

Lindab DAU Constant or Variable Flow Damper Instruction Manual

Home » Lindab » Lindab DAU Constant or Variable Flow Damper Instruction Manual

lindab
dampers and measure units
DAU Constant or Variable Flow Damper
Instruction Manual

Constant-/variable flow damper DAU

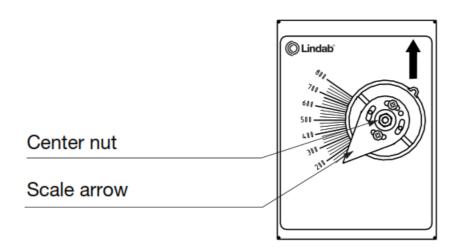
Contents

- 1 DAU Constant or Variable Flow Damper
- 2 Technical data
- 3 Dimensions
- 4 Documents / Resources
- **5 Related Posts**

DAU Constant or Variable Flow Damper

Description

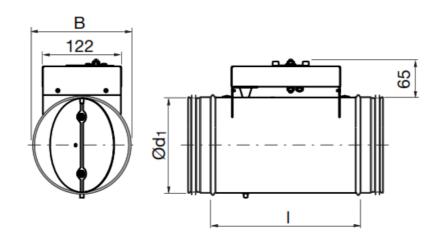
Constant flow damper with manual setting of one flow DAU is a constant flow damper, which facilitates balancing of ventilation systems and gives correct flow from the start. The unit compensates e.g. connection and disconnection of system parts, clogging of filters and ducts, thermal lift forces, wind effects, window opening etc. \emptyset 80–315 fullfills pressure class A in closed position.


Fulfils tightness class C.

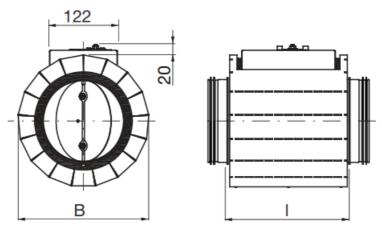
There is a separate assembly, measuring, balancing and maintenance instruction for this product.


Technical data

Flow setting


The flow is set by loosing the center nut and via the knob turning the scale arrow so it points at the wanted flow on the scale. Then the center nut is tightened.

Ordering example



Dimensions

Ød1 nom	I [mm]	B [mm]	m [kg]	Tightness class across closed bla de
80	246	122	1,35	0
100	246	122	1,40	0
125	246	135	1,65	0
160	246	170	1,85	0
200	246	210	2,26	0
250	284	260	3,35	0
315	334	325	4,75	0

DAU is available with a 45 mm external insulation and an outer sheet metal shell for lower sound radiation to the surroundings. It is then called DALU.

Ød1 nom	I [mm]	B [mm]	m [kg]	Tightness class across closed bla de
80	246	170	2,35	0
100	246	190	2,50	0
125	246	215	2,90	0
160	246	250	3,45	0
200	246	290	4,06	0
250	284	340	6,05	0
315	334	405	8,60	0

Constant-/variable flow damper

Summary

- DAU manual single flow unit
- DA2EU motorized twin flow unit
- DAVU motorized variable flow unit
- Diameters Ø 80-315
- Flow range 15-830 l/s (54-2988 m³/h)
- Pressure range 50-1000 Pa (over the unit)
- Independent of mounting direction
- · Handles 50 mm duct insulation

Function

The constant flow damper is an automatic damper, which at varying pressures wholly mechanical and independent of external energy sources maintains a set flow constant. The force, needed for regulation, is taken from the passing air stream. The air stream across the blade attempts to close it and generates a closing torque. This is balanced by an opposed opening force from a spring. The greater the pressure across the blade the more it closes. A bellow eliminates oscillations, which could occur at unfavourable conditions of operation.

Types

The following types exists:

- DAU one flow unit with knob and arrow for manual setting of one flow.
- DA2EU two flows unit with electric motor for switching between two flows.
- DAVU variable flow unit with electric motor for continuous setting of one flow.

Material

Housing and damper blade are of galvanized sheet metal and shaft is of stainless steel.

Temperature

Working range: +5 to +70 °C.

Insulation

The units can handle 50 mm duct insulation without the scale or the motor being hidden.

DAU is available with an 45 mm external insulation and an outer sheet metal shell for lower sound radiation to the surroundings. Is then called DALU.

Regulating accuracy

The units are calibrated from factory within their whole working range. In this the units keep the flow constant within approximately ± 5 to $\pm 10\%$ of the set flow. Greater deviations occur at the lower flows, aspecially for small sizes.

Flow setting

The units can not be delivered from factory with a preset flow. You can set the flow yourself very easy following to the instruction for each product.

DAU, DA2EU, DAVU

Disturbance tolerance

In order to achieve the stated accuracy for the pre-set flow a straight distance of at least 3×d before and at least 1,5×d after the units are required. A mounting close to a source of disturbance (bend, saddle etc.) decreases the regulation accuracy and the flow may deverge from the set value.

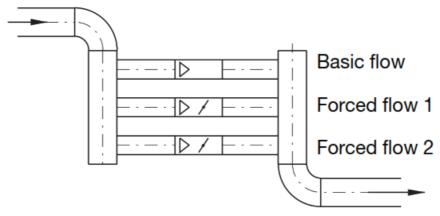
Change of direction

The units are independent of their mounting direction and one may deviate from the specified direction and mount them in any direction without affecting the accuracy.

Combinations

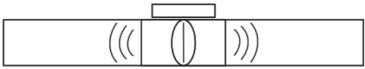
The units can be mounted together with e.g. a motorized shut off damper DTBU, see page. Constant flow damper combined with shut off damper can with advantage be used in groups at installations where you want:

• two flows, that lies too far away from each other for a two flow unit to handle


or

· more than two flows

Presume: Basic flow = 80 l/s


Forced flow 1 = 100 l/sForced flow 2 = 150 l/s

Four flows will then be posssible: 80, 180, 230 and 330 l/s.

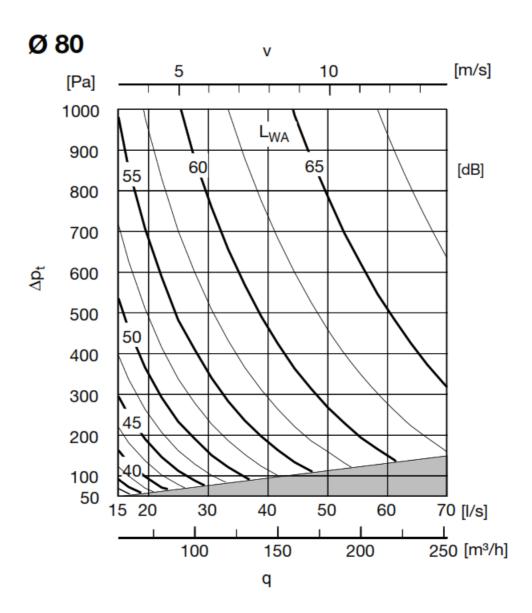
Technical data

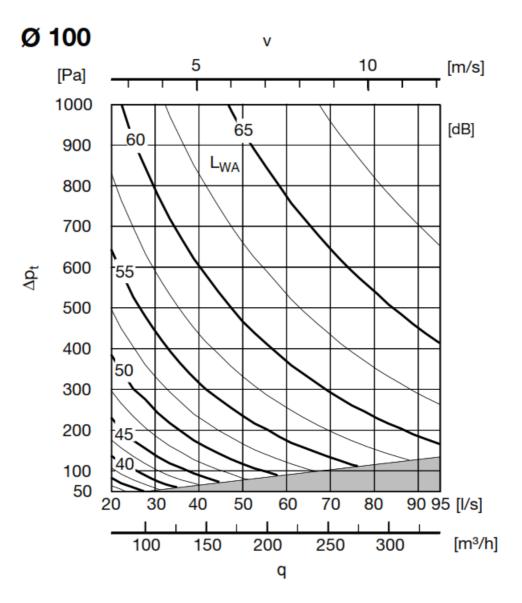
Pressure and flow ranges and sound to duct

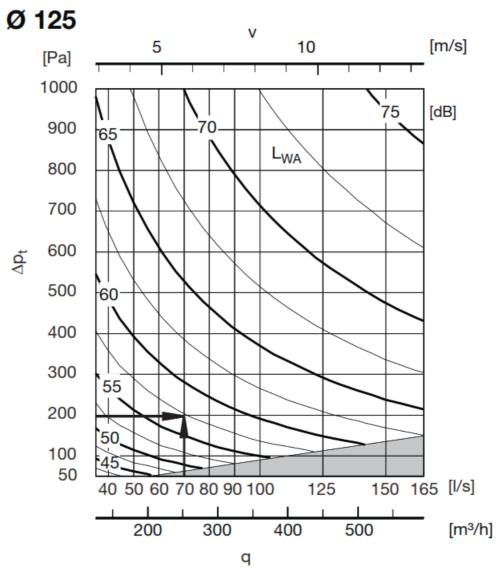
The graphs show A-weighted sound **power** level, LWA [dB], to duct. These curvs are intended for brief comparision. For more accurate calculation, please use the tables.

Example

Given: Diameter 125 mm

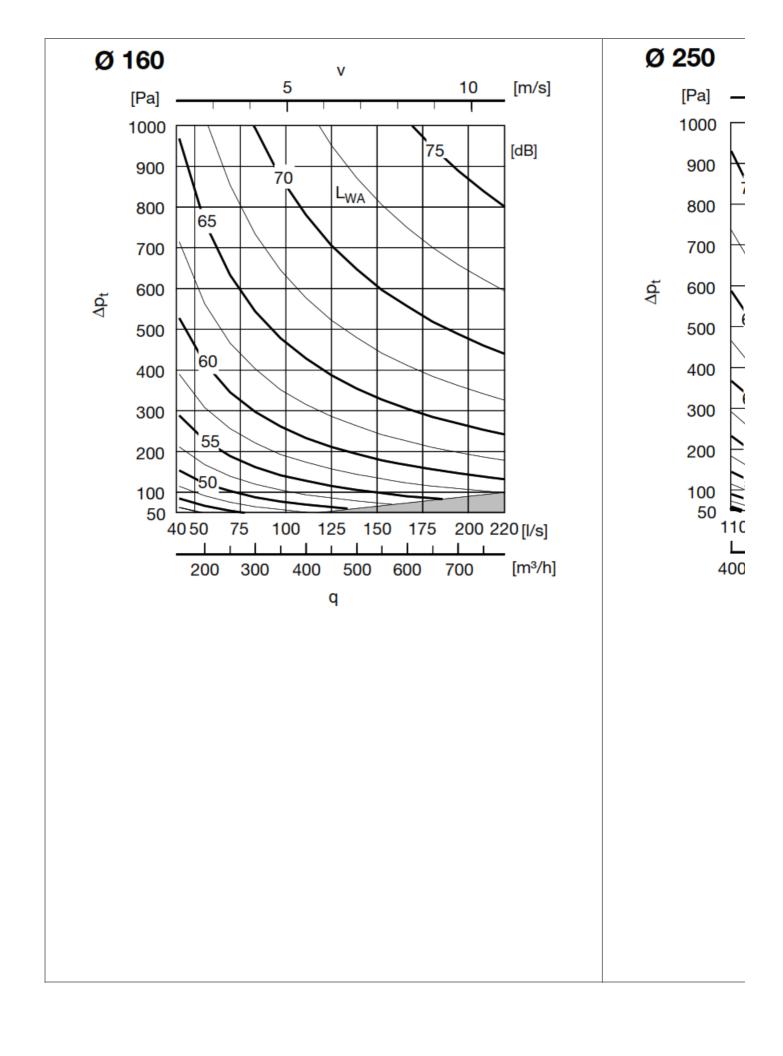

Flow 70 l/s

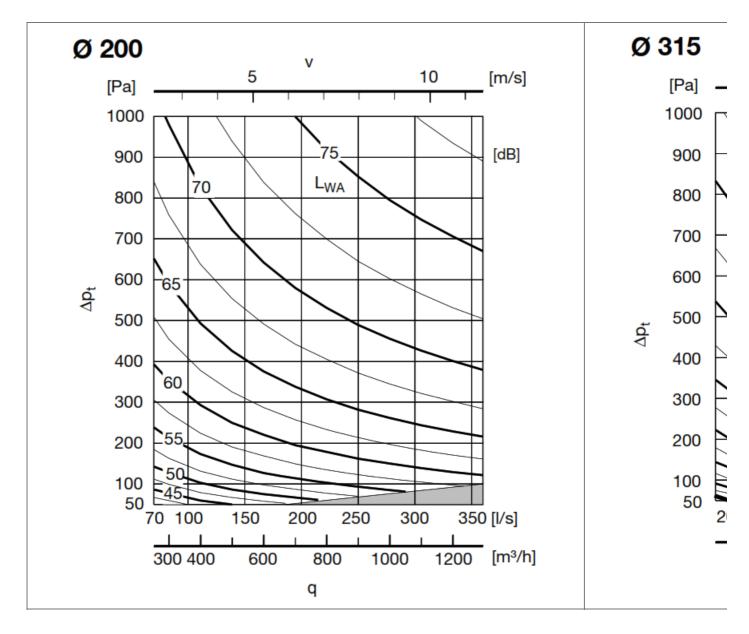

Pressure drop 200 Pa


The graph gives: A-weighted sound power level approx. 57 dB

The table gives: Sound power level as below

Centre fre- quency [Hz]	63	125	250	500	1 k	2 k	4 k	8 k
Sound power level [dB]	52	52	49	49	49	51	51	46

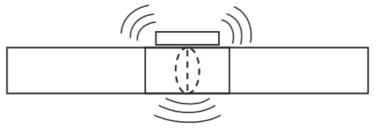




The grey area in the graph shows the minimum pressure drop needed for the product to start working. Even if the damper blade is fully open you get this pressure drop measured over the product.

Pressure and flow ranges and sound to duct

The grey area in the graph shows the minimum pressure drop needed for the product to start working. Even if the damper blade is fully open you get this pressure drop measured over the product.


Sound to duct

Sound power level, LW [dB], to duct in octave bands 1–8, 63–8000 Hz, as function of diameter, pressure drop and flow.

	Pressure		Velocity app. 2,5 [m/s]								Velocity app. 6 [m/s]								
Ød ₁	loss [Pa]			Cer	ntre fre	equen	cy [Hz	:]				Cer	ntre fre	equen	icy [Hz	2]			
	[Fa]	63	125	250	500	1k	2k	4k	8k	63	125	250	500	1k	2k	4k	8k		
					Flow	15 [l	/s]		Flow 30 [l/s]										
80	1000 500 200 100 50	51 45 37 32 26	49 43 35 30 24	44 38 30 25 19	44 38 30 25 19	46 40 32 27 21	49 43 35 30 24	49 43 35 30 24	44 38 30 25 19	56 51 45 41	56 51 45 41 -	53 49 43 39	53 49 43 39 -	53 49 43 39	55 51 45 41 -	55 50 44 40 –	50 46 40 35		
					Flow	20 [l	/s]						Flow	45 [l/s]				
100	1000 500 200 100 50	56 49 39 34 26	53 46 37 31 24	48 41 31 26 18	48 41 31 26 18	50 43 33 28 20	53 47 37 32 24	54 47 37 32 24	48 42 32 27 19	59 54 47 42 -	59 54 47 42	57 51 44 39	57 51 44 39	57 51 45 40	59 53 47 42 -	58 53 46 41 -	53 48 41 36		
					Flow	30 [1	/s]						Flow	70 [l/s]				
125	1000 500 200 100 50	60 54 46 40 34	58 52 44 38 32	52 46 38 32 26	52 46 38 32 26	54 48 40 34 28	58 52 44 38 32	58 52 44 38 32	53 47 39 33 27	64 59 52 46	64 59 52 46	62 56 49 44	62 57 49 44	62 57 49 44	64 59 51 46	63 58 51 45	59 53 46 40		
					Flow	/ 40 [I	/s]			Flow 120 [l/s]									
160	1000 500 200 100 50	62 56 49 43 37	59 53 46 40 34	52 47 39 33 27	52 47 39 33 27	55 49 42 36 30	59 53 46 40 34	60 54 47 41 35	54 48 41 35 29	67 61 53 48	67 61 53 48	65 59 51 46	65 59 51 46	65 59 51 46	67 61 53 48	66 60 52 47	61 55 47 42		
					Flow	/ 70 [I	/s]			Flow 180 [l/s]									
200	1000 500 200 100 50	66 59 50 43 37	63 56 47 40 34	57 50 41 34 28	57 50 41 34 28	59 53 43 36 30	63 57 47 40 34	63 57 47 40 34	58 52 42 35 29	69 62 54 47	69 62 54 47	66 60 51 45	66 60 51 45	66 60 52 45	68 62 54 47	68 61 53 46	63 57 48 42 -		
					Flow	110 [[l/s]						Flow	300	[l/s]				
250	1000 500 200 100 50	67 60 50 43 35	64 57 47 40 32	59 51 41 34 26	59 51 41 34 26	61 53 43 36 28	65 57 47 40 32	65 57 47 40 33	60 52 42 35 27	70 63 55 49 43	70 63 55 49 43	67 61 53 47 40	68 61 53 47 41	67 61 53 47 40	69 63 54 48 42	69 62 54 48 42	64 57 49 43 37		
		Flow 170 [l/s]									Flow 470 [l/s]								
315	1000 500 200 100 50	69 61 50 42 35	66 58 47 40 32	60 52 41 34 26	60 52 41 34 26	62 54 44 36 29	66 58 48 40 33	67 59 48 40 33	61 53 43 35 28	70 64 56 50	70 64 56 50	68 62 54 47	68 62 54 47	68 62 54 47	70 64 56 49	69 63 55 49	65 59 50 44		

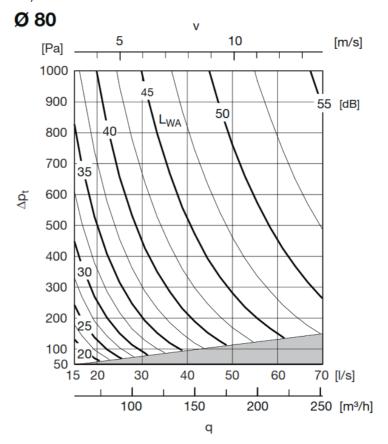
	Pressure			Vel	ocity	app. 9	9 [m/s]				Velo	ocity a	pp. 1	2 [m/s	s]	
$Ød_1$	loss [Pa]			Cer	ntre fr	equen	cy [Hz	<u>z]</u>				Cer	ntre fre	equen	cy [Hz	<u>z]</u>	
	[Fa]	63	125	250	500	1k	2k	4k	8k	63	125	250	500	1k	2k	4k	8k
					Flow	/ 45 [l.	/s]					Flow	70 [l	/s]			
80	1000 500 200 100 50	58 55 50 -	59 56 51 -	59 55 51 -	59 55 51 -	58 54 50 -	59 55 51 -	58 54 50 -	53 50 45 -	61 59 55 -	64 61 58 -	65 62 59 -	65 62 59 -	63 60 57 -	63 60 57 -	61 59 55 -	57 55 51 -
					Flow	/ 70 [l.	/s]						Flow	95 [l/s]		
100	1000 500 200 100 50	61 56 51 47	62 58 52 48	61 57 51 47	62 57 51 47	61 56 50 46	62 57 51 47	61 56 50 46	56 51 46 42	62 59 53 -	64 60 55 -	65 61 56 -	65 61 56 -	63 59 54 -	63 60 54 -	62 58 53 -	58 54 49 -
					Flow	110 [l/s]						Flow	165 [[/s]		
125	1000 500 200 100 50	66 61 54 50	67 62 55 51	67 62 55 50	67 62 55 50	66 61 54 49	67 62 55 50	66 61 54 49	61 56 49 45	68 63 57 -	71 66 59 -	71 66 60 -	72 67 60 -	70 65 58	70 65 58 -	68 63 57 -	64 59 52 -
					Flow	180 [l/s]			Flow 220 [l/s]							
160	1000 500 200 100 50	69 63 55 50	70 64 56 51	69 63 56 50	69 63 56 50	68 62 55 49	69 63 56 50	68 62 55 49	64 58 50 45	70 64 56 51	71 66 58 52	71 66 58 52	71 66 58 52	70 64 57 51	71 65 57 52	69 64 56 50	65 59 52 46
					Flow	280 [l/s]			Flow 360 [l/s]							
200	1000 500 200 100 50	70 64 56 50	71 65 57 51	71 64 56 50	71 64 56 50	70 63 55 49	71 64 56 50	70 63 55 49	65 59 51 45	71 65 57 51 -	73 67 58 53	73 67 59 53	73 67 59 53	72 65 57 52	72 66 58 52	71 65 56 51	67 60 52 47
					Flow	450 [l/s]			Flow 600 [l/s]							
250	1000 500 200 100 50	71 65 57 51	72 66 58 52	71 65 57 52	71 65 57 52	70 64 56 51	71 65 57 52	70 64 56 51	66 60 52 46	72 66 58 54	73 68 60 55	74 69 61 56	74 69 61 56	72 67 59 54	73 67 59 55	71 66 58 53	67 62 54 49
		Flow 700 [l/s]									Flow 830 [l/s]						
315	1000 500 200 100 50	71 66 58 52	72 67 59 53	72 66 59 53	72 66 59 53	71 65 58 52	72 66 59 53	71 65 58 52	66 61 53 47	72 66 59 -	73 67 60 –	73 67 60 –	73 68 60 -	72 66 59 -	73 67 60 –	71 66 58 -	67 61 54 -

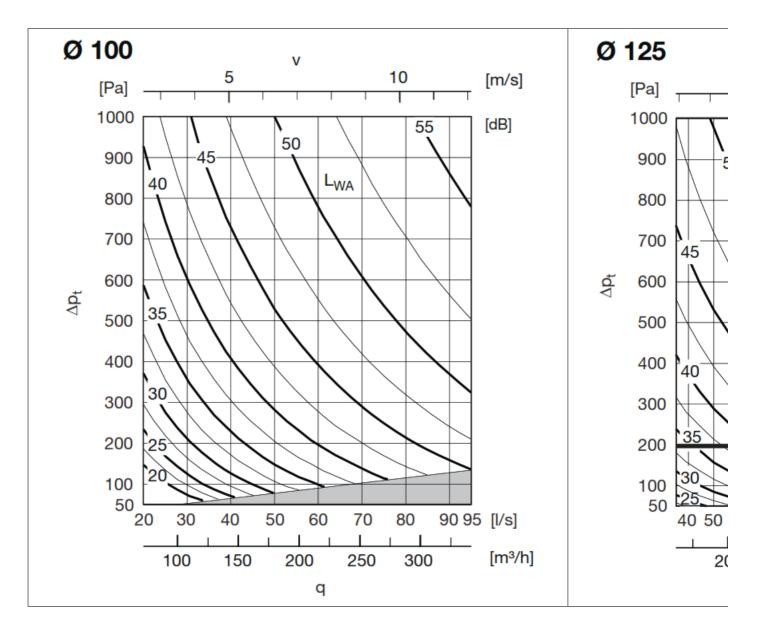
Pressure and flow ranges and sound to the surroundings

The graphs show A-weighted sound power level, LWA [dB], to the surroundings.

Example:

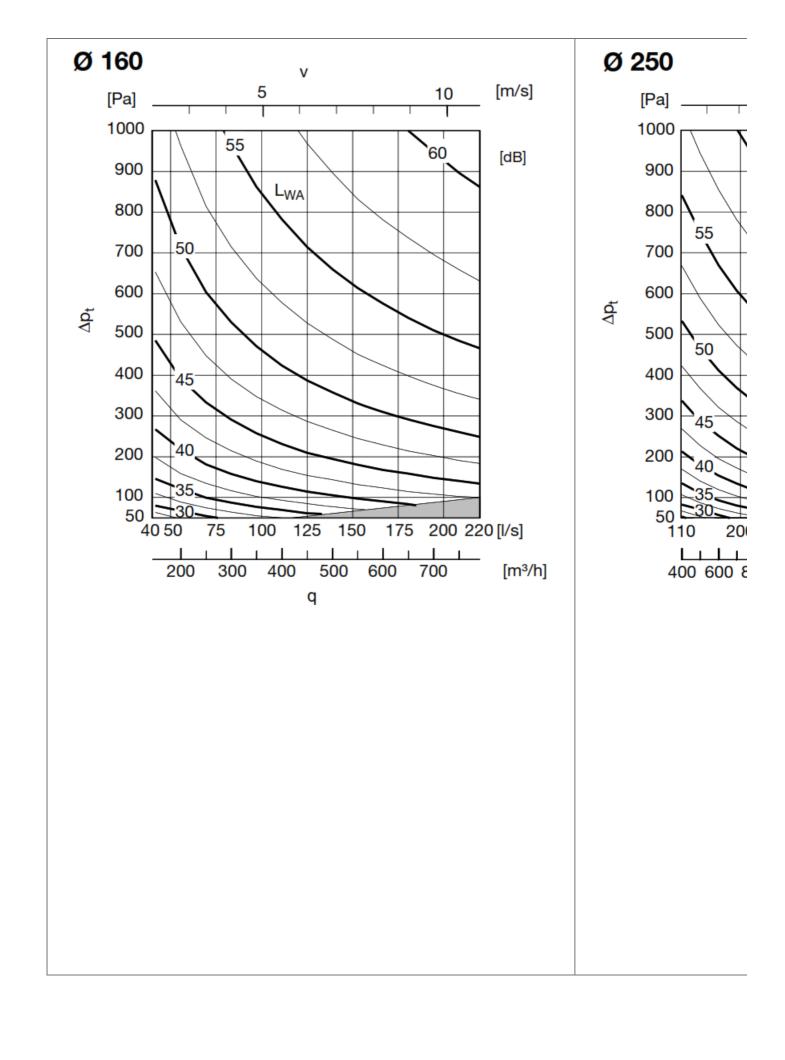
Given: Diameter 125 mm Flow 70 l/s

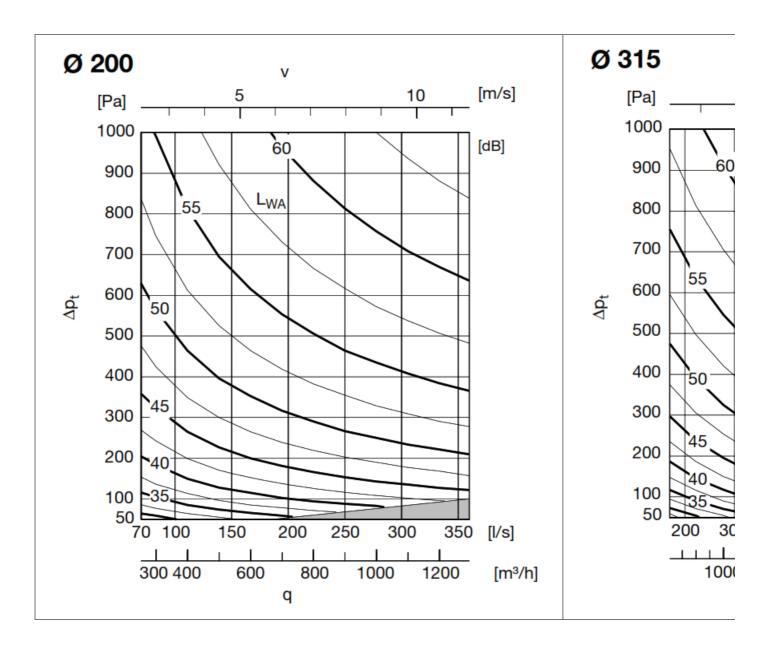

Pressure drop 200 Pa


The graph gives: A-weighted sound power level approx. 40 dB

The A-weighted sound **pressure** level in the mittle of the room becomes approx. 8 dB lower than these graph values.

With insulation shell around the unit (the DALU unit) the Aweighted sound **pressure** level in the mittle of the room becomes appox. 26 dB lower than the graph values on condition that also the connected ducts are attenuated (insulated) to the same extent.


Still lower sound pressure level can be achieved with additional constructional sound attension measures (false ceiling, high room attenuation).



The grey area in the graph shows the minimum pressure drop needed for the product to start working. Even if the damper blade is fully open you get this pressure drop measured over the product.

Pressure and flow ranges and sound to the surroundings

The grey area in the graph shows the minimum pressure drop needed for the product to start working. Even if the damper blade is fully open you get this pressure drop measured over the product. Lindab reserves the right to make changes without prior notice

Documents / Resources

<u>Lindab DAU Constant or Variable Flow Damper</u> [pdf] Instruction Manual DAU, Constant or Variable Flow Damper, DAU Constant or Variable Flow Damper, DA2EU, DAV U

Manuals+,