AEM30300 Quick Start Guide EVK
[e-peas semiconductors logo]
Features
Connectors
- 3 screw connectors for the source (1 for the DC and 2 for the AC)
- 1 screw connector + 1 JST connector for the Storage Element
- 1 screw connector for the application supply
- 1 screw connector for RZMPP
Configuration
- 3 jumpers R_MPP[x] to define the MPP ratio linked to the harvester technology
- 2 jumpers T_MPP[x] to define the MPP timing
- 4 jumpers STO_CFG[x] to define the storage element protection levels
- 4 resistors footprint related to the custom mode (STO_CFG[3:0]=LHHH)
- 1 jumper to set the dual cell supercapacitor BAL feature
- 3 jumpers to enable the different modes
- 2 jumpers to enable the application output supply
- 1 jumper to select the rectifier
Size
- 79mm x 49mm
- 4 x M2.5 Mounting holes
Support PCB
BOM around the AEM30300
| Designator | Description | Quantity | Manufacturer | Link |
|---|---|---|---|---|
| U1 | AEM30300 - Symbol QFN 28-pin | 1 | e-peas | order at sales@e-peas.com |
| LDCDC | Power inductor 10 μH - 1.76A | 1 | Murata | DFE252010F-100M |
| CINT | Ceramic Cap 10 μF, 6.3V, 20%, X5R 0402 | 1 | Murata | GRM155R60J106ME15 |
| CSRC | Ceramic Cap 15 μF, 6.3V, 20%, X5R 0402 | 1 | Murata | GRM155R60J156ME05 |
| CSTO (optional) | Ceramic Cap 100 μF, 6.3V, 20%, X5R 1206 | 1 | TDK | C3216X5R1A107M160AC |
Footprint & Symbol
Informations available on the datasheet
Step 1: AEM30300 Configuration
MPP timing: T_MPP[0] – T_MPP[1]
MPP ratio: R_MPP[0] – R_MPP[1] – R_MPP[2]
MPPT Ratio Configuration
| Configuration pins R_MPP[2] | Configuration pins R_MPP[1] | Configuration pins R_MPP[0] | MPPT ratio | VMPP/VOC |
|---|---|---|---|---|
| 0 | 0 | 0 | 35% | |
| 0 | 0 | 1 | 50% | |
| 0 | 1 | 0 | 60% | |
| 0 | 1 | 1 | 65% | |
| 1 | 0 | 0 | 70% | |
| 1 | 0 | 1 | 75% | |
| 1 | 1 | 0 | 80% | |
| 1 | 1 | 1 |
MPPT Timing Configuration
| Configuration pins T_MPP[1] | Configuration pins T_MPP[0] | Sampling duration | Sampling period |
|---|---|---|---|
| 0 | 0 | 3.82 ms | 18.28 ms |
| 0 | 1 | 5.1 ms | 280.0 ms |
| 1 | 0 | 71.6 ms | 1.12 s |
| 1 | 1 | 1.12 s | 71.7 s |
Storage Element Voltages Protection
Storage Element voltages protection: STO_CFG[3] – STO_CFG[2] – STO_CFG[1] – STO_CFG[0]
| STO_CFG[3] | STO_CFG[2] | STO_CFG[1] | STO_CFG[0] | Storage element threshold voltages VOVDIS | Storage element threshold voltages VCHRDY | Storage element threshold voltages VOVCH | Typical use |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 3.00 V | 3.50 V | 4.05 V | Li-ion battery |
| 0 | 0 | 0 | 1 | 2.80 V | 3.10 V | 3.60 V | LiFePO4 battery |
| 0 | 0 | 1 | 0 | 1.85 V | 2.40 V | 2.70 V | NiMH battery |
| 0 | 0 | 1 | 1 | 0.20 V | 1.00 V | 4.65 V | Dual-cell supercapacitor |
| 0 | 1 | 0 | 0 | 0.20V | 1.00 V | 2.60 V | Single-cell supercapacitor |
| 0 | 1 | 0 | 1 | 1.00 V | 1.20 V | 2.95 V | Single-cell supercapacitor |
| 0 | 1 | 1 | 0 | 1.85 V | 2.30 V | 2.60 V | NGK |
| 0 | 1 | 1 | 1 | Custom Mode | |||
| 1 | 0 | 0 | 0 | 1.10 V | 1.25 V | 1.50 V | Ni-Cd 1 cells |
| 1 | 0 | 0 | 1 | 2.20 V | 2.50 V | 3.00 V | Ni-Cd 2 cells |
| 1 | 0 | 1 | 0 | 1.45 V | 2.00 V | 4.65 V | Dual-cell supercapacitor |
| 1 | 0 | 1 | 1 | 1.00 V | 1.20 V | 2.60 V | Single-cell supercapacitor |
| 1 | 1 | 0 | 0 | 2.00 V | 2.30 V | 2.60 V | ITEN / Umal Murata |
| 1 | 1 | 0 | 1 | 3.00 V | 3.50 V | 4.35 V | Li-Po battery |
| 1 | 1 | 1 | 0 | 2.60 V | 2.70 V | 4.00 V | Tadiran TLI1020A |
| 1 | 1 | 1 | 1 | 2.60 V | 3.50 V | 3.90 V | Tadiran HLC1020 |
BAL option: Select "ToCn" for dual-cells supercapacitor and "GND" for any other storage element.
Configuration mode: EN_HP, EN_STO_FT, EN_STO_CH. Connect to H [High] for enabling the feature, connect to L [Low] for disabling the feature.
External output supply: Connect both jumpers at the APP_EN_AEM and STO_APP headers to enable the APP output supply.
Step 2: Connect the Storage Element
Step 3: Connect the Photovoltaic Cell
Internal Boost efficiency Vs. input voltage in Low Power mode
[Graph showing efficiency vs. input voltage for VSTO=1.25V, 2.30V, 3.60V in Low Power mode, for different source currents (1mA, 10mA)]
Internal Boost efficiency Vs. input voltage in High Power mode
[Graph showing efficiency vs. input voltage for VSTO=1.25V, 2.30V, 3.60V in High Power mode, for different source currents (10mA, 50mA)]
Step 4: Check the Status
Logic output pins
| Symbol | Logic Level | Low | High |
|---|---|---|---|
| Logic output levels on the status STO pins | ST_STO | GND | VSTO |






