

KLHA KM75B96 integrated temperature humidity light sensor **User Manual**

Home » KLHA » KLHA KM75B96 integrated temperature humidity light sensor User Manual

Contents

- 1 KLHA KM75B96 integrated temperature humidity light
- **2 INTRODUCTION**
- **3 Technical Parameters**
- **4 Product Size**
- 5 How to use?
- 6 Data Address Table
- 7 Read and Modify Baud Rate
- **8 Read Correction Value**
- 9 Contact Us
- 10 Documents / Resources
 - 10.1 References
- 11 Related Posts

KLHA KM75B96 integrated temperature humidity light sensor

INTRODUCTION

KM75B96 using the standard RS485 bus MODBUS-RTU protocol, easy access to PLC DCS and other instruments or systems for monitoring carbon dioxide, temperature, humidity, and illuminance state quantities. The internal use of high-precision sensing core and related devices to ensure high reliability and excellent long-term stability, can be customized RS232, RS485, CAN,4-20mA, DC0~5V\10V, ZIGBEE, Lora, WIFI, GPRS and other output methods.

Technical Parameters

Technical parameter	Parameter value
---------------------	-----------------

CO2 range	0~5000ppm
CO2 accuracy	±100ppm
Temperature measuring range	-30°C~80°C
Temperature measuring accuracy	±0.5°C @25°C
Humidity measuring range	0~100%RH
Humidity accuracy	±3%RH @25°C
Illuminance measuring range	0~65535Lux
Illuminance allow deviation	±7%
Repeatability test	±5%
Illuminance detection chip	Import digital
Wavelength range	380nm~730nm
Communication Interface	RS485
Default baud rate	9600 8 n 1
Power	DC6~24V 1A
Running temperature	-40~80°C
Working humidity	5%RH~90%RH

Product Size

wiring?

STAINLESS STEEL STRAINER

There is a filter around the waist Convenient air circulation for measurement

RED AND GREEN LIGHTS

Red is the power light Green is the signal light

TOP PHOTOSENSITIVE COVER

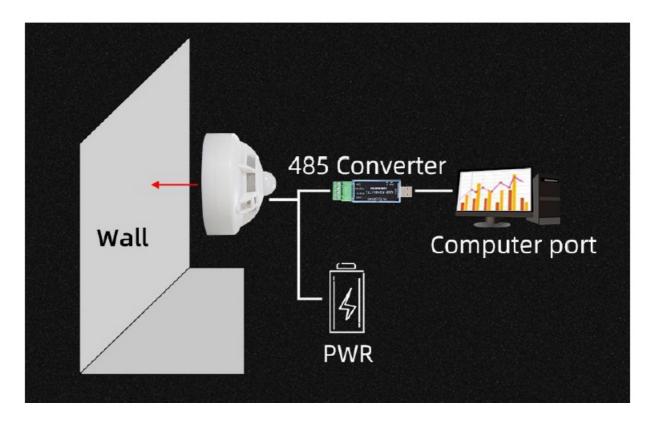
Such as optional illumination configuration There will be a photosensitive cover embedded on the top

SENSOR VENT

There are vents on the edge of the sensor Prevent the interior from being too high and overheating Cause large measurement deviation

RS485 Wiring

B-/V RS485 B-


GND PWR-

VIN PWR+

A+/I RS485 A+

Note: When wiring, connect the positive and negative poles of the power supply first, and then connect the signal wire

Application solution

How to use?

Communication Protocol

The product uses RS485 MODBUS RTU standard protocol format, all operation or reply commands are hexadecimal data. The default device address is 1 when the device is shipped, the default baud rate is 9600, 8, n, 1

Read Data (Function id 0x03)

Device ID	Function id	Start Address	Data Length	CRC16
01	03	00 00	00 03	05 CB

For the correct query frame, the devi ce will respond with data: $01\ 03\ 06\ 00\ 7B\ 00\ 00\ 00\ 00\ C5\ 7F$, the response format is parsed as follows:

Device ID	Function id	Data Length	1	2	3	Check Code
01	03	06	00 79	00 7A	00 7B	C5 7F

Data Address Table

Address	Start Address	Description	Data type	Value range
40001	00 00	1# PM2.5register	Read only	0~65535
40002	00 01	2# PM2.5register	Read only	0~65535
40003	00 02	3# PM2.5register	Read only	0~65535
40101	00 64	model code	read/write	0~65535
40102	00 65	total points	read/write	1~20
40103	00 66	Device ID	read/write	1~249

40104	00 67	baud rate	read/write	0~6
40105	00 68	mode	read/write	1~4
40106	00 69	protocol	read/write	1~10

Read and modify device address

Device ID	Function id	Start Address	Data Length	CRC16
FA	03	00 64	00 02	90 5F

Read or query device address

If you don't know the c urrent device address and there is only one device on the bus, you can use the command FA 03 00 64 00 02 90 5F Query device address.

FA is 250 for the general address. When you don't know the address, you can use 250 to get the real device address, 00 64 is the device model register. For the correct query command, the device will respond, for example the response data is: 01 03 02 07 12 3A 79, the format of which is as shown in the following table:

Device ID	Function id	Start Address	Model Code	CRC16
01	03	02	55 3C 00 01	3A 79

Change device address

For example, if the current device address is 1, we want to change to 02, the command is:01 06 00 66 00 02 E8 14

Device IDFunction idStart AddressDestinationCRC16010600 6600 02E8 14

Read and Modify Baud Rate

Read baud rate

The device default factory baud rate is 9600. If you need to change it, you can change it according to the following table and the corresponding communication protocol. For example, read the current device's baud rate ID, the command is:01 03 00 67 00 01 35 D5, its format is parsed as follows. Read the baud rate encoding of the current device. Baud rate encoding: 1 is 2400; 2 is 4800; 3 is 9600; 4 is 19200; 5 is 38400; 6 is 115200. For the correct query command, the device will respond, for example the response data is: 01 03 02 00 03 F8 45, the format of which is as shown in the following table:

Device ID	Function id	Start Address	Data Length	CRC16
01	03	00 67	00 01	35 D5

Change the baud rate

For example, changing the baud rate from 9600 to 38400, ie changing the code from 3 to 5, the command is: 0106006700058160103006600016415.

Device ID	Function id	Data Length	Rate ID	CRC16
01	03	02	00 03	F8 45

Read Correction Value

Read Correction Value

When there is an error between the data and the reference standard, we can reduce the display error by adjusting the correction value. The correction difference can be modified to be plus or minus 1000, t hat is, the value range is 0 1000 or 64535 65535. For example, when the display value is too small, we can correct it by adding 100. The command is: 01 03 00 6B 00 01 F5 D6. In the command 100 is hex 0x64 If you need to reduce, you can set a negative value, such as 100, corresponding to the hexadecimal value of FF 9C, which is calculated as 100 65535=65435, and then converted to hexadecimal to 0x FF 9C. The correction value starts from 00 6B. We take the first parameter as an example. The correction value is read and modified in the same way for multiple parameters.

Device ID	Function id	Start Address	Data Length	CRC16
01	03	00 6B	00 01	F5 D6

For the correct query command, the device will respond, for example the response data is: 01 03 02 00 64 B9 AF, the format of which is as shown in the following table:

Device ID	Function id	Data Length	Data value	CRC16
01	03	02	00 64	B9 AF

Change correction value

Fo r example, the current state quantity is too small, we want to add 1 to its true value, and the current value plus 100 correction operation command is:01 06 00 6B 00 64 F9 FD.

Device ID	Function id	Start Address	Destination	CRC16
01	06	00 6B	00 64	F9 FD

Disclaimer

This document provides all information about the product, does not grant any license to intellectual property, does not express or imply, and prohibits any other means of granting any intellectual property rights, such as the statement of sales terms and conditions of this product, other issues. No liability is assumed. Furthermore, our company makes no warranties, express or implied, regarding the sale and useof this product, including the suitability for the specific use of the product, the marketability or the infringement liability for any patent, copyright or other intel lectual property rights, etc. Product specifications and product descriptions may be modified at any time without notice.

Contact Us

 Company: Shanghai Sonbest Industrial Co., Ltd KLHA Brand Division Address: Building 8,No.215 North east road, Baoshan District, Shanghai, China

Web: http://www.klha.comWeb: http://www.klha.com

• SKYPE: soobuu

• Email: sale@sonbest.com

• Tel: 86 021 51083595 / 66862055 / 66862075 / 66861077

Documents / Resources

KLHA KM75B96 integrated temperature humidity light sensor [pdf] User Manual KM75B96 integrated temperature humidity light sensor, integrated temperature humidity light sensor, humidity light sensor, RS485

References

- [©] Home-KLHAå¿«ä¹æμ·å²¸ç‰©è"ç½¹
- O Home-KLHAå¿«ä¹æμ·å²¸ç‰©è"ç½¹

Manuals+,