
1 Introduction

1.1 Purpose

Executing trusted and authentic code on an applications processor starts with
securely booting the device. The i.MX family of applications processors
provides this capability with the Advanced High Assurance Boot (AHAB)
component on the on-chip ROM and the Security Controller (SECO) Firmware. The AHAB (only supported on i.MX 8 and i.MX
8X families) in ROM is responsible for authenticating the SECO firmware (NXP signed), which will supply the services for
authenticating the images signed by the user to the System Controller ROM.

The purpose of this application note is to provide a secure boot reference for i.MX 8 and i.MX 8X families applications processors
that include AHAB. It also provides information on select SECO features required for secure boot.

1.2 Intended audience

This document is intended for those who:

• Need an explanation about the procedure for signing a boot image.

• Need to design signed software images to be used with an AHAB-enabled processor.

It is assumed that the reader is familiar with the basics of digital signatures and public key certificates.

For a step-by-step technical guide, please refer to the U-Boot project documentation (see References on page 3).

1.3 Scope

This document is a practical example to illustrate the construction of a secure boot image and to configure the target device to
run securely, which is possible because of the AHAB and the Code Signing Tool (CST).

This document targets the Secure Boot feature on the following applications processors from the i.MX family:

• i.MX 8 – 8 Dual Max (DM), 8 Quad Max (QM).

• i.MX 8 X – 8 Dual X Plus (DXP), 8 Quad X Plus (QXP).

This application note only demonstrates the secure boot solution on the i.MX 8 and 8X processors, as well as some SECO features
for secure boot. It focuses on:

• Secure boot architecture.

• Secure boot implementation.

• SECO features.

• Container authentication.

Contents

1 Introduction..1

2 Overview...3

3 Secure boot implementation.............. 6

4 SECO features......................................9

A Maximum number of images
supported...12

AN12312
Secure Boot on i.MX 8 and i.MX 8X Families using AHAB
Rev. 0 — May 2019 Application Note

1.4 Definitions, acronyms, and abbreviations

Table 1. Definitions, acronyms and abbreviations on page 2 lists the terms and acronyms used in this document.

Table 1. Definitions, acronyms and abbreviations

Abbreviation Full name Remarks

AES Advanced Encryption Standard —

AHAB Advanced High Assurance Boot A software library executed in internal ROM on the NXP
processor at boot time which, among other things,
authenticates software in external memory by verifying digital
signatures in accordance with a CSF. This document is
strictly limited to processor running AHAB.

CA Certificate Authority The holder of a private key used to certify public keys.

CAAM Cryptographic Acceleration and
Assurance Module

An accelerator for encryption, stream cipher, and hashing
algorithm, with a random number generator and run time
integrity checker

CMS Cryptographic Message Syntax A general formal for data that may have cryptography applied
to it, such as digital signatures and digital envelopes. AHAB
uses the CMS as a container to hold the PKCS#1 signatures.

CSF Command Sequence File A binary data structure interpreted by AHAB to guide
authentication operations.

CST Code Signing Tool An application running on a build host to generate a CSF and
associated digital signatures.

DCD Device Configuration Data A binary table used by the ROM code to configure the device
at early boot stages.

OS Operating System —

OTP One-Time Programmable The OTP hardware includes the masked ROM and
electrically programmable fuses (eFuses).

PKCS#1 — A standard that specifies the use of the RSA algorithm

PKI Public Key Infrastructure A hierarchy of public key certificates in which each certificate
(except for the root certificate) can be verified using the public
key above it.

RSA — Public key cryptography algorithm developed by Rivest,
Shamir and Adleman

SA Signature Authority The holder of the private key used to sign software
components.

SCFW SCU FirmWare —

SDP Serial Download Protocol Also call UART/USB serial download mode. It allows code
provisioning through UART or USB during the production and
development phases.

Table continues on the next page...

NXP Semiconductors

Introduction

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 2 / 13

Table 1. Definitions, acronyms and abbreviations (continued)

SECO SEcurity COntroller —

SPL Secondary Program Loader —

SRK Super Root Key A RSA key pair which forms the start of the boot-time
authentication chain. The hash of the SRK public key is
embedded in the processor using OTP hardware. The SRK
private key is held by the CA. Unless explicitly noted, the SRK
acronym (in this document) refers to the public key only.

1.5 References

• i.MX 8 Reference Manual and Security Reference Manual

• AHAB CST User Guide available in the Code Signing Tool package downloadable on nxp.com. Search for CST_TOOL

• U-Boot technical guides and examples, available in doc/imx/ahab repository of the U-Boot project, on the
imx_v2018.03_4.14.78GA release branch (initial release)

2 Overview

2.1 AHAB secure boot architecture

The AHAB secure boot feature relies on digital signatures to prevent unauthorized software execution during the device boot
sequence. In case a malware takes control of the boot sequence, sensitive data, services and network can be impacted.

The AHAB authentication is based on public key cryptography in which image data is signed offline using one or more private
keys. The resulting signed image data is then verified on the i.MX processor using the corresponding public keys. The public keys
are included in the final binary and the SRK Hash is programmed in the SoC fuses for establishing the root of trust.

On i.MX 8 and i.MX 8X families, the SCU is responsible to interface with the boot media, managing the process of loading the
firmware and software images in different partitions of the SoC. The SECO is responsible to authenticate the images, authorizing
the execution of them.

NXP Semiconductors

Overview

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 3 / 13

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL
https://source.codeaurora.org/external/imx/uboot-imx/tree/doc/imx/ahab?h=imx_v2018.03_4.14.78_1.0.0_ga

Figure 1. Container layout

The SRK Table is generated with the SRK Tool, provided with the Code Signing Tool (CST).

2.2 Secure boot flow

Due to the multicore architecture, the i.MX 8 boot sequence involves SCU ROM, SCU FirmWare, SECO ROM, and SECO FW.

Figure 2 on page 5 illustrates the secure boot flow overview.

NXP Semiconductors

Overview

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 4 / 13

Figure 2. Secure boot flow overview

The i.MX8 and i.MX8x boot flow is as follows.

1. At reset, the SCU ROM and SECO ROM both start execution.

2. The SCU ROM reads the boot configuration and loads the SECO FW (first container) from the boot media to the SECO
TCM.

3. A message is sent by the SCU ROM via MU requesting the SECO ROM to authenticate the SECO FW which is signed
using NXP key.

4. The SCU ROM loads the second container from the boot media, this container must contain at least the SCFW which is
signed using the OEM keys.

5. The SCU ROM loads the SCFW to the SCU TCM, a message is sent via MU requesting the SECO FW to authenticate
the SCU FW and DCD table.

6. The SCU ROM configures the DDR and loads the M4 and AP images to their respective load addresses.

7. The SCU ROM requests the SECO FW to authenticate the M4 image.

8. The SCU ROM requests the SECO FW to authenticate the AP image.

9. The SCU FW is initialized and starts the Arm
®
 Cortex

®
-M and Cortex-A cores.

10. From this point additional containers can be loaded and authenticated by Cortex-M and Cortex-A cores, the software
must interface with SCU by calling the sc_misc_seco_authenticate() API function (see SECO authentication service via
SCU API on page 11).

After each authentication, SECO FW returns a success or failure status to SCU.

If SCU receives a fail response from SECO FW authentication while attempting to boot from the primary boot source, the SCU
will attempt to boot from the secondary boot source (if any).

If SCU receives a fail response from SECO FW authentication while attempting to boot from the secondary boot source, the SCU
will got into recovery mode.

If the SCU receives a fail response for the second container, the SCU will enter the recovery mode.

NXP Semiconductors

Overview

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 5 / 13

3 Secure boot implementation

3.1 Overview

The boot image is composed of different layers, as shown in Figure 3 on page 6.

Figure 3. Secure boot image layout

The boot image contains two containers, one for the SECO firmware (AHAB), and one for the SCFW, the ATF, U-Boot and M4
Image. They are preceded by their headers. The first one, containing the SECO firmware image, is padded to 0x1000 to fix the
start address of the second one, which can contain one or multiple images.

The only required images for the device are the SECO FW and the SCFW. The Cortex-A or Cortex-M images may

or may not be part of it depending on the OEMs system design.

 NOTE

In contrast with the secure boot process used in the HABv4 architecture, there is no need for CSF in this architecture. The CST
is responsible to handle the signature block, as shown in Figure 4 on page 7.

NXP Semiconductors

Secure boot implementation

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 6 / 13

Figure 4. Signature block

The container signature is verified against the SGK key certificate, which is then verified against the SRK table.

If the subordinate key is not used, the container signature is directly verified against the SRK keys.

3.2 Protocols

There are some changes required to the usual image building process to get a secure boot image.

• Generate the final binary image which must be in a container format. Offsets must be calculated or copied from the build
log to create the associated CSF description file.

• Use CST as described by the mx8_mx8x_secure_boot.txt document available in U-Boot source, updating the offsets of the
doc/imx/ahab/csf_examples/csf_boot_image.txt file.

• Generate a PKI tree (see Generating a PKI tree on page 7).

• Program SRK HASH fuses on the target.

• Check for SECO events (for more details, see Verifying/Decoding SECO events on page 9).

• Close the device (OEM mode).

3.3 Generating a PKI tree

CST includes scripts for generating a PKI tree and SRK table. Figure 5 on page 8 shows an example of the PKI tree.

NXP Semiconductors

Secure boot implementation

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 7 / 13

Figure 5. PKI tree example

With:

• Super Root Key (SRK): always 4 SRKs

• SGK: Optional Image Keys (Certificate) which can be used to verify the signature included in the final signed image.

To generate a P384 EEC PKI tree on CST v3.1.0, run the ahab_pki_tree.sh script located in the keys repository of the CST:

$./ahab_pki_tree.sh
…
Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 10
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

To also generate the SGKs, you must set the CA flags when generating the SRK certificates:

Do you want the SRK certificates to have the CA flag set? (y/n)?: y

3.4 Examples

Technical step-by-step examples have been added to U-Boot documentation. The following documents are dedicated to a Secure
Boot example for i.MX 8 and 8X device families:

• uboot/doc/imx/ahab/guides/mx8_mx8x_secure_boot.txt

• uboot/doc/imx/ahab/csf_examples/csf_boot_image.txt

Additional documents can be found on these repositories, as AHAB introduction, SPL Secure Boot and other CSF examples. Are
also mentioned/detailed into these documents:

• SRK tool.

• SRK hash and SRK fuses.

• CSF description file and CST tool (generic command and examples).

• Closing the device / changing lifecycle.

NXP Semiconductors

Secure boot implementation

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 8 / 13

https://source.codeaurora.org/external/imx/uboot-imx/tree/doc/imx/ahab/guides/mx8_mx8x_secure_boot.txt?h=imx_v2018.03_4.14.98_2.0.0_ga
https://source.codeaurora.org/external/imx/uboot-imx/tree/doc/imx/ahab/csf_examples/csf_boot_image.txt?h=imx_v2018.03_4.14.98_2.0.0_ga

4 SECO features
This section describes SECO interfaces useful for secure boot. For more details about functions definitions, please refer to the
SECO API Reference Guide.

4.1 Getting chip info

The SCU API provides an interface to retrieve SECO chip info (monotonic counter, lifecycle and UID): sc_misc_seco_chip_info(…).

4.2 Lifecycle

The Lifecycle defines the security state of the device. Access to some features are limited by the state, for instance writing fuses.
Refer to the Security Reference Manual for more details about Lifecycle.

The SCU API provides two interfaces to manage lifecycle:

• sc_misc_seco_forward_lifecycle(…): This function is used to update the lifecycle of the device from NXP Closed to OEM
Closed.

• sc_misc_seco_return_lifecycle(…): This function updates the lifecycle from OEM Closed to Partial Field Return.

Changing the lifecycle to Partial Field Return requires a message signed by OEM SRK.

4.3 Verifying/Decoding SECO events

A new SECO service is available to retrieve any singular event that has occurred since the firmware as started:
sc_seco_get_event().

The events are stored in a fixed sized buffer, therefore new occurring events are lost when the capacity of the buffer is exceeded.
The event buffer is systematically returned in full, whatever the number of events stored.

About the returned event format, see Figure 6 on page 9.

Figure 6. Returned event format

For the command field, the expected value at this step is 0x87 (ID for AHAB_AUTH_CONTAINER_REQ).

About the indicator field, see Table 2. Indicators on page 9.

Table 2. Indicators

Value Indicator Description

0xEE AHAB_NO_AUTHENTICATION_IND Container required to skip the
authentication.

0xF0 AHAB_BAD_SIGNATURE_IND Bad signature.

Table continues on the next page...

NXP Semiconductors

SECO features

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 9 / 13

Table 2. Indicators (continued)

0xF1 AHAB_BAD_HASH_IND Bad hash.

0xF9 AHAB_INVALID_KEY_IND The key in the container is invalid.

0xFA AHAB_BAD_KEY_HASH_IND The key hash verification does not
match OTP.

The two main events you might face are:

• 0x0087EE00: Your container image has not been signed yet.

• 0x0087FA00: The container image has been signed with wrong key which does not match the OTP SRK hashes fused on
the target.

The event 0x0087FA00 may also be displayed in case the SRK fuses are not programmed yet.

 NOTE

4.4 Authenticating OS containers (and other ones)

4.4.1 Overview

More containers can be authenticated, for instance in the case of boot image generated by SPL targets. It contains three

containers, as shown in Figure 7 on page 10.

Figure 7. Secure boot image with SPL layout

First and second containers are authenticated at SCU ROM level, whereas the third container is authenticated at SPL level.

NXP Semiconductors

SECO features

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 10 / 13

4.4.2 Authentication with code signing tool

The first method to authenticate OS containers is similar to the signing method of secure boot described in Secure boot
implementation on page 6. Once the OS container image has been generated, update the CSF example provided by U-Boot
documentation with the offset values returned by the make command, then execute the CST with this file to sign the OS image.
The new generated file is the OS signed image.

A step-by-step guide to authenticate the OS container as described here is available in the

mx8_mx8x_secure_boot.txt guide from U-Boot documentation.

 NOTE

4.4.3 SECO authentication service via SCU API

It is also possible to authenticate an image with the sc_misc_seco_authenticate(…) function of the SCU API.

It is used to authenticate an SECO image or issue a security command. The addr parameter often points to a container, but it
can also be some data (or even unused) for some commands.

It is recommended to load the container header in CAAM Secure Memory (SM) instead of OCRAM as SECO does

not have direct access to OCRAM and OCRAM does not have the same access permission control that CAAM

SM does.

 NOTE

4.5 SRK revocation

It is possible to revoke an SRK (for instance if the SRK1 public key must be replaced to SRK2). If the SRK revoke bit is set, the
SECO firmware will set the fuse for that, but only after successful authentication of the header that contains the SRK revocation
command and the receipt of the COMMIT command with the corresponding argument. It can be performed with the Code Signing
Tool and the SCU API.

An SRK being used by the current container cannot be revoked

 NOTE

As only one SRK may be selected at boot time through an Install SRK CSF command, users must ensure that the CSF is updated
accordingly. It is possible to revoke only the first three SRKs, by burning the corresponding bit in the SRK_REVOKE [2:0] eFuse
field.

4.6 Known limitations

There are some known limitations:

• In i.MX 8 QXP B0, the container header size is limited to 4 kB. For the maximum number of images supported depending
on the cryptographic algorithm, see Maximum number of images supported on page 12.

• The SECO FW ignores image integrity failure if detected in open mode.

• On L4.14.78_1.0.0GA release, there is a 1K SPL limitation for the container header size.

NXP Semiconductors

SECO features

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 11 / 13

A Maximum number of images supported

Table 3. Maximum number of images supported

Maximum number of images supported

No Blob Blob of AES key
128-bit

Blob of AES key
192-bit

Blob of AES key
256-bit

ECC P256 28 28 28 28

+ Cert 27 27 26 26

ECC P384 27 27 26 26

+ Cert 25 25 25 25

ECC P521 26 25 25 25

+ Cert 23 23 23 23

RSA 2k 21 20 20 20

+ Cert 16 16 16 16

RSA 3k 16 15 15 15

+ Cert 9 9 9 9

RSA 4k 11 10 10 10

+ Cert 2 2 2 2

NXP Semiconductors

Maximum number of images supported

Secure Boot on i.MX 8 and i.MX 8X Families using AHAB, Rev. 0, May 2019
Application Note 12 / 13

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: May 2019

Document identifier: AN12312

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Purpose
	1.2 Intended audience
	1.3 Scope
	1.4 Definitions, acronyms, and abbreviations
	1.5 References

	2 Overview
	2.1 AHAB secure boot architecture
	2.2 Secure boot flow

	3 Secure boot implementation
	3.1 Overview
	3.2 Protocols
	3.3 Generating a PKI tree
	3.4 Examples

	4 SECO features
	4.1 Getting chip info
	4.2 Lifecycle
	4.3 Verifying/Decoding SECO events
	4.4 Authenticating OS containers (and other ones)
	4.4.1 Overview
	4.4.2 Authentication with code signing tool
	4.4.3 SECO authentication service via SCU API

	4.5 SRK revocation
	4.6 Known limitations

	A Maximum number of images supported

