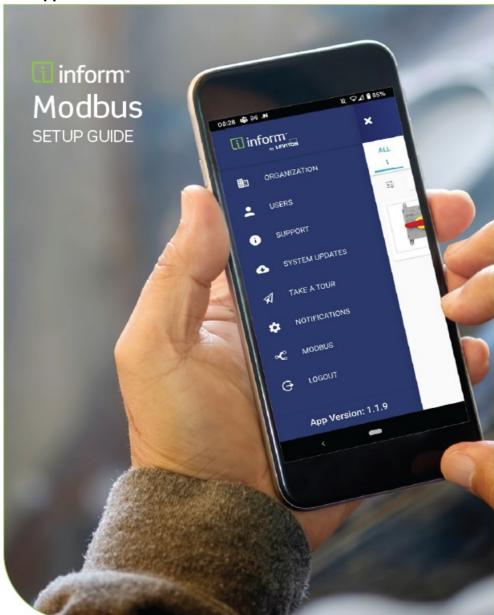


LEVITON Inform App User Guide

Home » Leviton » LEVITON Inform App User Guide 🖺

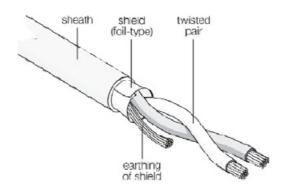
Contents


- 1 LEVITON Inform App
- **2 INSTALLATION**

INSTRUCTIONS

- **3 MODBUS CONFIGURATION**
- **4 SUPPORTED FUNCTIONS**
- **5 CONFIGURATION REGISTERS**
- 6 Documents / Resources
 - **6.1 References**
- **7 Related Posts**

LEVITON Inform App

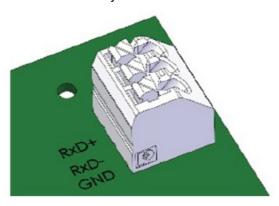

INSTALLATION INSTRUCTIONS

ELECTRICAL SERVICE

For instructions on the installation and connection of the switch to the electrical service, refer to the installation instructions included in the box. Instruction sheets can also be found on www.leviton.com.

Cabling

RS-485 is a three-wire bus. One twisted pair is required for the two data signal wires, plus an additional wire for a common reference, which does not need to be twisted. A cable with two twisted pairs may also be used, where one or both conductors of the second pair is/are used for the common.



Shielding

A shield may not be needed for short networks, but is recommended and required for long networks or networks in an electrically noisy environment. The shield must be connected to a ground point at ONE side only. Although the shield can be used for the common reference, it is preferable to use a separate wire for the common.

Termination

RS-485 (EIA-485) networks typically require a termination resistor of 120Ω . Depending on the bus, a termination resistor may be needed. Additional bias resistors may also be needed.

Topology

Utilize a daisy-chain bus configuration for connecting up to 32 devices.

Connection

The terminal block on the Modbus communication PCBA can accommodate 24 – 16 AWG cable. Connect the communication cable to the terminal block on the Modbus PCBA.

MODBUS CONFIGURATION

The following describes the Modbus commands and messages. The basic instructions should be adequate for Modbus host programming. The Modbus Interface requires about 150 ms to read sensor elements and respond. The default configuration is:

Modbus address: 02Baud Rate: 19200Data Length: 8-bit

· Parity: Even

• Stop Bits: 1

NOTE:

To reset the communication parameters (including device address) to the factory default settings, press and hold the reset button (SW1) on the Display PCBA for 5 to 7 seconds)

SUPPORTED FUNCTIONS

Function Code [dec]	Function Code [hex]	Action	Relevant Table
03	03	Read	Holding Registers
04	04	Read	Input Registers
06	10	Write	Holding Registers

CONFIGURATION REGISTERS

The following registers represent the Modbus network communication parameters:

	Register Address	Data Ad dress [D	1	Data Ty	Value Rang e		Default Value	
Name	Address	ec]	ex]	pe	Min	Max	value	Description
Address	40001	0	0	UINT16	1	247	2	Value between 1 and 247
Baud Ra te	40002	1	1	UINT16	96	1152	192	Modbus Baud rate value/ 100; 96: 9600, 192: 19200, 384: 38400, 576: 57600
Parity	40003	2	2	UINT16	0	2	2	No parity, 2: Even Parity, 1: Odd Parity
Stop Bit s	40004	3	3	UINT16	1	2	1	
Data Le ngth	40005	4	4	UINT16	8	8	8	The Only acceptable value is 8 for RTU mode

MEASUREMENT REGISTERS

The following registers represent the sensor and alarm outputs available:

Name	Register Address	Modbus D ata Addre ss [Dec]	Modbus D ata Addre ss [Hex]	Number o f Modbus Registers	Data Type	Description
Line 1 Voltage	30001	0	0	1	INT16	Line 1 RMS Voltage (V)
Line 2 Voltage	30002	1	1	1	INT16	Line 2 RMS Voltage (V)

		1			1	
Line 3 Voltage	30003	2	2	1	INT16	Line 3 RMS Voltage (V)
Load 1 Voltage	30004	3	3	1	INT16	Load 1 RMS Voltage (V)
Load 2 Voltage	30005	4	4	1	INT16	Load 2 RMS Voltage (V)
Load 3 Voltage	30006	5	5	1	INT16	Load 3 RMS Voltage (V)
Ground Status	30007	6	6	1	UINT16	GND/Earth Present, GND/Earth Fault
Switch Status	30008	7	7	1	UINT16	1: Switch Open, 0: Switch Clo sed
Temperature	30009	8	8	1	INT16	Temperature (°C); Multiply by 0.1
Humidity	30010	9	9	1	UINT16	Relative Humidity (%); 0-100
Liquid Accumula tion	30011	10	А	1	UINT16	1: Liquid Accumulation Detected, 0: Absence of Liquid
Line 1 Avg Volta ge	30012	11	В	1	INT16	Not yet implemented
Line 2 Avg Volta ge	30013	12	С	1	INT16	Not yet implemented
Line 3 Avg Volta ge	30014	13	D	1	INT16	Not yet implemented
Line 1 LED	30015	14	Е	1	UINT16	Line 1 Voltage State 0: Off (N ormal), 2: Energized (Normal), 4: Improper Voltage
Line 2 LED	30016	15	F	1	UINT16	Line 2 Voltage State 0: Off (N ormal), 2: Energized (Normal), 4: Improper Voltage
Line 3 LED	30017	16	10	1	UINT16	Line 3 Voltage State 0: Off (N ormal), 2: Energized (Normal), 4: Improper Voltage
Load 1 LED	30018	17	11	1	UINT16	Load 1 Voltage State 0: Off (Normal), 2: Energized (Norm al), 4: Improper Voltage
Load 2 LED	30019	18	12	1	UINT16	Load 2 Voltage State 0: Off (Normal), 2: Energized (Norm al), 4: Improper Voltage
Load 3 LED	30020	19	13	1	UINT16	Load 3 Voltage State 0: Off (Normal), 2: Energized (Norm al), 4: Improper Voltage
GND LED	30021	20	14	1	UINT16	Ground Continuity State 2: N ormal, 4: Fault

Fault LED	30022	21	15	1	UINT16	General warning error states 2: Normal, 6: Fault. Includes I iquid accumulation sensor and internal communication state
Load 1 Current	30023	22	16	2	INT32	Load 1 current in mA
Load 2 Current	30025	24	18	2	INT32	Load 2 current in mA
Load 3 Current	30027	26	1A	2	INT32	Load 3 current in mA
Load 1 Avg Curr ent	30029	28	1C	2	INT32	Not yet implemented
Load 2 Avg Curr ent	30031	30	1E	2	INT32	Not yet implemented
Load 3 Avg Curr ent	30033	32	20	2	INT32	Not yet implemented

DEVICE INFORMATION REGISTERS

The following registers represent the device information available:

Name	Register Address		Modbus D ata Addre ss [Hex]	Number o f Modbus Registers	Data Type	Description
------	---------------------	--	-----------------------------------	-----------------------------------	-----------	-------------

						3-7 characters,
						plus null terminator:
						1P+N+E = Single Phase, Neu tral,
						Ground
						2P+E = Single (split) Phase, Ground
						2P+N+E = Single (split) Phas e,
						Neutral, Ground 3P+E = Thre e-phase, Ground
						3P+N+E = Three-phase, Neu tral,
						Ground
						3PB+E = 4-wire Delta B leg hi gh
						3PB+N+E = 5-wire Delta B le g high
						3PB+E = 4-wire Delta B leg hi gh 3PB+N+E = 5-wire Delta B leg
						high
Wiring Config	31001	1000	3E8	6	String*	3PC+E = 4-wire Delta C leg h igh 3PC+N+E = 5-wire Delta I eg
						high C
						3PC+E = 4-wire Delta C leg h igh 3PC+N+E = 5-wire Delta C leg
						high
						DIP switch-based
Voltage Config	31007	1006	3EE	2	uint16	user-configured nominal volta ge
	31013-					
Reserved	31100			87		
		<u> </u>			<u> </u>	

Model Number	31101	1100	44C	32	String*	Device model number; 1-63 c haracters, plus null terminator
Serial Number	31133	1132	46C	16	String*	Device serial number; 1-31 c haracters, plus null terminator
Display PCBA F W Version	31149	1148	47C	6	String*	Display PCBA firmware versi on; 5-11 characters plus null t erminator
Power Sense P CBA FW Versio n	31155	1154	482	6	String*	Power Sense PCBA firmware version number; 5-11 charact ers
Modbus PCBA FW Version	31161	1160	488	6	String*	Modbus board firmware versi on number; 5-11 characters

SENSOR DATA FORMAT

Sensor data as delivered as signed and unsigned integers and strings. Consequently, numeric conversion may be required to display in preferred conventional units.

Voltage Format

The voltage value displayed for Line 1, Line 2, Line 3, Load 1, Load 2, and Load 3 is the measured RMS phase voltage measured at their respective switch terminals. Line 1 Avg, Line 2 Avg, and Line 3 Avg are calculated values. Volts (V) = ModbusData.

Current Format

The current value displayed for Line 1 Current, Line 2 Current, and Line 3 Current is the measured RMS current in milliamps. Line 1 Avg Current, Line 2 Avg Current, and Line 2 Avg Current are calculated values. Amps (A) = (ModbusData) /1000

Temperature Format

The measured temperature range is -40.0°C to 125.0°C. The Modbus data range is -400 to 1250. Temperature (°C) = (ModbusData) /10.

Humidity Format

The measured relative humidity range is 0% to 100%. The Modbus data range is 0 to 100. Relative Humidity (%) = ModbusData.

Ground Continuity

The ground continuity sensor has a two-state output: present or fault. The Modbus data is 0 (fault) or 1 (present).

Liquid Accumulation

The liquid accumulation sensor has a two-state output: liquid absent or present. The Modbus data is 0 (absent) or 1 (present).

Switch Position

The switch position sensor has a two-state output: switch open or closed. The Modbus data is 0 (closed) or 1 (open).

ERROR DETECTION

The Inform technology firmware processes the sensor outputs to determine if they are normal for the specified operating conditions. There are a series of status registers that can be used for alerting abnormal operating conditions. These registers control the LED display on the device and are also available to external devices.

Voltage alarms

The voltage sensor outputs, switch position indicator output, and device configuration settings are analyzed to determine if the voltage level present on each switch terminal is normal. These registers are Line 1 LED, Line 2 LED, Line 3 LED, Load 1 LED, Load 2 LED, and Load 3 LED.

- Unused terminals yield a "normal OFF" output.
- Load side terminals that are de-energized with the switch turned to the off position also yield an "OFF –
 normal" output.
- An RMS voltage of ≤ 50 V is classified as "de-energized".
- Applicable line side terminals and corresponding load side terminals that are energized when the switch handle is turned to the ON position yield an "Energized – normal" output.
- Terminals with voltage present when there should not be, or improper voltage level, yield an output of "improper voltage level."
- The Modbus data is 0 (Off Normal), 2 (Energized Normal), or 4 (Improper voltage level).

Ground Continuity Alarm

This alarm is a redundant register for indicating the ground continuity sensor's status, either normal or fault. The Modbus data is 2 (Normal) or 4 (Fault).

General Fault Alarm

This register is a "catch-all" for a variety of error conditions. If the device experiences any internal communication failures between the sensor and processing electronics or the liquid accumulation sensor detects liquid, an alarm will be generated. The Modbus data is 2 (normal) or 6 (error detected).

Situation	Error Response	Modbus Error Code
Query is not an allowable action for the server (slave)	Invalid Function Error	0x01
Writing to an undefined holding register	Invalid Address Error	0x02
Writing invalid data to a holding register	Invalid Data Error	0x03
Reading undefined holding register	Invalid Address Error	0x02
Reading undefined input register	Invalid Address Error	0x02
Incorrect CRC	None	N/A
Incorrect Parity	None	N/A
Incomplete Modbus Message	None	N/A
Incorrect interbyte timing	None	N/A

Documents / Resources

LEVITON Inform App [pdf] User Guide Inform App, Inform, App

References

- © Inform
- O Leviton | Switches, Dimmers, Outlets & Lighting Controls

Manuals+,