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Specifications

Hardware: Server with at least 1x A100 80GB

Software: NVIDIA Triton Inference Server

Product Usage Instructions

Define Scope 
In a perfect RAG application, a user inputs an instruction, and a system retrieves the most relevant document
chunk available to help complete the task. The document chunk and question are inserted into a prompt template,
and that prompt is then passed to an LLM, which outputs an accurate response to the instruction, using
information from the context chunk.

Deliverable: User input scope definition

Collect, Clean, and Chunk Text Documents

A fundamental piece of an RAG application is document collection. Given a user input, relevant document

chunks will be retrieved from the collection and passed, along with the input, to the LLM. To create this

document collection, gather the documents that contain the information necessary to answer user questions

within the application scope.

The document text should be parsed and cleaned. These steps depend on the document file types and the

format of the text. However, in most cases, removing consecutive whitespaces, non-ascii characters, and

boilerplate such as headers and footers is helpful. Also consider how text elements such as tables in your

documents will be structured – converting tables to markdown can improve readability for LLMs.

Finally, break the documents into small chunks, such that several can fit into the context window. Typically, a

good chunk size ranges from a single sentence to a small paragraph. Consider the structure of the documents

when chunking, so sentences, paragraphs, and elements like tables are not kept intact as much as possible.

The LLM framework LangChain has a collection of text splitter classes that can help in this step.

Deliverable: Collection of cleaned document chunks relevant to the scope



Manually Create Examples
The following figure shows an example using a document chunk from Lenovo Press.

Figure 1. Document chunk from Lenovo Press

The randomly selected document chunk contains information about the weight of an iDataPlex rack. If we are
building an RAG application to answer questions about technical specifications found on Lenovo Press, an in-
scope question is, “How much does an  iDataPlex rack weigh?” Lastly, we write the ideal response to that
question, using the information found in the document chunk.

Making LLMs Work for Enterprise Part 2: RAG Fine-Tuning Dataset Creation

Planning / Implementation

Large language models (LLMs) can perform useful tasks such as question answering and following instructions

to generate text. Context retrieval is a popular enhancement for LLM applications: a user gives an input, the

application retrieves relevant context, and the user input, along with the context are passed to the LLM for

informed output generation. Retrieval augmented generation (RAG) improves the accuracy, diversity, and

specificity of LLM generated responses by retrieving relevant context and adding it to the prompt (Lewis et al.,

2021). However, for enterprise applications, using RAG with an open source LLM may not suffice. Using open

source, instruction-fine-tuned LLMs, such as the Llama 2 Chat family, cedes the ability to tune the model output

to the specific use case. Depending on the use case, enterprise teams developing RAG applications may find

that open-source model responses are too verbose, prone to hallucination, or do not have the desired tone or

level of detail. Fine-tuning an LLM for the specific RAG application can resolve these issues (Zhang et al.,

2024).

In many cases, plenty of company-specific data–for example, existing documents or webpages–is available to

serve as context in a RAG application. But the questions used for fine-tuning should be the types of questions

expected from the end users of the application, and the answers should demonstrate the level of detail, tone,

length, and diversity with which the application should respond.

In this article, we will discuss the steps for creating a dataset for fine-tuning a LLM to be used in a RAG

application that answers questions about a company-specific knowledge base. It is unlikely that hundreds or

thousands of context-question-answer examples that align with the needs of the LLM application are readily

available. However, using a small set of high-quality human-created examples, we can use a high-performing

LLM to generate questions and answers that relate to the available context documents. This process will

augment the dataset while maintaining the question-and-answer patterns of the original human-created

examples. The size of the dataset can quickly scale to thousands of examples.

The deliverables created by following the steps in this article are:

User input scope definition

Collection of cleaned document chunks relevant to scope

50 randomly selected document chunks, each with a manually created question-and-answer pair

Several thousand LLM-generated (plus 20 manually created) document chunk-question-answer sets

Combined dataset of positive and negative RAG question and answer examples

Requirements

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2403.10131v1


The high-level requirements are as follows:

Hardware: Server with at least 1x A100 80GB

Software: NVIDIA Triton Inference Server

Click here to check for updates
Making LLMs Work for Enterprise Part 2: RAG Fine-Tuning Dataset Creation

Process overview

The process is as follows:

1. Define Scope

2. Collect, Clean, and Chunk Text Documents

3. Manually Create Examples

4. Generate a Large Q&A Dataset with Few-Shot Prompting

5. Create a Positive RAG Dataset

6. Create a Negative RAG Dataset

7. Combine Positive and Negative RAG Datasets

Define Scope

In a perfect RAG application, a user inputs an instruction, and a system retrieves the most relevant document

chunk available to help complete the task. The document chunk and question are inserted into a prompt

template, and that prompt is then passed to an LLM, which outputs an accurate response to the instruction,

using information from the context chunk.

First, the scope of user questions that the application should be able to respond to needs to be defined.

Defining the scope as consisting of certain question types–for example, “ask for product specifications,” “ask for

product descriptions,” and “ask for product recommendations”–may be helpful. It is also important to consider

the specificity and complexity of user questions in the scope definition. While manually creating this small

dataset, make sure the questions cover the entire scope you have defined for your application.

Deliverable: user input scope definition

Collect, Clean, and Chunk Text Documents

A fundamental piece of a RAG application is document collection. Given a user input, relevant document

chunks will be retrieved from the collection and passed, along with the input, to the LLM. To create this

document collection, gather the documents that contain the information necessary to answer user questions

within the application scope.

The document text should be parsed and cleaned. These steps depend on the document file types and the

format of the text. However, in most cases, removing consecutive whitespaces, non-ascii characters, and

boilerplate such as headers and footers is helpful. Also consider how text elements such as tables in your

documents will be structured – converting tables to markdown can improve readability for LLMs.

Finally, break the documents into small chunks, such that several can fit into the context window. Typically, a

good chunk size ranges from a single sentence to a small paragraph. Consider the structure of the documents



when chunking, so sentences, paragraphs, and elements like tables are not kept intact as much as possible.

The LLM framework LangChain has a collection of text splitter classes that can help in this step.

Deliverable: a collection of cleaned document chunks relevant to scope

Manually Create Examples

We randomly select 50 unique document chunks from the entire collection. Then, for each of those randomly

selected document chunks, we write a question that fits into the scope, for which the information in the

document chunk can inform the answer. (If no in-scope question can be answered by the context document,

write a value such as “[NOT IN SCOPE]” for both the answer and question.) Next, we write an answer to the

question, referencing the document chunk, exactly as we would desire the application to answer the end user

asking the question.

The following figure shows an example using a document chunk from Lenovo Press.

The randomly selected document chunk contains information about the weight of an iDataPlex rack. If we are

building a RAG application to answer questions about technical specifications found on Lenovo Press, an in-

scope question is, “How much does an iDataPlex rack weigh?” Lastly, we write the ideal response to that

question, using the information found in the document chunk.

After writing question-and-answer pairs for 50 randomly selected document chunks, we are ready to start using

an LLM to augment the dataset.

Deliverable: 50 randomly selected document chunks, each with a manually created question-and-answer pair

Generate a Large Q&A Dataset with Few-Shot Prompting

The LLM used for dataset augmentation should be a high-performing general purpose LLM. It is important to

review the LLM’s license to check that it allows for commercial use and allows for its outputs to be used to train

another LLM. Llama 2 13B, for example, is a high-performing model that can be referenced on a single A100



80GB. It is commercially licensed and, although in general its responses cannot be used to train another AI

model, the license states that using the outputs to further train a Llama 2 family model is allowed.

Low-Rank Adaptation (LoRA) fine-tuning can yield high-performing task-specific LLMs with just hundreds or

thousands of high-quality training examples. A high-performing LLM like Llama 2 13B can capture the intent of

few shot examples and generate many more examples that follow the same pattern at scale. This process can

quickly augment our dataset, but the quality of data is likely to be lower than it would be if all the examples were

made manually. A larger dataset can help the fine-tuned model distill the desired patterns. Therefore, it is best

to yield a dataset of several thousand examples.

The strategy of few-shot prompting involves providing pairs of input and the desired model output, then

appending the unlabeled input to which the model will respond. Ideally the LLM will generate an output following

the pattern of the prior examples. The prompts should follow a clear format to instruct the LLM to generate the

next output.

Figure 2 shows an example format for a few-shot prompting the LLM to generate a question-and-answer pair

for a given document chunk text.

Details on few-shot implementation. The more examples you can provide in the prompt, the more likely the LLM

will be able to generalize the pattern of your examples. Make sure at least two full examples fit into the context

window. If not, the chunk size should be decreased. If n examples fit into your prompt, n unique examples

should be randomly selected from the manually created dataset and added to the prompt in random order.

Random selection and ordering will help the augmented dataset generalize the patterns of the manually

created dataset.

Deliverable: several thousand LLM-generated (plus 20 manually created) document chunk-question-answer

sets

Create a Positive RAG Dataset

The first major component of a RAG Q&A application will retrieve document chunks that, ideally, are relevant to the
user’s question. These document chunks, along with the question, are combined into a prompt that is passed to
the second major component of the application, the LLM inference. The LLM’s job is to determine if any of the
prompt’s document chunks contain the answer to the question, and, if they do, use that information to generate an
accurate answer. With a large collection of document chunks and a dataset of several thousand document chunk-
question-answer sets, we can train an LLM to perform this job. However, first the data must be arranged into the
format matching that of the RAG application: an input (prompt) containing document chunks and a question, paired
with an output (generation) answering the question using information from the chunks.



For each of the several thousand document chunk-question-answer sets previously created, we will create
a RAG training example by following this process:

1. Randomly select the total number of document chunks to include in the prompt (ranging from 1 to one fewer

than the maximum number of chunks that fit into the to-be-fine-tuned LLM’s context window)

2. Out of the total number of document chunks, randomly select the index for the relevant document chunk. For

example, if the total number of document chunks is 4, the single relevant document chunk could be the first,

second, third, or fourth document chunk in the prompt; if the total number of document chunks is 1, the single

relevant document chunk will be the only document chunk included in the prompt.

3. Create the RAG prompt by concatenating document chunks that are randomly selected from the entire

collection of document chunks (and are therefore irrelevant to the question). Insert the single relevant document

chunk into its selected position.

4. Append the question to the end of the prompt.

5. Save the example as a JSON object with the prompt as the value for the “input” key, and the answer to the

question as the value for the “output” key.

Deliverable: several thousand prompts (containing a question, preceded by one relevant document chunk and
possibly irrelevant document chunks) paired with answers

Create a Negative RAG Dataset

Sometimes, the retrieval component of a RAG application may fail to retrieve a relevant document chunk for the
user’s question. A common flaw in RAG applications that use chat-fine-tuned models, such as the Llama 2 chat
family, is that these LLMs tend to hallucinate inaccurate answers to questions when relevant context is not
provided. LLM hallucinations can lead to inaccurate responses and deteriorate users’ trust in the application.
Including unanswerable examples with appropriate outputs in the fine-tuning dataset can help prevent LLM
hallucination, making the application more trustworthy. The positive RAG dataset created in the prior section is
used to train an LLM how to extract answers to questions when relevant context is given. Now we will make a
negative RAG dataset, which will be used to train an LLM how to respond when relevant information is not
available for the given question. First, we create a collection of many different responses the LLM could give when
it does not know the answer. We can manually create the first several and save them to a text file, separated by
newlines.

Here is an example:

By randomly selecting and sorting these manually created examples, we can create prompts to pass to a LLM.
The LLM should follow the pattern and generate new lines that follow the same pattern. Keep generating new
responses that follow this pattern until there are several hundred unique responses. Manually check the resulting
collection to be sure the generated responses properly follow the pattern as desired. The next step in making a
negative RAG dataset is similar to the positive RAG dataset creation process, with some important differences.



For each of the several thousand document chunk-question-answer sets previously created, we will create
a RAG negative training example by following this process:

1. Randomly select the total number of document chunks to include in the prompt (ranging from 1 to one fewer

than the maximum number of chunks that fit into the to-be-fine-tuned LLM’s context window)

2. Create the RAG prompt by concatenating document chunks that are randomly selected from the entire

collection of document chunks (and are therefore irrelevant to the question). Only use randomly selected,

irrelevant document chunks; do not use the relevant document chunk in the prompt.

3. Append the question to the end of the prompt.

4. Save the example as a JSON object with the prompt as the value for the “input” key. Randomly select a

negative response from the generated collection and save it as the value for the “output” key in the JSON

object.

Deliverable: Several thousand prompts (containing a question, one-to-multiple irrelevant document chunks)
paired with negative (i.e., “I don’t know,” and similar) responses

Combine Positive and Negative RAG Datasets

The final step in generating a dataset for RAG Q&A fine-tuning is to combine the positive and negative

datasets. The ratio of positive-to-negative examples in the training dataset should be high, since positive

examples contain the important pattern of extracting an answer from the provided context. Therefore, we use all

the positive examples in the final dataset, but only use enough negative examples so they make up ten percent

of the total dataset. If LLM hallucination is too common after the initial fine-tune, we can further fine-tune the

LLM with a larger percentage of negative examples.

Deliverable: Combined dataset of positive and negative RAG question and answer examples

Conclusion

By following this process, we have defined the scope of user inputs the application should handle and

created a dataset that can be used to fine-tune an LLM for the application. This dataset is designed to

help the fine-tuned LLM (1) generate the desired response to in-scope questions using relevant context

document chunks and (2) generate a negative response when no relevant context is provided. These

features give the enterprise greater control over the LLM responses while improving the trustworthiness

and accuracy of the RAG application.

Coming soon: The next article in this series, Part 3: Generative LLM Fine-tuning for RAG.

For more information on Lenovo offerings for Generative AI, see the Reference Architecture for

Generative AI Based on Large Language Models (LLMs), available from

https://lenovopress.lenovo.com/lp1798-reference-architecture-for-generative-ai-based-on-large-

language-models.

Author

Chris Van Buren is a Staff Data Scientist at Lenovo. He researches generative AI for enterprise use cases

and has developed retrieval augmented generation (RAG) applications with open-source, on-premises

LLMs.
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FAQ

Q: What are the high-level requirements for this product?
A: The high-level requirements include hardware specifications of a server with at least 1x A100 80GB and
software requirements of NVIDIA Triton Inference Server.

Q: How should I clean and chunk text documents for this product?
A: To clean and chunk text documents, ensure you remove consecutive whitespaces, non-ASCII characters, and
boilerplates such as headers and footers. Break the documents into small chunks ranging from a single sentence
to a small paragraph for optimal usage with LLMs.
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