
Troubleshooting KMS HDMI output
Raspberry Pi Ltd

2023-02-10: githash: c65fe9c-clean

Colophon
2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)

licence.

build-date: 2023-02-10

build-version: githash: c65fe9c-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of

the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties expressed

in them.

Troubleshooting KMS HDMI output

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Document version history

Release Date Description

1.0 3 Jan 2023 • Initial release

Scope of document

This document applies to the following Raspberry Pi products:

Pi Zero Pi 1 Pi 2 Pi 3 Pi 4 Pi

400

CM1 CM3 CM4 Pico

Zero W H A B A+ B+ A B B A+ B+ All All All All All All

* * * * * * * * * * * * * * * * *

Troubleshooting KMS HDMI output

Document version history 2

Introduction
With the introduction of the KMS (Kernel Mode Setting) graphics driver, Raspberry Pi Ltd is moving away from legacy

firmware control of the video output system and towards a more open source graphics system. However, this has come

with its own set of challenges. This document is intended to help with any issues that might arise when moving to the

new system.

This whitepaper assumes that Raspberry Pi is running Raspberry Pi OS, and is fully up to date with the latest firmware and

kernels.

Terminology

DRM: Direct Rendering Manager, a subsystem of the Linux kernel used to communicate with graphics processing units

(GPUs). Used in partnership with FKMS and KMS.

DVI: A predecessor to HDMI, but without the audio capabilities. HDMI to DVI cables and adapters are available to connect

a Raspberry Pi device to a DVI-equipped display.

EDID: Extended Display Identification Data. A metadata format for display devices to describe their capabilities to a video

source. The EDID data structure includes manufacturer name and serial number, product type, physical display size, and

the timings supported by the display, along with some less useful data. Some displays can have defective EDID blocks,

which can cause problems if those defects are not handled by the display system.

FKMS (vc4-fkms-v3d): Fake Kernel Mode Setting. While the firmware still controls the low-level hardware (for example,

the High-Definition Multimedia Interface (HDMI) ports, the Display Serial Interface (DSI), etc), standard Linux libraries are

used in the kernel itself. FKMS is used by default in Buster, but is now deprecated in favour of KMS in Bullseye.

HDMI: High-Definition Multimedia Interface is a proprietary audio/video interface for transmitting uncompressed video

data, and compressed or uncompressed digital audio data.

HPD: Hotplug detect. A physical wire that is asserted by a connected display device to show it is present.

KMS: Kernel Mode Setting; see https://www.kernel.org/doc/html/latest/gpu/drm-kms.html for more details. On

Raspberry Pi, vc4-kms-v3d is a driver that implements KMS, and is often referred to as "the KMS driver".

Legacy graphics stack: A graphics stack wholly implemented in the VideoCore firmware blob exposed by a Linux

framebuffer driver. The legacy graphics stack has been used in the majority of Raspberry Pi Ltd devices until recently; it is

now gradually being replaced by (F)KMS/DRM.

Troubleshooting KMS HDMI output

Terminology 3

https://www.kernel.org/doc/html/latest/gpu/drm-kms.html

The HDMI system and the graphics
drivers
Raspberry Pi devices use the HDMI standard, which is very common on modern LCD monitors and televisions, for video

output. Raspberry Pi 3 (including Raspberry Pi 3B+) and earlier devices have a single HDMI port, which is capable of 1920

× 1200 @60Hz output using a full-size HDMI connector. Raspberry Pi 4 has two micro HDMI ports, and is capable of 4K

output on both ports. Depending on setup, the HDMI 0 port on Raspberry Pi 4 is capable of up to 4kp60, but when using

two 4K output devices you are limited to p30 on both devices.

The graphics software stack, irrespective of version, is responsible for interrogating attached HDMI devices for their

properties, and setting up the HDMI system appropriately. Legacy and FKMS stacks both use firmware in the VideoCore

graphics processor to check for HDMI presence and properties. By contrast, KMS uses an entirely open source, ARM-side

implementation. This means the code bases for the two systems are entirely different, and in some circumstances this

can result in different behaviour between the two approaches.

HDMI and DVI devices identify themselves to the source device using a piece of metadata called an EDID block. This is

read by the source device from the display device via an I2C connection, and this is entirely transparent to the end user as

it is done by the graphics stack. The EDID block contains a great deal of information, but it is primarily used to specify

which resolutions the display supports, so Raspberry Pi can be set up to output an appropriate resolution.

How HDMI is dealt with during booting

When first powered on, Raspberry Pi goes through a number of stages, known as boot stages:

1. The first-stage, ROM-based bootloader starts up the VideoCore GPU.

2. Second-stage bootloader (this is bootcode.bin on the SD card on devices prior to Raspberry Pi 4, and in SPI

EEPROM on Raspberry Pi 4):

a. On Raspberry Pi 4, the second-stage bootloader will start up the HDMI system, interrogate the display for

possible modes, then set up the display appropriately. At this point the display is used to provide basic

diagnostic data.

b. The bootloader diagnostic display (07 Dec 2022 onwards) will display the status of any attached displays

(whether Hotplug Detect (HPD) is present, and whether an EDID block was recovered from the display).

3. The VideoCore firmware (start.elf) is loaded and run. This will take over control of the HDMI system, read the EDID

block from any attached displays, and show the rainbow screen on those displays.

4. The Linux kernel boots

a. During kernel boot, KMS will take over control of the HDMI system from the firmware. Once again the EDID

block is read from any attached displays, and this information is used to set up the Linux console and desktop.

Troubleshooting KMS HDMI output

How HDMI is dealt with during booting 4

Possible problems and symptoms
The most common failure symptom experienced when moving to KMS is an initially good boot, with the bootloader

screen and then the rainbow screen appearing, followed after a few seconds by the display going black and not coming

back on. The point at which the display goes black is in fact the point during the kernel booting process when the KMS

driver takes over running the display from the firmware. The Raspberry Pi is currently running in all respects except for the

HDMI output, so if SSH is enabled then you should be able to log in to the device by that route. The green SD card access

LED will usually flicker occasionally.

It is also possible that you will see no HDMI output at all; no bootloader display, and no rainbow screen. This can usually

be attributed to a hardware fault.

Troubleshooting KMS HDMI output

Possible problems and symptoms 5

Diagnosing the fault

No HDMI output at all

It is possible that the device has not booted at all, but this is outside of the remit of this white paper.

Assuming that the observed behaviour is a display problem, the lack of HDMI output during any part of the booting

process is usually due to a hardware fault. There are a number of possible options:

• Defective HDMI cable

◦ Try a new cable. Some cables, especially very cheap ones, may not contain all the required communications

lines (e.g. hotplug) for Raspberry Pi to successfully detect the display.

• Defective HDMI port on Raspberry Pi

◦ If you are using a Raspberry Pi 4, try the other HDMI port.

• Defective HDMI port on the monitor

◦ Sometimes the HDMI port on a monitor or TV can wear out. Try a different port if the device has one.

◦ Rarely, a display device may only provide EDID data when turned on, or when the correct port is selected. To

check, make sure that the device is on and that the correct input port is selected.

• Display device not asserting the hotplug detect line

Initial output, then screen goes black

If the display comes up but then goes off during Linux kernel boot, there are a number of possible causes, and these are

usually related to a problem reading the EDID from the display device.

As can be seen from the section above dealing with the boot sequence, the EDID is read at a number of different points

during the boot process, and each of these reads is done by a different piece of software. The final read, when KMS takes

over, is carried out by unaltered upstream Linux kernel code, and this does not handle defective EDID formats as well as

the earlier firmware software. This is why the display can stop working correctly once KMS takes over.

There are number of ways to confirm whether KMS is failing to read the EDID, and two of these are as follows.

Check the bootloader diagnostic screen (Raspberry Pi 4 only)

 NOTE

Bootloader diagnostics require a recent bootloader. You can upgrade to the latest version using these instructions:

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#updating-the-bootloader

Remove the SD card and reboot the Raspberry Pi. Press ESC on the Install OS screen, and the diagnostic screen should

appear on the display device. There should be a line on the display that starts with display: — for example:

display: DISP0: HDMI HPD=1 EDID=ok #2 DISP1: HPD=0 EDID=none #0

This output from a Raspberry Pi 4 shows that the system detected an HDMI display on HDMI port 0, the hotplug detect is

asserted, and the EDID was read OK. Nothing was found on HDMI port 1.

Troubleshooting KMS HDMI output

No HDMI output at all 6

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#updating-the-bootloader

Check whether the KMS system detected an EDID

To check this you will need to log in to the Raspberry Pi device over SSH from a different computer. SSH can be enabled

when creating an SD card image with Raspberry Pi Imager, using the Advanced Settings options. Enabling SSH on an SD

card that has already been imaged is a little more complicated: you will need to use another computer to add a file named

ssh to the boot partition. Replace the SD card in the original Raspberry Pi and power it up. This should enable SSH, with an

IP address allocated by DHCP.

Once logged in, type the following at the terminal prompt to display the contents of any EDID detected (you may need to

change HDMI-A-1 to HDMI-A-2 depending on which HDMI port on the Raspberry Pi the display device is connected to):

cat /sys/class/drm/card?-HDMI-A-1/edid

If there are no folders named card?-HDMI-A-1 or similar, then is likely that no EDID could be read from the display device.

 NOTE

In the case where the EDID is read successfully, there is a useful virtual file in the same folder, called modes, which

when displayed shows all the possible modes the EDID claims the device supports.

Troubleshooting KMS HDMI output

Initial output, then screen goes black 7

Mitigations

Hotplug detect failure

If both the firmware and KMS fail to find an attached monitor, it could be a hotplug detection failure — i.e., the Raspberry

Pi does not know a device has been plugged in, so it doesn’t check for an EDID. This could be caused by a bad cable, or a

display device that does not assert hotplug correctly.

You can force a hotplug detect by altering the kernel command line file (cmdline.txt) that is stored in the boot partition of

a Raspberry Pi OS SD card. You can edit this file on another system, using whatever editor you prefer. Add the following to

the end of the cmdline.txt file:

video=HDMI-A-1:1280x720@60D

If you are using the second HDMI port, replace HDMI-A-1 with HDMI-A-2. You can also specify a different resolution and

frame rate, but make sure you choose ones that the display device supports.

 NOTE

Documentation on the kernel command line settings for video can be found here: https://www.kernel.org/doc/

Documentation/fb/modedb.txt

 WARNING

Older graphics stacks supported the use of a config.txt entry to set hotplug detect, but at the time of writing this

does not work with KMS. It may be supported in future firmware releases. The config.txt entry is

hdmi_force_hotplug, and you can specify the specific HDMI port that the hotplug applies to using either

hdmi_force_hotplug:0=1 or hdmi_force_hotplug:1=1. Note that the nomenclature for KMS refers to the HDMI ports

as 1 and 2, while Raspberry Pi uses 0 and 1.

EDID problems

A minority of display devices are incapable of returning an EDID if they are turned off, or when the wrong AV input is

selected. This can be an issue when the Raspberry Pi and the display devices are on the same power strip, and the

Raspberry Pi device boots faster than the display. With devices like this, you may need to provide an EDID manually.

Even more unusually, some display devices have EDID blocks that are badly formatted and cannot be parsed by the KMS

EDID system. In these circumstances, it may be possible to read an EDID from a device with similar resolution and use

that.

In either case, the following instructions set out how to read an EDID from a display device and configure KMS to use it,

instead of KMS trying to interrogate the device directly.

Copying an EDID to a file

Creating a file containing EDID metadata from scratch is not usually feasible, and using an existing one is much easier. It

is generally possible to obtain an EDID from a display device and store it on the Raspberry Pi’s SD card so it can be used

by KMS instead of getting an EDID from the display device. The easiest option here is to ensure that the display device is

up and running and on the correct AV input, and that the Raspberry Pi has started up the HDMI system correctly. From the

Troubleshooting KMS HDMI output

Hotplug detect failure 8

https://www.kernel.org/doc/Documentation/fb/modedb.txt
https://www.kernel.org/doc/Documentation/fb/modedb.txt

terminal, you can now copy the EDID to a file with the following command:

sudo cp /sys/class/drm/card?-HDMI-A-1/edid /lib/firmware/myedid.dat

If for some reason the EDID is not present, you can boot the device in a non-KMS mode that does succeed in booting to

the desktop or console, then copy the EDID that the firmware will (hopefully) successfully read to a file.

1. Boot to legacy graphics mode.

a. Edit config.txt in the boot partition, making sure to run your editor using sudo, and change the line that says

dtoverlay=vc4-kms-v3d to #dtoverlay=vc4-kms-v3d.

b. Reboot.

2. The desktop or login console should now appear.

a. Using the terminal, copy the EDID from the attached display device to a file with the following command:

tvservice -d myedid.dat
sudo mv myedid.dat /lib/firmware/

Using a file-based EDID instead of interrogating the display device

Edit /boot/cmdline.txt, making sure to run your editor using sudo, and add the following to the kernel command line:

drm.edid_firmware=myedid.dat

You can apply the EDID to a specific HDMI port as follows:

drm.edid_firmware=HDMI-A-1:myedid.dat

If necessary, boot back into KMS mode by doing the following:

1. Edit config.txt in boot partition, making sure to run your editor using sudo, and change the line that says

#dtoverlay=vc4-kms-v3d to dtoverlay=vc4-kms-v3d.

2. Reboot.

 NOTE

If you use a file-based EDID, but still have problems with hotplug, you can force hotplug detection by adding the

following to the kernel command line: video=HDMI-A-1:D.

Troubleshooting KMS HDMI output

EDID problems 9

	Troubleshooting KMS HDMI output
	Colophon
	Legal Disclaimer Notice
	Document version history
	Scope of document

	Introduction
	Terminology

	The HDMI system and the graphics drivers
	How HDMI is dealt with during booting

	Possible problems and symptoms
	Diagnosing the fault
	No HDMI output at all
	Initial output, then screen goes black
	Check the bootloader diagnostic screen (Raspberry Pi 4 only)
	Check whether the KMS system detected an EDID

	Mitigations
	Hotplug detect failure
	EDID problems
	Copying an EDID to a file
	Using a file-based EDID instead of interrogating the display device

