
instructables

Kid's Control Panel With Arduino(s)

by lukasz.tuz

Since getting an Arduino starter kit I was wondering what to make of all those fancy buttons, shiny LEDs, touchscreen
LCD displays... I was thinking about weather station, but I was told that in the maker's world, weather station is like a
"Hello World" app. Like playing "Stairway to Heaven" in a guitar store . Then, when chasing away my kid from oven's
controls for 20th time, it struck me - I could make her a spaceship-like control panel (and I still made a weather station
anyway, in a separate project...).

There are plenty of examples of such projects in the Internet, but still, here's my medium quality stab at it. I didn't want
to stick to just backlit pushbuttons and lever switches. On the other hand, there's not much point in making a fully-
/edged control panel which interacts with Kerbal Space Program for a two year old, does it? Idea was to have something
relatively simple at 3rst, but with complexity hidden in software. This way, assuming the target audience is even remotely
interested, project could grow in complexity over time.

In the meantime, it would be a nice way to learn things, especially when it comes to mechanics and assembly of things.
And boy, did I learn.

Supplies:

Here's the supply list for the 3nal version of the build.

two Arduino Uno boards (although any other would do just 3ne)
2.8" LCD TFT Arduino shield
KY-040 Rotary Encoder module (with knob)
Arduino joystick module
two MCP23017 I2C GPIO expander modules
an 8-bit PCF8591 8-bit I2C analog-digital converter module
LGB LED Arduino module
Robotdyne 4 digit 7 segment display module
an 8x8 LED matrix module (as a result of a purchasing mistake, I'm using a Wemos D1 LED matrix shield.
Robotdyne's 8x8 LED matrix is better choice)
4x4 keypad module
4 tactile push buttons
4x4 membrane alphanumeric keypad
battery level indicator
4 lever switches (Single Pole Single Throw or Single Pole Double Throw)
2 impulse (on-on) switches
1 battery level indicator
~30 M2x10 screws

Kid's Control Panel With Arduino(s): Page 1

http://www.instructables.com
http://www.instructables.com/Kids-Control-Panel-With-Arduinos/
http://www.instructables.com/member/lukasz.tuz/
https://www.google.com/search?q=playing+%2522Stairway+to+Heaven%2522+in+a+guitar+store&oq=playing+%2522Stairway+to+Heaven%2522+in+a+guitar+store&aqs=chrome..69i57&sourceid=chrome&ie=UTF-8
https://www.instructables.com/Kids-Spaceship-control-panel-Prop/
https://hackaday.com/2014/02/27/ridiculously-accurate-mission-control-panel/
https://www.hackster.io/news/an-out-of-this-world-nasa-control-panel-for-kids-3bfeca3c8a67

4 M3x5 screws
M3x50 distance bolts
~40 female-female DuPont jumper wires
~40 female-male DuPont jumper wires
one of: a couple of prototyping PCBs or a breadboard or a prototyping Arduino shield
when using prototyping PCBs or Arduino shield - also some wires and connectors
two 18650 li-ion battery cells with basket
two 2.1/5 DC barrel jack plugs
a 2.1/5 DC barrel jack connector for encasing
2S BMS circuit for charging the battery cells
11 3mm LEDs, diFerent colors
4 220R resistors, THT

You can get most of these supplies in one of the Arduino Starter Kits for a reasonable price. Make sure that you're using
LED modules with driver circuits rather than plain LEDs.

1. Cat not part of the build
2. Rocket not part of the build

https://www.youtube.com/watch?v=lQM3sWjLl3Y

1

2

Kid's Control Panel With Arduino(s): Page 2

Step 1: The Concept

Step 2: The Casing

Creating a concept of how the panel would look like is a
3rst step. A rough idea of how big the panel would have
to be to accomodate all components is a prerequisite to
laying out connections to Arduino. So, I made a design of
the case in FreeCAD.

Initial idea was to model the control panel after planes'
avionics (inspiration drawn mostly from F-18's cockpit):
have three instrument panels connected to the main
case using M2 screws. Each panel would have cutouts
for components: LED matrix and keypad to the left, 7-
segment display and some LEDs in the top-center, and
LCD shield with rotary knob, joystick, and some buttons
to the right. There were no lever switches or
alphanumeric keypad in the original design, those were
added later on, as initial assumptions were proven to be
incorrect.

Incorrect assumption #1: I2C GPIO Expander Can Drive
LEDs. I guess this is what you get for buying components
without spending two seconds on their datasheets.
Initially, all LEDs in the design - both standalone, and

segment/matrix displays - were meant to be connected
via GPIO expander modules to the Arduino. As it turned
out, GPIOs in these devices do not output nearly enough
current to power a LED. All LEDs would have to be
connected directly to the Arduino, and there are simply
not enough GPIOs to drive everything. This had to be
solved by an emergency purchase of LED modules with
integrated driver circuits. These modules require only
two pins to be connected to Arduino, and the current
drivers are on board.

As seen in the top-right corner of the schematic, initial
design had space for four backlit touch buttons. Central
component panel also has cutouts for them (four small
cutouts at the very top). These modules, however have
proven to be not very user friendly. Also, cutouts were
too close to each other to accommodate four modules,
so I threw them out entirely. In the course of developing
software for Arduino there were a lot more changes, so
the diagram here is just an illustration of a general
concept for this control panel.

1. A GPIO expander connected to LED matrix.
2. GPIO expander driving 7-segment display.

I used FreeCAD's Part Design and Sketcher workbenches to design the casing. First, a Body has to be created for any
given piece of the casing. Here, casing is built using nine parts (Bodies, in FreeCAD's lingo):

1

2

Kid's Control Panel With Arduino(s): Page 3

https://www.freecadweb.org/
https://www.pinterest.com/pin/303359724869390424/

front panel
back panel
four walls
three component panels

In FreeCAD part design starts with a sketch. Each panel is being drawn as viewed from top, with all edges, cutouts, and
screw/mounting holes, and then extruded along an axis. This operation creates a solid body as the software takes an
input sketch and "raises" it by speci3ed distance - 3 mm in this case.

Once all panels are created, they can be moved around using FreeCADs "Transform" operation, which allows for moving
the part along each axis and rotating it as needed. All done in 3D, so this is great for seeing how the parts would 3t
together.

Somewhere between drawing a rough concept and buying wood to cut the casing I realized that it would make more
sense to have all the panels cut out on a laser cutter. This way I could save some time in the build and achieve quality well
beyond my reach, given my set of skills and tolls for woodworking.

So I added small notches on each panel, 10mm x 3mm, so that each panel can be snapped together and held mostly by
friction. I also received great advice from the company which did the laser cutout: laser cutter's precision is ±0.5 mm, so if
the notches are supposed to hold the casing together, notches have to be slightly bigger. For that reason actual notch is
10.4mm x 3mm, as seen on the drawing. Adding extra 0.2 mm on either side helps to mitigate a worst case scenario, in
which laser cutter would be 0.5 mm oF and make the cutout at 9.5 instead of 10mm. Also extra 0.2mm on each side
makes for a tighter 3t.

Since this is a kid's toy it shouldn't rely only on glue and friction to be held together. For that reason four screw holes are
added in corners of front and back panel. Idea is to use 50mm distance screws to squeeze entire device together.

One of the side panels has a square cutout for DC barrel socket. Turned out that I only could get round barrel sockets, so
it would've been better if the cutout was round. Still few seconds with a 10mm drill did the trick.

Back panel has four mounting holes in Arduino's Uno layout, for easy assembly.

Some remarks in hindsight, stuF I would've done diFerently now:

front panel should also have cutouts for battery level indicator and lever switches. I added those
components late, so had to do the cutting manually. While lever switches are easy - just a 5mm hole, I did
some damage to the panel when cutting out hole for the battery level indicator
second set of Arduino mounting holes would be nice. I thought that a second Arduino - connected to the
LCD TFT shield - would just hang underneath the panel, plugged in with the LCD shield. Sadly, it didn't 3t.
cutouts for USB ports (or at least place to expose Arduino's serial ports as pins) would be super useful.
placement of component panels could be improved. Actually, I should've grabbed 3D models of all the
components to see how they 3t together. That would've saved me some trouble during assembly.
notches on the walls are not symmetrical. Painting and assembly would be bit easier if they were.

I used nitrocellulose hard paint for the panels, mostly because I had a couple of cans lying around. Any type of coating
would do (actually, I had to cover one of the panels with carbon foil, because it turned out I painted it on the wrong
side...).

Kid's Control Panel With Arduino(s): Page 4

Kid's Control Panel With Arduino(s): Page 5

Step 3: The Assembly

https://www.instructables.com/ORIG/FCI/AUCE/KO5R8ULV/FCIAUCEKO5R8ULV.svg

Download

Kid's Control Panel With Arduino(s): Page 6

https://content.instructables.com/ORIG/FCI/AUCE/KO5R8ULV/FCIAUCEKO5R8ULV.svg
https://content.instructables.com/ORIG/FCI/AUCE/KO5R8ULV/FCIAUCEKO5R8ULV.svg

Now that the casing, and constraints it poses on the
entire device, are more or less 3nalized, it's time to
connect all the wires.

Since this project relies heavily on I2C interface, it makes
sense to start with it. On Arduino Uno I2C pins are routed
to both separate pins and to A4/A5 outputs. I suggest
using the separate pins - P3.1 and P3.2 on the schematic.
All the I2C devices have to be powered as well, so total
of four lines (SCL, SDA , +5V, and GND) should be
connected to the I2C breakout board (or the
breadboard). These lines should go to both GPIO
expander modules (let's call them GPIO_A and GPIO_B
for easier reference) and an ADC module.

Both GPIO expander modules need to have their reset
and addressing pins connected. Reset is an active low
pin, so it has to be connected to +5V (ideally through a
resistor). Address pins have to be set up so that both
devices can operate on the I2C under diFerent addresses
- i.e. can be distinguished from one another. I've set up
address pins on GPIO_A to zero (all connected to
ground), and on GPIO_B to one (A0 connected to +5V,
rest to ground). These settings translate to I2C addresses
0x20 and 0x21, respectively. Default address for ADC
module is 0x48, so no con/icts here.

Rotary encoder pins A and B have to be connected to
Arduino Uno pins 2 and 3. These are the only two pins
with interrupt capability, and using interrupts rather that
repeatedly ask for value update creates a much
smoother user experience.

RGB LED module needs to be connected to PWM-
capable pins (marked with a '~' sign on the Arduino
board). PWM capability allows for brightness
adjustments.

7-segment display power, LED matrix power, and the
second Arduino (Arduino B, as called on the schematic;
ones that drives TFT LCD screen) are connected through
switches.

There are also two momentary lever switches (the ON-
ON ones). One is used to enable battery level display
LED, the other is wired to the ground to serve as a reset
for Arduino A.

The custom four-color LED bar is using 3mm color LEDs,
all connected to separate pins on Arduino using 220R
series resistors to limit the current draw. A higher value
can be used to dim the LEDs a bit.

Since the CAD drawing was more of a rough idea than a
detailed design, I had to resort to using huge amounts
of hot glue. It looks rather nasty but it keeps things in
place; and since its on the inside of the casing, then who
cares, right...?

Most of the components are glued and/or screwed to
the front panel (or the top, depends on how to look at it).
Both Arduinos and stuF related to power delivery
(battery cells, battery protection circuit board, power
breakout board) are mounted inside the casing. RGB LED
module is also mounted (glued, in my case) inside, right
beneath the 4x4 keypad module. There's roughly a 2cm
distance between the keypad's PCB and the LED itself, so
the RGB LED lights up entire board, which creates a
rather cool eFect.

Second Arduino Uno - Arduino B - is connected only to
the LCD TFT shield. I couldn't 3t it when connected
directly to the display shield, so I had to use wires
instead. Note that all eight data lines, all SPI interface
pins, and +5V and +3.3V have to be connected.

Kid's Control Panel With Arduino(s): Page 7

1. Custom I2C expander board

1

Kid's Control Panel With Arduino(s): Page 8

Step 4: The Code

So, what should this device even do... Given set of components used, I was thinking it could:

display characters from the alphanumeric keypad on the 7-segment display
turn on LEDs in the 8x8 matrix when keys are pressed on the 4x4 keypad (no particular pattern, can be
random)
display some patterns using the 4-color LED bar
use the four tactile buttons to switch modes of operation for joystick and encoder:

control the LED bar
control the RGB LED's color
control LEDs on the 8x8 matrix

That's for Arduino A. Since Arduino B is connected only to the LCD TFT display, it would run some sort of a
sketchbook/paint application.

Kid's Control Panel With Arduino(s): Page 9

There are very few custom hardware components here, so most of the software would be handled by
Arduino libraries. Libraries used:
Encoder - for rotary encoder
Adafruit MCP23017 - for GPIO expanders
TM1637 for 7-segment and LED matrix modules
Keypad - for all kinds of keypads (library is versatile enough to even correctly handle four tactile buttons
used here)
Adafruit PCF8591 - for ADC module
MCUFRIEND_kbv - for controlling LCD TFT display, including touch

One caveat here is that TM1637 library assumes it is working with a common cathode/anode 7-segment digit display, so
when applied to a LED matrix, all diodes across matrix's diagonal are lit. This should be easily 3xable via software update
and use of a proper library for a LED matrix.

I did add some custom wrappers for some of these libraries so let's go through the wrappers, 3rst.

RGB LED wrapper

This wrapper is used to provide high level interface for controlling the RGB LED, including conversion of cartesian, XY
coordinates, to red-green-blue values. Library uses structure and helper methods for rgb color de3nition from ESPHome
project.

class RgbLed
 {
 private:
 /* data */
 uint8_t pin_red;
 uint8_t pin_green;
 uint8_t pin_blue;
 protected:
 Color color;
 void setRGB(void);
 uint32_t hsv2rgb(uint16_t hue, float saturation, float value);
 public:
 RgbLed(uint8_t pin_red, uint8_t pin_green, uint8_t pin_blue);
 ~RgbLed();
 void setColor(rgbled::Color color);
 void lighten(uint8_t amount);
 void darken(uint8_t amount);
 void changeBrightness(int delta);
 Color getColor(void);
 uint32_t rectToRGB(float x, float y);
 };

setColor method is a primary one, used to set a speci3c color. Colors are de3ned as a structure of three /oat values, in
range 0..1. lighten(), darken(), changeBrightness() are used to perform basic operations on the color being currently set.

Last method rectToRGB(x,y) - is a bit more complicated. It is meant to convert (x,y) coordinates - e.g. coming from the
joystick - to RGB values. Idea is to be able to change RGB LED color by turning a fully tilted joystick around - from red,
through green, to blue, and back.

Let's get on with some trigonometry then. rectToRGB(x,y) method is based on an atan2(y,x) function which calculates an
angle - θ - between OX axis and given coordinates. Values of angle returned by atan2 function are in range −π < θ ≤ π.
Luckily, math.h library in Arduino implements this function.

Using atan2 allows for converting (x,y) coordinates to an angle, but what about radius? Radius calculation is pretty
straightforward, but for sake of simplicity I'll be just sticking to angles. Code snippet below shows application of

Kid's Control Panel With Arduino(s): Page 10

https://esphome.io/api/color_8h.html
https://esphome.io/
https://en.wikipedia.org/wiki/Atan2

Arduino's atan2 function. Calculation of the angle is done only when joystick is tilted in either direction (coordinates from
joystick are /oats in -1..1 range; more on this later).

if (abs(x) > 0.1 or abs(y) > 0.1)
{
 theta = atan2(y, x) + PI;
}
float ro = sqrt(x * x + y * y);

Easiest approach to converting angle to (r,g,b) value would be to devise a set of piecewise linear functions, in which each
of the color coordinates is a function of angle. This would, however, produce color changes that are too sharp. Piecewise
sin() function would create a smoother transition. Sinus function is great for describing cyclical phenomena; since goal
here is to convert a cyclical movement of joystick to color coordinates, it's a perfect match.

To make the transition of colors smooth, each of the color coordinates have to overlap a little - meaning that as joystick
moves around, values of one of the color coordinates have to fade to 0, while other slowly raises to 1. To achieve this,
each of the color coordinates is calculated with diFerent phase shift applied to the sin() function.

Here's the lambda function responsible for converting angle to a color coordinate:

auto cval = [](float theta, float ro, float phase, float neg_phase) {
 float val = sin(0.666 * theta - phase);
 if (val < 0)
 val = sin(0.666 * theta - neg_phase);
 return val;
 };

To calculate each of the color coordinates, this lambda is called with diFerent phase shift, and calculated coordinates are
used to create the color:

float r = cval(theta, ro, -PI / 2, PI);
float g = cval(theta, ro, 0, 3 * PI / 2);
float b = cval(theta, ro, PI / 2, 5 * PI / 2);
Color c = Color(r, g, b);

Display wrapper

Display wrapper class maintains buFers which convert raw characters obtained from keypads to raw bit values needed
by display's libraries to actually show the character.

const uint8_t digitToSegment[16] = {
 //XGFEDCBA
 0b00111111, // 0
 0b00110000, // 1
 0b01011011, // 2
...

Each character ('0', '1', 'A', etc.) is mapped to sequence of bits which, when passed to actual display library, will light
segments needed to show the character. Internal buFer has size that matches number of digits (or rows, in case of LED
matrix) in the display.

Keypad wrapper

This is a very simple subclass of parent Keypad class from respective library. It overrides pin_mode(), pin_read(), and
pin_write() methods from Keypad class (and the fact that these methods are declared as virtual in Keypad class is beyond
cool). This is object-oriented programming model at it's best - original pin_mode/pin_read/pin_write methods were
nothing more than wrappers around native Arduino functions.

In this project, however, all keypads are connected via GPIO expanders, which precludes from using native functions.
Overloading pin_mode(), pin_read() and pin_write() methods in subclass allows for re-de3ning their behavior to use
GPIO expanders rather than native Arduino functions, without having to modify any of the behavior in the super (parent)

Kid's Control Panel With Arduino(s): Page 11

class.

PanelKeypad(Adafruit_MCP23017 *gpio, char *userKeymap, byte *row, byte *col, byte numRows, byte numCols)
 : Keypad(userKeymap, row, col, numRows, numCol
s)
 {
 PanelKeypad::gpio = gpio;
 }

void pin_mode(byte pinNum, byte mode);

void pin_write(byte pinNum, boolean level)
{
 if (PanelKeypad::gpio != NULL)
 {
 PanelKeypad::gpio->digitalWrite(pinNum, level);
 }
}

int pin_read(byte pinNum)
{
 if (PanelKeypad::gpio != NULL)
 {
 return PanelKeypad::gpio->digitalRead(pinNum);
 }
 else
 {
 return -1;
 }
}

LED bar wrapper

This class wraps operation on Arduino pins connected to individual LEDs in the bar into a few handy methods, allowing
for:

turning individual color on/oF
animating leds to create a kind of a Knight Rider eFect

void move_bar(int direction)
{
 // make sure that direction is either 1 or -1
 if (direction != 0)
 {
 direction = direction / abs(direction);
 LedBar::leds[led_ptr] = !LedBar::leds[led_ptr];
 LedBar::color(led_ptr, LedBar::leds[led_ptr]);
 if (direction > 0)
 {
 ++led_ptr %= numColors;
 }
 else if (direction < 0)
 {
 if (led_ptr == 0)
 led_ptr = numColors;
 led_ptr--;
 }
 }
}

Depending on a direction (positive/negative integer passed as parameter) next set of LEDs in line get's toggled on or oF.

Joystick wrapper

This class wraps all logic operations on joystick while also hiding the fact that joystick is connected to an external analog-
digital converter.

Kid's Control Panel With Arduino(s): Page 12

 class Joystick
 {
 public:
 Joystick(Adafruit_PCF8591 *adc, uint8_t pinx, uint8_t piny);
 Joystick(uint8_t pinx, uint8_t piny);
 float getX(bool update_coords = true);
 float getY(bool update_coords = true);
 bool isTilted(float threshold = TILT_THRESHOLD, bool update_coords = true);
 int getDirection(float axis_coords, bool update_coords = true);
 protected:
 Coordinates coords = {0};
 void read();
 private:
 uint8_t pinx = 0;
 uint8_t piny = 0;
 Adafruit_PCF8591 *adc = NULL;
 float read_pin(uint8_t pin);
 };

Joystick module is basically a two-axis potentiometer. X and Y pins of the joystick module output a voltage scaled from
GND (0) to VCC (+5V, in this case), where 0 and +5V correspond to max tilt in either axis. Because of that, a joystick in its
idle position outputs 0.5 * VCC on both X and Y pins.

Joystick::read() method performs read of voltage from both X and Y pins, and converts the result to a /oat in -1..1 range:

auto convert = [](int value, uint16_t size) {
 float x = (((float)value / size) - 0.5) * 2;
 return x;
 };

It also handles communication with external ADC module via respective library.

Once tilt values from joystick are known, additional processing can be done. Joystick::isTilted() method returns a boolean
true value if joystick is tilted above de3ned threshold (threshold can also be passed as parameter) in either direction.
Joystick::getDirection() will output an integer depending on direction of the tilt.

Arduino sketch

The Arduino sketch itself is the usual initialization of required objects, with their con3guration done in the setup()
function. Loop continuously reads all the inputs (keypads, joystick, encoder), updates global variable which holds
encoder position, calculates its movement direction, and calls handlers for screens, LEDs, etc.

Joystick and encoder behave diFerently, depending on selected mode of operation (mode selected via tactile buttons
next to the LCD screen):

if (current_mode == RGB_LED_MODE)
{
#ifdef RGB_LED_CONNECTED
 rgb_led_handler(joy_sw, delta);
#endif led_bar.move_bar(1);
}
else if (current_mode == LED_BAR_MODE)
{
 led_bar.move_bar(delta);
}
else if (current_mode == LED_MATRIX_MODE)
{
 led_matrix_handler();
}
else if (current_mode == LCD_MODE)
{
}

In RGB_LED_MODE joystick's output is used to rotate through colors of RGB LED. LED Bar mode uses encoder to change
state of LEDs in the LED bar. LED Matrix mode uses joystick to light up individual diodes in the 8x8 matrix. LCD mode is

Kid's Control Panel With Arduino(s): Page 13

not functional, for now, as LCD is handled by the other Arduino.

The other Arduino

I did try to use a single Arduino Uno to handle all inputs/lights and the LCD TFT shield, but that turned out to be
somewhat diScult, mostly due to limited amount of available pins. LCD TFT shield requires both 5-wire SPI interface
(touch) and 8 wire parallel data interface (display). All those pins would have to be shared with other input devices and
create interference. While random pixels being shown when an encoder's knob is turned might be an interesting eFect,
that was not one I was going for. So, LCD shield is handled by a second Arduino Uno.

The other Arduino runs a tftpaint application from MCUFRIEND_kbv library, unmodi3ed. It's a basic paint app which
allows for drawing points using few prede3ned colors.

The Code

Latest code for this project can be found on github: https://github.com/lukasz-tuz/kids-control-panel.

https://youtu.be/VvMbLVURYt4

https://www.instructables.com/ORIG/F9P/MLW4/KO8M4ESP/F9PMLW4KO8M4ESP.h

Download

Kid's Control Panel With Arduino(s): Page 14

https://github.com/lukasz-tuz/kids-control-panel
https://content.instructables.com/ORIG/F9P/MLW4/KO8M4ESP/F9PMLW4KO8M4ESP.h
https://content.instructables.com/ORIG/F9P/MLW4/KO8M4ESP/F9PMLW4KO8M4ESP.h

Can you pls provide a video of it's working so it will be more understood...

Done!
I even scraped up two videos :)

good luck

What does this do?

It's a toy, so not much, really. Buttons can be pressed, lights are shining, there's a paint app on
the LCD. Rest is up to imagination.

This looks good, thanks for sharing! :)

Step 5: The Future

https://www.instructables.com/ORIG/FST/RP2W/KO8M4ESQ/FSTRP2WKO8M4ESQ.h
Download

https://www.instructables.com/ORIG/F1Q/8NRW/KO8M4ESO/F1Q8NRWKO8M4ESO.h

Download

https://www.instructables.com/ORIG/FMV/4J3L/KO8M4ESR/FMV4J3LKO8M4ESR.h

Download

https://www.instructables.com/ORIG/FJC/LD3V/KO8M4ESN/FJCLD3VKO8M4ESN.h

Download

https://www.instructables.com/ORIG/F9Y/M0ZX/KO8M4EPJ/F9YM0ZXKO8M4EPJ.h

Download

https://www.instructables.com/ORIG/FL3/CMKV/KO8M4ESM/FL3CMKVKO8M4ESM.ino

Download

That's it. For now, my two-year-old is performing some durability testing on the control panel. I wonder how those will
end up.

If I ever get back to this project, here's a laundry list of features and improvements:

Mechanical design. I mean, this device could use one.
Software updates. Proper library for 8x8 LED matrix.
Add a simple game as one of the controls mode
Re-design everything as an Arduino shield, placing all the expanders, converters, and perhaps even GPIO
muxes on the shield. This way assembly wouldn't require unholy amounts of hot glue, and perhaps GPIO
muxes would allow for reducing number of Arduinos to one
Bigger LCD screen
Fancier lever switches

Kid's Control Panel With Arduino(s): Page 15

https://content.instructables.com/ORIG/FST/RP2W/KO8M4ESQ/FSTRP2WKO8M4ESQ.h
https://content.instructables.com/ORIG/FST/RP2W/KO8M4ESQ/FSTRP2WKO8M4ESQ.h
https://content.instructables.com/ORIG/F1Q/8NRW/KO8M4ESO/F1Q8NRWKO8M4ESO.h
https://content.instructables.com/ORIG/F1Q/8NRW/KO8M4ESO/F1Q8NRWKO8M4ESO.h
https://content.instructables.com/ORIG/FMV/4J3L/KO8M4ESR/FMV4J3LKO8M4ESR.h
https://content.instructables.com/ORIG/FMV/4J3L/KO8M4ESR/FMV4J3LKO8M4ESR.h
https://content.instructables.com/ORIG/FJC/LD3V/KO8M4ESN/FJCLD3VKO8M4ESN.h
https://content.instructables.com/ORIG/FJC/LD3V/KO8M4ESN/FJCLD3VKO8M4ESN.h
https://content.instructables.com/ORIG/F9Y/M0ZX/KO8M4EPJ/F9YM0ZXKO8M4EPJ.h
https://content.instructables.com/ORIG/F9Y/M0ZX/KO8M4EPJ/F9YM0ZXKO8M4EPJ.h
https://content.instructables.com/ORIG/FL3/CMKV/KO8M4ESM/FL3CMKVKO8M4ESM.ino
https://content.instructables.com/ORIG/FL3/CMKV/KO8M4ESM/FL3CMKVKO8M4ESM.ino

	Kid's Control Panel With Arduino(s)
	Supplies:
	Step 1: The Concept
	Step 2: The Casing
	Attachments

	Step 3: The Assembly
	Step 4: The Code
	RGB LED wrapper
	Display wrapper
	Keypad wrapper
	LED bar wrapper
	Joystick wrapper
	Arduino sketch
	The other Arduino
	The Code
	Attachments

	Step 5: The Future

