different languages.

Figure 25: XIR Based Flow
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xir::Graph

Graph is the core component of the XIR. It obtains serveral significant APIs, e.g., the
xir::Graph::serialize, xir::Graph::deserialize and
xir::Graph::topological_sort.

The Graph is like a container, which maintains the Op as its vertex, and uses the producer-
consumer relation as the edge.

xir::Op

Op in XIR is the instance of the operator definition either in XIR or extended from XIR. All Op
instances can only be created or added by the Graph according to the predefined built-in/
extended op definition library. The Op definition mainly includes the input arguments and
intrinsic attributes.

Besides the intrinsic predefined attributes, an Op instance is also able to carry more extrinsic
attributes by applying xir::Op::set_attr API. Each Op instance can only obtain one output
tensor, but more than one fanout ops.
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xir::Tensor

Tensor is another important class in XIR. Unlike other frameworks' tensor definition, XIR's Tensor
is only a description of the data block it representes. The real data block is excluded from the
Tensor.

The key attributes for Tensor is the data type and shape.

xir::Subgraph

XIR's Subgraph is a tree-like hierarchy, which divides a set of ops into several non-overlapping
sets. The Graph's entire op set can be seen as the root. The Subgraph can be nested but it must
be non-overlapping. The nested insiders must be the children of the outer one.

Compiling for DPU
The XIR based compiler takes the quantized TensorFlow or Caffe model as the input. First, it
transforms the input models into the XIR format as the foundation of the following processes.
Most of the variations among different frameworks are eliminated and transferred to a unified
representation in XIR. Then, it applies various optimizations on the graph and breaks up the
graph into several subgraphs on the basis of whether the op can be executed on the DPU. More
architecture-aware optimizations are applied for each subgraph, as required. For the DPU
subgraph, the compiler generates the instruction stream and attaches to it. Finally, the optimized
graph with the necessary information and instructions for VART is serialized into a compiled
xmodel file.

The XIR-based compiler can support the DPUCZDX8G series on the Edge ZCU platforms,
DPUCAHX8H on the Alveo HBM platform optimized for high-throughput applications,
DPUCAHX8L on the Alveo HBM platform optimized for low-latency applications, DPUCVDX8G
on the Versal Edge platform, and DPUCVDX8H on the Versal Cloud platform. You can find
thearch.json files for those platforms in /opt/vitis_ai/compiler/arch.

Steps to compile Caffe or TensorFlow models with VAI_C are the same as for the previous DPUs.
It is assumed that you have successfully installed the Vitis AI package including VAI_C and
compressed your model with vai_quantizer.

Caffe

For Caffe, vai_q_caffe generates a PROTOTXT (deploy.prototxt) and a MODEL
(deploy.caffemodel). Ensure that you specify the -keep_fixed_neuron option for vai_q_caffe
which is essential for XIR-based compiler. Run the following command to get the compiled
xmodel.

vai_c_caffe -p /PATH/TO/deploy.prototxt -c /PATH/TO/deploy.caffemodel -a /
PATH/TO/arch.json -o /OUTPUTPATH -n netname
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The compiler creates three files in OUTPUTPATH directory. netname_org.xmodel is the pre-
compiled xmodel which is generated by compiler frontend. netname.xmodel is the compiled
xmodel which contains instructions and other necessary information. meta.json is for runtime.

TensorFlow

For TensorFlow, vai_q_tensorflow generates a pb file (quantize_eval_model.pb). Notice that
there are two pb files generated by vai_q_tensorflow. The quantize_eval_model.pb file is
theinput file for the XIR-based compiler. The compilation command is similar.

vai_c_tensorflow -f /PATH/TO/quantize_eval_model.pb -a /PATH/TO/arch.json -
o /OUTPUTPATH -n netname

The outputs is the same as the output for Caffe.

Sometimes, the TensorFlow model does not contain input tensor shape information, which will
fail the compilation. You can specify the input tensor shape with an extra option like --options
'{"input_shape": "1,224,224,3"}'.

TensorFlow 2.x

For TensorFlow 2.x, the quantizer generates the quantized model in the hdf5 format.

vai_c_tensorflow2 -m /PATH/TO/quantized.h5 -a /PATH/TO/arch.json -o /
OUTPUTPATH -n netname

Currently, vai_c_tensorflow2 only supports Keras functional APIs. Sequential APIs will be
supported in future releases.

PyTorch

For PyTorch, the quantizer NNDCT outputs the quantized model in the XIR format directly. Use
vai_c_xir to compile it.

vai_c_xir -x /PATH/TO/quantized.xmodel -a /PATH/TO/arch.json -o /OUTPUTPATH 
-n netname

Compiling for Customized Accelerator
The XIR-based compiler works in the context of a framework independent XIR graph generated
from deep learning frameworks. The parser removes the framework-specific attributes in the
CNN models and transforms models into XIR-based computing graphs. The compiler divides the
computing graph into different subgraphs, leverages heterogeneous optimizations, and generates
corresponding optimized machine codes for subgraphs.
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Figure 26: Compilation Flow
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When the model contains ops that the DPU cannot support, some subgraphs are created and
mapped to the CPU. The FPGA is so powerful that you can create a specific IP to accelerate
those ops and get better end-to-end performance. To enable customized accelerating IPs with an
XIR-based toolchain, leverage a pipeline named plugin to extend the XIR and compiler.

In Plugin.hpp, the interface class Plugin is declared. Plugins are executed sequentially before
the compiler starts to compile the graph for the DPU. In the beginning, the child subgraph is
created for each operator and the plugin picks the operators which it can accelerate. It merges
them into larger subgraphs, maps them to the customized IP and attaches necessary information
for runtime (VART::Runner) such as the instructions on the subgraphs.

Implementing a Plugin

1. Implement Plugin::partition()

In std::set<xir::Subgraph*> partition(xir::Graph* graph), you should pick
the desired ops and merge them into device level subgraphs. You can use the following helper
functions.

• xir::Subgraph* filter_by_name(xir::Graph* graph, const
std::string& name) returns the subgraph with a specific name

• std::set<xir::Subgraph*> filter_by_type(xir::Graph* graph, const
std::string& type) returns subgraphs with a specific type.

• std::set<xir::Subgraph*> filter_by_template(xir::Graph* graph,
xir::GraphTemplate* temp) returns subgraphs with a specific structure.

Chapter 5: Compiling the Model

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=87


Figure 27: Filter by Templates
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• std::set<xir::Subgraph*> filter(xir::Graph* graph,
std::function<std::set<xir::Subgraph*>(std::set<xir::Subgraph*>)>
func) allows you to filter the subgraphs by customized function. This method helps you
to find all uncompiled subgraphs.

If you need to merge the children subgraphs that you get, use the helper function named
merge_subgraph() to merge the children subgraphs. However, this function can only
merge subgraphs at the same level. If the subgraph list can not be merged into one subgraph,
the helper function will merge them as far as possible.

2. Specify the name, device, and runner for the subgraphs you picked in the
Plugin::partition() function.

3. Implement Plugin::compile(xir::Subgraph*). This function is called for all the
subgraphs returned by the partition() function. You can do whatever you want here and
attach information on subgraphs for runtime.

Building the Plugin

You need to create an extern get_plugin() function and build the implementations into a
shared library.

extern "C" plugin* get_plugin() { return new YOURPLUGIN(); }

Using the Plugin

You can use --options '{"plugin": "libplugin0.so,libplugin1.so"}' in vai_c
command line option to pass your plugin library to compiler. While executing your plugin, the
compiler will open the library and make an instance of your plugin by loading your extern
function named ‘get_plugin’. If more than one plugins are specified, they would be executed
sequentially in the order defined by command line option. Compilation for DPU and CPU would
be executed after all plugins have been implemented.
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Supported OPs and DPU Limitations
Currently Supported Operators

Xilinx is continuously improving the DPU IP and the compiler to support more operators with better performance. The following table
lists some typical operations and the configurations such as kernel size, stride, etc. that the DPU can support. If the operation
configurations exceed these limitations, the operator will be assigned to the CPU. Additionally, the operators that the DPU can
support are dependent on the DPU types, ISA versions, and configurations.

In order to make DPU adaptable to a variety of FPGA devices, some kinds of DPU are configurable. You can choose necessary engines,
adjust some intrinsic parameters and create your own DPU IP with TRD projects. But that means the limitations can be very different
between configurations. You can find more information about how will those options impact on the limitations in PG338. Or it is
recommended that you could try compiling the model with your own DPU configuration. The compiler will tell you which operators
would be assigned to CPU and why they would be so. The table shows a specific configuration of each DPU architeciture.
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Table 24: Currently Supported Operators

Typical
Operation

Type in
CNN

Parameter
s

DPUCZDX8G_ISA0_B4
096_MAX_BG2
(ZCU102/104)

DPUCAHX8L_ISA0
(U280)

DPUCAHX8H_ISA2
(U50LV9E, U50LV10E,

U280),
DPUCAHX8H_ISA2_EL

P2 (U50)

DPUCVDX8G_ISA0_B8
192C32B3 (VCK190)

DPUCVDX8H_ISA0
(VCK5000)

Intrinsic Parameter
channel_parallel: 16

bank_depth: 2048
channel_parallel: 32

bank_depth: 4096
channel_parallel: 16

bank_depth: 2048
channel_parallel: 16
bank_depth: 16384

channel_parallel: 64
bank_depth: 256

conv2d Kernel size w, h: [1, 16] w, h: [1, 16] w, h: [1, 16] w, h: [1, 16]
w * h <= 64

w, h: [1, 16]

Strides w, h: [1, 8] w, h: [1, 4] w, h: [1, 4] w, h: [1, 4] w, h: [1, 4]

Dilation dilation * input_channel <= 256 * channel_parallel

Paddings pad_left, pad_right: [0, (kernel_w - 1) * dilation_w + 1]

pad_top, pad_bottom: [0, (kernel_h - 1) * dilation_h + 1]

In Size kernel_w * kernel_h * ceil(input_channel / channel_parallel) <= bank_depth

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, LeakyReLU, ReLU6 ReLU, ReLU6 ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU

Group*
(Caffe)

group==1

depthwise-
conv2d

Kernel size w, h: [1, 16] w, h: [3]

Not supported

Strides w, h: [1, 8] w, h: [1, 2]

dilation dilation * input_channel <= 256 * channel_parallel

Paddings pad_left, pad_right: [0, (kernel_w - 1) * dilation_w + 1]

pad_top, pad_bottom: [0, (kernel_h - 1) * dilation_h + 1]

In Size kernel_w * kernel_h * ceil(input_channel /
channel_parallel) <= bank_depth

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, ReLU6 ReLU, ReLU6

Group*
(Caffe)

group==input_channel
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Table 24: Currently Supported Operators (cont'd)

Typical
Operation

Type in
CNN

Parameter
s

DPUCZDX8G_ISA0_B4
096_MAX_BG2
(ZCU102/104)

DPUCAHX8L_ISA0
(U280)

DPUCAHX8H_ISA2
(U50LV9E, U50LV10E,

U280),
DPUCAHX8H_ISA2_EL

P2 (U50)

DPUCVDX8G_ISA0_B8
192C32B3 (VCK190)

DPUCVDX8H_ISA0
(VCK5000)

Intrinsic Parameter
channel_parallel: 16

bank_depth: 2048
channel_parallel: 32

bank_depth: 4096
channel_parallel: 16

bank_depth: 2048
channel_parallel: 16
bank_depth: 16384

channel_parallel: 64
bank_depth: 256

transposed-
conv2d

Kernel size
kernel_w/stride_w, kernel_h/stride_h: [1, 16]

Strides

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, LeakyReLU, ReLU6 ReLU, ReLU6 ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU, ReLU6 ReLU, LeakyReLU

depthwise-
transposed-

conv2d

Kernel size kernel_w/stride_w,
kernel_h/stride_h: [1, 16]

kernel_w/stride_w,
kernel_h/stride_h: [3]

Not supported

Strides

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

Out Size output_channel <= 256 * channel_parallel

Activation ReLU, ReLU6 ReLU, ReLU6

max-
pooling

Kernel size w, h: [2, 8] w, h: {2, 3, 5, 7, 8} w, h: [1, 8] w, h: [2, 8] w, h: {1, 2, 3, 7}

Strides w, h: [1, 8] w, h: [1, 8] w, h: [1, 8] w, h: [1, 4] w, h: [1, 8]

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

Activation ReLU not supported ReLU ReLU not supported
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Table 24: Currently Supported Operators (cont'd)

Typical
Operation

Type in
CNN

Parameter
s

DPUCZDX8G_ISA0_B4
096_MAX_BG2
(ZCU102/104)

DPUCAHX8L_ISA0
(U280)

DPUCAHX8H_ISA2
(U50LV9E, U50LV10E,

U280),
DPUCAHX8H_ISA2_EL

P2 (U50)

DPUCVDX8G_ISA0_B8
192C32B3 (VCK190)

DPUCVDX8H_ISA0
(VCK5000)

Intrinsic Parameter
channel_parallel: 16

bank_depth: 2048
channel_parallel: 32

bank_depth: 4096
channel_parallel: 16

bank_depth: 2048
channel_parallel: 16
bank_depth: 16384

channel_parallel: 64
bank_depth: 256

average-
pooling

Kernel size w, h: [2, 8]
w==h

w, h: {2, 3, 5, 7, 8}
w==h

w, h: [1, 8]
w==h

w, h: [2, 8]
w==h

w, h: {1, 2, 3, 7}
w==h

Strides w, h: [1, 8] w, h: [1, 8] w, h: [1, 8] w, h: [1, 4] w, h: [1, 8]

Paddings pad_left, pad_right: [1, kernel_w-1]

pad_top, pad_bottom: [1, kernel_h-1]

Activation ReLU not support ReLU ReLU not support

eltwise-sum Input
Channel

input_channel <= 256 * channel_parallel

Activation ReLU ReLU ReLU ReLU ReLU

concat Network-specific limitation, which relates to the size of feature maps, quantization results and compiler optimizations.

reorg Strides reverse==false : stride ^ 2 * input_channel <= 256 * channel_parallel
reverse==true : input_channel <= 256 * channel_parallel

pad In Size input_channel <= 256 * channel_parallel

Mode "SYMMETRIC" ("CONSTANT" pad would be fused into adjacent operators during compiler optimization process)

global
pooling

Global pooling will be processed as general pooling with kernel size euqal to input tensor size.

InnerProdu
ct, Fully

Connected,
Matmul

These ops will be transformed into conv2d op with kernel size equal to 1x1

The following operators are primitively defined in different deep learning frameworks. The compiler can automatically parse these
operators, transform them into the XIR format, and distribute them to DPU or CPU. These operators are partially supported by the
tools, and they are listed here for your reference.
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Operators Supported by TensorFlow

Table 25: Operators Supported by TensorFlow

TensorFlow XIR　 DPU
Implementations　OP type Attributes OP name Attributes

placeholder /
inputlayer*

shape data shape Allocate memory for
input data.　

data_type

const　　 　　　 const　　 datashapedata_type Allocate memory for
const data.　　

conv2d　　　　 filter conv2d　　　　 kernel Convolution
Engine　　　　

strides stride

　 pad([0, 0, 0, 0])

padding pad_mode(SAME or
VALID)

dilations dilation

depthwiseconv2dnativ
e　　　　 filter depthwise-

conv2d　　　　 kernel Depthwise-
Convolution
Engine　　　　strides stride

explicit_paddings padding

padding pad_mode(SAME or
VALID)

dilations dilation

conv2dbackpropinput
/
conv2dtranspose*　　　　

filter transposed-
conv2d　　　　 kernel Convolution

Engine　　　　
strides stride

　 padding([0, 0, 0, 0])

padding pad_mode(SAME or
VALID)

dilations dilation

spacetobacthnd +
conv2d +
batchtospacend　　　　　　　

block_shape conv2d　　　　　　　 dilation Spacetobatch, Conv2d
and Batchtospace
would be mapped to
Convolution Engine
when specific
requirements we set
have been
met.　　　　　　　

padding 　
filter kernel

strides stride

padding pad_mode(SAME)

dilations dilations

block_shape 　
crops 　

matmul / dense*　 transpose_a conv2d / matmul　 transpose_a The matmul would be
transformed to a
conv2d operation once
the equivalent conv2d
meets the hardware
requirements and can
be mapped to DPU.　

transpose_b transpose_b
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Table 25: Operators Supported by TensorFlow (cont'd)

TensorFlow XIR　 DPU
Implementations　OP type Attributes OP name Attributes

maxpool /
maxpooling2d*　　　 ksize maxpool　　　 kernel Pooling Engine　　　

strides stride

　 pad([0, 0, 0, 0])

padding pad_mode(SAME or
VALID)

avgpool /
averagepooling2d* /
globalavgeragepoolin
g2d*　　　　　

ksize avgpool　　　　　 kernel Pooling
Engine　　　　　

strides stride

　 pad([0, 0, 0, 0])

padding pad_mode(SAME or
VALID)

　 count_include_pad
(false)

　 count_include_invalid
(true)

mean　 axis avgpool /
reduction_mean　 axis Mean operation would

be transformed to
avgpool if the
equivalent avgpool
meets the hardware
requirements and can
be mapped to DPU.　

keep_dims keep_dims

relu 　 relu 　 Activations would be
fused to adjacent
operations such as
convolution, add,
etc.　　

relu6 　 relu6 　
leakyrelu alpha leakyrelu alpha

fixneuron /
quantizelayer*　　　 bit_width fix　　　 bit_width It would be divided

into float2fix and
fix2float during
compilation, then the
float2fix and fix2float
operations would be
fused with adjacent
operations into
course-grained
operations.　　　

quantize_pos fix_point

　 if_signed

　 round_mode

identity 　 identity 　 Identity would be
removed.

add, addv2 　 add 　 If the add is an
element-wise add, the
add would be mapped
to DPU Element-wise
Add Engine, if the add
is an channel-wise
add, we search for
opportunities to fuse
the add with adjacent
operations such as
convolutions.
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Table 25: Operators Supported by TensorFlow (cont'd)

TensorFlow XIR　 DPU
Implementations　OP type Attributes OP name Attributes

concatv2 /
concatenate*

axis concat axis We reduce the
overhead resulting
from the concat by
special reading or
writing strategies and
allocating the on-chip
memory carefully.

pad /
zeropadding2d*　 paddings pad　 paddings "CONSTANT" padding

would be fused
adjacent operations.
"SYMMETRIC" padding
would be mapped to
DPU instructions.
"REFLECT" padding is
not supported by DPU
yet.　

mode mode

shape 　 shape 　 The shape operation
would be removed.

stridedslice　　 begin stridedslice　　 begin If they are shape-
related operations,
they would be
removed during
compilation. If they
are components of a
coarse-grained
operation, they would
be fused with adjacent
operations. Otherwise,
they would be
compiled into CPU
implementations.　　　　　　　　　　　　　

end end

strides strides

pack axis stack axis

neg 　 neg 　
mul 　 mul 　
realdiv 　 div 　
sub 　 sub 　
prod　 axis reduction_product　 axis

keep_dims keep_dims

sum　 axis reduction_sum　 axis

keep_dims keep_dims

max　 axis reduction_max　 axis

keep_dims keep_dims
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Table 25: Operators Supported by TensorFlow (cont'd)

TensorFlow XIR　 DPU
Implementations　OP type Attributes OP name Attributes

resizebilinear　　　 size/scale resize　　　 size If the mode of the
resize is 'BILINEAR',
align_corner=false,
half_pixel_centers =
false, size = 2, 4, 8;
align_corner=false,
half_pixel_centers =
true, size = 2, 4 can be
transformed to DPU
implementations (pad
+depthwise-
transposed conv2d). If
the mode of the resize
is 'NEAREST' and the
size is an integer, the
resize would be
mapped to DPU
implementations.　　　　　　　　　　　

align_corners align_corners

half_pixel_centers half_pixel_centers

　 mode="BILINEAR"

resizenearestneighbor　　　 size/scale resize　　　 size

align_corners align_corners

half_pixel_centers half_pixel_centers

　 mode="NEAREST"

upsample2d　　　 size/scale resize　　　 size

　 align_corners

　 half_pixel_centers

interpolation mode

reshape shape reshape shape They would be
transformed to the
reshape operation in
some cases. Otherwise
they would be mapped
to CPU.　　

transpose perm transpose order

squeeze axis squeeze axis

exp 　 exp 　 They would only be
compiled into CPU
implementations.　　softmax axis softmax axis

sigmoid 　 sigmoid 　
square+ rsqrt+
maximum　 　 l2_normalize　 axis output = x /

sqrt(max(sum(x ^ 2),
epsilon)) would be
fused into a
l2_normalize in XIR.

　 epsilon

Notes:
1. The OPs in TensorFlow listed above are supported in XIR. All of them have CPU implementations in the tool-chain.
2. Operators with * represent that the version of TensorFlow > 2.0.

Operators Supported by Caffe

Table 26: Operators Supported by Caffe

Caffe XIR DPU
Implementation　OP name Attributes OP name Attributes

input　 shape data　 shape Allocate memory for
input data.　　 data_type
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Table 26: Operators Supported by Caffe (cont'd)

Caffe XIR DPU
Implementation　OP name Attributes OP name Attributes

convolution　　　　　　　 kernel_size conv2d (group = 1) /
depthwise-conv2d
(group = input
channel)　　　　　　　

kernel If group == input
channel, the
convolution would be
compiled into
Depthwise-
Convolution Engine, if
group == 1, the
convolution would be
mapped to
Convolution Engine.
Otherwise, it would be
mapped to
CPU.　　　　　　　

stride stride

pad pad

　 pad_mode (FLOOR)

dilation dilation

bias_term 　
num_output 　
group 　

deconvolution　　　　　　　 kernel_size transposed-conv2d
(group = 1) /
depthwise-
transposed-conv2d
(group = input
channel)　　　　　　　

kernel If group == input
channel, the
deconvolution would
be compiled into
Depthwise-
Convolution Engine, if
group == 1, the
deconvolution would
be mapped to
Convolution Engine.
Otherwise, it would be
mapped to
CPU　　　　　　　

stride stride

pad pad

　 pad_mode (FLOOR)

dilation dilation

bias_term 　
num_output 　
group 　

innerproduct　 bias_term conv2d / matmul　 transpose_a The inner-product
would be transformed
to matmul, then the
matmul would be
transformed to conv2d
and compiled to
Convolution Engine. If
the inner-product fails
to be transformed, it
would be
implemented by
CPU.　

num_output transpose_b

scale bias_term depthwise-conv2d /
scale

　 The scale would be
transformed to
depthwise-
convolution,
otherwise, it would be
mapped to CPU.

pooling　　　　　　 kernel_size maxpool2d
(pool_method = 0) /
avgpool2d
(pool_method =
1)　　　　　　

kernel_size Pooling
Engine　　　　　　

stride stride

global_pooling global

pad pad

pool_method pad_mode(CEIL)

　 count_include_pad
(true)

　 count_include_invalid
(false)
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Table 26: Operators Supported by Caffe (cont'd)

Caffe XIR DPU
Implementation　OP name Attributes OP name Attributes

eltwise　 coeff = 1 add　 　 Element-wise Add
Engine　operation = SUM 　

concat axis concat axis We reduce the
overhead resulting
from the concat by
special reading or
writing strategies and
allocate the on-chip
memory carefully.

relu negative_slope relu / leakyrelu alpha Activations would be
fused to adjacent
operations such as
convolution, add,
etc.　

relu6 　 relu6 　

fixneuron　　　 bit_width fix　　　 bit_width It would be divided
into float2fix and
fix2float during
compilation, then the
float2fix and fix2float
operations would be
fused with adjacent
operations into
course-grained
operations.　　　

quantize_pos fix_point

　 if_signed

　 round_mode

reshape shape reshape shape These operations are
shape-related
operations, they would
be removed or
transformed into
reshape in most cases,
which would not affect
the on-chip data
layout. Otherwise, they
would be compiled to
CPU.　　　

permute order reshape / transpose order

flatten axis reshape / flatten start_axis

　 end_axis 　 end_axis

reorg　 strides reorg　 strides If the reorg meets the
hardware
requirements, it would
be mapped to DPU
implementations.　

reverse reverse
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Table 26: Operators Supported by Caffe (cont'd)

Caffe XIR DPU
Implementation　OP name Attributes OP name Attributes

deephiresize　　　 scale resize　　　 size If the mode of the
resize is 'BILINEAR',
align_corner=false,
half_pixel_centers =
false, size = 2, 4, 8;
align_corner=false,
half_pixel_centers =
true, size = 2, 4 can be
transformed to DPU
implementations (pad
+depthwise-
transposed conv2d). If
the mode of the resize
is 'NEAREST' and the
size is an integer, the
resize would be
mapped to DPU
implementations.　　　

mode mode

　 align_corners=false

　 half_pixel_centers=fals
e

gstiling　 strides gstiling　 stride If the strides of
gstiling are integers, it
may be mapped into
special DPU read/write
instructions.　

reverse reverse

slice　　 axis strided_slice　　 begin They would only be
compiled into CPU
implementations.　　　　　　　　　　　

slice_point end

　 strides

priorbox　　　　　　　 min_sizes priorbox　　　　　　　 min_sizes

max_sizes max_sizes

aspect_ratio aspect_ratio

flip flip

clip clip

variance variance

step step

offset offset

softmax axis softmax axis

Operators Supported by PyTorch

Table 27: Operators Supported by PyTorch

PyTorch XIR DPU
Implementation　API Attributes OP name Attributes

Parameter　　 data const　　 data Allocate memory for
input data.　　

shape

　 data_type
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Table 27: Operators Supported by PyTorch (cont'd)

PyTorch XIR DPU
Implementation　API Attributes OP name Attributes

Conv2d　　　　　　　 in_channels conv2d (groups = 1) /
depthwise-conv2d
(groups = input
channel)　　　　　　　

　 If groups == input
channel, the
convolution would be
compiled into
Depthwise-
Convolution Engine. If
groups == 1, the
convolution would be
mapped to
Convolution Engine.
Otherwise, it would be
mapped to the
CPU.　　　　　　　

out_channels 　
kernel_size kernel

stride stride

padding pad

padding_mode('zeros'
)

pad_mode (FLOOR)

groups 　
dilation dilation

ConvTranspose2d　　　　　　　 in_channels transposed-conv2d
(groups = 1) /
depthwise-
transposed-conv2d
(groups = input
channel)　　　　　　　

　 If groups == input
channel, the
convolution would be
compiled into
Depthwise-
Convolution Engine. If
groups == 1, the
convolution would be
mapped to
Convolution Engine.
Otherwise, it would be
mapped to the CPU.

out_channels 　
kernel_size kernel

stride stride

padding pad

padding_mode('zeros'
)

pad_mode (FLOOR)

groups 　
dilation dilation

matmul　 　 conv2d / matmul　 transpose_a The matmul would be
transformed to conv2d
and compiled to
Convolution Engine. If
the matmul fails to be
transformed, it would
be implemented by
CPU.　

　 transpose_b

MaxPool2d /
AdaptiveMaxPool2d　　　　

kernel_size maxpool2d　　　　 kernel Pooling
Engine　　　　

stride stride

padding pad

ceil_mode pad_mode

output_size (adaptive) global

AvgPool2d /
AdaptiveAvgPool2d　　　　　　

kernel_size avgpool2d　　　　　　 kernel Pooling
Engine　　　　　　

stride stride

padding pad

ceil_mode pad_mode

count_include_pad count_include_pad

　 count_include_invalid
(true)

output_size (adaptive) global
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Table 27: Operators Supported by PyTorch (cont'd)

PyTorch XIR DPU
Implementation　API Attributes OP name Attributes

ReLU 　 relu 　 Activations would be
fused to adjacent
operations such as
convolution, add,
etc.　　　　

LeakyReLU negative_slope leakyrelu alpha

ReLU6 　 relu6　　 　
Hardtanh　 min_val = 0 　

max_val = 6 　
ConstantPad2d /
ZeroPad2d　 padding pad　 paddings "CONSTANT" padding

would be fused
adjacent operations.　value = 0 mode ("CONSTANT")

add 　 add 　 If the add is an
element-wise add, the
add would be mapped
to DPU Element-wise
Add Engine. If the add
is a channel-wise add,
search for
opportunities to fuse
the add with adjacent
operations such as
convolutions. If they
are shape-related
operations, they would
be removed during
compilation. If they
are components of a
coarse-grained
operation, they would
be fused with adjacent
operations. Otherwise,
they would be
compiled into CPU
implementations.　　　　　　

sub / rsub 　 sub 　
mul 　 mul 　
max　 dim reduction_max　 axis

keepdim keep_dims

mean　 dim reduction_mean　 axis

keepdim keep_dims

interpolate /
upsample /
upsample_bilinear /
upsample_nearest　　　　

size resize　　　　 size If the mode of the
resize is 'BILINEAR',
align_corner=false,
half_pixel_centers =
false, size = 2, 4, 8;
align_corner=false,
half_pixel_centers =
true, size = 2, 4 can be
transformed to DPU
implementations (pad
+depthwise-
transposed conv2d). If
the mode of the resize
is 'NEAREST' and the
size are integers, the
resize would be
mapped to DPU
implementations.　　　　

scale_factor 　
mode mode

align_corners align_corners

　 half_pixel_centers = !
align_corners
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Table 27: Operators Supported by PyTorch (cont'd)

PyTorch XIR DPU
Implementation　API Attributes OP name Attributes

transpose　 dim0 transpose　 order These operations
would be transformed
to the reshape
operation in some
cases. Additionally,
search for
opportunities to fuse
the dimension
transformation
operations into special
load/save instrutions
of adjacent operations
to reduce the
overhead. Otherwise,
they would be mapped
to CPU.　　　　　　

dim1 　
permute dims 　 　
view size reshape shape

flatten　 start_dim reshape / flatten　 start_axis

end_dim end_axis

squeeze dim reshape / squeeze axis

cat dim concat axis Reduce the overhead
resulting from the
concat by special
reading or writing
strategies and
allocating the on-chip
memory carefully.

aten::slice*　　　 dim strided_slice 　 If the strided_slice is
shape-related or is the
component of a
coarse-grained
operation, it would be
removed. Otherwise,
the strided_slice would
be compiled into CPU
implementations.　　　

start begin

end end

step strides

BatchNorm2d　　　　　 eps depthwise-conv2d /
batchnorm　　　　　 epsilon If the batch_norm is

quantized and can be
transformed to a
depthwise-conv2d
equivalently, it would
be transformed to
depthwise-conv2d and
the compiler would
search for compilation
opportunities to map
the batch_norm into
DPU implementations.
Otherwise, the
batch_norm would be
executed by CPU.

　 axis

　 moving_mean

　 moving_var

　 gamma

　 beta

softmax dim softmax axis They would only be
compiled into CPU
implementations.　Tanh 　 tanh 　

Sigmoid 　 sigmoid 　
Notes:
1. If the slice of tensor in PyTorch is written in the Python syntax, it is transformed into aten::slice.
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Compiling with DPUCADX8G
This section briefly describes the DPUCADX8G (formerly known as xfDNN) front-end compilers.
Here, Caffe and TensorFlow interfaces are presented, both of which are built on top of a common
intermediate representation. These interfaces are common to all DPUs.

This section also describes the procedure that is used in combination with examples (refer to
software distribution), model quantization, and the proceeding sub-graph. As today, the
compilers comes as open source and it provides further insights.

Only the necessary steps and some of the context are presented here to give familiarity with this
new environment. It is assumed that your environment is set up and running, and that you are
considering a network (such as a classification network) and want to see the instructions for
generating it to run on a DPUCADX8G design.

If the final goal is to inspect FPGA codes and to infer a time estimate, the compiler can be used in
isolation. If the final goal is to execute the network on an FPGA instance, the DPUCADX8G
compiler must be used in combination with a partitioner. There are two tools for this purpose in
the following chapters. One is for Caffe and the other is for TensorFlow. For Caffe, the partitioner
can directly use the compiler outputs and feed the runtime because the computation is broken
by the partitioner in a single FPGA subgraph. The TensorFlow partitioner allows multiple
subgraphs.

Caffe
For presentation purposes, assume you have a MODEL (model.prototxt), WEIGHT
(model.caffemodel), and a QUANT_INFO (quantization information file). The basic Caffe
compiler interface comes with simplified help:

vai_c_caffe -help
**************************************************
 * VITIS_AI Compilation - Xilinx Inc.
 **************************************************
 usage: vai_c_caffe.py [-h] [-p PROTOTXT] [-c CAFFEMODEL] [-a ARCH]
                       [-o OUTPUT_DIR] [-n NET_NAME] [-e OPTIONS]optional 
arguments:
   -h, --help            show this help message and exit
   -p PROTOTXT, --prototxt PROTOTXT
                         prototxt
   -c CAFFEMODEL, --caffemodel CAFFEMODEL
                         caffe-model
   -a ARCH, --arch ARCH  json file
   -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                         output directory
   -n NET_NAME, --net_name NET_NAME
                         prefix-name for the outputs
   -e OPTIONS, --options OPTIONS
                         extra options
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The main goal of this interface is to specify the bare minimum across different designs. The
following describes how to run specifically for DPUCADX8G, starting with the minimum inputs.

vai_c_caffe.py -p MODEL -c WEIGHT -a vai/DPUCADX8G/tools/compile/arch.json -
o WORK -n cmd -e OPTIONS

Specify the MODEL, WEIGHT, a location to write the output, and a name for the code to be
generated (i.e., cmd). This creates four outputs files in the WORK directory.

compiler.json  quantizer.json  weights.h5 meta.json

This is the main contract with the runtime. There are three JSON files: one has the information
about the instruction to be executed, the other has information about the quantization (i.e., how
to scale and shift). The meta.json file is created from the arch.json file and it is basically a
dictionary that specifies run time information. The name cmd is necessary, but it is not used by
the Vitis AI runtime.

The main difference with other versions of DPU is that you need to specify the QUANT_INF0
using the options:

-e "{'quant_cfgfile' : '/SOMEWHERE/quantize_info.txt'}"

The option field is a string that represents a Python dictionary. In this example, specify the
location of the quantization file that has been computed separately and explained in Chapter 4:
Quantizing the Model. In context, other DPU versions just build this information in either the
model or the weight, therefore, enhanced models are not a vanilla Caffe model and you will need
a custom Caffe to run them. The DPUCADX8G uses and executes the native Caffe (and the
custom Caffe).

Note: Remember that the quantization file must be introduced. The compiler will ask to have one and
eventually will crash when it looks for one. For a Caffe model to be complete, it must have both a prototxt
and a caffemodel. Postpone the discussion about the arch.json file, but it is necessary. While this is the
unified Caffe interface using a scripting format, there are Python interfaces that allow more tailored uses
and compilations where an expert can optimize a model much further.

TensorFlow
The main difference between Caffe and TensorFlow is that the model is summarized by a single
file and quantization information must be retrieved from a GraphDef.

**************************************************
* VITIS_AI Compilation - Xilinx Inc.
**************************************************
usage: vai_c_tensorflow.py [-h] [-f FROZEN_PB] [-a ARCH] [-o OUTPUT_DIR]
                           [-n NET_NAME] [-e OPTIONS] [-q]
 
optional arguments:
  -h, --help            show this help message and exit
  -f FROZEN_PB, --frozen_pb FROZEN_PB
                        prototxt
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  -a ARCH, --arch ARCH  json file
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        output directory
  -n NET_NAME, --net_name NET_NAME
                        prefix-name for the outputs
  -e OPTIONS, --options OPTIONS
                        extra options
  -q, --quant_info      extract quant info

Now, the interface clearly explains how to specify the frozen graph. Assuming that the model and
quantization information is required.

vai_c_tensorflow.py --frozen_pb deploy.pb --net_name cmd --options  
"{'placeholdershape': {'input_tensor' : [1,224,224,3]},   'quant_cfgfile': 
'fix_info.txt'}" --arch arch.json --output_dir work/temp

As you can see, the quantization information and the shape of the input placeholder are
specified. It is common practice to have placeholder layers specifying the input of the model. It is
good practice to specify all dimensions and use the number of batches equal to one. Optimize for
latency and accept a batch size 1-4 (but this does not improve latency, it improves very little the
throughput, and it is not completely tested for any networks).

There are cases where calibration and fine tuning provide a model that cannot be executed in
native TensorFlow, but it contains the quantization information. If you run this front end with [-
q, --quant_info extract quant info ] on, create quantization information.

The software repository should provide examples where the compiler is called twice. The first
one is to create a quantization information file (using a default name and location) and this is
used as input for the code generation.

Note: Remember to introduce the output directory and the name of the code generated. The runtime
contract is based on where the outputs are written. The main approach to call a different compiler for
different architecture is through the arch.json file. This file is used as a template for the output
description and as an internal feature of the platform/target FPGA design. Furthermore, there is also a
Python interface where an expert could exploit custom optimizations.

VAI_C Usage
The corresponding Vitis AI compiler for Caffe and TensorFlow frameworks are vai_c_caffe
and vai_c_tensorflow across cloud-to-edge DPU. The common options for VAI_C are
illustrated in the following table.

Table 28: VAI_C Common Options for Cloud and Edge DPU

Parameters Description
--arch DPU architecture configuration file for VAI_C compiler in JSON format. It contains the

dedicated options for cloud and edge DPU during compilation.
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Table 28: VAI_C Common Options for Cloud and Edge DPU (cont'd)

Parameters Description
--prototxt Path of Caffe prototxt file for the compiler vai_c_caffe. This option is only required

while compiling the quantized Caffe model generated by vai_q_caffe.

--caffemodel Path of Caffe caffemodel file for the compiler vai_c_caffe. This option is only required
while compiling the quantized Caffe model generated by vai_q_caffe.

--frozen_pb Path of TensorFlow frozen protobuf file for the compiler vai_c_tensorflow. This option
is only required the quantized TensorFlow model generated by vai_q_tensorflow.

--output_dir Path of output directory of vai_c_caffe and vai_c_tensorflow after compilation process.

--net_name Name of DPU kernel for network model after compiled by VAI_C.

--options The list for the extra options for cloud or edge DPU in the format of 'key':'value'. If
there are multiple options to be specified, they are separated by ‘,’, and if the extra
option has no value, an empty string must be provided. For example:
--options "{'cpu_arch':'arm32', 'dcf':'/home/edge-dpu/zynq7020.dcf',
'save_kernel':''}"

Note: For arguments specified with “--options”, they have the highest priorities and
will override the values specified in other places. For example, specifying ‘dcf’ with “--
options” replaces the value specified in the JSON file.
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Chapter 6

Deploying and Running the Model

Deploying and Running Models on Alveo
U200/250

Vitis AI provides unified C++ and Python APIs for Edge and Cloud to deploy models on FPGAs.

For more information on the C++ APIs: https://github.com/Xilinx/Vitis-AI/blob/master/docs/
DPUCADX8G/Vitis-C%2B%2BAPI.md.

For more information on the Python APIs: https://github.com/Xilinx/Vitis-AI/blob/master/docs/
DPUCADX8G/Vitis-PythonAPI.md.

Programming with VART
Vitis AI provides a C++ DpuRunner class with the following interfaces:

std::pair<uint32_t, int> execute_async(  
                    const std::vector<TensorBuffer*>& input,  
                    const std::vector<TensorBuffer*>& output);

Note: For historical reasons, this function is actually a blocking function, not an asynchronous non-blocking
function.

1. Submit input tensors for execution and output tensors to store results. The host pointer is
passed using the TensorBuffer object. This function returns a job ID and the status of the
function call.

int wait(int jobid, int timeout);

The job ID returned by execute_async is passed to wait() to block until the job is complete
and the results are ready.

TensorFormat get_tensor_format()

2. Query the DpuRunner for the tensor format it expects.

Chapter 6: Deploying and Running the Model

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  107Send Feedback

https://github.com/Xilinx/Vitis-AI/blob/master/docs/DPUCADX8G/Vitis-C%2B%2BAPI.md
https://github.com/Xilinx/Vitis-AI/blob/master/docs/DPUCADX8G/Vitis-C%2B%2BAPI.md
https://github.com/Xilinx/Vitis-AI/blob/master/docs/DPUCADX8G/Vitis-PythonAPI.md
https://github.com/Xilinx/Vitis-AI/blob/master/docs/DPUCADX8G/Vitis-PythonAPI.md
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=107


Returns DpuRunner::TensorFormat::NCHW or DpuRunner::TensorFormat::NHWC

std::vector<Tensor*> get_input_tensors()

3. Query the DpuRunner for the shape and name of the output tensors it expects for its loaded
Vitis AI model.

std::vector<Tensor*> get_output_tensors()

4. To create a DpuRunner object call the following:

create_runner(const xir::Subgraph* subgraph, const std::string& mode = 
"")

It returns the following:

std::unique_ptr<Runner>

The input to create_runner is a XIR subgraph generated by the Vitis AI compiler.

TIP: To enable multi-threading with VART, create a runner for each thread.

C++ Example
// get dpu subgraph by parsing model file
auto runner = vart::Runner::create_runner(subgraph, "run");
// populate input/output tensors
auto job_data = runner->execute_async(inputs, outputs);
runner->wait(job_data.first, -1);
// process outputs

Vitis AI also provides a Python ctypes Runner class that mirrors the C++ class, using the C
DpuRunner implementation:

class Runner:
def __init__(self, path)
def get_input_tensors(self)
def get_output_tensors(self)
def get_tensor_format(self)
def execute_async(self, inputs, outputs)
# differences from the C++ API:
# 1. inputs and outputs are numpy arrays with C memory layout
#    the numpy arrays should be reused as their internal buffer 
#    pointers are passed to the runtime. These buffer pointers
#    may be memory-mapped to the FPGA DDR for performance.
# 2. returns job_id, throws exception on error
def wait(self, job_id)
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Python Example
dpu_runner = runner.Runner(subgraph，"run")
# populate input/output tensors
jid = dpu_runner.execute_async(fpgaInput, fpgaOutput)
dpu_runner.wait(jid)
# process fpgaOutput

DPU Debug with VART
This chapter aims to demonstrate how to verify DPU inference result with VART tools.
TensorFlow ResNet50, Caffe ResNet50, and PyTorch ResNet50 networks are used as examples.
Following are the four steps for debugging the DPU with VART:

1. Generate a quantized inference model and reference result

2. Generate a DPU xmodel

3. Generate a DPU inference result

4. Crosscheck the reference result and the DPU inference result

Before you start to debug the DPU result, ensure that you have set up the environment
according to the instructions in the Chapter 2: Getting Started section.

TensorFlow Workflow
To generate the quantized inference model and reference result, follow these steps:

1. Generate the quantized inference model by running the following command to quantize the
model.

The quantized model, quantize_eval_model.pb, is generated in the quantize_model
folder.

vai_q_tensorflow quantize                                    \
    --input_frozen_graph ./float/resnet_v1_50_inference.pb   \
    --input_fn input_fn.calib_input                          \
    --output_dir quantize_model                              \
    --input_nodes input                                      \
    --output_nodes resnet_v1_50/predictions/Reshape_1        \
    --input_shapes    ?,224,224,3                            \
    --calib_iter    100

2. Generate the reference result by running the following command to generate reference data.

vai_q_tensorflow dump --input_frozen_graph        \
            quantize_model/quantize_eval_model.pb \
     --input_fn input_fn.dump_input               \
     --output_dir=dump_gpu 
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The following figure shows part of the reference data.

3. Generate the DPU xmodel by running the following command to generate the DPU xmodel
file.

vai_c_tensorflow --frozen_pb quantize_model/quantize_eval_model.pb \
  --arch /opt/vitis_ai/compiler/arch/DPUCAHX8H/U50/arch.json       \
  --output_dir compile_model                                       \
  --net_name resnet50_tf

4. Generate the DPU inference result by running the following command to generate the DPU
inference result and compare the DPU inference result with the reference data automatically.

env XLNX_ENABLE_DUMP=1  XLNX_ENABLE_DEBUG_MODE=1 XLNX_GOLDEN_DIR=./
dump_gpu/dump_results_0 \
   xilinx_test_dpu_runner ./compile_model/resnet_v1_50_tf.xmodel \
   ./dump_gpu/dump_results_0/input_aquant.bin                    \
    2>result.log 1>&2

For xilinx_test_dpu_runner, the usage is as follow:

xilinx_test_dpu_runner  <model_file> <input_data> 

After the above command runs, the DPU inference result and the comparing result
result.log are generated. The DPU inference results are located in the dump folder.

5. Crosscheck the reference result and the DPU inference result.

a. View comparison results for all layers.

grep --color=always 'XLNX_GOLDEN_DIR.*layer_name' result.log
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b. View only the failed layers.

grep --color=always 'XLNX_GOLDEN_DIR.*fail ! layer_name' result.log

If the crosscheck fails, use the following methods to further check from which layer the
crosscheck fails.

a. Check the input of DPU and GPU, make sure they use the same input data.

b. Use xir tool to generate a picture for displaying the network's structure.

Usage: xir svg <xmodel> <svg>

Note: In the Vitis AI docker environment, execute the following command to install the required
library.

sudo apt-get install graphviz

When you open the picture you created, you can see many little boxes arround these ops.
Each box means a layer on DPU. You can use the last op's name to find its corresponding
one in GPU dump-result. The following figure shows parts of the structure.
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subgraph_input(fix)_upload_0(AddInterfaceOpForDeviceSwitch)subgraph_resnet_v1_50/conv1/Conv2D(MergePad)(ReplaceConv2d)

Name: resnet_v1_50/conv1/Conv2D_bias(fix)
Type: const-fix

Tensor: resnet_v1_50/conv1/
Conv2D_bias_fixneuron(float2fix)ReplaceConst)

Shape: {64}

Name: resnet_v1_50/conv1/Conv2D_weights(fix)
Type: const-fix

Tensor: resnet_v1_50/conv1/
Conv2D_weights_fixneuro(float2fix)ReplaceConst)

Shape: {64, 7, 7 ,3}

Name: resnet_v1_50/conv1/Conv2D(MergePad)
(ReplaceConv2d)
Type: conv2d-fix

Tensor: resnet_v1_50/conv1/Relu/aquant
(float2fix)(ReplaceConv2d)

Shape: {1, 112, 112, 64}

Name: resnet_v1_50/pool1/MaxPool(ReplacePool)
Type: pool-fix

Tensor: resnet_v1_50/pool1/MaxPool/aquant
(float2fix)(ReplacePool)

Shape: {1, 56, 56, 64}

Name:input(fix)_upload_0
(AddInterfaceOpFor DeviceSwitch)

Type: upload
Tensor: input/aquant(float2fix)(fix)_upload_0

(AddInterfaceOpForDeviceSwitch)
Shape: {1, 224, 224 ,3}

subgraph_input(fix)

Name:input(fix)
Type: data-fix

Tensor: input/aquant(float2fix)(fix)
Shape: {1, 224, 224 ,3}

X24898-120920

c. Submit the files to Xilinx.

If certain layer proves to be wrong on DPU, prepare the quantized model, such as
quantize_eval_model.pb as one package for further analysis by factory and send it
to Xilinx with a detailed description.

Caffe Workflow
To generate the quantized inference model and reference result, follow these steps:

1. Generate the quantized inference model by running the following command to quantize the
model.

vai_q_caffe quantize -model float/test_quantize.prototxt \
-weights float/trainval.caffemodel                       \
-output_dir quantize_model                               \
-keep_fixed_neuron                                       \
2>&1 | tee ./log/quantize.log

The following files are generated in the quantize_model folder.

• deploy.caffemodel

• deploy.prototxt

• quantize_train_test.caffemodel
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• quantize_train_test.prototxt

2. Generate the reference result by running the following command to generate reference data.

DECENT_DEBUG=5 vai_q_caffe test -model quantize_model/dump.prototxt \
-weights quantize_model/quantize_train_test.caffemodel              \
-test_iter 1                                                        \
2>&1 | tee ./log/dump.log

This creates the dump_gpu folder and files as shown in the following figure.

3. Generate the DPU xmodel by running the following command to generate DPU xmodel file.

vai_c_caffe --prototxt quantize_model/deploy.prototxt       \
--caffemodel quantize_model/deploy.caffemodel               \
--arch /opt/vitis_ai/compiler/arch/DPUCAHX8H/U50/arch.json  \
--output_dir compile_model                                  \
--net_name resnet50

4. Generate the DPU inference result by running the following command to generate the DPU
inference result.

env XLNX_ENABLE_DUMP=1  XLNX_ENABLE_DEBUG_MODE=1           \
    xilinx_test_dpu_runner ./compile_model/resnet50.xmodel \
    ./dump_gpu/data.bin 2>result.log 1>&2

For xilinx_test_dpu_runner, the usage is as follow:

xilinx_test_dpu_runner  <model_file> <input_data> 

After the above command runs, the DPU inference result and the comparing result
result.log are generated. The DPU inference results are under dump folder.

5. Crosscheck the reference result and the DPU inference result.

The crosscheck mechanism is to first make sure input(s) to one layer is identical to reference
and then the output(s) is identical too. This can be done with commands like diff, vimdiff,
and cmp. If two files are identical, diff and cmp will return nothing in the command line.

a. Check the input of DPU and GPU, make sure they use the same input data.
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b. Use xir tool to generate a picture for displaying the network's structure.

Usage: xir svg <xmodel> <svg>

Note: In Vitis AI docker environment, execute the following command to install the required library.

sudo apt-get install graphviz

The following figure is part of the ResNet50 model structure generated by xir_cat.

subgraph_fc100(transfered_matmul)(TransferMatMulToConv2d)_inserted_fix_2_reshaped(ReplaceReshape)

Name: fc1000(transfered_matmul)(TransferMatMulToCon
v2d)_inserted_fix_2_reshaped(ReplaceReshape)

Type: reshape-fix
Tensor:fc1000_fixed(float2fix)(ReplaceReshape)_download_0

(AddInterfaceOpForDeviceSwitch)
Shape: {1, 1000}

subgraph_fc100(transfered_matmul)(TransferMatMulToConv2d)_inserted_fix_2_reshaped(ReplaceReshape)_download_0(AddInterfaceOpForDeviceSwitch)

Name: fc1000(transfered_matmul)(TransferMatMulToCon
v2d)_inserted_fix_2_reshaped(ReplaceReshape)_download_0

(AddInterfaceOpForDeviceSwitch)
Type: download

Tensor:fc1000_fixed(float2fix)(ReplaceReshape)
Shape: {1, 1000}

subgraph_fc100_fixed_(fix2float)

Name: fc1000_fixed_(fix2float)
Type: fix2float

Tensor: fc1000_fixed_(fix2float)
Shape: {1, 1000}

X24896-120920

c. View the xmodel structure image and find out the last layer name of the model.

RECOMMENDED: Check the last layer first. If the crosscheck of the last layer is successful, then
the whole layers' crosscheck will pass and there is no need crosscheck the other layers.

For this model, the name of the last layer is `subgraph_fc1000_fixed_(fix2float)`.

i. Search the keyword fc1000 under dump_gpu and dump. You will find the reference
result file fc1000.bin under dump_gpu and DPU inference result
0.fc1000_inserted_fix_2.bin under dump/subgraph_fc1000/output/.

ii. Diff the two files.

If the last layer's crosscheck fails, then you have to do the crosscheck from the first
layer until you find the layer where the crosscheck fails.

Note: For the layers that have multiple input or output (e.g., res2a_branch1), input correctness
should be checked first and then check the output.

d. Submit the files to Xilinx if the DPU cross check fail.

If a certain layer proves to be wrong on the DPU, prepare the following files as one
package for further analysis by factory and send it to Xilinx with a detailed description.

• Float model and prototxt file
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• Quantized model, such as deploy.caffemodel, deploy.prototxt,
quantize_train_test.caffemodel, and quantize_train_test.prototxt.

PyTorch Workflow
To generate the quantized inference model and reference result, follow these steps:

1. Generate the quantized inference model by running the following command to quantize the
model.

python resnet18_quant.py --quant_mode calib --subset_len 200

2. Generate the reference result by running the following command to generate reference data.

python resnet18_quant.py --quant_mode test

3. Generate the DPU xmodel by running the following command to generate DPU xmodel file.

vai_c_xir -x /PATH/TO/quantized.xmodel -a /PATH/TO/
arch.json -o /OUTPUTPATH -n netname}

4. Generate the DPU inference result.

This step is same as the step in Caffe workflow.

5. Crosscheck the reference result and the DPU inference result.

This step is same as the step in Caffe workflow.

Multi-FPGA Programming
Most modern servers have multiple Xilinx® Alveo™ cards and you would want to take advantage
of scaling up and scaling out deep-learning inference. Vitis AI provides support for multi-FPGA
servers using the following building blocks.

Xbutler
The Xbutler tool manages and controls Xilinx FPGA resources on a machine. With the Vitis AI 1.0
release, installing Xbutler is mandatory for running a deep-learning solution using Xbutler.
Xbutler is implemented as a server-client paradigm. Xbutler is an addon library on top of Xilinx
XRT to facilitate multi-FPGA resource management. Xbutler is not a replacement to Xilinx XRT.
The feature list for Xbutler is as follows:

• Enables multi-FPGA heterogeneous support

• C++/Python API and CLI for the clients to allocate, use, and release resources

• Enables resource allocation at FPGA, compute unit (CU), and service granularity
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• Auto-release resource

• Multi-client support: Enables multi-client/users/processes request

• XCLBIN-to-DSA auto-association

• Resource sharing amongst clients/users

• Containerized support

• User defined function

• Logging support

Multi-FPGA, Multi-Graph Deployment with Vitis AI
Vitis AI provides different applications built using the Unified Runner APIs to deploy multiple
models on single/multiple FPGAs. Detailed description and examples are available in the Vitis AI
GitHub (Multi-Tenant Multi FPGA Deployment).

Xstream API
A typical end-to-end workflow involves heterogeneous compute nodes which include FPGA for
accelerated services like ML, video, and database acceleration and CPUs for I/O with outside
world and compute not implemented on FPGA. Vitis AI provides a set of APIs and functions to
enable composition of streaming applications in Python. Xstream APIs build on top of the
features provided by Xbutler. The components of Xstream API are as follows.

• Xstream: Xstream ($VAI_PYTHON_DIR/vai/dpuv1/rt/xstream.py) provides a standard
mechanism for streaming data between multiple processes and controlling execution flow and
dependencies.

• Xstream Channel: Channels are defined by an alphanumeric string. Xstream Nodes may
publish payloads to channels and subscribe to channels to receive payloads. The default
pattern is PUB-SUB, that is, all subscribers of a channel will receive all payloads published to
that channel. Payloads are queued up on the subscriber side in FIFO order until the subscriber
consumes them off the queue.

• Xstream Payloads: Payloads contain two items: a blob of binary data and metadata. The
binary blob and metadata are transmitted using Redis, as an object store. The binary blob is
meant for large data. The metadata is meant for smaller data like IDs, arguments and options.
The object IDs are transmitted through ZMQ. ZMQ is used for stream flow control. The ID
field is required in the metadata. An empty payload is used to signal the end of transmission.
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• Xstream Node: Each Xstream Node is a stream processor. It is a separate process that can
subscribe to zero or more input channels, and output to zero or more output channels. A node
may perform computation on payload received on its input channel(s). The computation can
be implemented in CPU, FPGA or GPU. To define a new node, add a new Python file in vai/
dpuv1/rt/xsnodes. See ping.py as an example. Every node should loop forever upon
construction. On each iteration of the loop, it should consume payloads from its input
channel(s) and publish payloads to its output channel(s). If an empty payload is received, the
node should forward the empty payload to its output channels by calling xstream.end()
and exit.

• Xstream Graph: Use $VAI_PYTHON_DIR/vai/dpuv1/rt/xsnodes/grapher.py to
construct a graph consisting of one or more nodes. When Graph.serve() is called, the
graph spawns each node as a separate process and connect their input/output channels. The
graph manages the life and death of all its nodes. See neptune/services/ping.py for a
graph example. For example:

graph = grapher.Graph("my_graph")
  graph.node("prep", pre.ImagenetPreProcess, args)
  graph.node("fpga", fpga.FpgaProcess, args)
  graph.node("post", post.ImagenetPostProcess, args)
 
  graph.edge("START", None, "prep")
  graph.edge("fpga", "prep", "fpga")
  graph.edge("post", "fpga", "post")
  graph.edge("DONE", "post", None)
 
  graph.serve(background=True)
  ...
  graph.stop()

• Xstream Runner: The runner is a convenience class that pushes a payload to the input channel
of a graph. The payload is submitted with a unique ID. The runner then waits for the output
payload of the graph matching the submitted ID. The purpose of this runner is to provide the
look-and-feel of a blocking function call. A complete standalone example of Xstream is here: $
{VAI_ALVEO_ROOT}/ examples/deployment_modes/xs_classify.py.

AI Kernel Scheduler
Real world deep learning applications involve multi-stage data processing pipelines which include
many compute intensive pre-processing operations like data loading from disk, decoding, resizing,
color space conversion, scaling, and croping multiple ML networks of different kinds like CNN,
and various post-processing operations like NMS.

The AI kernel scheduler (AKS) is an application to automatically and efficiently pipeline such
graphs without much effort from the users. It provides various kinds of kernels for every stage of
the complex graphs which are plug and play and are highly configurable. For example, pre-
processing kernels like image decode and resize, CNN kernel like the Vitis AI DPU kernel and
post processing kernels like SoftMax and NMS. You can create their graphs using kernels and
execute their jobs seamlessly to get the maximum performance.
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For more details and examples, see the Vitis AI GitHub (AI Kernel Scheduler).

Neptune
Neptune provides a web server with a modular collection of nodes defined in Python. These
nodes can be strung together in a graph to create a service. You can interact with the server to
start and stop these services. You can extend Neptune by adding your own nodes and services.
Neptune builds on top of the Xstream API. In the following picture, the user is running three
different machine learning models on 16 videos from YouTube in real-time. Through a single
Neptune server, the time and space multiplexing of the FPGA resources are enabled. Detailed
documentation and examples can be found here: ${VAI_ALVEO_ROOT}/neptune. Neptune is
in the early access phase in this Vitis AI release.

Figure 28: Multi-stream, Multi-network Processing in Alveo

For more details see, Vitis AI GitHub (Neptune).

Apache TVM and Microsoft ONNX Runtime
In addition to VART and related APIs, Vitis AI has integrated with the Apache TVM and Microsoft
ONNX Runtime frameworks for improved model support and automatic partitioning. This work
incorporates community driven machine learning framework interfaces that are not available
through the standard Vitis AI compiler and quantizers. In addition, it incorporates highly
optimized CPU code for x86 and Arm CPUs, when certain layers may not yet be available on
Xilinx DPUs.
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TVM is currently supported on the following:

• DPUCADX8G

• DPUCZDX8G

ONNX Runtime is currently supported on the following:

• DPUCADX8G

Apache TVM
Apache TVM is an open source deep learning compiler stack focusing on building efficient
implementations for a wide variety of hardware architectures. It includes model parsing from
TensorFlow, TensorFlow Lite (TFLite), Keras, PyTorch, MxNet, ONNX, Darknet, and others.
Through the Vitis AI integration with TVM, Vitis AI is able to run models from these frameworks.
TVM incorporates two phases. The first is a model compilation/quantization phase which
produces the CPU/FPGA binary for your desired target CPU and DPU. Then by installing the
TVM Runtime on your Cloud or Edge device, the TVM APIs in Python or C++ can be called to
execute the model.

To read more about Apache TVM, see https://tvm.apache.org.

Vitis AI provides tutorials and installation guides on Vitis AI and TVM integration on theVitis AI
GitHub repository: https://github.com/Xilinx/Vitis-AI/tree/master/external/tvm.

Microsoft ONNX Runtime
Microsoft ONNX Runtime is an open source inference accelerator focused on ONNX models. It is
the platform Vitis AI has integrated with to provide first-class ONNX model support which can
be exported from a wide variety of training frameworks. It incorporates very easy to use runtime
APIs in Python and C++ and can support models without requiring the separate compilation
phase that TVM requires. Included in ONNXRuntime is a partitioner that can automatically
partition between the CPU and FPGA further enhancing ease of model deployment. Finally, it
also incorporates the Vitis AI quantizer in a way that does not require separate quantization
setup.

To read more about Microsoft ONNX Runtime, see https://microsoft.github.io/onnxruntime/.

Vitis AI provides tutorials and installation guides on Vitis AI and ONNXRuntime integration on
the Vitis AI GitHub repository: https://github.com/Xilinx/Vitis-AI/tree/master/external/
onnxruntime.
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Chapter 7

Profiling the Model
This chapter describes the utility tools included within the Vitis™ AI Development Kit, most of
them are only available for the Edge DPU, except for the Vitis AI Profiler, which is a set of tools
to profile and visualize AI applications based on the VART. The kit consists of five tools, which
can be used for DPU execution debugging, performance profiling, DPU runtime mode
manipulation, and DPU configuration file generation. With the combined use of these tools, you
can conduct DPU debugging and performance profiling independently.

Vitis AI Profiler
The Vitis AI Profiler is an all-in-one profiling solution for Vitis AI. It is an application level tool to
profile and visualize AI applications based on VART. For an AI application, there are components
that run on the hardware, for example, neural network computation usually runs on the DPU, and
there are components that run on a CPU as a function that is implemented by C/C++ code-like
image pre-processing. This tool helps you to put the running status of all these different
components together.

• Easy to use as it neither requires any change in the user code nor any re-compilation of the
program.

• Visualize system performance bottlenecks.

• Illustrate the execution state of different compute units (CPU/GPU).

Vitis AI Profiler Architecture
The Vitis AI Profiler architecture is shown in the following figure:
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Figure 29: Vitis AI Profiler Architecture

VAITracer
Target AI Program

Vitis AI Library
Xilinx XRT

Target Device(ZCU102/104)

Vitis Analyzer 2020.2

PC or Local Server
.csv file

X24604-120420

Vitis AI Profiler GUI Overview
Figure 30: Vitis AI Profiler GUI Overview

• DPU Summary: A table of the number of runs and minimum/average/maximum times (ms) for
each kernel.
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• DPU Throughput and DDR Transfer Rates: Line graphs of achieved FPS and read/write
transfer rates (in MB/s) as sampled during the application.
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• Timeline Trace: This includes timed events from VART, HAL APIs, and the DPUs.

Note:
1. The Vitis Analyzer is the default GUI for vaitrace for Vitis AI 1.3 and later releases.
2. The legacy web based Vitis-AI Profiler works for Edge devices (Zynq UltraScale+ MPSoC) in Vitis AI

1.3. For more information, see Vitis-AI Profiler v1.2 README.

Getting Started with Vitis AI Profiler
System Requirements

• Hardware: 

• Support Zynq UltraScale+ MPSoC (DPUCZD series)

• Support Alveo accelerator cards (DPUCAH series)

• Software: 

• Support VART v1.3+

Installing the Vitis AI Profiler

1. Prepare the debug environment for vaitrace in the Zynq UltraScale+ MPSoC PetaLinux
platform.

a. Configure and build PetaLinux by running petalinux-config -c kernel.

b. Enable the following settings for the Linux kernel.

• General architecture-dependent options ---> [*] Kprobes

• Kernel hacking ---> [*] Tracers

• Kernel hacking ---> [*] Tracers --->

[*] Kernel Function Tracer

[*] Enable kprobes-based dynamic events

[*] Enable uprobes-based dynamic events
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c. Run petalinux-config -c rootfs and enable the following setting for root-fs.

user-packages ---> modules ---> [*] packagegroup-petalinux-self-hosted

d. Run petalinux-build.

2. Install vaitrace. vaitrace is integrated into the VART runtime. If VART runtime is installed,
vaitrace will be installed into /usr/bin/vaitrace.

Starting a Simple Trace with vaitrace

The following example uses VART ResNet50 sample:

1. Download and set up Vitis AI.

2. Start testing and tracing.

• For C++ programs, add vaitrace in front of the test command as follows:

# cd ~/Vitis_AI/examples/VART/samples/resnet50
# vaitrace ./resnet50 /usr/share/vitis_ai_library/models/resnet50/
resnet50.xmodel

• For Python programs, add -m vaitrace_py to the python interpreter command as follows:

# cd ~/Vitis_AI/examples/VART/samples/resnet50_mt_py
# python3 -m vaitrace_py ./resnet50.py 2 /usr/share/vitis_ai_library/
models/resnet50/resnet50.xmodel

vaitrace and XRT generates some files in the working directory.

3. Copy all .csv files and xclbin.ex.run_summary to your system. You can open the
xclbin.ex.run_summary using vitis_analyzer 2020.2 and above:

• If using the command line, run # vitis_analyzer xclbin.ex.run_summary.

• If using the GUI, select File → Open Summary → xclbin.ex.run_summary.

To know more about the Vitis Analyzer, see Using the Vitis Analyzer.

VAI Trace Usage
Command Line Usage

# vaitrace --help
usage: Xilinx Vitis AI Trace [-h] [-c [CONFIG]] [-d] [-o [TRACESAVETO]] [-t 
[TIMEOUT]] [-v]

  cmd              Command to be traced
  -b                 Bypass mode, just run command and by pass vaitrace, 
for debug use
  -c [CONFIG]        Specify the configuration file
  -o [TRACESAVETO]   Save trace file to
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  -t [TIMEOUT]       Tracing time limitation, default value is 30 for vitis 
analyzer format, and 5 for .xat format
  --va               Generate trace data for Vitis Analyzer
  --xat              Generate trace data in .xat, for the legacy web based 
Vitis-AI Profiler, only available for Zynq MPSoC devices

Following are some important and frequently-used arguments:

• cmd: cmd is your executable program of Vitis AI that want to be traced.

• -t: Controlling the tracing time (in seconds) starting from the [cmd] being launched, the default
value is 30. In other words, if no -t is specified for vaitrace, the tracing will stop after [cmd]
running for 30 seconds. The [cmd] will continue to run as normal, but it will stop collecting
tracing data. It is recommended that trace is about 50~100 images at once because less then
50 may not be enough for some statistic information and more then 100 will slow down the
system significantly.

• -c: You can start a tracing with more custom options by writing these options on a JSON
configuration file and specify the configuration by -c. Details of configuration file will be
explained in the next section.

Others arguments are used for debug.

Configuration

It is recommended to use a configuration file to record trace options for vaitrace. You can start a
trace with configuration by using vaitrace -c trace_cfg.json.

Configuration priority: Configuration File → Command Line → Default

Here is an example of vaitrace configuration file.

{
  "options”: {
      "runmode": "normal",
      "cmd": "/usr/share/vitis-ai-library/sample/classification/
test_jpeg_classification resnet50 sample.jpg",
      "output": "./trace_resnet50.xat",
      "timeout": 3
  },
  "trace": {
      "enable_trace_list": ["vitis-ai-library", "vart", "custom"],
      "trace_custom": []
  }
}

Table 29: Contents of the Configuration File

Key Name Value Type Description
options object Vaitrace options

Chapter 7: Profiling the Model

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=125


Table 29: Contents of the Configuration File (cont'd)

Key Name Value Type Description
cmd string the same with command line argument

cmd

output string the same with command line argument -o

timeout integer the same with command line argument -t

runmode string Xmodel run mode control, can be “debug”
or “normal”, if runmode == “debug” VART
will control xmodel run in a debug mode by
using this, user can achieve fine-grained
profiling for xmodel.

trace object

enable_trace_list list Built-in trace function list to be enabled,
available value "vitis-ai-library", "vart",
“opencv”, "custom", custom for function in
trace_custom list

trace_custom list The list of functions to be traced that are
implemented by user. For the name of
function, naming space are supported. You
can see an example of using custom trace
function later in this document

DPU Profiling Examples
You can find more advanced DPU Profiling examples with Vitis-AI Profiler on the Vitis-AI-Profiler
GitHub page.
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Chapter 8

Optimizing the Model
Note: Optimizing the model is an optional step.

The Vitis AI optimizer provides the ability to optimize neural network models. Currently, the Vitis
AI optimizer includes only one tool called the Vitis AI pruner (VAI pruner), which prunes
redundant connections in neural networks and reduces the overall required operations. The
pruned models produced by the VAI pruner can be further quantized by the VAI quantizer and
deployed to an FPGA.

Figure 31: Vitis AI Optimizer

The VAI pruner supports four deep learning frameworks: TensorFlow, PyTorch, Caffe, and
Darknet. The corresponding tool names are vai_p_tensorflow, vai_p_pytorch, vai_p_caffe, and
vai_p_darknet, where the "p" in the middle stands for pruning.

For more information, see the Vitis AI Optimizer User Guide (UG1333).

The Vitis AI optimizer requires a commercial license to run. Contact a Xilinx sales representative
for more information.
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Chapter 9

Accelerating Subgraph with ML
Frameworks

Partitioning is the process of splitting the inference execution of a model between the FPGA and
the host. Partitioning is necessary to execute models that contain layers unsupported by the
FPGA. Partitioning can also be useful for debugging and exploring different computation graph
partitioning and execution to meet a target objective.

Note: This feature is currently only available for Alveo™ U200/U250 with use of DPUCADX8G.

Partitioning Functional API Call in TensorFlow
Graph partitioning has the following general flow:

1. Create/initialize the partition class:

from vai.dpuv1.rt.xdnn_rt_tf import TFxdnnRT
xdnnTF = TFxdnnRT(args)

2. Loading the partitioned graph:

graph = xdnnTF.load_partitioned_graph()

3. Apply preprocessing and post processing as if the original graph is loaded.

Partitioner API
The main input argument (for example, args in item 1 from Partitioning usage flow) of the
partitioner are as follows:

• Networkfile: tf.Graph, tf.GraphDef, or path to the network file

• loadmode: Saving protocol of the network file. Supported formats [pb (default), chkpt, txt,
savedmodel]

• quant_cfgfile: DPUCADX8G quantization file
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• batch_sz: Inference batch size. The default value for this is one.

• startnode: List of start nodes for FPGA partition (optional. Defaults to all placeholders)

• finalnode: List of final nodes for FPGA partition (optional. Defaults to all sink nodes)

Partitioning Steps
1. Loading the original graph

Partitioner can handle frozen tf.Graph, tf.GraphDef, or a path to the network file/folder. If the
pb file is provided the graph should be properly frozen. Other options include model stores
using tf.train.Saver and tf.saved_model.

2. Partitioning

In this step the subgraph specified by startnode and finalnode sets is analyzed for FPGA
acceleration. This is done in multiple phases.

a. All graph nodes get partitioned into (FPGA) supported and unsupported sets using one of
two method. The default (compilerFunc='SPECULATIVE') method uses rough estimate of
the hardware operation tree. The second method (compilerFunc= ‘DEFINITIVE’) utilizes
the hardware compiler. The latter is more accurate and can handle complex optimization
schemes based on the specified options, however, it takes considerable more time to
conclude the process.

b. Adjacent supported and unsupported nodes get merged into (fine grained) connected
components.

c. Supported partitions get merged into maximally connected components, while
maintaining the DAG property.

d. Each supported partition gets (re)compiled using hardware compiler to create runtime
code, quantization info, and relevant model parameters.

e. Each supported partition subgraph is stored for visualization and debug purposes.

f. Each supported subgraph gets replaced by tf.py_func node (with naming convention
fpga_func_<partition_id>) that contains all necessary python function calls to accelerate
that subgraph over FPGA.

3. Freezing the modified graph

The modified graph gets frozen and stored with “-fpga” suffix.

4. Run natively in TensorFlow

The modified graph can be loaded using load_partitioned_graph method of the partitioner
class. The modified graph replaces the default TensorFlow graph and can be used similar to
the original graph.
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Practical Notes

The compiler optimizations can be modified by passing the applicable compiler arguments either
through positional argument or options arguments to the Partitioner class TFxdnnRT. If model is
not properly frozen, the compiler might fail optimizing some operations such as batchnorm.

startnode, and finalnode sets should be a vertex separators. This means that the removal of
startnode or finalnode should separate the graph into two distinct connected components
(except when startnode is a subset of graph placeholders).

Wherever possible, do not specify cut nodes between layers that are executed as a single macro
layers, e.g., for Conv(x) -> BiasAdd(x), placing Conv(x) in a different FPGA partition than
BiasAdd(x) may result in suboptimal performance (throughput, latency, and accuracy).

The partitioner initialization requires quant_cfgfile to exist to be able to create executable code
for FPGA. In case FPGA execution is not intended, this requirement can be circumvented by
setting quant_cfgfile=”IGNORE”.

Partitioning Support in Caffe
Xilinx has enhanced Caffe package to automatically partition a Caffe graph. This function
separates the FPGA executable layers in the network and generates a new prototxt, which is
used for the inference. The subgraph cutter creates a custom python layer to be accelerated on
the FPGA. The following code snippet explains the code:

from vai.dpuv1.rt.scripts.framework.caffe.xfdnn_subgraph \
    import CaffeCutter as xfdnnCutter
def Cut(prototxt):
    
    cutter = xfdnnCutter(
        inproto="quantize_results/deploy.prototxt",
        trainproto=prototxt,
        outproto="xfdnn_auto_cut_deploy.prototxt",
        outtrainproto="xfdnn_auto_cut_train_val.prototxt",
        cutAfter="data",
        xclbin=XCLBIN,
        netcfg="work/compiler.json",
        quantizecfg="work/quantizer.json",
        weights="work/deploy.caffemodel_data.h5"
    )
    cutter.cut()
#cutting and generating a partitioned graph auto_cut_deploy.prototxt
Cut(prototxt)

Cut(prototxt)
The auto_cut_deploy.prototxt generated in the previous step, has complete information
to run inference. For example:
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• Notebook execution: There are two example notebooks (image detection and image
classification) that can be accessed from $VAI_ALVEO_ROOT/notebooks to understand
these steps in detail.

• Script execution: There is a python script that can be used to run the models with default
settings. It can be run using the following commands:

• PreparePhase: Python

$VAI_ALVEO_ROOT/examples/caffe/run.py --prototxt <example prototxt> --
caffemodel <example caffemodel> --prepare

• prototxt: Path to the prototxt of the model

• caffemodel: Path to the caffemodel of the model

• output_dir: Path to save the quantization, compiler and subgraph_cut files

• qtest_iter: Number of iterations to test the quantization

• qcalib_iter: Number of iterations to calibration used for quantization

• Validate Phase: Python

$VAI_ALVEO_ROOT/examples/caffe/run.py –validate

• output_dir: If output_dir is given in the prepare phase, give the same argument and value to
use the files generated in prepare phase.

• numBatches: Number of batches which can be used to test the inference.
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Chapter 10

Integrating the DPU into Custom
Platforms

You can integrate the DPU into custom Vitis platforms to run AI applications with the Vitis™
software platform. There are some pre-compiled platforms which can be downloaded from the
Xilinx® Vitis Embedded Platform Downloads. If you want to create a custom platform, see Vitis
Unified Software Platform Documentation (UG1416).

To facilitate the DPU integration, Xilinx provides the DPU TRD in which you can configure the
DPU with different parameters to meet the performance and resource utilization requirements.
For more details, see Zynq DPU v3.1 IP Product Guide (PG338) and Vitis DPU TRD flow.

On the hardware side, the Vitis software platform integrates the DPU as an RTL kernel. It
requires two clocks: clk and clk2x. One interrupt is needed. The DPU may also need multiple
AXI HP interfaces.

On the software side, the platform needs to provide the XRT and ZOCL packages. The host
application can use the XRT OpenCL™ API to control the kernel. Vitis AI Runtime can control the
DPU with XRT. ZOCL is the kernel module that talks to acceleration kernels. It needs a device
tree node which has to be added.

For more details, see the Vitis AI Platform Creation tutorials.

If you use Vivado® tools for DPU integration, see the DPU TRD Vivado flow.

If you want to integrate the DPU into Alveo™ accelerator cards and other non-embedded
platforms, contact xilinx_ai_prod_mkt@xilinx.com.
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Appendix A

Vitis AI Programming Interface
This appendix describes all the programming APIs offered by the VART programming interface.

VART APIs
C++ APIs
Class 1

The class name is vart::Runner. The following table lists all the functions defined in the
vitis::vart::Runner class.

Table 30: Quick Function Reference

Return Type Name Arguments
std::unique_ptr<Runner> create_runner const xir::Subgraph* subgraph

const std::string& mode

std::vector<std::unique_ptr<Runner>> create_runner const std::string& model_directory

std::pair<uint32_t, int> execute_async const std::vector<TensorBuffer*>&
input
const std::vector<TensorBuffer*>&
output

int wait int jobID
int timeout

TensorFormat get_tensor_format

std::vector<const xir::Tensor*> get_input_tensors

std::vector<const xir::Tensor*> get_output_tensors

Class 2

The class name is vart::TensorBuffer. The following table lists all the functions defined in
the vart::TensorBuffer class.
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Table 31: Quick Function Reference

Return Type Name Arguments
location_t get_location

const xir::Tensor* get_tensor

std::pair<std::uint64_t, std::size_t> data const std::vector<std::int32_t> idx = {}

std::pair<uint64_t, size_t> data_phy const std::vector<std::int32_t> idx

void sync_for_read uint64_t offset, size_t size

void sync_for_write uint64_t offset, size_t size

void copy_from_host size_t batch_idx, const void* buf, size_t
size, size_t offset

void copy_to_host size_t batch_idx, void* buf, size_t size,
size_t offset

void copy_tensor_buffer vart::TensorBuffer* tb_from,
vart::TensorBuffer* tb_to

Class 3

The class name is vart::RunnerExt. The following table lists all the functions defined in the
vart::RunnerExt class.

Table 32: Quick Function Reference

Return Type Name Arguments
std::vector<vart::TensorBuffer*> get_inputs

std::vector<vart::TensorBuffer*> get_outputs

create_runner

Creates an instance of CPU/SIM/DPU runner by subgraph. This is a factory method.

Prototype

std::unique_ptr<Runner> create_runner(const xir::Subgraph* subgraph,
                                       const std::string& mode = "");

Parameters

The following table lists the create_runner function arguments.

Table 33: create_runner Arguments

Type Name Description
const xir::Subgraph* subgraph XIR Subgraph
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Table 33: create_runner Arguments (cont'd)

Type Name Description
const std::string& mode 3 mode supported:

'ref' - CPU runner
'sim' - Simulation
'run' - DPU runner

Returns

An instance of CPU/SIM/DPU runner.

create_runner

Creates a DPU runner by model_directory.

Prototype

std::vector<std::unique_ptr<Runner>> create_runner(const std::string& 
model_directory);

Parameters

The following table lists the create_runner function arguments.

Table 34: create_runner Arguments

Type Name Description
conststd::string& model_directory The directory name which contains

meta.json

Returns

A vector of DPU runner.

execute_async

Executes the runner. This is a block function.

Prototype

virtual std::pair<uint32_t, int> execute_async(
      const std::vector<TensorBuffer*>& input,
      const std::vector<TensorBuffer*>& output) = 0;

Parameters

The following table lists the execute_async function arguments.
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Table 35: execute_async Arguments

Type Name Description
conststd::vector<TensorBuffer*>& input Vector of the input Tensor buffers

containing the input data for inference.

conststd::vector<TensorBuffer*>& output Vector of the output Tensor buffers
which will be filled with output data.

Returns

pair<jobID, status> status 0 for exit successfully, others for customized warnings or errors.

wait

Waits for the end of DPU processing. This is a block function.

Prototype

int wait(int jobid, int timeout)

Parameters

The following table lists the wait function arguments.

Table 36: wait Arguments

Type Name Description
int jobid job id, neg for any id, others for specific

job id

int timeout timeout, neg for block for ever, 0 for
non-block, pos for block with a
limitation(ms).

Returns

Status 0 for exit successfully, others for customized warnings or errors.

get_tensor_format

Gets the tensor format of runner.

Prototype

TensorFormat get_tensor_format();

Parameters

None
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Returns

TensorFormat: NHWC / HCHW

get_input_tensors

Gets all input tensors of runner.

Prototype

std::vector<const xir::Tensor*> get_input_tensors()

Parameters

None

Returns

All input tensors. A vector of raw pointer to the input tensor.

get_output_tensors

Gets all output tensors of runner.

Prototype

std::vector<const xir::Tensor*> get_output_tensors()

Parameters

None

Returns

All output tensors. A vector of raw pointer to the output tensor.

get_location

Get where the tensor buffer located.

Prototype

location_t get_location();

Parameters

None.
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Returns

The tensor buffer location, a location_t enum type value.

The following table lists the location_t enum type.

Table 37:  location_t enum type

Name Value Description
HOST_VIRT 0 Only accessible by the host.

HOST_PHY 1 Continuous physical memory, shared
among host and device.

DEVICE_0 2 Only accessible by device_*.

DEVICE_1 3

DEVICE_2 4

DEVICE_3 5

DEVICE_4 6

DEVICE_5 7

DEVICE_6 8

DEVICE_7 9

get_tensor

Get Tensor of TensorBuffer.

Prototype

const xir::Tensor* get_tensor()

Parameters

None.

Returns

A pointer to the Tensor.

data

Get the data address of the index and the left accessible data size.

Prototype

std::pair<std::uint64_t, std::size_t> data(const std::vector<std::int32_t> 
idx = {});
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Parameters

The following table lists the data function arguments.

Table 38: data Arguments

Type Name Description
const std::vector<std::int32_t> idx The index of the data to be accessed,

its dimension same to the Tensor
shape

Returns

A pair of the data address of the index and the left accessible data size in byte unit.

data_phy

Get the data physical address of the index and the left accessible data size.

Prototype

std::pair<uint64_t, size_t> data_phy(const std::vector<std::int32_t> idx);

Parameters

The following table lists the data_phy function arguments.

Table 39: data_phy Arguments

Type Name Description
const std::vector<std::int32_t> idx The index of the data to be accessed,

its dimension same to the tensor shape

Returns

A pair of the data physical address of the index and the left accessible data size in byte unit.

sync_for_read

Invalid cache for reading before read. It is no-op in case get_location() returns
DEVICE_ONLY or HOST_VIRT.

Prototype

void sync_for_read(uint64_t offset, size_t size) {};
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Parameters

The following table lists the sync_for_read function arguments.

Table 40: sync_for_read Arguments

Type Name Description
uint64_t offset The start offset address

size_t size The data size

Returns

None.

sync_for_write

Flush cache for writing after write. It is no-op in case get_location() returns DEVICE_ONLY
or HOST_VIRT.

Prototype

void sync_for_write (uint64_t offset, size_t size) {};

Parameters

The following table lists the sync_for_write function arguments.

Table 41: sync_for_write Arguments

Type Name Description
uint64_t offset The start offset address

size_t size The data size

Returns

None.

copy_from_host

Copy data from the source buffer.

Prototype

void copy_from_host(size_t batch_idx, const void* buf, size_t size, size_t 
offset);
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Parameters

The following table lists the copy_from_host function arguments.

Table 42: copy_from_host Arguments

Type Name Description
size_t batch_idx The batch index

const void* buf Source buffer start address

size_t size Data size to be copied

size_t offset The start offset to be copied

Returns

None.

copy_to_host

Copy data to the destination buffer.

Prototype

void copy_to_host(size_t batch_idx, void* buf, size_t size, size_t offset);

Parameters

The following table lists the copy_to_host function arguments.

Table 43: copy_to_host Arguments

Type Name Description
size_t batch_idx The batch index

void* buf Destination buffer start address

size_t size Data size to be copied

size_t offset The start offset to be copied

Returns

None.

copy_tensor_buffer

Copy TensorBuffer from one to another.
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Prototype

static void copy_tensor_buffer(vart::TensorBuffer* tb_from, 
vart::TensorBuffer* tb_to);

Parameters

The following table lists the copy_tensor_buffer function arguments.

Table 44: copy_tensor_buffer Arguments

Type Name Description
vart::TensorBuffer* tb_from The source TensorBuffer

vart::TensorBuffer* tb_to The destination TensorBuffer

Returns

None.

get_inputs

Gets all input TensorBuffers of RunnerExt.

Prototype

std::vector<vart::TensorBuffer*> get_inputs();

Parameters

None.

Returns

All input TensorBuffers. A vector of raw pointer to the input TensorBuffer.

get_outputs

Gets all output TensorBuffers of RunnerExt.

Prototype

std::vector<vart::TensorBuffer*> get_outputs();

Parameters

None.

Appendix A: Vitis AI Programming Interface

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=142


Returns

All output TensorBuffers. A vector of raw pointer to the output TensorBuffer.

Python APIs
Class 1

The class name is vart.Runner. The following table lists all the functions defined in the
vart.Runner class.

Table 45: Quick Function Reference

Type Name Arguments
vart.Runner create_runner xir.Subgraph subgraph

string mode

List[xir.Tensor] get_input_tensors

List[xir.Tensor] get_output_tensors

tuple[uint32, int] execute_async List[vart.TensorBuffer] inputs
List[vart.TensorBuffer] outputs
Note: vart.TensorBuffer complete with
buffer protocol .

int wait tuple[uint32, int] jobID

Class 2

The class name is vart.RunnerExt. The following table lists all the functions defined in the
vart.RunnerExt class.

vart.RunnerExt extends from vart.Runner.

Table 46: Quick Function Reference

Type Name Arguments
vart.RunnerExt create_runner xir.Subgraph subgraph

String mode

List[vart.TensorBuffer] get_inputs

List[vart.TensorBuffer] get_outputs

create_runner

Creates an instance of DPU runner by subgraph. This is a factory function.

Prototype

vart.Runner create_runner(xir.Subgraph subgraph, String mode)
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Parameters

The following table lists the create_runner function arguments.

Table 47: create_runner Arguments

Type Name Description
xir.Subgraph subgraph XIR Subgraph

String mode 'run' - DPU runner

Returns

An instance of DPU runner.

execute_async

Executes the runner. This is a block function.

Prototype

tuple[uint32_t, int] execute_async(
      List[vart.TensorBuffer] inputs,
      List[vart.TensorBuffer] outputs) 

Note: vart.TensorBuffer complete with buffer protocol.

Parameters

The following table lists the execute_async function arguments.

Table 48: execute_async Arguments

Type Name Description
List[vart.TensorBuffer] inputs A list of vart.TensorBuffer containing

the input data for inference.

List[vart.TensorBuffer] outputs A list of vart.TensorBuffer which will be
filled with output data.

Returns

tuple[jobID, status] status 0 for exit successfully, others for customized warnings or errors.

wait

Waits for the end of DPU processing. This is a block function.
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Prototype

int wait(tuple[uint32_t, int] jobid)

Parameters

The following table lists the wait function arguments.

Table 49: wait Arguments

Type Name Description
tuple[uint32_t, int] jobid job id

Returns

Status 0 for exit successfully, others for customized warnings or errors.

get_input_tensors

Gets all input tensors of runner.

Prototype

List[xir.Tensor] get_input_tensors()

Parameters

None

Returns

All input tensors. A vector of raw pointer to the input tensor.

get_output_tensors

Gets all output tensors of runner.

Prototype

List[xir.Tensor] get_output_tensors()

Parameters

None
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Returns

All output tensors. A vector of raw pointer to the output tensor.

get_inputs

Gets all input TensorBuffers of RunnerExt.

Prototype

List[vart.TensorBuffer] get_inputs()

Parameters

None.

Returns

All input TensorBuffers. A vector of raw pointer to the input TensorBuffer.

get_outputs

Gets all output TensorBuffers of RunnerExt.

Prototype

List[vart.TensorBuffer] get_outputs()

Parameters

None.

Returns

All output TensorBuffers. A vector of raw pointer to the output TensorBuffer.

Appendix A: Vitis AI Programming Interface

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=146


Appendix B

Legacy DNNDK
The Deep Neural Network Development Kit (DNNDK) is a full-stack deep learning SDK for the
Deep-learning Processor Unit (DPU). It provides a unified solution for deep neural network
inference applications by providing pruning, quantization, compilation, optimization, and run-
time support.

DNNDK N2Cube Runtime
For the Edge DPUCZDX8G, legacy DNNDK runtime framework (called N2Cube) is shown in the
following figure. For Vitis AI release, N2Cube is based on the XRT. For legacy Vivado® based
DPU, it interacts with the underlying Linux DPU driver (instead of XRT) for DPU scheduling and
resource management.

Starting with Vitis AI v1.2 release, N2Cube is now available as open source. More details are
available in the tools/Vitis-AI-Runtime/DNNDK directory in the Vitis AI repository.

Note: N2Cube will be deprecated in future releases. For new applications or projects, use the VART
instead.

Appendix B: Legacy DNNDK

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  147Send Feedback

https://github.com/Xilinx/Vitis-AI
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=147


Figure 32: Legacy MPSoC Runtime Stack
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N2Cube offers a comprehensive C++/Python programming interface to flexibly meet the diverse
requirements for edge scenarios. Refer to DNNDK Programming APIs for more details about
edge DPU advanced programming. The highlights for N2Cube are listed as follows:

• Supports multi-threading and multi-process DPU application deployment.

• Supports multiple models running in parallel and zero-overhead dynamic switching at run
time.

• Automated DPU multi-core scheduling for better workload balancing.

• Optional flexibility to dynamically specify DPU core affinity over DPU tasks at run time.

• Priority based DPU task scheduling while adhering to DPU cores affinity.

• Optimized memory usage through DPU code and parameter sharing within multi-threaded
DPU application.
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• Easily adapts to any POSIX-compliant OS or Real-Time Operating System (RTOS) environment,
such as QNX, VxWorks, and Integrity.

• Ease-of-use capabilities for DPU debugging and performance profiling.

Currently, N2Cube officially supports three operating environments, including Linux, Xilinx XRT,
and BlackBerry QNX RTOS. You can contact the Xilinx representatives to acquire the Vitis AI
package for QNX or to port N2Cube to other third party RTOS. As the source code is accessible,
you can freely port N2Cube to any other environment.

DNNDK Examples
To maintain forward compatibility, Vitis AI still supports the application of DNNDK for deep
learning applications development over edge DPUCZDX8G. The legacy DNNDK C++/Python
examples for ZCU102 and ZCU104 are available in https://github.com/Xilinx/Vitis-AI/tree/
master/demo/DNNDK. You can follow the guidelines in https://github.com/Xilinx/Vitis-AI/tree/
master/demo/DNNDK/README.md to set up the environment and evaluate these samples.

Note: The DNNDK runtime loads DPU overlay bin from the default directory /usr/lib/. Make sure that
dpu.xclbin exists under /usr/lib/ as expected before running DNNDK examples. For the
downloaded ZCU102 or ZCU104 system images, dpu.xclbin is copied to /usr/lib/ by default. For
the customized image, it is up to you to copy dpu.xclbin manually.

The following table briefly describes all the available DNNDK examples.

Table 50: DNNDK Examples

Example Name Models Framework Notes
resnet50 ResNet50 Caffe Image classification with

Vitis AI advanced C++ APIs.

resnet50_mt ResNet50 Caffe Multi-threading image
classification with Vitis AI
advanced C++ APIs.

tf_resnet50 ResNet50 TensorFlow Image classification with
Vitis AI advanced Python
APIs.

mini_resnet_py Mini-ResNet TensorFlow Image classification with
Vitis AI advanced Python
APIs.

inception_v1 Inception-v1 Caffe Image classification with
Vitis AI advanced C++ APIs.

inception_v1_mt Inception-v1 Caffe Multi-threading image
classification with Vitis AI
advanced C++ APIs.

inception_v1_mt_py Inception-v1 Caffe Multi-threading image
classification with Vitis AI
advanced Python APIs.
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Table 50: DNNDK Examples (cont'd)

Example Name Models Framework Notes
mobilenet MiblieNet Caffe Image classification with

Vitis AI advanced C++ APIs.

mobilenet_mt MobileNet Caffe Multi-threading image
classification with Vitis AI
advanced C++ APIs.

face_detection DenseBox Caffe Face detection with Vitis AI
advanced C++ APIs.

pose_detection SSD, Pose detection Caffe Pose detection with Vitis AI
advanced C++ APIs.

video_analysis SSD Caffe Traffic detection with Vitis AI
advanced C++ APIs.

adas_detection YOLO-v3 Caffe ADAS detection with Vitis AI
advanced C++ APIs.

segmentation FPN Caffe Semantic segmentation with
Vitis AI advanced C++ APIs.

split_io SSD TensorFlow DPU split I/O memory model
programming with Vitis AI
advanced C++ APIs.

debugging Inception-v1 TensorFlow DPU debugging with Vitis AI
advanced C++ APIs.

tf_yolov3_voc_py YOLO-v3 TensorFlow Object detection with Vitis AI
advanced Python APIs.

You must follow the descriptions in the following table to prepare several images before running
the samples on the evaluation boards.

Table 51: Image Preparation for DNNDK Samples

Image Directory Note
vitis_ai_dnndk_samples/dataset/image500_640_480/ Download several images from the ImageNet dataset

and scale to the same resolution 640*480.

vitis_ai_dnndk_samples2/ image_224_224/ Download one image from the ImageNet dataset and
scale to resolution 224*224.

vitis_ai_dnndk_samples/ image_32_32/ Download several images from the CIFAR-10 dataset 
https://www.cs.toronto.edu/~kriz/cifar.html.

vitis_ai_dnndk_samples/resnet50_mt/image/ Download one image from the ImageNet dataset.

vitis_ai_dnndk_samples/ mobilenet_mt/image/ Download one image from the ImageNet dataset.

vitis_ai_dnndk_samples/ inception_v1_mt/image/ Download one image from the ImageNet dataset.

vitis_ai_dnndk_samples/ debugging/decent_golden/dataset/
images/

Download one image from the ImageNet dataset and
save it as cropped_224x224.jpg.

vitis_ai_dnndk_samples/ tf_yolov3_voc_py/image/ Download one image from the VOC dataset http://
host.robots.ox.ac.uk/pascal/VOC/ and save it as
input.jpg.
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The following section illustrates how to run DNDNK examples using the ZCU102 board as the
reference. Suppose the samples are located in the /workspace/mpsoc/
vitis_ai_dnndk_samples directory. After all the samples are built by Arm GCC cross-
compilation toolchains by running the ./build.sh zcu102 script in the folder of each sample,
it is recommended to copy the whole directory /workspace/mpsoc/
vitis_ai_dnndk_samples to the ZCU102 board directory, /home/root/. You can choose
to copy one single DPU hybrid executable from the Docker container to the evaluation board for
running. Pay attention that the dependent image folder dataset or video folder video aree copied
together, and that the folder structures are kept as expected.

Note: You should run ./build.sh zcu104 for each DNNDK sample for ZCU104 board.

For the sake of simplicity, the directory of /home/root/vitis_ai_dnndk_samples/ is
replaced by $dnndk_sample_base in the following descriptions.

ResNet-50

dnndk_sample_base/resnet50 contains an example of image classification using Caffe
ResNet-50 model. It reads the images under the $dnndk_sample_base/dataset/
image500_640_480 directory and outputs the classification result for each input image. You
can then launch it with the ./resnet50 command.

Video Analytics

An object detection example is located under the $dnndk_sample_base/video_analysis
directory. It reads image frames from a video file and annotates detected vehicles and
pedestrians in real-time. Launch it with the command ./video_analysis video/
structure.mp4 (where video/structure.mp4 is the input video file).

ADAS Detection

An example of object detection for Advanced Driver Assistance Systems (ADAS) application
using the YOLO-v3 network model is located in the directory $dnndk_sample_base/
adas_detection directory. It reads image frames from a video file and annotates in real-time.
Launch it with the ./adas_detection video/adas.avi command (where video/
adas.avi is the input video file).

Semantic Segmentation

An example of semantic segmentation in the $dnndk_sample_base/segmentation
directory. It reads image frames from a video file and annotates in real-time. Launch it with
the ./segmentation video/traffic.mp4 command (where video/traffic.mp4 is the
input video file).
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Inception-v1 with Python

dnndk_sample_base/inception_v1_mt_py contains a multithreaded image classification
example of Inception-v1 network developed with the advanced Python APIs. With the command
python3 inception_v1_mt.py 4, it will run with four threads. The throughput (in fps) will
be reported after it completes.

The Inception-v1 model is compiled to DPU xmodel file first and then transformed into the DPU
shared library libdpumodelinception_v1.so with the following command on the
evaluation board. dpu_inception_v1_*.xmodel means to include all DPU xmodel files
generated by the VAI_C compiler.

aarch64-xilinx-linux-gcc -fPIC -shared \    
 dpu_inception_v1_*.xmodel -o libdpumodelinception_v1.so

Within the Vitis AI cross compilation environment on the host, use the following command
instead.

source /opt/petalinux/2020.2/environment-setup-aarch64-xilinx-linux

CC -fPIC -shared dpu_inception_v1_*.elf -o libdpumodelinception_v1.so

Note: The thread number for best throughput of multithread Inception-v1 example varies among
evaluation boards because the DPU computation power and core number are different. Use dexplorer -w
to view DPU signature information for each evaluation board.

miniResNet with Python

dnndk_sample_base/mini_resnet_py contains the image classification example of
TensorFlow miniResNet network developed with Vitis AI advanced Python APIs. With the
command python3 mini_resnet.py, the results of top-5 labels and corresponding
probabilities are displayed. miniResNet is described in the second book Practitioner Bundle of the
Deep Learning for Computer Vision with Python series. It is a customization of the original
ResNet-50 model and is also well explained in the third book ImageNet Bundle from the same
book’s series.

YOLO-v3 with Python

dnndk_sample_base/tf_yolov3_voc_py contains the object detection example of
TensorFlow YOLOv3 network developed with Vitis AI advanced Python APIs. With the command
python3 tf_yolov3_voc.py, the resulting image after object detection is displayed.
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DNNDK Programming for Edge
DNNDK legacy programming interface provides granular manipulations to DPU control at run-
time. They implement the functionalities of DPU kernel loading, task instantiation, and
encapsulating the calls to invoke the XRT or the DPU driver for DPU task scheduling, monitoring,
profiling, and resources management. Using these APIs can flexibly meet the diverse
requirements under various edge scenarios across Xilinx® Zynq® UltraScale+™ and Zynq®

UltraScale+™ MPSoC devices.

Programming Model
Understanding the DPU programming model makes it easier to develop and deploy deep learning
applications over Edge DPU. The related core concepts include DPU Kernel, DPU Task, DPU
Node and DPU Tensor.

DPU Kernel

After being compiled by the Vitis AI compiler, the neural network model is transformed into an
equivalent DPU assembly file, which is then assembled into one ELF object file by Deep Neural
Network Assembler (DNNAS). The DPU ELF object file is regarded as DPU kernel, which then
becomes one execution unit from the perspective of runtime N2Cube after invoking the API
dpuLoadKernel(). N2Cube loads the DPU kernel, including the DPU instructions and network
parameters, into the DPU dedicated memory space and allocate hardware resources. After that,
each DPU kernel can be instantiated into several DPU tasks by calling dpuCreateTask() to
enable the multithreaded programming.

DPU Task

Each DPU task is a running entity of a DPU kernel. It has its own private memory space so that
multithreaded applications can be used to process several tasks in parallel to improve efficiency
and system throughput.

DPU Node

A DPU node is considered a basic element of a network model deployed on the DPU. Each DPU
node is associated with input, output, and some parameters. Every DPU node has a unique name
to allow APIs exported by Vitis AI to access its information.

There are three types of nodes: boundary input node, boundary output node, and internal node.

• Boundary input node: A boundary input node is a node that does not have any precursor in
the DPU kernel topology; it is usually the first node in a kernel. Sometimes there might be
multiple boundary input nodes in a kernel.
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• Boundary output node: A boundary output node is a node that does not have any successor
nodes in the DPU kernel topology.

• Internal node: All other nodes that are not both boundary input nodes and boundary output
nodes are considered as internal nodes.

After compilation, VAI_C gives information about the kernel and its boundary input/output
nodes. The following figure shows an example after compiling Inception-v1. For DPU kernel 0,
conv1_7x7_s2 is the boundary input node, and loss3_classifier is the boundary output
node.

Figure 33: Sample VAI_C Compilation Log
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When using dpuGetInputTensor*/dpuSetInputTensor*, the nodeName parameter is
required to specify the boundary input node. When a nodeName that does not correspond to a
valid boundary input node is used, Vitis AI returns an error message like:

[DNNDK] Node "xxx" is not a Boundary Input Node for Kernel inception_v1_0.
[DNNDK] Refer to DNNDK user guide for more info about "Boundary Input Node".

Similarly, when using dpuGetOutputTensor*/dpuSetOutputTensor*, an error similar to
the following is generated when a “nodeName” that does not correspond to a valid boundary
output node is used:

[DNNDK] Node "xxx" is not a Boundary Output Node for Kernel inception_v1_0.
[DNNDK] Please refer to DNNDK user guide for more info about "Boundary 
Output Node".

DPU Tensor

The DPU tensor is a collection of multi-dimensional data that is used to store information while
running. Tensor properties (such as height, width, channel, and so on) can be obtained using Vitis
AI advanced programming APIs.

For the standard image, memory layout for the image volume is normally stored as a contiguous
stream of bytes in the format of CHW (Channel*Height*Width). For DPU, memory storage layout
for input tensor and output tensor is in the format of HWC (Height*Width*Channel). The data
inside DPU tensor is stored as a contiguous stream of signed 8-bit integer values without
padding. Therefore, you should pay attention to this layout difference when feeding data into the
DPU input tensor or retrieving result data from the DPU output tensor.

Programming Interface

Vitis AI advanced C++/Python APIs are introduced to smoothen the deep learning application
development for edge DPU. For detailed description of each API, refer to Appendix A: Vitis AI
Programming Interface.

Python programming APIs are available to facilitate the quick network model development by
reusing the pre-processing and post-processing Python code developed during the model
training phase. Refer to Appendix A: Vitis AI Programming Interface for more information.
Exchange of data between CPU and the DPU when programming with Vitis AI for DPU is
common. For example, data pre-processed by CPU is fed to DPU for process, and the output
produced by DPU might need to be accessed by CPU for further post-processing. To handle this
type of operation, Vitis AI provides a set of APIs to make it easy for data exchange between CPU
and DPU. Some of them are shown below. The usage of these APIs are identical to deploy
network models for Caffe and TensorFlow.

Vitis AI offers the following APIs to set input tensor for the computation layer or node:

• dpuSetInputTensor()
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• dpuSetInputTensorInCHWInt8()

• dpuSetInputTensorInCHWFP32()

• dpuSetInputTensorInHWCInt8()

• dpuSetInputTensorInHWCFP32()

Vitis AI offers the following APIs to get output tensor from the computation layer or node:

• dpuGetOutputTensor()

• dpuGetOutputTensorInCHWInt8()

• dpuGetOutputTensorInCHWFP32()

• dpuGetOutputTensorInHWCInt8()

• dpuGetOutputTensorInHWCFP32()

Vitis AI provides the following APIs to get the starting address, size, quantization factor, and
shape info for DPU input tensor and output tensor. With such information, the users can freely
implement pre-processing source code to feed signed 8-bit integer data into DPU or implement
post-processing source code to get DPU output data.

• dpuGetTensorAddress()

• dpuGetTensorSize()

• dpuGetTensorScale()

• dpuGetTensorHeight()

• dpuGetTensorWidth()

• dpuGetTensorChannel()

For Caffe Model
For Caffe framework, its pre-processing for model is fixed. Vitis AI offers several pre-optimized
routines like dpuSetInputImage() and dpuSetInputImageWithScale() to perform
image pre-processing on CPU side, such as image scaling, normalization and quantization, and
then data is fed into DPU for further processing. These routines exist within the package of Vitis
AI samples. Refer to the source code of DNNDK sample ResNet-50 for more details about them.

For TensorFlow Model
TensorFlow framework supports very flexible pre-processing during model training, such as using
BGR or RGB color space for input images. Therefore, the pre-optimized routines
dpuSetInputImage() and dpuSetInputImageWithScale() cannot be used directly while
deploying TensorFlow models. Instead, you need to implement a pre-processing code.
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The following code snippet shows an example to load an image into DPU input tensor for
TensorFlow model. Note that the image color space fed into the DPU input tensor should be the
same with the format used during model training. With data[j*image.rows*3+k*3+2-i],
the image is fed into DPU in RGB color space. The process of image.at<Vec3b>(j,k)[i])/
255.0 - 0.5)*2 * scale is specific to the model being deployed. It should be changed
accordingly for the actual model used.

void setInputImage(DPUTask *task, const string& inNode, const cv::Mat& 
image) {
  DPUTensor* in = dpuGetInputTensor(task, inNode);
  float scale = dpuGetTensorScale(in);
  int width = dpuGetTensorWidth(in);
  int height = dpuGetTensorHeight(in);
  int size = dpuGetTensorSize(in);
  int8_t* data = dpuGetTensorAddress(in);

  for(int i = 0; i < 3; ++i) {
    for(int j = 0; j < image.rows; ++j) {
      for(int k = 0; k < image.cols; ++k) {
           data[j*image.rows*3+k*3+2-i] = 
          (float(image.at<Vec3b>(j,k)[i])/255.0 - 0.5)*2 * scale;
      }
     }
   }
}

Python is very popularly used for TensorFlow model training. With Vitis AI advanced Python
APIs, you can reuse the pre-processing and post-processing Python codes during the training
phase. This can help to speed up the workflow of model deployment on the DPU for quick
evaluation purpose. After that it can be transformed into C++ code for better performance to
meet the production requirements. The DNNDK sample miniResNet provides a reference to
deploy TensorFlow miniResNet model with Python.

DPU Memory Model
For the Edge DPU, Vitis AI compiler and runtime N2Cube work together to support two different
DPU memory models: unique memory model and split I/O model. The unique memory model is
the default model when the network model is compiled into the DPU kernel. To enable a split I/O
model, specify the --split-io-mem option to the compiler while compiling the network
model.
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Unique Memory Model

For each DPU task in this mode, all its boundary input tensors and output tensors together with
its intermediate feature maps stay within one physical continuous memory buffer, which is
allocated automatically while calling dpuCreateTask() to instantiate one DPU task from one
DPU kernel. This DPU memory buffer can be cached in order to optimize memory access from
the Arm® CPU. Because cache flushing and invalidation is handled by N2Cube, you do not need
to take care of DPU memory management and cache manipulation. It is very easy to deploy
models with unique memory model, which is the case for most of the Vitis™ AI samples.

For the unique memory model, you must copy the Int8 type input data after pre-processing into
the boundary input tensors of the memory buffer of the DPU task. Then, you can launch the
DPU task for running. This may bring additional overhead as there might be situations where the
pre-processed input Int8 data already stays in a physical continuous memory buffer, which can
be accessed by the DPU directly. One example is the camera-based deep learning application.
The process of pre-processing each input image from the camera sensor can be accelerated by
FPGA logic, such as image scaling, model normalization, and Float32-to-Int8 quantization. The
log result data is then logged to the physical continuous memory buffer. With a unique memory
model, this data must be copied to the DPU input memory buffer again.

Split I/O Memory Model

The split I/O memory model is introduced to resolve the limitation of the unique memory model
so that data coming from other physical memory buffer can be consumed by the DPU directly.
When the dpuCreateTask() function is called to create a DPU task from the DPU kernel
compiled with the -split-io-mem option, N2Cube only allocates the DPU memory buffer for
the intermediate feature maps. It is up to you to allocate the physical continuous memory buffers
for boundary input tensors and output tensors individually. The size of the input memory buffer
and the output memory buffer can be found from the compiler building log with the field names
Input Mem Size and Output Mem Size. You also need to take care of cache coherence, if these
memory buffers can be cached.

DNNDK sample split_io provides a programming reference for the split I/O memory model.
The TensorFlow SSD is used as the reference. There is one input tensor image:0, and two output
tensors ssd300_concat:0 and ssd300_concat_1:0 for the SSD model. From the compiler
building log, you can see that the size of the DPU input memory buffer (for tensor image:0) is
270000, and the size of the DPU output memory buffer (for output tensors ssd300_concat:0
and ssd300_concat_1:0) is 218304. dpuAllocMem() is used to allocate memory buffers for
them. dpuBindInputTensorBaseAddress() and
dpuBindOutputTensorBaseAddress() are subsequently used to bind the input/output
memory buffer address to DPU task before launching its execution. After the input data is fed
into the DPU input memory buffer, dpuSyncMemToDev() is called to flush the cache line.
When the DPU task completes running, dpuSyncDevToMem() is called to invalidate the cache
line.
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Note: The four APIs: dpuAllocMem(), dpuFreeMem(), dpuSyncMemToDev(), and
dpuSyncDevToMem() are provided only to demonstrate the split IO memory model. They are not
expected to be used directly in your production environment. It is up to you whether you want to
implement such functionalities to better meet customized requirements.

DPU Core Affinity
The Edge DPU runtime N2Cube support DPU core affinity with the API
dpuSetTaskAffinity(), which can be used to dynamically assign DPU tasks to desired DPU
cores so that you can participate in DPU core assignment and scheduling, as required. DPU core
affinity is specified with the second argument coreMask to dpuSetTaskAffinity(). Each bit
of coreMask represents one DPU core: the lowest bit is for core 0, second lowest bit is for core
1, and so on. Multiple mask bits can be specified one time but cannot exceed the maximum
available DPU cores. For example, the mask value 0x3 indicates that a task can be assigned to
DPU core 0 and 1, and it is scheduled right away if either core 0 or 1 is available.

Priority Based DPU Scheduling
N2Cube enables priority-based DPU task scheduling using the API dpuSetTaskPriority(),
which can specify the priority of a DPU task to a dedicated value at runtime. The priority ranges
from 0 (the highest priority) to 15 (the lowest priority). If not specified, the priority of DPU task is
15 by default. This brings flexibility to meet the diverse requirements under various edge
scenarios. You can specify different priorities over the models running simultaneously so that
they are scheduled to DPU cores in a different order when they are all in the ready state. When
affinity is specified, the N2Cube priority-based scheduling also adheres to the affinity of the DPU
cores.

DNNDK samples pose detection demonstrates the feature of DPU priority scheduling. Within
this sample, there are two models used: the SSD model for person detection and the pose
detection model for body key points detection. The SSD model is compiled into the DPU kernel
ssd_person. The pose detection model is compiled into two DPU kernels pose_0 and pose_2.
Therefore, each input image needs to walk through these three DPU kernels in the order of
ssd_person, pose_0 and pose_2. During a multi-threading situation, several input images
may overlap each other among these three kernels simultaneously. To reach better latency, DPU
tasks for ssd_person, pose_0, and pose_2 are assigned the priorities 3, 2, and 1 individually
so that the DPU task for the latter DPU kernel gets scheduled with a higher priority when they
are ready to run.

DNNDK Utilities
• DSight: DSight is the Vitis AI performance profiler for Edge DPU and is a visual analysis tool

for model performance profiling. The following figure shows its usage.
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Figure 34: DSight Help Info

By processing the log file produced by the runtime N2cube, DSight can generate an HTML
web page, providing a visual format chart showing the utilization and scheduling efficiency of
the DPU cores.

• DExplorer: DExplorer is a utility running on the target board. It provides DPU running mode
configuration, DNNDK version checking, DPU status checking, and DPU core signature
checking. The following figure shows the help information for the usage of DExplorer.

Figure 35: DExplorer Usage Options

• Check DNNDK Version: Running dexplore -v displays version information for each
component in DNNDK, including N2cube, DPU driver, DExplorer, and DSight.

• Check DPU Status: DExplorer provides DPU status information, including running mode of
N2cube, DPU timeout threshold, DPU debugging level, DPU core status, DPU register
information, DPU memory resource, and utilization. The following figure shows a screenshot
of DPU status.
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Figure 36: DExplorer Status

• Configuring DPU Running Mode: Edge DPU runtime N2cube supports three kinds of DPU
execution modes to help developers to debug and profile Vitis AI applications.

• Normal Mode: In normal mode, the DPU application can get the best performance without
any overhead.

• Profile Mode: In profile mode, the DPU turns on the profiling switch. When running deep
learning applications in profile mode, N2cube outputs to the console the performance data
layer by layer while executing the neural network; at the same time, a profile with the
name dpu_trace_[PID].prof is produced under the current folder. This file can be
used with the DSight tool.

• Debug Mode: In this mode, the DPU dumps raw data for each DPU computation node
during execution, including DPU instruction code in binary format, network parameters,
DPU input tensor, and output tensor. This makes it possible to debug and locate issues in a
DPU application.

Note: Profile mode and debug mode are only available to network models compiled into debug mode DPU
ELF objects by the Vitis AI compiler.
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• Checking DPU Signature: New DPU cores have been introduced to meet various deep
learning acceleration requirements across different Xilinx® FPGA devices. For example, DPU
architectures B1024F, B1152F, B1600F, B2304F, and B4096F are available. Each DPU
architecture can implement a different version of the DPU instruction set (named as a DPU
target version) to support the rapid improvements in deep learning algorithms.The DPU
signature refers to the specification information of a specific DPU architecture version,
covering target version, working frequency, DPU core numbers, harden acceleration modules
(such as softmax), etc. The -w option can be used to check the DPU signature. The following
figure shows a screen capture of a sample run of DExplorer -w.For configurable DPU,
DExplorer can help to display all configuration parameters of a DPU signature, as shown in the
following figure.

Figure 37: Sample DPU Signature with Configuration Parameters

• DDump: DDump is a utility tool to dump the information encapsulated inside a DPU ELF file,
hybrid executable, or DPU shared library and can facilitate users to analyze and debug various
issues. Refer to DPU Shared Library for more details. DDump is available on both runtime
container vitis-ai-docker-runtime and Vitis AI evaluation boards. Usage information is shown
in the figure below. For runtime container, it is accessible from path /opt/vitis-ai/
utility/ddump. For evaluation boards, it is installed under Linux system path and can be
used directly.

Figure 38: DDump Usage Options
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• Check DPU Kernel Info: DDump can dump the following information for each DPU kernel
from DPU ELF file, hybrid executable, or DPU shared library.

• Mode: The mode of DPU kernel compiled by VAI_C compiler, NORMAL, or DEBUG.

• Code Size: The DPU instruction code size in the unit of MB, KB, or bytes for DPU kernel.

• Param Size: The Parameter size in the unit of MB, KB, or bytes for DPU kernel, including
weight and bias.

• Workload MACs: The computation workload in the unit of MOPS for DPU kernel.

• I/O Memory Space: The required DPU memory space in the unit of MB, KB, or bytes for
intermediate feature map. For each created DPU task, N2Cube automatically allocates
DPU memory buffer for intermediate feature map.

• Mean Value: The mean values for DPU kernel.

• Node Count: The total number of DPU nodes for DPU kernel.

• Tensor Count: The total number of DPU tensors for DPU kernel.

• Tensor In(H*W*C): The DPU input tensor list and their shape information in the format of
height*width*channel.

• Tensor Out(H*W*C): The DPU output tensor list and their shape information in the format
of height*width*channel.

The following figure shows the DPU kernel information for ResNet-50 DPU ELF file
dpu_resnet50_0.elf with command ddump -f dpu_resnet50_0.elf -k.

Figure 39: DDump DPU Kernel Information for ResNet50
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• Check DPU Arch Info: DPU configuration information from DPU DCF is automatically
wrapped into DPU ELF file by VAI_C compiler for each DPU kernel. VAI_C then generates the
appropriate DPU instructions, according to DPU configuration parameters. Refer to Zynq DPU
v3.1 IP Product Guide (PG338) for more details about configurable DPU descriptions.DDump
can dump out the following DPU architecture information:

• DPU Target Ver: The version of DPU instruction set.

• DPU Arch Type: The type of DPU architecture, such as B512, B800, B1024, B1152,
B1600, B2304, B3136, and B4096.

• RAM Usage: Low or high RAM usage.

• DepthwiseConv: DepthwiseConv engine enabled or not.

• DepthwiseConv+Relu6: The operator pattern of DepthwiseConv following Relu6, enabled
or not.

• Conv+Leakyrelu: The operator pattern of Conv following Leakyrelu, enabled or not.

• Conv+Relu6: The operator pattern of Conv following Relu6, enabled or not.

• Channel Augmentation: An optional feature to improve DPU computation efficiency
against channel dimension, especially for those layers whose input channels are much less
than DPU channel parallelism.

• Average Pool: The average pool engine, enabled or not.

DPU architecture information may vary with the versions of DPU IP. Running command
ddump -f dpu_resnet50_0.elf -d, one set of DPU architecture information used by
VAI_C to compile ResNet-50 model is shown in the following figure.
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Figure 40: DDump DPU Arch Information for ResNet50

• Check VAI_C Info: VAI_C version information is automatically embedded into DPU ELF file
while compiling network model. DDump can help to dump out this VAI_C version information,
which users can provide to the Vitis AI support team for debugging purposes.Running
command ddump -f dpu_resnet50_0.elf -c for ResNet-50 model VAI_C information
is shown in the following figure.

Figure 41: DDump VAI_C Info for ResNet50

• Legacy Support: DDump also supports dumping the information for legacy DPU ELF file,
hybrid executable, and DPU shared library generated. The main difference is that there is no
detailed DPU architecture information.An example of dumping all of the information for
legacy ResNet-50 DPU ELF file with command ddump -f dpu_resnet50_0.elf -a is
shown in the following figure.
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• DLet: DLet is host tool designed to parse and extract various edge DPU configuration
parameters from DPU hardware handoff file HWH, generated by Vivado® Design Suite. The
following figure shows the usage information of DLet.

Figure 42: Dlet Usage Options

For Vivado project, DPU HWH is located under the following directory by default.
<prj_name> is Vivado project name, and <bd_name> is Vivado block design name.

 <prj_name>/<prj_name>.srcs/sources_1/bd/<bd_name>/hw_handoff/
<bd_name>.hwh

Running command dlet -f <bd_name>.hwh, DLet outputs the DPU configuration file
DCF, named in the format of dpu-dd-mm-yyyy-hh-mm.dcf. dd-mm-yyyy-hh-mm is the
timestamp of when the DPU HWH is created. With the specified DCF file, VAI_C compiler
automatically produces DPU code instructions suited for the DPU configuration parameters.

Profiling Using the DNNDK Profiler
DSight is the DNNDK performance profiling tool. It is a visual performance analysis tool for
neural network model profiling. The following figure shows its usage.

Figure 43: DSight Help Info

By processing the log file produced by the N2cube tracer, DSight can generate an HTML file,
which provides a visual analysis interface for the neural network model. The steps below
describe how to use the profiler:

1. Set N2Cube to profile mode using the command dexplorer -m profile.

2. Run the deep learning application. When finished, a profile file with the name
dpu_trace_[PID].prof is generated for further checking and analysis (PID is the process
ID of the deep learning application).
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3. Generate the HTML file with the DSight tool using the command: dsight -p
dpu_trace_[PID].prof. An HTML file named dpu_trace_[PID].html is generated.

4. Open the generated HTML file with web browser.

Fine-Grained Profiling
After the models are compiled and deployed over Edge DPU, the utility DExplorer can be used to
perform fined-grained profiling to check layer-by-layer execution time and DDR memory
bandwidth. This is very useful for the model’s performance bottleneck analysis.

Note: The model should be compiled by Vitis AI compiler into debug mode kernel; fine-grained profiling is
not available for normal mode kernel.

There are two approaches to enable fine-grained profiling for debug mode kernel:

• Run dexplorer -m profile before launch the running of DPU application. This will
change N2Cube global running mode and all the DPU tasks (debug mode) will run under the
profiling mode.

• Use dpuCreateTask() with flag T_MODE_PROF or dpuEnableTaskProfile() to
enable profiling mode for the dedicated DPU task only. Other tasks will not be affected.

The following figure shows a profiling screen capture over ResNet50 model. The profiling
information for each DPU layer (or node) over ResNet-50 kernel is listed out.

Note: For each DPU node, it may include several layers or operators from original Caffe or TensorFlow
models because Vitis AI compiler performs layer/operator fusion to optimize execution performance and
DDR memory access.
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Figure 44: Fine-Grained Profiling for ResNet50

The following fields are included:

• ID: The index ID of DPU node.

• NodeName: DPU node name.

• Workload (MOP): Computation workload (MAC indicates two operations).

• Mem (MB): Memory size for code, parameter, and feature map for this DPU node.

• Runtime (ms): The execution time in unit of Millisecond.

• Perf (GOPS): The DPU performance in unit of GOP per second.

• Utilization (%): The DPU utilization in percent.

• MB/S: The average DDR memory access bandwidth.
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With the fine-grained profiling result over one specific model by DSight if you are not satisfied
with the performance delivered by the DPU core, you can try to modify DPU configuration so as
to obtain better performance. For example, you can apply more advanced DPU arch from B1152
to B4096, or use high on-chip RAM. For more information, see the https://github.com/Xilinx/
Vitis-AI/tree/master/dsa/DPU-TRD. Otherwise, if the DPU core offers enough performance, you
can try to change the DPU configuration with lower logic resource requirements.

Panorama-View Profiling
DSight delivers the visual format profiling statistics to let you have a panorama view over DPU
cores utilization so that they can locate the application’s bottleneck and further optimize
performance. Ideally, the models should be compiled by VAI_C into normal mode DPU kernels
before performing panorama view profiling.

The following steps describe how to conduct profiling with DSight:

• Switch N2Cube into profile mode using the command dexplorer -m profile.

• Run the DPU application and stop the process after it stays under the typical performance
situation for several seconds A profile file with the name dpu_trace_[PID].prof is
generated within the application’s directory for further processing. (PID is the process ID of
the launched DPU application).

• Launch the DSight tool with the command dsight -p dpu_trace_[PID].prof. An
HTML file with the name dpu_trace_[PID].html is generated by DSight

• Open this generated HTML web page with any web browser and visual charts will be shown.
One profiling example for multi-threading ResNet-50 over triple DPU cores is shown in the
following figure.
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Figure 45: Profiling Example

• DPU Utilization (Y-axis): List out the utilization of each DPU core. A higher percentage
means DPU computing power is fully utilized to accelerate the model’s execution. For
lower percentage, the users can try to change the DPU configuration to reduce its required
logic resources or try to re-design the algorithm so that DPU computing resources match
the algorithm’s requirement better.

• Schedule Efficiency (X-axis): Indicate what percentages of each DPU core are scheduled by
runtime N2Cube. If the percentage number is lower, the users can try to improve the
application’s thread number so that DPU cores have more chances to be triggered. To
further improve DPU cores’ schedule efficiency, the users should try to optimize the other
parts of computation workloads running on Arm CPU side, such as using NEON intrinsic,
assembly instructions, or using Vitis accelerated libraries (e.g., xfOpenCV). Typically, such
non-DPU parts workloads include pre-processing, post-processing, or DPU unsupported
deep learning operators.

DNNDK Programming APIs
This section describes the legacy DNNDK programming interface available only for the Edge
DPU.

Note: These APIs are deprecated in future releases. For new applications or projects, use the VART APIs.
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DNNDK legacy APIs are regarded as Vitis AI advanced low-level C++/Python programming
interface. It consists of a comprehensive set of APIs that can flexibly meet the diverse
requirements under various edge scenarios. For example, low-level API
dpuSetTaskPriority() can be used to specify the scheduling priority of DPU tasks so that
different models can be scheduled under the dedicated priorities. dpuSetTaskAffinity()
can be used to dynamically assign DPU tasks to desired DPU cores so that you can participate in
DPU cores' assignment and scheduling as required. Meanwhile, such advanced APIs bring
forward compatibility so that DNNDK legacy projects can be ported to Vitis platform without
any modifications to the existing source code.

Vitis AI advanced low-level C++ APIs are implemented within runtime library libn2cube for the
Edge DPU and are exported within header file n2cube.h, which represents in header file
dnndk.h. Hence the users only need to include dnndk.h at the source code.

In the meantime, you can adopt the suited low-level Python APIs in module n2cube, which are
equivalent wrappers for those C++ APIs in library libn2cube. With the Python programming
interface, you can reuse the Python code developed during model training phase and quickly
deploy the models on edge DPU for evaluation purpose.

C++ APIs
The following Vitis AI advanced low-level C++ programming APIs are briefly summarized.

Name

libn2cube.so

Description

DPU runtime library

Routines

• dpuOpen(): Open & initialize the usage of DPU device

• dpuClose(): Close & finalize the usage of DPU device

• dpuLoadKernel(): Load a DPU Kernel and allocate DPU memory space for its Code/Weight/
Bias segments

• dpuDestroyKernel(): Destroy a DPU Kernel and release its associated resources

• dpuCreateTask(): Instantiate a DPU Task from one DPU Kernel, allocate its private working
memory buffer and prepare for its execution context

• dpuRunTask(): Launch the running of DPU Task
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• dpuDestroyTask(): Remove a DPU Task, release its working memory buffer and destroy
associated execution context

• dpuSetTaskPriority(): Dynamically set a DPU Task's priority to a specified value at runtime.
Priorities range from 0 (the highest priority) to 15 (the lowest priority). If not specified, the
priority of a DPU Task is 15 by default.

• dpuGetTaskPriority(): Retrieve a DPU Task's priority.

• dpuSetTaskAffinity(): Dynamically set a DPU Task's affinity over DPU cores at runtime. If not
specified, a DPU Task can run over all the available DPU cores by default.

• dpuGetTaskAffinity(): Retrieve a DPU Task's affinity over DPU cores.

• dpuEnableTaskDebug(): Enable dump facility of DPU Task while running for debugging
purpose

• dpuEnableTaskProfile(): Enable profiling facility of DPU Task while running to get its
performance metrics

• dpuGetTaskProfile(): Get the execution time of DPU Task

• dpuGetNodeProfile(): Get the execution time of DPU Node

• dpuGetInputTensorCnt(): Get total number of input Tensor of one DPU Task

• dpuGetInputTensor(): Get input Tensor of one DPU Task

• dpuGetInputTensorAddress(): Get the start address of one DPU Task’s input Tensor

• dpuGetInputTensorSize(): Get the size (in byte) of one DPU Task’s input Tensor

• dpuGetInputTensorScale(): Get the scale value of one DPU Task’s input Tensor

• dpuGetInputTensorHeight(): Get the height dimension of one DPU Task’s input Tensor

• dpuGetInputTensorWidth(): Get the width dimension of one DPU Task’s input Tensor

• dpuGetInputTensorChannel() : Get the channel dimension of one DPU Task’s input Tensor

• dpuGetOutputTensorCnt(): Get total number of output Tensor of one DPU Task

• dpuGetOutputTensor(): Get output Tensor of one DPU Task

• dpuGetOutputTensorAddress(): Get the start address of one DPU Task’s output Tensor

• dpuGetOutputTensorSize(): Get the size in byte of one DPU Task’s output Tensor

• dpuGetOutputTensorScale(): Get the scale value of one DPU Task’s output Tensor

• dpuGetOutputTensorHeight(): Get the height dimension of one DPU Task’s output Tensor

• dpuGetOutputTensorWidth(): Get the width dimension of one DPU Task’s output Tensor
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• dpuGetOutputTensorChannel(): Get the channel dimension of one DPU Task’s output Tensor

• dpuGetTensorSize(): Get the size of one DPU Tensor

• dpuGetTensorAddress(): Get the start address of one DPU Tensor

• dpuGetTensorScale(): Get the scale value of one DPU Tensor

• dpuGetTensorHeight(): Get the height dimension of one DPU Tensor

• dpuGetTensorWidth(): Get the width dimension of one DPU Tensor

• dpuGetTensorChannel(): Get the channel dimension of one DPU Tensor

• dpuSetInputTensorInCHWInt8(): Set DPU Task’s input Tensor with data stored under Caffe
order (channel/height/width) in INT8 format

• dpuSetInputTensorInCHWFP32(): Set DPU Task’s input Tensor with data stored under Caffe
order (channel/height/width) in FP32 format

• dpuSetInputTensorInHWCInt8(): Set DPU Task’s input Tensor with data stored under DPU
order (height/width/channel) in INT8 format

• dpuSetInputTensorInHWCFP32(): Set DPU Task’s input Tensor with data stored under DPU
order (channel/height/width) in FP32 format

• dpuGetOutputTensorInCHWInt8(): Get DPU Task’s output Tensor and store them under Caffe
order (channel/height/width) in INT8 format

• dpuGetOutputTensorInCHWFP32(): Get DPU Task’s output Tensor and store them under
Caffe order (channel/height/width) in FP32 format

• dpuGetOutputTensorInHWCInt8(): Get DPU Task’s output Tensor and store them under DPU
order (channel/height/width) in INT8 format

• dpuGetOutputTensorInHWCFP32(): Get DPU Task’s output Tensor and store them under
DPU order (channel/height/width) in FP32 format

• dpuRunSoftmax (): Perform softmax calculation for the input elements and save the results to
output memory buffer.

• dpuSetExceptionMode(): Set the exception handling mode for edge DPU runtime N2Cube.

• dpuGetExceptionMode(): Get the exception handling mode for runtime N2Cube.

• dpuGetExceptionMessage(): Get the error message from error code (always negative value)
returned by N2Cube APIs.

• dpuGetInputTotalSize(): Get total size in byte for DPU task’s input memory buffer, which
includes all the boundary input tensors.

• dpuGetOutputTotalSize(): Get total size in byte for DPU task’s outmemory buffer, which
includes all the boundary output tensors.
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• dpuGetBoundaryIOTensor(): Get DPU task’s boundary input or output tensor from the
specified tensor name. The info of tensor names is listed out by VAI_C compiler after model
compilation.

• dpuBindInputTensorBaseAddress(): Bind the specified base physical and virtual addresses of
input memory buffer to DPU task. It can only be used for DPU kernel compiled by VAI_C
under split IO mode. Note it can only be used for DPU kernel compiled by VAI_C under split
IO mode.

• dpuBindOutputTensorBaseAddress(): Bind the specified base physical and virtual addresses of
output memory buffer to DPU task. Note it can only be used for DPU kernel compiled by
VAI_C under split IO mode.

Include File

n2cube.h

APIs List

The prototype and parameters for each C++ API within the library libn2cube are described in
detail in the subsequent sections.

dpuOpen()

Synopsis

int dpuOpen()

Arguments

None

Description

Attach and open DPU device file /dev/dpu before the utilization of DPU resources.

Returns

0 on success, or negative value in case of failure. Error message “Fail to open DPU device” is
reported if any error takes place.

See Also

dpuClose()
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Include File

n2cube.h

Availability

Vitis AI v1.0

dpuClose()

Synopsis

int dpuClose()

Arguments

None

Description

Detach and close DPU device file /dev/dpu after utilization of DPU resources.

Returns

0 on success, or negative error ID in case of failure. Error message “Fail to close DPU device” is
reported if any error takes place

See Also

dpuOpen()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuLoadKernel()

Synopsis

DPUKernel *dpuLoadKernel
(
const char *netName
    )
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Arguments

• netName: The pointer to neural network name. Use the names produced by Deep Neural
Network Compiler (VAI_C) after the compilation of neural network. For each DL application,
perhaps there are many DPU Kernels existing in its hybrid CPU+DPU binary executable. For
each DPU Kernel, it has one unique name for differentiation purpose.

Description

Load a DPU Kernel for the specified neural network from hybrid CPU+DPU binary executable
into DPU memory space, including Kernel’s DPU instructions, weight and bias.

Returns

The pointer to the loaded DPU Kernel on success, or report error in case of any failure.

See Also

dpuDestroyKernel()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuDestroyKernel()

Synopsis

Dint dpuDestroyKernel
(
DPUKernel *kernel
    )

Arguments

• kernel: The pointer to DPU kernel to be destroyed.

Description

Destroy a DPU kernel and release its related resources.

Returns

0 on success, or report error in case of any failure.
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See Also

dpuLoadKernel()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuCreateTask()

Synopsis

int dpuCreateTask
(
DPUKernel *kernel,
int mode
    );

Arguments

• kernel: The pointer to DPU kernel to be destroyed.

• mode: The running mode of DPU Task. There are 3 available modes:

• T_MODE_NORMAL: default mode identical to the mode value “0”.

• T_MODE_PROF: generate profiling information layer by layer while running of DPU Task,
which is useful for performance analysis.

• T_MODE_DEBUG: dump the raw data for DPU Task's CODE/BIAS/WEIGHT/INPUT/
OUTPUT layer by layer for debugging purpose.

Description

Instantiate a DPU Task from DPU Kernel and allocate corresponding DPU memory buffer.

Returns

0 on success, or report error in case of any failure.

Include File

n2cube.h
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Availability

Vitis AI v1.0

dpuDestroyTask()

Synopsis

int dpuDestroyTask
(
DPUTask *task
    )

Arguments

• task: 

The pointer to DPU Task to be destroyed.

Description

Destroy a DPU Task and release its related resources.

Returns

0 on success, or report error in case of any failure.

See Also

dpuCreateTask()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuRunTask()

Synopsis

int dpuRunTask
(
DPUTask *task
    );
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Arguments

• task: The pointer to DPU Task.

Description

Launch the running of DPU Task.

Returns

0 on success, or negative value in case of any failure.

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuSetTaskPriority()

Synopsis

int dpuSetTaskPriority
(
DPUTask *task,
uint8_t priority
    );

Arguments

• task: The pointer to DPU Task.

• priority: The priority to be specified for the DPU task. It ranges from 0 (the highest priority) to
15 (the lowest priority).

Description

Dynamically set a DPU task's priority to a specified value at run-time. Priorities range from 0 (the
highest priority) to 15 (the lowest priority). If not specified, the priority of a DPU Task is 15 by
default.

Returns

0 on success, or negative value in case of any failure.
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See Also

dpuGetTaskPriority()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetTaskPriority()

Synopsis

uint8_t
      dpuGetTaskPriority
(
DPUTask *task
    );

Arguments

• task: The pointer to DPU Task.

Description

Retrieve a DPU Task's priority. The priority is 15 by default.

Returns

The priority of DPU Task on success, or 0xFF in case of any failure.

See Also

dpuSetTaskPriority()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuSetTaskAffinity()

Synopsis

int
      dpuSetTaskAffinity
(
DPUTask *task,
uint32_t coreMask
    );

Arguments

• task: The pointer to DPU Task.

• coreMask: DPU core mask to be specified. Each bit represents one DPU core: the lowest bit is
for core 0, second lowest bit is for core 1, and so on. Multiple mask bits can be specified one
time but can’t exceed the maximum available cores. For example, mask value 0x3 indicates
that task can be assigned to DPU core 0 and 1, and it gets scheduled right away if anyone of
core 0 or 1 is available.

Description

Dynamically set a DPU task's affinity to DPU cores at run-time. This provides flexibility for the
users to intervene in DPU cores' assignment and scheduling to meet specific requirements. If not
specified, DPU task can be assigned to any available DPU cores during run-time.

Returns

0 on success, or negative value in case of any failure.

See Also

dpuGetTaskAffinity ()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetTaskAffinity ()

Synopsis

uint32_t dpuGetTaskAffinity
(
DPUTask *task
    );

Arguments

• task: The pointer to DPU Task.

Description

Retrieve a DPU Task's affinity over DPU cores. If the affinity is not specified, DPU task can be
assigned to all available DPU cores by default. For example, the affinity is 0x7 if the target system
holds 3 DPU cores.

Returns

The affinity mask bits over DPU cores on success, or 0 in case of any failure.

See Also

dpuSetTaskAffinity()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuEnableTaskProfile()

Synopsis

int dpuEnableTaskProfile
(
DPUTask *task
    );

Arguments

• task: The pointer to DPU Task.
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Description

Set DPU Task in profiling mode. Note that the profiling functionality is available only for DPU
Kernel generated by VAI_C in debug mode.

Returns

0 on success, or report error in case of any failure.

See Also

dpuCreateTask()

dpuEnableTaskDebug()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuEnableTaskDebug()

Synopsis

int dpuEnableTaskDebug
(
DPUTask *task
    );

Arguments

• task: The pointer to DPU Task.

Description

Set DPU Task in dump mode. Note that dump functionality is available only for DPU Kernel
generated by VAI_C in debug mode.

Returns

0 on success, or report error in case of any failure.

See Also

dpuCreateTask()
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dpuEnableTaskProfile()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetTaskProfile()

Synopsis

int dpuGetTaskProfile
(
DPUTask *task
    );

Arguments

• task: The pointer to DPU Task.

Description

Get DPU Task’s execution time (us) after its running.

Returns

The DPU Task’s execution time (us) after its running.

See Also

dpuGetNodeProfile()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetNodeProfile()

Synopsis

int dpuGetNodeProfile
(
DPUTask *task,
const char*nodeName
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name

Description

Get DPU Node’s execution time (us) after DPU Task completes its running.

Returns

The DPU Node’s execution time(us) after DPU Task completes its running. Note that this
functionality is available only for DPU Kernel generated by VAI_C in debug mode.

See Also

dpuGetTaskProfile()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetInputTensorCnt()

Synopsis

Int dpuGetInputTensorCnt
(
DPUTask *task,
const char*nodeName
    );

Arguments

• task: The pointer to DPU task.
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• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s input node are listed out after a neural network
is compiled by VAI_C. If invalid node name specified, failure message is reported.

Description

Get total number of input tensors for the specified node of one DPU task.

Returns

The total number of input tensor for specified node.

See Also

dpuGetOutputTensorCnt()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetInputTensor()

Synopsis

DPUTensor*dpuGetInputTensor
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: The available names of one DPU kernel’s or task’s input node are listed out after a neural network
is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: 

The index of a single input tensor for the node, with default value as 0.
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Description

Get DPU Task’s input Tensor.

Returns

The pointer to Task’s input Tensor on success, or report error in case of any failure.

See Also

dpuGetOutputTensor()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetInputTensorAddress()

Synopsis

int8_t*
        dpuGetInputTensorAddress
(
DPUTask *task,
const char*nodeName,
int idx = 0
);

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU node's name.

Note: The available names of one DPU kernel’s or task’s input node are listed out after a neural network
is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: 

The index of a single input tensor for the node, with default value as 0.

Description

Get the start address of DPU Task’s input tensor.
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Returns

The start addresses to Task’s input Tensor on success, or report error in case of any failure.

See Also

dpuGetOutputTensorAddress()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetInputTensorSize()

Synopsis

int dpuGetInputTensorSize
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: The available names of one DPU kernel’s or task’s input node are listed out after a neural network
is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: 

The index of a single input tensor for the node, with default value as 0.

Description

Get the size (in Byte) of DPU task’s input tensor.

Returns

The size of task’s input tensor on success, or report error in case of any failure.
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See Also

dpuGetOutputTensorSize()

Include File

n2cube.h

Availability

Vitis AI v1.0.

dpuGetInputTensorScale()

Synopsis

float dpuGetInputTensorScale
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get the scale value of DPU task’s input tensor. For each DPU input tensor, it has one unified
scale value indicating its quantization information for reformatting between data types of INT8
and FP32.

Returns

The scale value of task’s input tensor on success, or report error in case of any failure.

See Also

dpuGetOutputTensorScale()
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Include File

n2cube.h

Availability

Vitis AI v1.0.

dpuGetInputTensorHeight()

Synopsis

int dpuGetInputTensorHeight
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get the height dimension of DPU task’s input tensor.

Returns

The height dimension of task’s input tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()
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Include File

n2cube.h

Availability

Vitis AI v1.0.

dpuGetInputTensorWidth()

Synopsis

int dpuGetInputTensorWidth
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get the width dimension of DPU task’s input tensor.

Returns

The width dimension of task’s input tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensorHeight()

dpuGetInputTensorChannel()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()
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Include File

n2cube.h

Availability

Vitis AI v1.0.

dpuGetInputTensorChannel()

Synopsis

int dpuGetInputTensorChannel
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get the channel dimension of DPU task’s input tensor.

Returns

The channel dimension of task’s input tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()
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Include File

n2cube.h

Availability

Vitis AI v1.0.

dpuGetOutputTensorCnt()

Synopsis

Int dpuGetOutputTensorCnt
(
DPUTask *task,
const char*nodeName
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get total number of output tensors for the specified node of one DPU task’s.

Returns

The total number of output tensor for the DPU task.

See Also

dpuGetInputTensorCnt()

Include File

n2cube.h

Availability

Vitis AI v1.0.
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dpuGetOutputTensor()

Synopsis

DPUTensor*dpuGetOutputTensor
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get DPU task’s output tensor.

Returns

The pointer to task’s output tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensor()

Include File

n2cube.h

Availability

Vitis AI v1.0.
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dpuGetOutputTensorAddress()

Synopsis

int8_t* dpuGetOutputTensorAddress
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU task.

• nodeName: The pointer to DPU node’s name.

Note: The available names of one DPU kernel’s or task’s output node are listed out after a neural
network is compiled by VAI_C. If invalid node name specified, failure message is reported.

• idx: The index of a single output tensor for the node, with default value as 0.

Description

Get the start address of DPU task’s output tensor.

Returns

The start addresses to task’s output tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensorAddress()

Include File

n2cube.h

Availability

Vitis AI v1.0.
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dpuGetOutputTensorSize()

Synopsis

int dpuGetOutputTensorSize
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: The available names of one DPU Kernel’s or Task’s output Node are listed out after a neural
network is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: The index of a single output tensor for the Node, with default value as 0.

Description

Get the size (in Byte) of DPU Task’s output Tensor.

Returns

The size of Task’s output Tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensorSize()

Include File

n2cube.h

Availability

Vitis AI v1.0.
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dpuGetOutputTensorScale()

Synopsis

float dpuGetOutputTensorScale
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: The available names of one DPU Kernel’s or Task’s output Node are listed out after a neural
network is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: The index of a single output tensor for the Node, with default value as 0.

Description

Get the scale value of DPU Task’s output Tensor. For each DPU output Tensor, it has one unified
scale value indicating its quantization information for reformatting between data types of INT8
and FP32.

Returns

The scale value of Task’s output Tensor on success, or report error in case of any failure.

See Also

dpuGetInputTensorScale()

Include File

n2cube.h

Availability

Vitis AI v1.0.
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dpuGetOutputTensorHeight()

Synopsis

int dpuGetOutputTensorHeight
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: The available names of one DPU Kernel’s or Task’s output Node are listed out after a neural
network is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: The index of a single output tensor for the Node, with default value as 0.

Description

Get the height dimension of DPU Task’s output Tensor.

Returns

The height dimension of Task’s output Tensor on success, or report error in case of any failure.

See Also

dpuGetOutputTensorWidth()

dpuGetOutputTensorChannel()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetOutputTensorWidth()

Synopsis

int dpuGetOutputTensorWidth
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: the available names of one DPU Kernel’s or Task’s output Node are listed out after a neural
network is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: The index of a single output tensor for the Node, with default value as 0.

Description

Get the width dimension of DPU Task’s output Tensor.

Returns

The width dimension of Task’s output Tensor on success, or report error in case of any failure.

See Also

dpuGetOutputTensorHeight()

dpuGetOutputTensorChannel()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetOutputTensorChannel()

Synopsis

int dpuGetOutputTensorChannel
(
DPUTask *task,
const char*nodeName,
int idx = 0
    );

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node’s name.

Note: the available names of one DPU Kernel’s or Task’s output Node are listed out after a neural
network is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: The index of a single output tensor for the Node, with default value as 0.

Description

Get the channel dimension of DPU Task’s output Tensor.

Returns

The channel dimension of Task’s output Tensor on success, or report error in case of any failure.

See Also

dpuGetOutputTensorHeight()

dpuGetOutputTensorWidth()

dpuGetInputTensorHeight()

dpuGetInputTensorWidth()

dpuGetInputTensorChannel()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetTensorAddress()

Synopsis

int dpuGetTensorAddress
(
DPUTensor* tensor
    );

Arguments

• tensor: The pointer to DPU Tensor.

Description

Get the start address of DPU Tensor.

Returns

The start address of Tensor, or report error in case of any failure.

See Also

dpuGetInputTensorAddress()

dpuGetOutputTensorAddress()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetTensorSize()

Synopsis

int dpuGetTensorSize
(
DPUTensor* tensor
    );

Arguments

• tensor: The pointer to DPU Tensor.
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Description

Get the size (in Byte) of one DPU Tensor.

Returns

The size of Tensor, or report error in case of any failure.

See Also

dpuGetInputTensorSize()

dpuGetOutputTensorSize()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetTensorScale()

Synopsis

float dpuGetTensorScale
(
DPUTensor* tensor
    );

Arguments

• tensor: The pointer to DPU Tensor.

Description

Get the scale value of one DPU Tensor.

Returns

Return the scale value of Tensor, or report error in case of any failure. The users can perform
quantization (Float32 to Int8) for DPU input tensor or de-quantization (Int8 to Float32) for DPU
output tensor with this scale factor.

See Also

dpuGetInputTensorScale()
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dpuGetOutputTensorScale()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetTensorHeight()

Synopsis

float dpuGetTensorHeight
(
DPUTensor* tensor
    );

Arguments

• tensor: The pointer to DPU Tensor.

Description

Get the height dimension of one DPU Tensor.

Returns

The height dimension of Tensor, or report error in case of any failure.

See Also

dpuGetInputTensorHeight()

dpuGetOutputTensorHeight()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetTensorWidth()

Synopsis

float dpuGetTensorWidth
(
DPUTensor* tensor
    );

Arguments

• tensor: The pointer to DPU Tensor.

Description

Get the width dimension of one DPU Tensor.

Returns

The width dimension of Tensor, or report error in case of any failure.

See Also

dpuGetInputTensorWidth()

dpuGetOutputTensorWidth()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetTensorChannel()

Synopsis

float dpuGetTensorChannel
(
DPUTensor* tensor
    );

Arguments

• tensor: The pointer to DPU Tensor.
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Description

Get the channel dimension of one DPU Tensor.

Returns

The channel dimension of Tensor, or report error in case of any failure.

See Also

dpuGetInputTensorChannel()

dpuGetOutputTensorChannel()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuSetInputTensorInCHWInt8()

Synopsis

int dpuSetInputTensorInCHWInt8
(
DPUTask *task,
const char *nodeName,
int8_t *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The pointer to the start address of input data.

• size: The size (in Byte) of input data to be set.

• idx: The index of a single input tensor for the Node, with default value of 0.

Description

Set DPU Task input Tensor with data from a CPU memory block. Data is in type of INT8 and
stored in Caffe Blob’s order: channel, height and weight.
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Returns

0 on success, or report error in case of failure.

See Also

dpuSetInputTensorInCHWFP32()

dpuSetInputTensorInHWCInt8()

dpuSetInputTensorInHWCFP32()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuSetInputTensorInCHWFP32()

Synopsis

int dpuSetInputTensorInCHWFP32
(
DPUTask *task,
const char *nodeName,
float *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The pointer to the start address of input data.

• size: The size (in Byte) of input data to be set.

• idx: The index of a single input tensor for the Node, with default value of 0.

Description

Set DPU Task’s input Tensor with data from a CPU memory block. Data is in type of 32-bit-float
and stored in DPU Tensor’s order: height, weight and channel.

Appendix B: Legacy DNNDK

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=206


Returns

0 on success, or report error in case of failure.

See Also

dpuSetInputTensorInCHWInt8()

dpuSetInputTensorInHWCInt8()

dpuSetInputTensorInHWCFP32()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuSetInputTensorInHWCInt8()

Synopsis

int dpuSetInputTensorInHWCInt8
(
DPUTask *task,
const char *nodeName,
int8_t *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The pointer to the start address of input data.

• size: The size (in Byte) of input data to be set.

• idx: The index of a single input tensor for the Node, with default value of 0.

Description

Set DPU Task’s input Tensor with data from a CPU memory block. Data is in type of 32-bit-float
and stored in DPU Tensor’s order: height, weight and channel.
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Returns

0 on success, or report error in case of failure.

See Also

dpuSetInputTensorInCHWInt8()

dpuSetInputTensorInCHWFP32()

dpuSetInputTensorInHWCFP32()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuSetInputTensorInHWCFP32()

Synopsis

int dpuSetInputTensorInHWCFP32
(
DPUTask *task,
const char *nodeName,
float *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The pointer to the start address of input data.

• size: The size (in Byte) of input data to be set.

• idx: The index of a single input tensor for the Node, with default value of 0.

Description

Set DPU Task’s input Tensor with data from a CPU memory block. Data is in type of 32-bit-float
and stored in DPU Tensor’s order: height, weight and channel.

Appendix B: Legacy DNNDK

UG1414 (v1.3) February 3, 2021  www.xilinx.com
Vitis AI User Guide  208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1414&Title=Vitis%20AI%20User%20Guide&releaseVersion=1.3&docPage=208


Returns

0 on success, or report error in case of failure.

See Also

dpuSetInputTensorInCHWInt8()

dpuSetInputTensorInCHWFP32()

dpuSetInputTensorInHWCInt8()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetOutputTensorInCHWInt8()

Synopsis

int dpuGetOutputTensorInCHWInt8
(
DPUTask *task,
const char *nodeName,
int8_t *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The start address of CPU memory block for storing output Tensor’s data.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Get DPU Task’s output Tensor and store its data into a CPU memory block. Data will be stored in
type of INT8 and in DPU Tensor’s order: height, weight and channel.
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Returns

0 on success, or report error in case of failure.

See Also

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCInt8()

dpuGetOutputTensorInHWCFP32()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetOutputTensorInCHWFP32()

Synopsis

int dpuGetOutputTensorInCHWFP32
(
DPUTask *task,
const char *nodeName,
float *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The start address of CPU memory block for storing output Tensor’s data.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Get DPU Task’s output Tensor and store its data into a CPU memory block. Data will be stored in
type of 32-bit-float and in Caffe Blob’s order: channel, height and weight.
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Returns

0 on success, or report error in case of failure.

See Also

dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInHWCInt8()

dpuGetOutputTensorInHWCFP32()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetOutputTensorInHWCInt8()

Synopsis

int dpuGetOutputTensorInHWCInt8
(
DPUTask *task,
const char *nodeName,
int8_t *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The start address of CPU memory block for storing output Tensor’s data.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Get DPU Task’s output Tensor and store its data into a CPU memory block. Data will be stored in
type of INT8 and in DPU Tensor’s order: height, weight and channel.
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Returns

0 on success, or report error in case of failure.

See Also

dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCFP32()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetOutputTensorInHWCFP32()

Synopsis

int dpuGetOutputTensorInHWCFP32
(
DPUTask *task,
const char *nodeName,
float *data,
int size,
int idx = 0
    )

Arguments

• task: The pointer to DPU Task.

• nodeName: The pointer to DPU Node name.

• data: The start address of CPU memory block for storing output Tensor’s data.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Get DPU Task’s output Tensor and store its data into a CPU memory block. Data will be stored in
type of 32-bit-float and in DPU Tensor’s order: height, weight and channel.
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Returns

0 on success, or report error in case of failure.

See Also

dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCInt8()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuRunSoftmax()

Synopsis

int dpuRunSoftmax
(
int8_t *input,
float *output,
int numClasses, 
int batchSize,
float scale
    )

Arguments

• input: The pointer to store softmax input elements in int8_t type.

• output: The pointer to store softmax running results in floating point type. This memory space
should be allocated and managed by caller function.

• numClasses: The number of classes that softmax calculation operates on.

• batchSize: Batch size for the softmax calculation. This parameter should be specified with the
division of the element number by inputs by numClasses.

• scale: The scale value applied to the input elements before softmax calculation. This
parameter typically can be obtained by using API dpuGetRensorScale().
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Description

Perform softmax calculation for the input elements and save the results to output memory
buffer. This API will leverage DPU core for acceleration if harden softmax module is available.
Run “dexplorer -w” to view DPU signature information.

Returns

0 for success.

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuSetExceptionMode()

Synopsis

int dpuSetExceptionMode
(
int mode
    )

Arguments

• mode: The exception handling mode for runtime N2Cube to be specified. Available values
include:

• N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT

• N2CUBE_EXCEPTION_MODE_RET_ERR_CODE

Description

Set the exception handling mode for edge DPU runtime N2Cube. It will affect all the APIs
included in the libn2cube library.

If N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT is specified, the invoked N2Cube APIs will
output the error message and terminate the running of DPU application when any error occurs. It
is the default mode for N2Cube APIs.

If N2CUBE_EXCEPTION_MODE_RET_ERR_CODE is specified, the invoked N2Cube APIs only
return error code in case of errors. The callers need to take charge of the following exception
handling process, such as logging the error message with API dpuGetExceptionMessage(),
resource release, etc.
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Returns

0 on success, or negative value in case of failure.

See Also

dpuGetExceptionMode()

dpuGetExceptionMessage

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetExceptionMode()

Synopsis

int dpuGetExceptionMode()

Arguments

None.

Description

Get the exception handling mode for runtime N2Cube.

Returns

Current exception handing mode for N2Cube APIs.

Available values include:

• N2CUBE_EXCEPTION_MODE_PRINT_AND_EXIT

• N2CUBE_EXCEPTION_MODE_RET_ERR_CODE

See Also

dpuSetExceptionMode()

dpuGetExceptionMessage
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Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetExceptionMessage

Synopsis

const char *dpuGetExceptionMessage
(
int error_code
    )

Arguments

• error code: The error code returned by N2Cube APIs.

Description

Get the error message from error code (always negative value) returned by N2Cube APIs.

Returns

A pointer to a const string, indicating the error message for error_code.

See Also

dpuSetExceptionMode()

dpuGetExceptionMode()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuGetInputTotalSize()

Synopsis

int dpuGetInputTotalSize
(
DPUTask *task, 
    )

Arguments

• task: The pointer to DPU Task.

Description

Get total size in byte for DPU task’s input memory buffer, which holds all the boundary input
tensors.

Returns

The total size in byte for DPU task’s all the boundary input tensors.

See Also

dpuGetOutputTotalSize()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetOutputTotalSize()

Synopsis

int dpuGetOutputTotalSize
(
DPUTask *task, 
    )

Arguments

• task: The pointer to DPU Task.
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Description

Get total size in byte for DPU task’s output memory buffer, which holds all the boundary output
tensors.

Returns

The total size in byte for DPU task’s all the boundary output tensors.

See Also

dpuGetInputTotalSize()

Include File

n2cube.h

Availability

Vitis AI v1.0

dpuGetBoundaryIOTensor()

Synopsis

DPUTensor * dpuGetInputTotalSize
(
DPUTask *task, 
Const char
      *tensorName
    )

Arguments

• task: The pointer to DPU Task.

• tensorName: Tensor Name that is listed out by VAI_C compiler after model compilation.

Description

Get DPU task’s boundary input or output tensor from the specified tensor name. The info of
tensor names is listed out by VAI_C compiler after model compilation.

Returns

Pointer to DPUTensor.

Include File

n2cube.h
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Availability

Vitis AI v1.0

dpuBindInputTensorBaseAddress()

Synopsis

int dpuBindInputTensorBaseAddress
(
DPUTask *task, 
int8_t *addrVirt, 
int8_t *addrPhy
    )

Arguments

• task: The pointer to DPU Task.

• addrVirt: 

• addrPhy: The physical address of DPU output memory buffer, which holds all the boundary
output tensors of DPU task. The virtual address of DPU output memory buffer, which holds all
the boundary output tensors of DPU task.

Description

Bind the specified base physical and virtual addresses of input memory buffer to DPU task.

Note: It can only be used for DPU kernel compiled by VAI_C under split I/O mode.

Returns

0 on success, or report error in case of any failure.

See Also

dpuBindOutputTensorBaseAddress()

Include File

n2cube.h

Availability

Vitis AI v1.0
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dpuBindOutputTensorBaseAddress()

Synopsis

int dpuBindOutputTensorBaseAddress
(
DPUTask *task, 
int8_t *addrVirt, 
int8_t *addrPhy
    )

Arguments

• task: The pointer to DPU Task.

• addrVirt: The virtual address of DPU output memory buffer, which holds all the boundary
output tensors of DPU task.

• addrPhy: The physical address of DPU output memory buffer, which holds all the boundary
output tensors of DPU task.

Description

Bind the specified base physical and virtual addresses of output memory buffer to DPU task.

Note: It can only be used for DPU kernel compiled by VAI_C under split I/O mode.

Returns

0 on success, or report error in case of any failure.

See Also

dpuBindInputTensorBaseAddress()

Include File

n2cube.h

Availability

Vitis AI v1.0

Python APIs
Most Vitis AI advanced low-level Python APIs in module n2cube are equivalent with C++ APIs in
library libn2cube. The differences between them are listed below, which are also described in
the subsequent sections.
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• dpuGetOutputTensorAddress(): The type of return value different from C++ API.

• dpuGetTensorAddress(): The type of return value different from C++ API.

• dpuGetInputTensorAddress(): Not available for Python API.

• dpuGetTensorData(): Available only for Python API

• dpuGetOutputTensorInCHWInt8(): The type of return value different from C++ API.

• dpuGetOutputTensorInCHWFP32(): The type of return value different from C++ API.

• dpuGetOutputTensorInHWCInt8: The type of return value different from C++ API.

• dpuGetOutputTensorInHWCFP32(): The type of return value different from C++ API.

• dpuRunSoftmax(): The type of return value different from C++ API.

In addition, the feature of DPU split IO is not available for Python interface. Hence the following
two APIs cannot be used by the users to deploy model with Python.

• dpuBindInputTensorBaseAddress()

• dpuBindOutputTensorBaseAddress()

APIs List

The prototype and parameters for those changed Python APIs of module n2cube are described
in detail in the subsequent sections.

dpuGetOutputTensorAddress()

Synopsis

dpuGetOutputTensorAddress
(
task,
nodeName,
idx = 0
    )

Arguments

• task: The ctypes pointer to DPU Task.

• nodeName: The string DPU Node’s name.

Note: The available names of one DPU Kernel’s or Task’s input Node are listed out after a neural
network is compiled by VAI_C. If invalid Node name specified, failure message is reported.

• idx: The index of a single input tensor for the Node, with default value as 0.
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Description

Get the ctypes pointer that points to the data of DPU Task’s output Tensor.

Note: For C++ API, it returns int8_t type start address of DPU Task’s output Tensor.

Returns

Return ctypes pointer that points to the data of DPU Task’s output Tensor. Using together with
dpuGetTensorData, the users can get output Tensor’s data.

See Also

dpuGetTensorData()

Include File

n2cube

Availability

Vitis AI v1.0

dpuGetTensorAddress()

Synopsis

dpuGetTensorAddress
(
tensor
    )

Arguments

• tensor: The ctypes pointer to DPU Tensor

Description

Get the ctypes pointer that points to the data of DPU Task’s output Tensor.

Note: For C++ API, it returns int8_t type start address of DPU Task’s output Tensor.

Returns

Return ctypes pointer that points to the data of DPU Tensor. Using together with
dpuGetTensorData, the users can get Tensor’s data

See Also

dpuGetTensorData()
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Include File

n2cube

Availability

Vitis AI v1.0

dpuGetTensorData()

Synopsis

dpuGetTensorData
(
tensorAddress,
data,
tensorSize
    )

Arguments

• tensorAddress: The ctypes pointer to the data of DPU Tensor.

• data: The list to store the data of DPU Tensor.

• tensorSize: Size of DPU Tensor's data.

Description

Get the DPU Tensor’s data.

Returns

None.

See Also

dpuGetOutputTensorAddress()

Include File

n2cube

Availability

Vitis AI v1.0
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dpuGetOutputTensorInCHWInt8()

Synopsis

dpuGetOutputTensorInCHWInt8
(
task,
nodeName,
int size,
idx = 0
    )

Arguments

• task: The ctypes pointer to DPU Task.

• size: The string DPU Node's name.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Get DPU Task’s output Tensor and store its INT8 type data into CPU memory buffer under the
layout of CHW (Channel*Height*Width).

Returns

NumPy array to hold the output data. Its size is zero in case of any error.

See Also

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCInt8()

dpuGetOutputTensorInHWCFP32()

Include File

n2cube

Availability

Vitis AI v1.0
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dpuGetOutputTensorInCHWFP32()

Synopsis

dpuGetOutputTensorInCHWFP32
(
task,
nodeName,
int size,
idx = 0
    )

Arguments

• task: The ctypes pointer to DPU Task.

• nodeName: The string DPU Node's name.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Convert the data of DPU Task’s output Tensor from INT8 to float32, and store into CPU memory
buffer under the layout of CHW (Channel*Height*Width).

Returns

NumPy array to hold the output data. Its size is zero in case of any error.

See Also

dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInHWCInt8()

dpuGetOutputTensorInHWCFP32()

Include File

n2cube

Availability

Vitis AI v1.0
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dpuGetOutputTensorInHWCInt8()

Synopsis

dpuGetOutputTensorInHWCInt8
(
task,
nodeName,
int size,
idx = 0
    )

Arguments

• task: The ctypes pointer to DPU Task.

• nodeName: The string DPU Node's name.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Get DPU Task’s output Tensor and store its INT8 type data into CPU memory buffer under the
layout of HWC (Height*Width*Channel).

Returns

NumPy array to hold the output data. Its size is zero in case of any error.

See Also

dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCFP32()

Include File

n2cube

Availability

Vitis AI v1.0
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dpuGetOutputTensorInHWCFP32()

Synopsis

dpuGetOutputTensorInHWCFP32
(
task,
nodeName,
int size,
idx = 0
    )

Arguments

• task: The ctypes pointer to DPU Task.

• nodeName: The string DPU Node's name.

• size: The size (in Bytes) of output data to be stored.

• idx: The index of a single output tensor for the Node, with default value of 0.

Description

Convert the data of DPU Task’s output Tensor from INT8 to float32, and store into CPU memory
buffer under the layout of HWC (Height*Width*Channel).

Returns

NumPy array to hold the output data. Its size is zero in case of any error.

See Also

dpuGetOutputTensorInCHWInt8()

dpuGetOutputTensorInCHWFP32()

dpuGetOutputTensorInHWCInt8()

Include File

n2cube

Availability

Vitis AI v1.0
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dpuRunSoftmax()

Synopsis

dpuRunSoftmax
(
int8_t *input,
int numClasses, 
int batchSize,
float scale
    )

Arguments

• input: The pointer to store softmax input elements in int8_t type.

• numClasses: The number of classes that softmax calculation operates on.

• batchSize: Batch size for the softmax calculation. This parameter should be specified with the
division of the element number by inputs by numClasses.

• scale: The scale value applied to the input elements before softmax calculation. This
parameter typically can be obtained by using API dpuGetRensorScale().

Description

Perform softmax calculation for the input elements and save the results to output memory
buffer. This API will leverage DPU core for acceleration if harden softmax module is available.
Run “dexplorer -w” to view DPU signature information.

Returns

NumPy array to hold the result of softmax calculation. Its size is zero in case of any error.

Include File

n2cube.h

Availability

Vitis AI v1.0
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Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:
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1. Release Notes and Known Issues - https://github.com/Xilinx/Vitis-AI/blob/master/doc/
release-notes/1.x.md

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
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Copyright

© Copyright 2019-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other
trademarks are the property of their respective owners.
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