Manuals+ — User Manuals Simplified.

Home » KAGA FEI » KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon Firmware User Guide -

KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon
Firmware User Guide

Contents

1 KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon

Firmware

2 Introduction

3 Hardware Overview

4 Drivers

5 Adding New Sensors

6 Event Handler

7 Add to Project

8 Adding to Application

9 Documents / Resources
9.1 References

10 Related Posts

A\
[~

&' KAGA F€l

KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon Firmware

Introduction

« This document provides an overview of the development resources for the KFEI Sensor Kit Beacon firmware
application.
« It outlines the general architecture and use of the firmware.

Requirements
To send sensor data using BLE using the Multi-Sensor Board Beacon application, you need the following.

« Nordic SDK

« Segger Embedded Studio and NRF board support package (For installation and setup procedures, register the
product according to the sheet provided when purchasing the evaluation board/evaluation KIT, and download
the “SES

« NRF52 Quickstart Guide x.xx EN.pdf” for Segger Embedded Studio’s NRF quick start guide.).

« |F pluggable interface board(EY1SENSOR-SKT)

« Sensors for the desired operation

o J-link Lite

« Supported following module

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/kaga-fei
https://manuals.plus/kaga-fei/evbnrf528101-2-multi-sensor-board-beacon-firmware-manual.pdf
https://manuals.plus/#kaga_fei_evbnrf5281012_multi_sensor_board_beacon_firmware
https://manuals.plus/#introduction
https://manuals.plus/#hardware_overview
https://manuals.plus/#drivers
https://manuals.plus/#adding_new_sensors
https://manuals.plus/#event_handler
https://manuals.plus/#add_to_project
https://manuals.plus/#adding_to_application
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://manuals.plus/#related_posts

Resource Description

EJ2840AA2-EVB nRF52840
ED2833AA2-EVB | nRF52833
EJ2833AA2-EVB nRF52833
EC2832AA2-EVB | nRF52832
ES2832AA2-EVB nRF52832
EJ2832AA2-EVB | nRF52832
EC2820AA2-EVB nRF52820
ES2820AA2-EVB | nRF52820
EC2811AA2-EVB nRF52811
ES2811AA2-EVB | nRF52811
EC2810AA2-EVB nRF52810
ES2810AA2-EVB | nRF52810

Table 1 - supported Board

The software of the Multi Sensor Board Beacon application is configured as shown in the block diagram below.
For BLE communication, Soft Device provided by Nordic is used, and it is set to be written together with the
application when writing using SES.

Application(main)

BLE Sensor Driver

Timer

Soft Device Peripheral Driver

Hard ware
Figure 1: Software block diagram

« The following folders and files are included in the project for the Multi Sensor Board Beacon application. The

function of each file is as follows.

4 ‘3 Application 26 fles Application resources
4 3 boards 1fie * Board information
@ boards.h * |F board pin assignments
4 3 config 3fies * Configuration files
h-] app_config.h * Application configuration (BLE, timer)
B sdk_config.h + SDK configuration
B-] user_config.h * User configuration (sensor pins)
4 ‘3 peripheral 2fies * Peripheral drivers
,g,':j adc_sensor.c o« « ADC
[Q twi_sw_master.c ¢ Software TWI
(] sensors 18 fies * Sensor drivers
£-] main.c « Main application
Efj version.h * Version information
(3] Mordic 43 files Nordic SDK
([Startup 4 files Startup Files
'{g Output Files Generated output files

Figure 2:Application configuration

4 "jSEI"ISDI’S 6 files Sensor drivers
a4 '3 core 5files

- i _ * Accelerometer sensors
(] acceleration 2 files

* Light sensors

(1 light 2 files
1 temp 1file * Temperature sensors
(L1 other * QOther sensor
:] sensors.h Common sensor header

Figure 3 Sensor driver configuration

Nordic SDK Settings

« The project for the Multi Sensor Board Beacon application uses NordicSDK. Copy the folder where you
downloaded and decompressed the following version of Nordic SDK into the “sdk” folder.

« The following SDK version is used in the project of the Multi Sensor Board Beacon application, but please
consider the latest version when using it for development.

« [SDK info]

« SDK Version 17.1.0 nRF5 SDK

« Download URL https://www.nordicsemi.com/Software-and-tools/Software/nRF5-
SDK/Downloadiinfotabs

« Nordic source code copyright belongs to Nordic

https://www.nordicsemi.com/Software-and-tools/Software/nRF5-SDK/Download#infotabs

l components
l config
l documentation

l examples

xternal

B-
l external_tools .

_ _ Copy to inside “sdk” folder
l integration

l modules
i license.txt

DCicense. msi

Application Overview

During initialization, the application prepares any connected sensors as well as the Softdevice and BLE stack.
Once complete, a background timer is started that triggers at a preset interval and BLE advertising is started. The
event triggered by the timer updates the BLE advertising data with new sensor data.

Initialize Initialize _ l i?E _!
Start SENSOTS » pLp [Starttimer -I-E[W
, Read sensor Update
Timer Evt values ™1 BLE data _>O

Figure 4: Application initialization and timer events

Application Timer

The timer responsible for triggering update events can be configured to faster or slower intervals. Care should be
taken to ensure that the timer interval is sufficiently long that all sensor reads can be completed before the next
interval. The value for configuring this timer can be found in the configuration header src/config/app_config.h.

efine UPDATE_TIMER_RATE_MS

= ADV_INTERVAL_MS

Figure 5: Application configuration options

BLE Advertising

« The device is configured to operate as a non-connectable beacon advertising at regular intervals with no
timeout. The device is configured to transmit a primary advertising packet and a scan response packet using
the format described in Figure 6.

« The rate at which advertising data is transmitted from the BLE radio can be set in the configuration header. The
field ADV_INTERVAL_MS controls the rate at which packets are transmitted.

Advertising Formats

The primary advertising packet contains a series of sensor data fields aggregated under a Manufacturer Specific
Data fragment. The secondary scan response packet contains the device name under a Complete Device Name
fragment. The field contents are shown in Figure 6.

Byte Field
1 Type ID
(0x81)
2 Sequence
(0 = 255)
3
: Name
6
7
8 Channel 1
9
10
11 Channel 2
12
13
14 Channel 3
15
16
17 Channel 4
18
19
20 Channel 5
21
22
23 Channel 6
24

Figure 6: Primary advertising packet — KFEI Sensor Kit data format - and scan response packet

« The firmware contains a global structure that matches the format of the packet contents.

uint8_t typenum;

uint8 t sequence_num;
name|[NAME MAX LEN];

sensor_ch_t accx_data;

sensor_ch_t accy data;
sensor_ch_t accz_data;
sensor_ch t light data;
sensor_ch t temp data;

tble _custom_adv_data_t;

Figure 7: Primary Advertising Packet-Structure

60 ble custom_adv_data_t custom_data;

Figure 8: Primary Advertising Packet-Variable Definition

« This struct is used for holding sensor data read during the timer update events, and is transmitted over BLE
radio at advertising intervals.
« For the final product, it is necessary to obtain a new company ID and set it.

Hardware Overview

Each supported board has its own configuration in the Segger Embedded Studio project. You can select the target
board for compiling the application using the configuration drop-down box in SES. These configurations are set to
target the relevant chip type and soft device required for the application.

File Edit View Search

Project Explorer

EC2810AA2 EVB
EC2810AA2 EVB
EC2811AA2 EVEB
EC2832AA2_EVB
EJ2832AA2 EVB
EJ2840AA2 EVB

<Edit Build Configurations...>

Figure 9 :drop-down list

Pin Assignment

« Due to the arrangement of pins on each board variant, the IF board will connect to a different set of pins.
« Pin assignments are predefined to maintain compatibility with the various layouts.

« The default pin assignments for each of the supported boards can be found in Application/boards/boards.h.

Figure 10: Pin assignments and valid slot assignments for the EC2832AAx-EVB board

« The table below shows the various pin connections for each board.
« AIN represents an analog-capable pin for use with ADC-based sensors.

« NFC represents pins that can be used for Near Field Communication, however this is disabled by default.

CN3 CN4
Pin no Port Pin no Port
CZB4OANEEVE | g |4 Po.03iAINT
e S I B Sy e
CUBIMAZEVE | g |4~ | o0z
EC2832AA2-EVB i’ Eg:}g j p0_31-,fA|N7
EJ2832AA2-EVB j EDD _;gﬁlija j Poﬁf _’T\ glND
ES2832AA2-EVB j ﬁg:ggjﬁ:m; j Eﬁﬂ%@iﬁ'ﬁf
EC2820AA2-EVB :’ PD_'DQ j Eg:ig
ES2820AA2-EVB j PD_'Dg j ppoo_bD125
EC2811AA2-EVB j ﬁg:}g j p0_31_,fA|N7
ES2811AA2-EVB 3 Eg;gﬁjﬁ:ﬁ; 3 53};
EC2810AA2-EVB _,_31 Eg:]g j p0_31-,fA|N7
ES2810AA2-EVB i Eg:gi’:ﬁ:m; 3 qu;

Table 2: GPIO Pin

Note: ADC inputs vary from board to board (i.e. AINO/AIN1). While the boards.h header contains predefined
assignments for simple configuration, care should be taken to ensure the correct ADC is selected to prevent
hardware damage.

The attached sensor uses the pins described in the table below. Must be connected to the GPIO Pin of the board
used.

Light sensor ADC Pind
Temperature sensors ADC Pin4
Accelerometer sensors TWI Pin3,Pind

Table 3:Correspondence table of sensor and driver

NFC and Reset Pin Configuration

Some pins are configurable for use with NFC or GPIO. Some devices use the shared pins to connect with the IF
board, so by default, this application configures the pins for GPIO use. The reset button located on the board is
also configured to reset the device when pushed.

This functionality is controlled using the CONFIG_GPIO_AS_PINRESET and CONFIG_NFCT_PINS_AS_GPIOS
definitions located in the Project Options — Common [configuration] — Preprocessor — Preprocessor Definitions.

Project ‘'multisensor_board_beacon' Options

T & Common B Show Modified Options Only

Assembler

Build 4 Preprocessor

Code Analyzer + Ignore Includes

Code Generatio = iti CONFIG_GPIO_AS_PINRESET: CONFIG_NT<
Compiler

External Build * Oy (StudiolncDir:S(StudioDir)/include); S(Pac
File
Libraries e ‘ -

Library %> SEGGER Embedded Studio for ARM V5.42a - Property Editor
Linker

Preprocessor Set Preprocessor Definitions

Printf/Scanf

Runtime Memo Project: multisensor_board_beacon

r Include

ection Configuration: Common
ource Code

User Build Step Preprocessor Definitions:
4 Debug CONFIG_GPIO_AS_PINRESET

CONFIG_NFCT_PINS_AS_GPIOY applied to it.
FLOAT_ABI_HARD

Figure 11: NFC / PinReset functionality

The relevant source code is located in the Startup/system_nrf52.c. The desired configuration options are written to
the UICR registers as part of the board startup process.

Note: once written, UICR registers cannot be cleared by software. To change the functionality, a chip erase must
first be performed.

/* Configure NFCT pins as GPIOs if NFCT is not to be used in your code. If CONFIG_NFCT_PINS_AS GPIOS is not defined,
two GPIOs (see Product Specification to see which ones) will be reserved for NFC and will not be available as
normal GPIOs. */

#if defined (CONFIG_NFCT_PINS_AS_GPIOS)

if ((NRF_UICR->NFCPINS & UICR_NFCPINS_PROTECT Msk) == (UICR_NFCPINS_PROTECT_NFC << UICR_NFCPINS_PROTECT Pos)){
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Wen << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_UICR->NFCPINS &= ~UICR_NFCPINS_PROTECT Msk;
189 while (NRF_NVHC-)READY == NVMC_READY READY_ Busy){}
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Ren << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY READY Busy){}
NVIC_SystemReset();

#endif

/* Configure GPIO pads as pPin Reset pin if Pin Reset capabilities desired. If CONFIG_GPIO_AS PINRESET is not
defined, pin reset will not be available. One GPIO (see Product Specification to see which one) will then be
reserved for PinReset and not available as normal GPIO. */
#if defined (CONFIG_GPTO_AS_PINRESET)
if (((NRF_UICR->PSELRESET[@] & UICR_PSELRESET_CONNECT Msk) != (UICR_PSELRESET CONNECT Connected << UICR_PSELRESET
((NRF_UICR->PSELRESET[1] & UICR_PSELRESET CONNECT Msk) != (UICR_PSELRESET CONNECT Connected << UICR_PSELRESET.
NRF_NVMC->CONFIG = NVMC_CONFIG WEN Wen << NVMC_CONFIG WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY Busy){}
NRF_UICR->PSELRESET[@] = 21;
while (NRF_NVMC->READY == NVMC_READY READY Busy){}
NRF_UICR->PSELRESET[1] = 21;
while (NRF_NVMC->READY == NVMC_READY READY Busy){}
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Ren << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NVIC_SystemReset();

#endif

Figure 12: NFC / PinReset startup configuration

Sensor configuration

« The interface board (IF) has two connectors for attaching various sensors. To use the sensors, a user must add
the specific pin configuration in this file src/config/user_config.h

« Each board has different pin configurations and sensor connectors, in which you can refer to from the board
connector document to be able to understand on how to configure the sensors.

« For example, the ADC pin of board EC2832AAx-EVB is in connector CN4 Pin 4 (CN4_4), while board
EJ2832AAx-EVB is in connector CN3 Pin 4 (CN3_4).

« Users can add/remove the sensor pin assignments to suit their specific application requirements. A set of
example pins is already configured in the user_config.h header.

« The Application/main.c/sensors_init function contains the initialization functions for the sensors that can be
connected to the IF board.

« As an example, all of the available functions are listed (commented by default). Only the sensors that are
connected are included in the application.

sensors_init(

Figure 14: Sensor initialization functions

« Users can uncomment/comment the functions as required, or remove unused code.

« Likewise, the Application/main.c/on_timer_evt function contains the sensor reading functions. Sensors

connected to the board are read during this function and the advertising data is updated.

Uiﬂtlﬁ_t _sequ_num = B8;
_sequ_num += o -

custom_data.sequence_num = _sequ_num;
custom_data.typenum = TYPE_IDENTIFER;

!{dEfiﬂEd[ECESE@ﬂﬂK_EVB} || dEfiﬂEdﬂESESEBﬂﬂX_EVB?)

Figure 15: Sensor value update functions

« As with the initialization function, the user must comment or remove unused features.

Sensor Init function Data read function

Light sensor light_adc_init on_light_update
Temperature sensors temp_adc_init on_temp_adc_update
Accelerometer sensors bma400_TWI_Init on_accelerometer_update

Table 4: Sensor function correspondence table

Drivers

« This section describes the existing peripheral and sensor drivers included in the Sensorkit application.

Peripheral Drivers

The Nordic SDK includes peripheral drivers suitable for most applications (e.g. TWI, GPIO). These drivers are the
ones typically used by the sensor drivers. A small number of custom peripheral drivers have been included
alongside the SDK. They are located in the Application/peripheral folder.

ADC

The ADC driver provides a single adc_read function to sample the voltage on a specified analog input. The
function will block until the conversion is completed. The conversion is performed using 10 bit resolution and
returns the average result of 16 samples. The operation will take approximately 640us.

void adc_read(nrf_saadc_input_t adc_input, nrf_saadc_gain_t gain, intl6_t * buffer)

Parameter Description Example

adc_input ADC input pin NRF_SAADC_INPUT_AINO

gain ADC voltage gain multiplier SAADC_CH_CONFIG_GAIN_Gainl_6
buffer Result destination buffer

Table 5: adc_read function argument

Software TWI
The TWI peripheral on NRF devices has a minimum clock frequency of 100KHz. Devices like the SHT

temperature sensor may not operate at this frequency. A GPIO-based software TWI driver is prepared that
operates at ~40KHz. The TWI transaction is performed in a blocking method.

bool twi_master_init(uint8_t scl, uintd_t sda);

Parameter Description

scl GPIO pin for TWI SCL
sda GPIO pin for TWI SDA
return true on success, otherwise false

Table 6:Argument of twi_master _init function

bool twi master transfer(uint8 t address, uint8 t *data, uint8 t data_length, bool issue stop conditicn);

Parameter Description

address Device address on TWI bus (includes read/write bit)
data Buffer for data to be transferred

data_length Byte length of buffer

issue_stop_condition | Send STOP after transfer is complete

return true on success, otherwise false

Adding New Sensors

Beacon Packet Structure
When adding a new sensor that is not in the KFEI Sensor Kit beacon format, it is necessary to set the data of the

sensor to be added to the packet. Figure 18: Set new sensor data in Sensor Data shown in beacon packet. In the
source code, set new sensor data in the location shown in Figure 19 in the maic.c file.

Byte
1

X23
24

manuf_specific_data.data.p_data
manuf_specific_data.data.size

Field
Type ID
(0x81)
Sequence
(0 = 255)

Name

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Byte Field
1 Bit 1:3 Scale
Bit 4:8 Format

Figure 16: Beacon packet

2
Value
3
(uint8_t *) &custom_data; //(uintd8_t *) m_beacon_info;
sizeof(ble_custom_adv_data_t); //APP_BEACON_INFO_LENGTH;

Figure 17: Setting location of sensor data

« To use sensors in your application, the driver must include at least the following functions: Also, since the

function created in the following procedure is called from main.c, also create a header file that defines the

added function (see

« Figure 20: Example of driver header).

« Also, to maintain portability between different board types, the pin assignment and ADC port are passed from

the upper application to the driver in the current structure. Pins and ports are selected based on the connector

and board selected for compilation.

« Also, the sample code is included in the folder (sdk / examples / peripheral) of Nordic SDK downloaded in “1.3

Nordic SDK Settings”, so please use it as a reference for the driver to be created.

[structure of .c file]

1. Initializer — prepare the peripheral, and preconfigure the sensor as required (e.g. set any control registers or

enable sampling)

2. Read —read a data sample from the sensor

3. [optional] Converter — convert the data sample into a format suitable for the beacon. This can also be included

as part of the read

#ifndef MAGNETIC_SENSOR__
#define MAGNETIC_SENSOR

4 #include <stdint.h>]

void magnetic_sensor_init(uint32 t hi_pin, uint32 t lo_pin);
intl6_t magnetic_sensor_get data(void);

#endif // MAGNETIC_SENSOR__

Figure 18:Driver header example

Event Handler

« As described in Section 0, A background timer fires at regular intervals.

« This timer calls an event handler on_timer_evt which updates the BLE advertising data.

« An associated event handler function for each connected sensor should be included in this timer event.

« This function should read the latest sensor value and store it in the advertising data.

« While the sensor data should be stored in the most appropriate positional field according to the KFEI Sensor Kit
format described in Section 1.4.3, it is up to the developer’s discretion over which field is used in the case

where the sensor does not match one of the preset placeholders.

/**@brief Callback function for the sensor timer /**@brief Fetches the current data if sensor is connected

651 * [@details Updates the advertising da:alvalue; * [@details Read and update the 'voltage data’ with the latest current
: ny ./

static void on_timer_evt(void *context) void on_current_update(veid){

// Current data
intlé_t _current_data = @;
nrf_saade_valus_t current_val:

NRF_LOG_INFO("Event Reached, Updating data™);

// Sequence number
static uintl6_t _sequ_num = 8; sensor_get_adc{¤t_val);
1 NRF_LOG_INFO("ADC Buffer Data : %d", current_val);
_sequ_num += 1;
/* Convert current value from the adc value read */
custom_data.sequence_num = _sequ_num; float calculated_val = sensor_convert_to_current(current_val);

custom_data.typenum = TYPE_ID; -
il = // Update advertising data field

_current_data = calculated_val*1@@;

[** Insert relevant sensor update calls here */
;f Ho g custom_data.current_data = _current_data;

on_temperature_update();
// on_humidity_update(); S20 NRF_LOG_INFO("Current Data : %d", _current_data);
// on_light update(); 21 } = s - &
// on_pressure_update();
on_magnetic_update();
' on_co2_update();
// on_accelerometer_update();
on_current_update();
on_txpower_update();

update adv_data();

}

Figure 19: Timer event preparing a new set of advertising data. The magnetic sensor and current sensor are connected in this
case.

Add to Project

« When adding a sensor driver file to a project, it is easier to manage by placing the file in the path

Application/sensors / new_driver_folder / driver_name.c / h according to the structure of the project file.

4 ‘3 sensors 6 files
4 ‘3 core 5files
4 S imu 2files
- &] bmad0l.c
h-] bma400.h
a ‘N hght 2 files
- E]:_'] light_sensor.c
b light_sensorh
4 ‘3 temp 1file
- E_‘] temp_sensor.c
] other

@ sensors.h

Figure 20:Project file structure

« After that, include the new header file to src/sensors/sensors.h in order to get included in the project.

Figure 21: Including Header Files

Adding to Application

To utilize the new sensor in the application:

1. Include the driver’s pin configuration and any required DEFINE labels to the user_config.h
2. Add the driver’s init function to the sensor_init function called during main().

3. Add the event handler’s function call to the on_timer_evt() function

KAGA FEI Co., Ltd. 20-Jan.2024Ver1.1 20/20 Copyright 2024 KAGA FEI Co., Ltd.

Documents / Resources

KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon Firmware [pdf] User Guide
EVBnRF52810ES2810AA2, EVBnRF528101.2, EVBnRF528101.2 Multi Sensor Board Beacon
Firmware, EVBnRF528101.2, Multi Sensor Board Beacon Firmware, Sensor Board Beacon Fir
mware, Board Beacon Firmware, Beacon Firmware, Firmware

References

« 8 hRF5 SDK downloads - nordicsemi.com
« User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/905925071ede664ab0df6a2e0d62efa72955c3a70378f3fd9e3d4670a20e5fe6
https://manuals.plus/m/905925071ede664ab0df6a2e0d62efa72955c3a70378f3fd9e3d4670a20e5fe6_optim.pdf
https://www.nordicsemi.com/Software-and-tools/Software/nRF5-SDK/Download#infotabs
https://manual.tools/?p=14827618#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon Firmware User Guide
	KAGA FEI EVBnRF528101.2 Multi Sensor Board Beacon Firmware
	Introduction
	Hardware Overview
	Drivers
	Adding New Sensors
	Event Handler
	Add to Project
	Adding to Application
	Documents / Resources
	References

