User Manual for STMicroelectronics models including: UM3198 Dual Active Bridge Bidirectional Power Converter, UM3198, Dual Active Bridge Bidirectional Power Converter, Bridge Bidirectional Power Converter, Bidirectional Power Converter, Power Converter
4 dic 2023 — The equivalent average model of the DAB can be described by the following schematic and equivalent controlled source mathematical representation. UM3198. DAB ...
File Info : application/pdf, 83 Pages, 9.20MB
DocumentDocumentUM3198 User manual 25 kW, dual active bridge bidirectional power converter for EV charging and battery energy storage systems Introduction This reference design represents a complete solution for high power bidirectional DC-DC power converter in dual active bridge topology based on ACEPACK2 SiC power modules. An STM32G474 MCU Mixed-Signal digital platform optimized for Digital Power is used to control the power converter. The latest generation SiC power modules and high-frequency operation (100 kHz) ensure very high performance and design optimization. Soft switching DAB behavior is managed by modulation techniques according to load/voltage variation. This reference design consists of the following separate modules: · STDES-DABBIDIRP: main power board with ACEPACK 2 SiC power modules, a full bridge A2F12M12W2-F1 and two A2H6M12W3-F for primary HV side and secondary LV side, respectively. The power board design also includes bulk capacitors, sensing sections, and auxiliary power supply. · STDES-DABBIDIRDF: driver board for full bridge ACEPACK 2 A2F12M12W2-F1 SiC power modules based on STGAP2SiCS Galvanically isolated 4 A single gate driver for SiC MOSFETs · STDES-DABBIDIRDH: two driver boards for half bridges ACEPACK2 A2H6M12W3-F SiC power modules based on STGAP2SiCS galvanically isolated 4 A single gate driver for SiC MOSFETs · STDES-PFCBIDIRC: control board based on the STM32G4 series microcontroller with connectors for communication and programming, and test-points and status indicators for testing and monitoring. Figure 1. STDES-DABBIDIR reference design board The latest technology SiC MOSFETs power modules used at high switching frequency (100 kHz) and the topology structure allow nearly 98% efficiency and the use of smaller and more cost-effective passive power components. This high efficiency bidirectional isolated DC-DC converter is designed for several end applications such as electric vehicles (EV) and industrial battery chargers, and industrial equipment requiring very high efficiency and reliability. UM3198 - Rev 1 - December 2023 For further information contact your local STMicroelectronics sales office. www.st.com UM3198 Safety and compliance information 1 Safety and compliance information Important: · The reference design uses voltage levels that can cause serious injury and even death. · Due to the high-power density, the components on the board as well as the heat sink can be heated to a very high temperature, which can cause a burning risk when touched directly. · This board is intended for use by experienced power electronics professionals who understand the necessary precautions against potential dangers and risks while operating this board, even when it is not powered. The STDES-DABBIDIR evaluation board is designed for demonstration purposes only and is not intended for domestic or industrial installations. Danger: The high voltage levels used to operate the STDES-DABBIDIR evaluation board may provoke a serious electrical shock. This evaluation board must be used in a suitable laboratory by qualified personnel only, familiar with the installation, use, and maintenance of power electrical systems. During operation, do not touch the board as some of its components may reach very high temperatures. UM3198 - Rev 1 page 2/83 2 Overview UM3198 Overview 2.1 Features · Reference design modular kit: Main power board Driving board (1xHV side 2xLV side) STM32G474RET3 control board · Dual active bridge DC-DC power converter: Nominal DC input voltage 800 V Nominal DC output voltage 400 V Nominal power 25 kW Switching frequency 100 kHz Peak efficiency 98.4% · Main features: ACEPACK 2 SiC power module to optimize power section integration and thermal dissipation Bidirectional capability Extended soft switching behavior enabled by enhanced modulation techniques management Isolated SiC gate driver STM32G4 family MCU for customizable full digital solution Inrush current control and soft startup · High frequency operation with SiC MOSFETs: High efficiency ~99% Smaller and lighter passive elements UM3198 - Rev 1 page 3/83 Figure 2. STDES-DABBIDIR reference design overview UM3198 Overview Figure 3. STDES-DC2DCDAB block diagram 2.2 Main characteristics Description HV DC Voltage Table 1. Main characteristics Symbol VDCHV Min. Typ. Max. Unit 720 800 880 V Comments UM3198 - Rev 1 page 4/83 UM3198 Overview Description LV DC Voltage Maximum output power Switching frequency Peak efficiency Symbol VDCLV PoutMAX fSW n Min. Typ. Max. Unit 400 V 25 kW 70 kHz >98 % Comments At nominal voltages At nominal voltages 2.3 Dual active bridge topology The dual active bridge is a bidirectional, dc-dc converter that includes two full bridges, a high frequency transformer, energy transfer inductor, and dc-link capacitors. Due to the symmetry of this converter, with identical primary and secondary bridges, it is capable of bidirectional power flow control. Each full-bridge consists of two totem-poled switching devices configuration, driven with complimentary signals. The switching frequency of these complimentary devices is referred to as the switching frequency of the converter. The topology is shown in Figure 3, where Vin and Vout are the dc-link voltages and Lk is the actual resonance inductance, which includes leakage inductance of the transformer plus any additional auxiliary energy transfer inductance. Equivalent AC primary and secondary voltages are controlled by the actual configuration of semiconductor switches M1-M8. With insulated gate bipolar transistor (IGBT) implementations, switching cells are traditionally implemented with antiparallel diodes and snubber capacitors to direct current commutation on switching events and to allow zero voltage switching (ZVS) through the snubber capacitor and energy transfer inductance resonance. Now, high-voltage MOSFETs are selected for DAB designs because their intrinsic body diode and drain-to-source output capacitance take the place of external components and help reduce the part count of the converter. Wide bandgap power MOSFETs such as silicon carbide (SiC) are commonly used for high-power DABs to increase switching frequency operation of the converter and increase power density in DAB applications. 2.4 Typical application A typical application of DAB power converter is the EV battery DC charger. A three phase system suitable for the proposed power level is shown in the following figure. Figure 4. Typical DC battery charger architecture The DC fast charger consists of a three-phase active front end (AFE) rectifier that provides a regulated DC link from a universal three-phase AC input. The current from the grid must be high quality current to fulfill the power quality requirements. The DAB operation ensures isolation and bidirectional operation required by the downstream DC-DC converter. The full-bridge A2F12M12W2-F and half-bridge A2H6M12W3 ACEPACK 2 SiC power modules selected for primary and secondary side, respectively, ensure very high integration for this topology. UM3198 - Rev 1 page 5/83 Figure 5. SiC power module assembly UM3198 Overview UM3198 - Rev 1 page 6/83 UM3198 DAB converter operation 3 DAB converter operation The DAB converter contains two voltage sourced full bridge circuits that are connected to the inductor L and the high frequency transformer. To transfer power, time varying voltages vAC1 t = vDAB1 t and vAC2 t = vDAB2 t must be provided by the full bridge circuits to both, the high frequency transformer, and the converter inductor L. Figure 6. DAB topology +V1 I T1, T4on&T2, T3off vDAB1 t = 0 II T1, T4on&T2, T3off III T1, T4off&T2, T3on (1) -V1 IV T1, T4on&T2, T3off +V2 I T5, T8on&T6, T7off vDAB2 t = 0 II T5, T8on&T6, T7off III T5, T8off&T6, T7on (2) -V2 IV T5, T8on&T6, T7off UM3198 - Rev 1 page 7/83 Figure 7. DAB operation (combo) UM3198 DAB converter operation UM3198 - Rev 1 page 8/83 UM3198 DAB converter operation The HV and LV side full-bridge circuits can therefore be replaced by the respective voltage sources vAC1 t = vDAB1 t and vAC2 t = vDAB2 t to simplify the analysis of the DAB converter. Figure 8. Simplified diagram of DAB The primary side referred equivalent circuit diagram is shown below. Figure 9. Primary side referred simplified diagram of DAB According to the simplified circuit, the inductance voltage depends on the AC voltage of the full bridges. vLk t = vDAB1 t - nvDAB2 t (3) Then we obtain the inductor current. Ts iL t = iL t0 + 1 L 2 0 vLk t dt t0 < t1 (4) We now consider the instantaneous power for both sides. (5) p1 t = vDAB1 t iL t p2 t = nvDAB2 t iL t The average power over one switching cycle Ts , Ts = 1/fs , is finally calculated. P1 = 1 Ts t0 + t0 Ts p1 t dt P2 = 1 Ts t0 + t0 Ts p2 t dt (6) As equivalent AC bridge voltages can be represented by two sinusoidal waveforms with phase shift : V1 t = V1cos t V2 t = V2cos t - (7) For inductor current, the equivalent phasor is: IL = V 1 - V 2 jLlk = V10 - nV2 jLlk (8) That for time and considering cos j = sin becomes: iL t = V1 Llk sin t - nV2 Llk sin t - (9) Next we obtain instantaneous output power: p2 t = nV1V2 Llk cos t - sin t (10) Which averaged over the switching period T becomes: UM3198 - Rev 1 page 9/83 UM3198 DAB converter operation P2 = p2 t 1 T = 1 T 0Tp2 t dt = nV1V2 2fsLlk sin (11) As shown by the equation, the DAB allows power flow in both directions according to the sign of the phase shift. Power transfer is modulated according to the amplitude of the phase shift, with maximum at = ± 2 . Figure 10. Power transfer vs phase shift in DAB In addition, according to this relation, the power level of the DAB converter is thus typically adjusted using one or more of the following control parameters. 1. The phase shift, , between vDAB1 t and vDAB2 t , with - < < 2. The duty cycle, D1, of vDAB1 t , with 0 < D1 < 1/2 3. The duty cycle, D2, of vDAB2 t , with 0 < D2 < 1/2 4. The switching frequency fs Defining the phase shift duty ratio D = rad , the actual power transfer can be derived from the following equation. Pout = nVDC1VDC2 2Lfs D 1-D To define the control strategy of the DAB converter and the control parameters, knowledge of the equivalent dynamic model of the converter must be considered. The equivalent average model of the DAB can be described by the following schematic and equivalent controlled source mathematical representation. UM3198 - Rev 1 page 10/83 Figure 11. Average model of the DAB UM3198 DAB converter operation I2 = nVi 2Lfs D 1 - D Ii, avg = nVo 2Lfs D 1-D To obtain the small-signal model, perturbation is injected to define the effects of the parameters on the equation. ii, avg = Ii, avg + ii, avg i2 = I2 + i2 ii, avg = ii, avg d Qd + ii, avg vo Qvo = F1d + F2vo i2 = i2 d Qd + i2 vi Qvo = F3d + F4vo F1 = ii, avg d Q= nVo 2Lfs 1-2 d F2 = ii, avg vo Q= nVo 2Lfs d 1- d F3 = i2 d Q= nVi 2Lfs 1-2 d F4 = i2 vi Q= nVi 2Lfs d 1- d Thanks to input capacitance and PFC stage regulation, input voltage perturbation may be neglected. F4 = i2 vi Q= nVi 2Lfs d 1- d 0 The output capacitor ripple voltage is now included through the following equation. C2 dvo dt = i2 - ii, avg The final equivalent small signal circuit is then obtained. ii, avg = F1d + F2vo = nVo 2Lfs 1-2 d d + nVo 2Lfs d 1- d vo i2 = F3d = nVi 2Lfs 1-2 d d C2 dvo dt = i2 - ii, avg UM3198 - Rev 1 page 11/83 UM3198 DAB converter operation Figure 12. Simplified small signal equivalent circuit of DAB converter UM3198 - Rev 1 page 12/83 UM3198 STDES-DABBIDIR reference design overview 4 STDES-DABBIDIR reference design overview 4.1 Power stage of the STDES-DABBIDIR reference design STDES-DABBIDIRP consists of a dual active bridge converter topology implementing ACEPACK 2 SiC power modules in the power section. The driving section is based on two different PCB modules to optimize the driving path of each module. Fan cooling is used to simplify the evaluation of the reference design platform. Figure 13. Power stage blocks 4.2 Driving stage of the STDES-DABBIDIR reference design Two different driving boards are proposed to feed the driving signal to ACEPACK 2 SiC power modules. Both solutions are based on STGAP2SICS gate drivers for SiC technology. The STGAP2SICS single gate driver provides galvanic isolation between the gate driving channel and the low voltage control and interface circuitry. The gate driver is characterized by 4 A capability and rail-to-rail outputs, making the device also suitable for mid and high-power applications such as power conversion and motor driver inverters in industrial applications. The configuration featuring a single output pin and Miller clamp function prevents gate spikes during fast commutations in half-bridge topologies. The device integrates UVLO protection with optimized value for SiC MOSFETs and thermal shutdown to facilitate the design of highly reliable systems. Dual input pins allow the selection of signal polarity control and implementation of hardware interlocking protection to avoid cross-conduction in case of controller malfunction. UM3198 - Rev 1 page 13/83 UM3198 STDES-DABBIDIR reference design overview Figure 14. STDES-DABBIDIRDF driver board based on 4xSTGAP2SIC Figure 15. STDES-DABBIDIRDH driver board based on 2xSTGAP2SIC 4.3 Control stage of the STDES-DABBIDIR reference design The control stage is based on STM32G474RE MCU devices with high-performance Arm® Cortex®-M4 32-bit RISC core. The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all the Arm single-precision data-processing instructions and all the data types. It also implements a full set of digital signal processing (DSP) instructions and a memory protection unit (MPU) to enhance application security. Reference design firmware is provided to help evaluate the full functionality of this power platform. The digital power converter architecture and STM32Cube environments help optimize the implementation and use of the source code. The hardware abstraction and middleware layers contain the peripheral and application-related functions to manage and extend the functionality. The application layer allows us to manage operation features such as startup procedure load management, control, and protection, as well as the finite state machine. UM3198 - Rev 1 page 14/83 UM3198 STDES-DABBIDIR reference design overview Figure 16. STDES-DABBIDIR FW architecture The general purpose STDES-PFCBIDIR control board based on the STM32G474 MCU is suitable for various high-power applications. This control board supports additional communication and debugging features such as I2C, UART, status LEDs, and analog monitoring, to extend the usage of the MCU peripherals. Figure 17. Control stage blocks UM3198 - Rev 1 page 15/83 UM3198 STDES-DABBIDIR hardware implementation 5 STDES-DABBIDIR hardware implementation 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.2 5.2.1 Input/output requirements Maximum input power The maximum input power related to high voltage is obtained according to maximum output (low-voltage side) and worst-case efficiency considered. Pin_max = Pout_max w = 28kW 95% = 29,4kW (12) Maximum DC input current The maximum DC input current with the variation of the Vin value is now considered. When Vin is minimal, the maximum DC input current is obtained. Iin_max = Pin Vin_min = 29,4kW 720V = 40.93A (13) Nominal DC input current The maximum DC input current with the variation of the Vin value is now considered. When Vin is minimal, the maximum DC input current is obtained. Iin = Pin Vin_nom = 29,4kW 800 = 36.84A (14) Minimum DC input current The mean input current changes with the variation of the Vin value. When Vin is minimal, the maximum average current is obtained. Iin = Pin Vin_max = 29,4kW 880 = 33,49A (15) Maximum DC output current The maximum DC output current is obtained from the typical output voltage at maximum output power. Iout = Pmax Vout_nom = 28000 450 = 62.22A (16) Minimum DC output current The minimum DC output current is obtained from the maximum output voltage at maximum output power. Iout = Pout_max Vout_max = 28000 500 = 56A (17) Nominal DC output current The nominal DC output current is obtained for the typical output voltage at nominal output power. Iout = Pout Vout_nom = 25000 450 = 55.55A (18) Sensing circuitry HV voltage sensing The high-voltage-side voltage is obtained using a two-stage sensor circuit isolated architecture. The first stage represents an isolated op amp that allows measurement of the HV through a voltage divider with an isolation barrier. Isol-Op-AMP output is limited in volts and is scaled with a second stage of op amps with appropriate gain and bias. UM3198 - Rev 1 page 16/83 UM3198 STDES-DABBIDIR hardware implementation Figure 18. HV voltage sensing equivalent circuit. Figure 19. STDES-DABBIDIR HV sensing circuit To define the maximum high-voltage-side measurement, the maximum voltage range is considered. Parameters Vin_nom Vin_min Vin_max Table 2. HV-side input voltages Value 800 V 720 V 880 V Description Nominal input Voltage Min. input voltage Max. input voltage High voltage maximum voltage range is considered with +20% margin. VSDeCn1seMax = VMDCa1x + 20%VMDCa1x = 880*1.2 = 1056 1050V The maximum voltage of the isolated op amp must be guaranteed at HV max sense voltage. VMisoalxOA = 2V From this, voltage divider transfer function is obtained. kdDiCv1 = VMisoalxOA VMDCa1x = 2 1050 = 1.905e-3 The resistor values of voltage divider are now calculated. RB = 22k RA = 1 - kdDiCv1 kdDiCv1 RB = 11.53M 3x3.90k UM3198 - Rev 1 page 17/83 Note: 5.2.2 UM3198 STDES-DABBIDIR hardware implementation Isolated op amp unity and voltage gain must be followed by proper signal conditioning to fulfill ADC range requirements. Parameters Vout_max Vin_max Table 3. HV sensing input and output voltage range Value Description 3.3 V Maximum value of the voltage range of the microcontroller ADC 2 V Op amp maximum input voltage | maximum output voltage of ISO op amp According to these input and output values, the voltage gain of signal conditioning is defined. K = Vout_max Vin_max = 3.3V 2V = 1.65 The differential amplifier configuration is designed according to the voltage gain requirement. Parameters VHV_range VADC_range GTv_HVDC GADC_Bits BTv_HVDC BADC_Bits GTv_HVDC_tot BTv_HVDC_tot invGTv_HVDC_tot Table 4. STDES-DABBIDIR effective value of HV sensing Value 0V - 1050V 0V - 3.3V 3.13e-3 V V 1240 Bits V 0V 0Bits 3.881 Bits V 0Bits 0.2576 V Bits Description HV voltage range ADC signal range keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain LV voltage sensing The low-voltage-side voltage is obtained using a two-stage sensor circuit isolated architecture. The first stage represents an isolated op amp that allows measurement of the HV through a voltage divider with an isolation barrier. Isol-Op-AMP output is limited in volts and is scaled with a second stage of op amps with appropriate gain and bias. Figure 20. LV sensing equivalent circuit UM3198 - Rev 1 page 18/83 UM3198 STDES-DABBIDIR hardware implementation Figure 21. STDES-DABBIDIR LV sensing circuit Note: To define the maximum high voltage side measurement, the maximum voltage range is considered. Parameters Vout_nom Vout_min Vout_max Table 5. HV-side output voltages Value 450 V 250 V 500 V Description Nominal output Voltage Min. output voltage Max. output voltage The high voltage maximum voltage range is considered with +20% margin. VSDeCnLsVeMax = VMDCaLxV + 30%VMDCaLxV = 500*1.3 = 650 660V The isolated op amp maximum voltage must be guaranteed at LV max sense voltage. VMAMaxC1311 = 2V From this voltage, the divider transfer function is derived. kdDiCvLV = VMAMaxC1311 VMDCaLxV = 2 660 = 3.03e-3 The resistor values of the voltage divider are calculated. RB = 33k RA = 1 - kdDiCv1 kdDiCv1 RB = 10.86M 3x3.60k Isolated op amp unity and voltage gain must be followed by proper signal conditioning to fulfill ADC range requirements. Parameters Vout_max Vin_max Table 6. LV sensing input and output voltage range Value Description 3.3 V Maximum value of the voltage range of the microcontroller ADC 2 V Op amp maximum input voltage | maximum output voltage of ISO op amp From the input and output values, the voltage gain for signal conditioning is defined. K = Vout_max Vin_max = 3.3V 2V = 1.65 The differential amplifier configuration is designed according to the voltage gain requirement. UM3198 - Rev 1 page 19/83 5.2.3 UM3198 STDES-DABBIDIR hardware implementation Parameters VLV_range VADC_range GTv_LVDC GADC_Bits BTv_LVDC BADC_Bits GTv_LVDC_tot BTv_LVDC_tot invGTv_LVDC_tot Table 7. STDES-DABBIDIR effective value of LV sensing Value 0V - 660V 0V - 3.3V 5.07e-3 V V 1240 Bits V 0V 0Bits 6.296 Bits V 0Bits 0.1688 V Bits Description LV voltage range ADC signal range keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain HV current sensing HV-side current measurement is obtained through an isolated Hall effect current transducer. The equivalent circuit is shown below. Figure 22. HV current sensing equivalent circuit Figure 23. STDES-DABBIDIR HV current sensing circuit To define the maximum high-voltage-side current measurement range, the maximum current range is considered. UM3198 - Rev 1 page 20/83 UM3198 STDES-DABBIDIR hardware implementation Parameters Iin_max Value ±40.93A Table 8. HV-side current Description Max. input current at Vin_min = 720V and Pin_max = ± 29,4kW The HV-side maximum voltage range is considered with +15% margin. ISDeCnHsVeMax = IMDCaHxV + 15%VMDCaIxV = ± 40.93A*1.15 = ± 47.07 ± 48A We check this against the sensor limitation. IPCAMSR15NP > ISDeCnHsVeMax ± 51A > ± 48A PASSED The internal voltage reference of the Hall effect sensor is used. According to this, the sensor output voltage is shifted by Vref=2.5V. The equivalent transfer function is given. BIASHall = 2.5V GAINHall = 0.625 IPNCASR15NP = 0.625 15 = 41.66e-3 V A VLHEVMout = BIASHall + GAINHallISDeCnHsVeMax = 41.66e- 3 V A ± 48A + 2.5V = 4.5V 0.5V To adapt sensor the output voltage to the ADC range, op amp conditioning is required. Parameter IHV_range VLHEVMout_range VOA_out_range Table 9. Parameters for HV-side op amp conditioning Value ±48A Description HV-side current measurement range required 0.5Vto4.5V Op amp input voltage range/output voltage range of hall sensor 0-3.3 V Maximum value of the voltage range of the microcontroller ADC According to the input output specs, voltage gain and offset of signal conditioning is defined. Vout = R4 R2 + R4 1 + R3 R1 Vin - R3 R1 Vbias Finally, the transfer function is obtained. GAINopamp = R4 R2 + R4 1 + R3 R1 = 10k 4.12k + 10k 1 + 1.65k 10k = 0.8251 V V GAINeq = GAINopamp GAINHall = 0.8251 V V 41.66e-3 V A = 0.03437 V A BIASopamp = - R3 R1 Vbias = - 0.165 2.5V = - 0.4125V BIASeq = BIASHall GAINopamp + BIASopamp = 2.5V 0.8251 - 0.4125V = 1.65V VODACHouVt = ISDeCnHsVe GAINeq + BIASeq VBits = K12bits VADC = 212 - 1 3.3 VADC = 1240 VADC GTi_HVDC_tot = GAINeq K12bits = 42.65 Bits A The digital transducer transfer function becomes: VODACHouVt = ISDeCnHsVe GAINeq + BIASeq Sensing specifications are collected. Parameters IHV_range VADC_range Table 10. Theoretical overall parameters of HV current sensing Value ±48A 0V - 3.3V Description LV Voltage range ADC signal range UM3198 - Rev 1 page 21/83 5.2.4 UM3198 STDES-DABBIDIR hardware implementation Parameters GTi_HVDC GADC_Bits BTi_HVDC BADC_Bits GTi_HVDC_tot BTi_HVDC_tot invGTi_HVDC_tot Value 0.03437 V A 1240 Bits V 1.65V 2047Bits 42.65 Bits A 2047Bits 0.0234 A Bits Description keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain The design overview is also included. R1 = 10k0.1% R2 = 4.12k0.1% R3 = 1.65k0.1% R4 = 10k0.1% AINopamp = R4 R2 + R4 1 + R3 R1 = 0.8251 V V Geq = Gopamp GHall = 0.8251 V V 41.66e-3 V A = 0.03437 V A 7 GTv = GAINeq K12bits = 42.65 Bits A LV current sensing LV-side current measurement is obtained through an isolated Hall effect current transducer. The equivalent circuit is shown below. Figure 24. LV Current sensing equivalent circuit UM3198 - Rev 1 page 22/83 UM3198 STDES-DABBIDIR hardware implementation Figure 25. STDES-DABBIDIR LV current sensing circuit To define the maximum low-voltage-side current measurement range, the maximum current range is considered. Parameters Iout_max Value ±62.22A Table 11. LV-side current Description Max. LV-side current at Vin_min = 450V and Pin_max = ± 28kW The low voltage maximum current range is considered with +30% margin. ISDeCnLsVeMax = IMDCaLxV + 15%VMDCaLxV = ± 62.22A*1.3 = ± 80.88 ± 82A This value is checked against the sensor limitation. IPCMASR50NP > ISDeCnHsVeMax ± 150A > ± 82A The internal voltage reference of Hall effect sensor is used. According to this, the sensor output voltage is shifted by Vref=2.5V. The equivalent transfer function is given. BIASHall = 2.5V GAINHall = 0.625 IPNCASR15NP = 0.625 50 = 12.5e-3 V A VLLEVMout = BIASHall + GAINHallISDeCnLsVeMax = 12.5e-3 V A ± 82A + 2.5V = 3.525V 1.475V To adapt the sensor output voltage to ADC range, op amp conditioning is required. Parameter IHV_range VLHEVMout_range VOA_out_range Table 12. Parameters for LV-side op amp conditioning Value ±82A Description HV side Current measurement range required 1.475Vto3.525V Op amp input voltage range/output voltage range of hall sensor 0-3.3 V Maximum value of the voltage range of the microcontroller ADC According to the input and output values, the voltage gain and offset for signal conditioning are defined. Vout = R4 R2 + R4 1 + R3 R1 Vin - R3 R1 Vbias The differential amplifier configuration is designed according to the voltage gain and bias requirements. By setting R1 , it is possible to calculate R2, R3 and R4 with the following relationships: R1 = 13.7k UM3198 - Rev 1 page 23/83 5.3 UM3198 STDES-DABBIDIR hardware implementation R2 = 4.22k R3 = R1 Y = 13.7k 0.9498 = 13.01k R4 = R2 X 1-X = 19.98k Finally, the transfer function is obtained GAINopamp = R4 R2 + R4 1 + R3 R1 = 19.98k 4.22k + 19.98k 1 + 13.01k 13.7k = 1.6096 V V GAINeq = GAINopamp GAINHall = 1.6096 V V 12.5e-3 V A = 0.02012 V A BIASopamp = - R3 R1 Vbias = - 0.9498 2.5V = 2.3745V BIASeq = BIASHall GAINopamp + BIASopamp = 2.5V 1.6096 - 2.3745V = 1.6495V VODACHouVt = ISDeCnHsVe GAINeq + BIASeq We now take digital conversion into account. VBits = K12bits VADC = 212 - 1 3.3 VADC = 1240 VADC GTv_LVDC_tot = GAINeq K12bits = 24.9488 Bits A The digital transducer transfer function becomes. VODACHouVt = ISDeCnHsVe GAINeq + BIASeq The sensing specifications are collected. Parameters ILV_range VADC_range GTi_LVDC GADC_Bits BTi_LVDC BADC_Bits GTi_LVDC_tot BTi_LVDC_tot invGTi_LVDC_tot Table 13. Theoretical overall parameters of HV current sensing Value ±82A 0V - 3.3V 0.02012 V A 1240 Bits V 1.65V 2047Bits 24.9488 Bits A 2047Bits 0.0401 A Bits Description LV voltage range ADC signal range keq conditioning circuit gain ADC peripheral digital gain factor with 12-bit precision and VDDA=3.3V Bias term of conditioning circuit gain Offset term of ADC peripheral Overall conditioning circuit gain Overall offset term Reciprocal overall conditioning circuit gain Magnetics design requirements From the power converter specifications, the magnetic parameters are calculated. Parameters Vin_nom Vout_nom Pout_nom Pout_max fsw Table 14. Parameters for magnetic design Value 800 450 25 28 100 Dimension V V kW kW kHz Description Nominal HV-side input voltage Nominal LV-side output voltage Nominal power Maximum power Switching frequency UM3198 - Rev 1 page 24/83 5.3.1 5.3.2 5.3.3 UM3198 STDES-DABBIDIR hardware implementation Transformer turn ratio In order to optimize the operation of the high frequency transformer, transformer ratio is obtained from the primary and secondary nominal voltages. n = N1 N2 = Vin_nom Vout_nom = 800 450 = 1.78 (19) Total resonance inductance To design DAB resonance inductance, nominal power is considered. According to the DAB theoretical aspects section, to manage full power operation, a single phase shift modulation technique is now considered. Ignoring the detrimental effects of efficiency parameters, the power flow equation is proposed. P = P1 = P2 = N*Vin_nom*Vout_nom** 2*2*Fsw*LK - (20) To obtain the max power transfer P = 0 is imposed, then = 2 allow to manage maximum power. Pmax = N*Vin_nom*Vout_nom 8*Fsw*LK (21) Then: LK = n*Vin_nom*Vout_nom 8*Fsw*Pmax = 1,78*800*450 8*100k*28k = 28,6uF The max leakage inductor current ( = /2 ) is: (22) ILkmax = * n*Vout_nom - Vin_nom - 2**n*Vout_nom 4**Fsw*Lk = = * 1.78*450 - 800 - 2* 2 *1.78*450 4**100000*28.61*10-6 = 69.90A (23) The max input current is: Iprim_max = ILkmax (24) The MAX output current is: Isec_max = n*Iprim_max = 124.43A (25) Transformer peak magnetic field estimation To define the magnetic structure and core loss estimations, the magnetic field amplitude must be calculated. Parameters NP Ae Ncore Ae, tot fsw Table 15. Parameters for transformer peak magnetic field estimation Value 800 392 Dimension V mm2 Description Nominal LV-side output voltage Effective area of single ferrite 5 1960(1960e-6) 100 mm2 m2 kHz Number of stacked core elements Total effective area of ferrite block Switching frequency Bmax = 1 NPAe nVout 1/2 fsw = = 1 9*1960*10-6 *1.79*450 1/2 100*103 = 228mT Bmax = 228mT 2 = 114mT (26) (27) UM3198 - Rev 1 page 25/83 5.3.4 5.3.5 5.3.6 UM3198 STDES-DABBIDIR hardware implementation Auxiliary inductance - peak magnetic field estimation Bmax = 1 NLAe Vlk 1/2 fsw = 1 7*1960*10-6 *800 1/2 100*103 = = 72.88* 350*5*10-6 = 2*92.9mT 1250*5*10-6 + (28) Transformer Magnetizing inductance The magnetizing inductance of HFT does not participate in the active power transfer, so it is designed with a magnetizing current <2% of the rated current. Im 2%Iin = 2% Pin Vin_nom = 2% 29kW 800V = 2%36.84 A Im 0.7A We now consider the inductance current. Impp = 1 Lm Tsw 0 2 Vindt = Vin Lm Tsw 0 2 dt = Vin Lm Tsw 2 = Vin 2fswLm Impp = Vin 2fswLm 2Im = Vin 2fswLm Im = Vin 4fswLm The actual magnetizing inductance can now be calculated. Lm Vin 4fswIm = 800 4100kHz0.73A Lm 2.739mH Magnetics section design proposal According to the design requirements, the actual design details are shown below. Figure 26. Frenetic 32011-04-Design-Report (design requirements section) Considering the specifications, Frenetic has a design based on 5 stacked cores of E80/38/20. To maximize the performance of the converter, a sandwich interleaving arrangement is selected as the best solution to reduce AC proximity losses and to improve the coupling between the windings of the transformer. UM3198 - Rev 1 page 26/83 UM3198 STDES-DABBIDIR hardware implementation Figure 27. Frenetic 32011-04 Transformer winding Figure 28. Frenetic 32011-04 Auxiliary inductor windings The following figure provides a 3D view. Figure 29. 3D image of transformer Unique magnetic core elements were considered to reduce the volume and weight. UM3198 - Rev 1 page 27/83 Figure 30. 3D model of transformer UM3198 STDES-DABBIDIR hardware implementation Figure 31. 3D model of auxiliary inductor 5.4 5.4.1 Power section Power device current stress The conduction losses are calculated using the rms switch currents IQ1rms and IQ5rms for the HV-side switches, PScHoVnd , and the LV-side switches, PScLoVnd , respectively. As every switch conducts current during half of the cycle time Tsw = 1/fsw in steady state operation, the rms switch currents are easily obtained from the rms inductor current ILkrms Figure 32. Switch RMS current equivalent circuit 5.4.2 According to the selected modulation techniques, each half bridge operates at 50% duty cycle, so the rms currents are equal. Hp . LegDuty50% IQ1rms = IQ2rms By LKC, the relation between inductor and switch currents can be identified. ILkrms = IQ1rms2 + IQ2rms2 = 2IQrms2 = 2IQrms ILkrms = 2IQrms By LKC, the relation between inductor and switch currents can be identified. IQ1rms = IQ3rms = ILkrms 2 IQ5rms = IQ7rms = ILkrms/n 2 IQ2rms = IQ4rms = ILkrms 2 IQ6rms = IQ8rms = ILkrms/n 2 Power switches conduction losses High-voltage-side conduction losses are obtained from each contribution. PScHoVnd = 4*RDS on *IQ1rms2 Secondary low-voltage estimation is also obtained. UM3198 - Rev 1 page 28/83 5.4.3 UM3198 STDES-DABBIDIR hardware implementation PScLoVnd = 4*RDS on *IQ5rms2 The total switches conduction losses are obtained. PScToOnTd = PScHoVnd + PScLoVnd Power switch switching losses The calculation of the switching losses is more demanding as they do not only depend on the selected power MOSFETs themselves. Surrounding parasitic components like PCB stray inductances may also influence the switching losses considerably. Only power switching power losses are considered here. Very low switching losses are obtained when ZVS/ZCS is achieved. In contrast, hard switching operation leads to excessive semiconductor losses and must be avoided when using advanced modulation methods or additional circuitry. PSWHV = 4fswEOn, QHV I, V + 4fswEOff, QHV I, V PSWLV = 4fswEOn, QLV I, V + 4fswEOff, QHV I, V The total switches switching losses are obtained. PSTWOT = PSWHV + PSWLV UM3198 - Rev 1 page 29/83 UM3198 STDES-DABBIDIR control implementation 6 STDES-DABBIDIR control implementation A typical EV charger control platform consists of two different control implementations to fulfill battery charging requirements: current control is used during the first part of charging profile, and voltage control is typically required to complete the charging profile. Both control solutions are therefore proposed for the STDES-DABBIDIR reference design control implementation. An easy and robust proportional integrator (PI) regulator is considered to follow the reference value. Comparing references and feedback for voltages and currents, control variables are obtained to address the requirements. According to the theoretical description of the DAB converter model, the actual control terms are represented by the phase shift, so phase shifting is obtained from each control block to manage the modulator blocks adopted to configure the high-resolution timer of the STM32G474 according to the phase shifting demand. In addition, "DAB Supervisor" blocks are proposed to manage other features such as protections, monitoring, and modulations techniques. Figure 33. Control block diagram 6.1 Software implementation The STDES-DABBIDIR is controlled by the STM32G474RE MCU. The firmware package is based on the STM32Cube ecosystem shown in Figure 34. Starting from STM32CUBEMX all used peripherals and pins are activated and configured according to the basic project. The application firmware is supported and tested using STM32CubeIDE IAR and KEIL development environment. After the development, the MCU can be programmer with IDE or with STM32CubeProgrammer. To monitor and control the application, a GUI based on STM32CubeMonitor can be used. The firmware described in this documentation development is based on STM32CubeG4 Firmware Package V1.4.0. Figure 34. CUBE ecosystem development flow UM3198 - Rev 1 page 30/83 UM3198 STDES-DABBIDIR control implementation An extensive range of generic and specific firmware modules are available to support digital power conversion. Figure 35 shows the general development flow to obtain power conversion used for STDES-PFCBIDIR firmware development. This workflow allows us to start from power conversion requirements. This information is reinterpreted in application specifications that contain information linked to the MCU peripheral and DPC application configuration. According to the previous information, a CubeMX project with appropriate "config" and "init" are provided. Then the required DPC module is included and configured. CubeMX generated the IDE project for development. The MCU is flashed directly with IDE or using STM32CubeProgrammer. Finally, the DPC application is tested and debugged with appropriate instrumentation and STM32CubeMonitor. Digital Power converter firmware is released if compliant, and DPC is adapted. Figure 35. DPC development flow 6.2 Peripheral configuration STM32CubeMX STM32CubeMX is a graphical tool that is used to configure STM32 microcontrollers and to generate the corresponding initialization C code for the chosen development tools. The overall pinout configuration of the STM32G474RE is shown. The STM32CubeMX configuration tool simplifies pin association and functionality to avoid any peripheral conflicts. UM3198 - Rev 1 page 31/83 UM3198 STDES-DABBIDIR control implementation Figure 36. STM32G474 MCU pinout configuration for STDES-DABBIDIR 6.2.1 High-resolution timer A brief representation of the high-resolution timer configuration is shown below. Accurate parameter configuration is visible in the STM32CubeMX project files. UM3198 - Rev 1 page 32/83 UM3198 STDES-DABBIDIR control implementation Figure 37. Generic phase shift - HRTIM block diagram Figure 38. HRTIM pin assignment UM3198 - Rev 1 page 33/83 UM3198 STDES-DABBIDIR control implementation An example of the switching pattern managed according to HRTIM peripheral of the STM32G474 is shown below, with primary and secondary legs of the DAB topology synchronized to the phase shifting requirements of the Master Timer Compare Unit. Dead time insertion and nominal 50% duty cycle of each leg is also managed through hardware configuration of the A-B-C-D channels of the HRTIM. Figure 39. HRTIM modulation pattern 6.2.2 ADC configuration and triggering Additional details about the peripheral are also proposed for the ADC. Figure 40. ADC clock scheme UM3198 - Rev 1 page 34/83 6.2.2.1 UM3198 STDES-DABBIDIR control implementation ADC timing - actual configuration We use STM32CubeMX to select the clock sources for the ADC peripherals. Figure 41. ADC clock source selection (STM32CubeMX) fsysclk = 170MHz fclk = fsysclk AHBpsc = 170MHz 1 = 170MHz (29) ADC 1 and ADC2 are requested for this application. Both are configured as shown below. Figure 42. CubeMX ADC Settings Clock Prescaler Configuration related to CKMODE[1:0] and PRESC[3:0] Table 16. Clock Prescaler settings Register PRESC[3:0] CKMODE[1:0]: ADC clock mode Value 0010 (input ADC clock divided by 4) 11: adc_hclk/4 (Synchronous clock mode) fadcclk = fclk PRESC 3: 0 = 170MHz 4 = 42.5MHz Tadcclk = 1 fadcclk = 1 42.5MHz = 23,529nSec (30) Resolution RES[1:0]= 12 -> 12.5 ADC clock cycles is considered for each channel and the ADC peripherals. Tsar = RESclkcycleTadc_clk = 12.5 1 42.5MHz = 294,1nSec UM3198 - Rev 1 page 35/83 6.2.2.2 UM3198 STDES-DABBIDIR control implementation Trigger and sampling Considering the "clean" area available in single phase shift modulation (SPS), the total conversion time must be lower than a quarter of the switching period. Figure 43. SPS ADC sampling requirement tadctrigger > 1 fPWM 4 7,5uSec (31) tadcclean < 1 fPWM 4 = 2,5uSec (32) According to the PWM frequency and modulation technique, a specific trigger time is selected. Figure 44. STM32CubeMX ADC1 Regular conversion configuration UM3198 - Rev 1 page 36/83 UM3198 STDES-DABBIDIR control implementation Figure 45. STM32CubeMX ADC2 regular conversion configuration Figure 46. HRTIM ADC trigger CubeMX configuration Figure 47. HRTIM compare unit enabled for ADC triggering To guarantee the proposed tadctrigger timed conversion request, an external trigger conversion is configured. ADC N° of conversion ADC1 1 ADC2 5 Table 17. ADC and timer configuration ADC Configuration Regular Conversion Regular Oversampling Enable Disable Enable Disable Ext Trig. Source HRTIM Trigger1 event HRTIM Trigger1 event Ext Trig. Edge Rising HRTIM Configuration Update Trigger Source Trigger Source Selection Trigger Source Master Timer 1 Master Compare 4 Rising Master Timer 1 Master Compare 4 The converter signals are connected to the ADCs according to the following table. Phase VDAB1 IDAB1 VDAB2 IDAB2 Ilk PORT PC1 PC4 PC0 PA7 PC2 Table 18. Converter signal connections ADC ADC2 ADC2 ADC2 ADC2 ADC1 CH CH7 CH5 CH6 CH4 CH8 DMA DMA1CH4 DMA1CH4 DMA1CH4 DMA1CH4 DMA1CH3 RANK 4 2 3 1 1 FUNCTION ADC2 IN7 ADC2 IN4 ADC2 IN6 ADC2 IN4 ADC1 IN8 UM3198 - Rev 1 page 37/83 6.2.3 UM3198 STDES-DABBIDIR control implementation Phase TEMP Temp-INT PORT PB2 INT ADC ADC2 ADC1 CH CH12 TEMP DMA DMA1CH4 DMA1CH3 RANK 5 8 FUNCTION ADC2 IN12 ADC1-TEMP Configuration files STDES-DABBIDIR power converter configuration is based on two main configuration files, shown in the figure below: · "DPC_application_conf.h" contains the application-specific DEFINE (i.e., ADC gain factor PI regulator gain, FSM configuration, control reference value, etc. · "DPC_Lib_conf.h" contains the configuration parameters associated with MCU peripheral configuration Figure 48. STDES-DABBIDIR configuration file After the "MX" initialization function, the DPC initialization function are called to configure each specific application struct, as shown in the figure below. Figure 49. Application Init functions 6.2.4 Finite state machine The STDES-DABBIDIR control supervisor is developed by a passthrough implementation of the finite state machine with event and status shown in the following figure. UM3198 - Rev 1 page 38/83 UM3198 STDES-DABBIDIR control implementation Figure 50. Finite state machine bubble representation The FSM firmware modules provide a specific "weak" function for any state. The weak function provides a simple change of state to the following state. If any state is not used, the FSM main function allows a bypass to move forward automatically (Figure 51). The STDES-DABBIDIR provides a typical FSM execution to obtain a typical startup procedure of the converter. The nominal operation is managed with the FSM and the ERROR and FAULT states are supported. Figure 51. STDES-DABBIDIR FSM application service execution UM3198 - Rev 1 page 39/83 UM3198 How to manage the STDES-DABBIDIR reference design 7 How to manage the STDES-DABBIDIR reference design This section describes how to configure and evaluate the power platform. Preliminary information regarding the typical test bench and testing procedures are provided in the following sections. 7.1 System setup requirement To perform functions of the STDES-DABBIDIR, the following equipment is needed: · Programmable DC source · DC electronic load · Power analyzer · Digital oscilloscope In addition to the hardware equipment, additional software tools are suggested to fully evaluate the reference environment. A fully integrated design environment like STM32CUBEIDE allows evaluation and management of software source code and STM32G474 peripheral configuration. In addition, thanks to STM32CubeMX, support for other IDEs such as EWARM and AMR Keil is available as well. Tools STM32CubeMX STM32CubeIDE IAR EWARM Arm Keil Table 19. Software compatibility Version v.6.6 or above v.1.8 or above v.9.20.2 or above v5.36 or above 7.2 Important: Safety precautions and protective equipment The STDES-DABBIDIR evaluation board is designed for demonstration purposes only and is not intended for domestic or industrial installations. Danger: The high voltage levels used to operate the STDES-DABBIDIR evaluation board may provoke a serious electrical shock. This evaluation board must be used in a suitable laboratory by qualified personnel only, familiar with the installation, use, and maintenance of power electrical systems. During operation, do not touch the board as some of its components could reach very high temperatures. 7.3 How to use the STDES-DABBIDIR STDES-DABBIDIR is a high-power, high-voltage application and an appropriate testbench is required for safety operation. A typical configuration of test bench is proposed here. UM3198 - Rev 1 page 40/83 UM3198 How to manage the STDES-DABBIDIR reference design Figure 52. Power equipment connection example 7.4 How to connect the STDES-DABBIDIR Before testing the reference design, the following actions and checks must be considered. Step 1. Connect or verify the proper connection of HF transformer as described into the specific section. Step 2. Insert or verify the STDES-DABBIDIRDF into the driving board connectors located into left side. Step 3. Insert or verify the two STDES-DABBIDIRDH into the driving board connectors located into right side. Step 4. Insert or verify the STDES-PFCBIDIR into the control board connector located on the bottom-right side. Step 5. Connect 12V external power supply into the "12V" connector located in the bottom-left corner. Step 6. Connect 7V external power supply into the "7V" connector located in the bottom-left corner. Step 7. Connect the Programmable DC power supply in the top-left corner connectors. Polarity must be checked according to the image description. Step 8. Connect the Programmable DC e-Load in the top-right corner connectors. Polarity must be checked according to the image description. The control card based on STM32G474 MCU is directly powered by the main board. The required MCU 3.3V is provided by internal LDO. UM3198 - Rev 1 page 41/83 UM3198 How to manage the STDES-DABBIDIR reference design Figure 53. Connecting the STDES-DABBIDIR 7.5 How to set up the STDES-DABBIDIR The MCU could be programmed, monitored, and debugged using different SW/HW tools. ST-Link V2/isol and a typical 20 to10-pin JTAG adapter is used to connect the platform with a PC. The following procedure shows how to flash and debug the reference platform from a generic configuration; referr to dedicated sections to configure the actual configuration for specific tests. UM3198 - Rev 1 page 42/83 Figure 54. ST-LINK/V2 ISOL + adapter UM3198 How to manage the STDES-DABBIDIR reference design Figure 55. ST-LINK/V2 ISOL connection Step 1. Step 2. Step 3. Step 4. Step 5. Step 6. Step 7. Step 8. Install and configure the preferred IDEs Apply 7V and 12V external supply voltage Connect STlink hardware debugger Open project according to IDE selection The "main.c" file is in project/Application/User path. "Download and debug" button performs programming procedure and start-up the debugging connection. "Run button" to start the code execution. Figure 56. IAR EWARM program procedure UM3198 - Rev 1 page 43/83 UM3198 How to manage the STDES-DABBIDIR reference design Figure 57. IAR EWARM debug procedure Example 1 : Several parameters can be adapted in order to evaluate and customize the application operating condition. The main parameters are depicted in the next table showing the default configuration proposed in the source code firmware example. Some examples are proposed in this chapter, and specific configuration of these parameters are proposed to emulate the same behavior described for each. Table 20. Control section firmware configuration defines Parameters Value type Min Default Max Unit Comments DPC_CTRL_INIT DAB_OPEN_LOOP DAB_CURRENT_LOOP - DAB_OPEN_LOOP - enum DAB_VOLTAGE_LOOP DPC_PWM_INIT PWM_Armed 400 PWM_Safe enum StartUpCheck_INIT StartUpCheck_Disabled StartUpCheck_Enabled StartUpCheck_Disabled enum Startup management DPC_INRS_EN SET RESET RESET DPC_BURST_EN SET RESET RESET DPC_DAB_VDC_OUT float 0 50 880 V Target DC output voltage DPC_DAB_IDC_OUT float 0 1 60 A Target DC output current UM3198 - Rev 1 page 44/83 7.6 7.6.1 UM3198 How to manage the STDES-DABBIDIR reference design In addition to the operating mode parameters, a dedicated parameter section is proposed for the protection feature configuration. The default configuration is also given. Table 21. Hardware protection firmware configuration defines Parameters DPC_VDCHV_OVP DPC_VDCHV_UV DPC_VDCHV_UVLO DPC_VDCHV_MIN DPC_IDCHV_OCP DPC_IDCLV_OCP DPC_VDCLV_OVP Value type float float float float float float float Min Default Max Unit - 900 - V - 40 - V - 30 - V - 20 - V - 50 - A - 550 - A - 100 - V The STSW-DABBIDIR source code firmware package represents the control section of STDES-DABBIDIR. By using hardware section configuration of the FW, different hardware configuration proposed by the CTMs can also be supported. The main parameters such as switching frequency, dead time, sensing parameters, and magnetics section can be customized. Table 22. Hardware parameters firmware configuration defines Parameters Value type Min Default Max Unit TRAFO_TURN_RATIO float - 1.78 - N1/N2 INDUCTANCE float - 28e-6 - PWM_FREQ Uint16_t - 100000 - DPC_DT_DAB1 float - 0.4e-6 - DPC_DT_DAB2 float - 0.4e-6 - G_VDC1 float - 3.901 - B_VDC1 float - 0 - G_IDC1 float - 42.67 - B_IDC1 float - 2048 - G_VDC2 float - 6.296 - B_VDC2 float - 0 - G_IDC2 float - 24.948 - B_IDC2 float - 2048 - Comments Transformer turn ratio Auxiliary inductance Switching Frequency of converter expressed in [Hz] Dead Time [Expressed in sec] Dead Time [Expressed in sec] Gain terms of the DC input voltage sensing Bias terms of the DC input voltage sensing Gain terms of the DC input current sensing Bias terms of the DC input current sensing Gain terms of the DC output voltage sensing Bias terms of the DC output voltage sensing Gain terms of the DC output current sensing Bias terms of the DC output current sensing How to operate the STDES-DABBIDIR This section provides examples of operating modes. Several setups are proposed to help evaluate and become familiar with the various features of the reference design. Mode 1 open loop, driving check This test is for the driving section of the application. PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by "PWM_FREQ", "DPC_DT_DAB1" and "DPC_DT_DAB2" of "DPC_Appplication_Conf.h" file. No high-power equipment is required during this test. MCU and gate driver section phase shift between primary and secondary can be verified during this test. UM3198 - Rev 1 page 45/83 UM3198 How to manage the STDES-DABBIDIR reference design Figure 58. Mode 1 test configuration An example of the default configuration is given. Swathing frequency and dead time are configured in "DPC_Application_Conf.h" and the expected waveforms are provided. Step 1. Configure the firmware parameters and flash the MCU. Table 23. Mode 1 test parameters Parameters DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN PhSh_CTRL_MAN_norm Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB. pDAB_CTRL.PhSh_CTRL_MAN_norm Value DAB_OPEN_LOOP PWM_Armed StartUpCheck_Disabled RESET RESET 0.25 Step 2. Go to the debugging mode in the preferred IDE software. Step 3. If emergency shoot down is required, DPC_FSM_NEW_State can be set to "DPC_FSM_FAULT" to disable PWM as well as phase shifting and energy transfer. Example 1 : UM3198 - Rev 1 page 46/83 UM3198 How to manage the STDES-DABBIDIR reference design Table 24. Example of frequency and dead time configuration Parameters PWM_FREQ DPC_DT_DAB1 DPC_DT_DAB2 Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h Value 100000 0.4e-6 0.4e-6 Figure 59. Typical PWM and driving voltages 7.6.2 Mode 2 open loop, phase shift power operation. This test is for the power and sensing section of the application. Power equipment (programmable DC power supply and DC eDLoad) is required for this test. DPI and protection shields are mandatory to prevent injury. Power analyzer can be connected during this test to evaluate efficiency in specific operating points. The PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by "PWM_FREQ", "DPC_DT_DAB1" and "DPC_DT_DAB2" of "DPC_Appplication_Conf.h" file. MCU and gate driver sections phase shift between primary and secondary can be verified during this test. Step 1. Configure firmware parameters and flash the MCU. Table 25. Mode 2 test parameters Parametrs DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN PhSh_CTRL_MAN_norm Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB. pDAB_CTRL.PhSh_CTRL_MAN_norm Value DAB_OPEN_LOOP PWM_Armed StartUpCheck_Disabled RESET RESET Variable during this test Step 2. Select and enable Constant Current mode "CC" in the High Power eLoad. Step 3. Set current reference to 9A. UM3198 - Rev 1 page 47/83 UM3198 How to manage the STDES-DABBIDIR reference design Step 4. Go to the debugging mode in the preferred IDE software. Step 5. Set to 0.06 in DAB. pDAB_CTRL.PhSh_CTRL_MAN_norm. Step 6. Slowly increase the DC power supply up to 400V. The eLoad voltage will also increase up to 210V. Step 7. Slowly increase the eLoad up to 16A. The eLoad voltage will decrease. Step 8. Slowly increase the DC power supply up to 800V. The eLoad voltage will also increase up to 420V. Step 9. By slowly changing phase shifting and the eLoad current requirements, the actual power level configuration can be adjusted to evaluate several configurations. Step 10. Decrease the DC power supply until 0V is reached. The eLoad voltage will decrease. Step 11. If emergency shoot down is required, DPC_FSM_NEW_State can be set to "DPC_FSM_FAULT" to disable PWM as well as phase shifting and energy transfer. Figure 60. Open loop, phase shift power operation Vin=400V Vout=210V PS=0.06 Iload=9A UM3198 - Rev 1 page 48/83 UM3198 How to manage the STDES-DABBIDIR reference design Figure 61. Open loop, phase shift power operation Vin=800V Vout=420V PS=0.06 Iload=16A 7.6.3 Mode 3 closed loop, voltage control This test allows evaluation of the overall performance in voltage control mode of the application. Power equipment (Programmable DC Power Supply and DC eDLoad) is required for this test. DPI and protection shields are mandatory to prevent any injury. Power analyzer can be connected during this test to evaluate efficiency into specific operating points. PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by "PWM_FREQ", "DPC_DT_DAB1" and "DPC_DT_DAB2" of "DPC_Appplication_Conf.h" file. Step 1. Configure the firmware parameters and flash the MCU. Parametrs DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN fDAB_VDC_RefNext_V Table 26. Mode 3 test parameters Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB.pDAB_CTRL.pDAB_VCTRL_SlewRate. fDAB_VDC_RefNext_V Value DAB_VOLTAGE_LOOP PWM_Armed StartUpCheck_Disabled RESET RESET Variable during this test Step 2. Step 3. Step 4. Step 5. Step 6. Step 7. Select and enable Constant Current mode "CC" in the High Power eLoad Set current reference to 1A. Go to the debugging mode by using the preferred IDE tool ("Live mode"). Set to 250 in DAB.pDAB_CTRL.pDAB_VCTRL_SlewRate. fDAB_VDC_RefNext_V Slowly increase the DC power supply up to 800V The eLoad power will also increase. Adapt the current reference of the eLoad to evaluate the operating mode at different power level. UM3198 - Rev 1 page 49/83 UM3198 How to manage the STDES-DABBIDIR reference design Step 8. The DC output voltage can also be adapted by changing "fDAB_VDC_RefNext_V". The actual output voltage reference changes linearly according to the slew rate configuration. Step 9. If emergency shoot down is required, DPC_FSM_NEW_State can be set to "DPC_FSM_FAULT" to disable PWM as well as phase shifting and energy transfer. Some operating examples are shown below: Figure 62. Open loop, phase shift power operation Vin=800V Vout=330V(VCTRL) Iload=17A Figure 63. Open loop, phase shift power operation Vin=800V Vout=410V(VCTRL) Iload=15A UM3198 - Rev 1 page 50/83 UM3198 How to manage the STDES-DABBIDIR reference design Figure 64. Open loop, phase shift power operation Vin=800V Vout=410V(VCTRL) Iload=31A 7.6.4 Mode 4 closed loop, current control This test allows evaluation of the overall performance of the application in current control mode. Power equipment (Programmable DC Power Supply and DC eDLoad) is required for this test. DPI and protection shields are mandatory to prevent injury. Power analyzer can be connected during this test to evaluate efficiency in specific operating points. PWM signals are generated by HRTIM according to the STM32CubeMX peripheral configuration. Dead time and switching frequency are managed by "PWM_FREQ", "DPC_DT_DAB1" and "DPC_DT_DAB2" of "DPC_Appplication_Conf.h" file. Step 1. Configure the firmware parameters and flash the MCU. Table 27. Mode 4 test parameters Parameters DPC_CTRL_INIT DPC_PWM_INIT StartUpCheck_INIT DPC_INRS_EN DPC_BURST_EN fDAB_IDC_RefNext_V Location DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DPC_Application_Conf.h DAB.pDAB_CTRL.pDAB_ICTRL_SlewRate. fDAB_IDC_RefNext_A Value DAB_CURRENT_LOOP PWM_Armed StartUpCheck_Disabled RESET RESET Variable during this test Step 2. Step 3. Step 4. Step 5. Step 6. Step 7. Step 8. Select and enable Constant Current mode "CC" in the High Power eLoad Set current reference to 250V. Go to the debugging mode by using the preferred IDE tool. Set to 2 in DAB.pDAB_CTRL.pDAB_ICTRL_SlewRate. fDAB_IDC_RefNext_A Slowly increase the DC power supply up to 800V; the eLoad power will also increase. Adapt the voltage reference of the eLoad to evaluate the operating mode at different power levels. The DC output current can also be adapted by changing "fDAB_IDC_RefNext_A". The actual output current reference changes linearly according to the slew rate configuration. UM3198 - Rev 1 page 51/83 UM3198 How to manage the STDES-DABBIDIR reference design Step 9. If emergency shoot down is required, DPC_FSM_NEW_State can be set to "DPC_FSM_FAULT" to disable PWM as well as phase shifting and energy transfer. UM3198 - Rev 1 page 52/83 UM3198 STDES-DABBIDIR results 8 STDES-DABBIDIR results This section provides an additional overview of the reference design. 8.1 Charging mode waveforms Waveforms analysis at: · Vin=800V · Vout=400V · fsw=100kHz · IDCload=40Amps · Voltage regulation operating mode Figure 65. Switching waveform C1=DC load current C2=VDAB1 C3=VDAB2 C4=IDM7 C5=VDSM7 C6=VDSM8 C7=VGSM7 C8=ILsec Waveforms analysis at: · Vin=830V · Vout=440V · fsw=100kHz · IDCload=56.3A · Voltage regulation operating mode UM3198 - Rev 1 page 53/83 UM3198 STDES-DABBIDIR results Figure 66. Maximum power waveforms C1=DC load current C2=VDAB1 C3=VDAB2 C4=VDS_LV_HS C5= VDS_LV_LS C6=Iprim C7=VREFL C8=ILsec F3=VL 8.2 Efficiency Efficiency characterization at: · Vin=800V · Vout=440V · fsw=100kHz · Voltage regulation operating mode · Iload=4.5-56.3 A (Constant current) Figure 67. STDESDABBIDIR Efficiency UM3198 - Rev 1 page 54/83 UM3198 - Rev 1 9 Schematic diagrams Figure 68. STDES-DABBIDIR - main board circuit schematic (1 of 6) 2 JP1 1 2 1 2 Con2 1 VDD_7V_EXT J1 De v3 1 + C1 33uF/25V C3 1uF/25V 2 3 VDD_7V_EXT R1 5.6k VDD_7V VDD_7V R2 5.6k A A D1 Led Green D2 Led Green F1 2 1 0 0 30Ohm@ 100MHz U1 LD29080DT50R 1 VIN VOUT 3 4 GND C5 470nF/25V 2 1 VDD_5V + C6 33uF/25V A VDD_5V R3 5.6k F2 VDD_5V 2 1 0 0 30Ohm@ 100MHz D3 Led Green U2 LDL1117S 33R 3 VIN VOUT VOUT1 2 4 1 GND C2 470nF/25V 2 1 VDD_3.3V + C4 33uF/25V A VDD_3.3V R4 5.6k D4 Led Green VDD_7V_EXT VDD_7V C C C C 2 JP2 1 2 1 2 Con2 1 VDD_12V_EXT + C7 33uF/25V C8 1uF/25V J2 De v3 1 2 3 VDD_12V_EXT R6 5.6k VDD_12V VDD_12V R7 5.6k F3 2 1 0 0 30Ohm@ 100MHz A A D5 LE D_ Ye llow D6 LE D_ Ye llow U3 LDL1117S 33R 3 VIN VOUT VOUT1 2 4 1 GND C10 470nF/25V 2 1 VDD_DRIVER VDD_3.3V_DRIVER VDD_DRIVER R5 5.6k + C9 33uF/25V A D7 Led Green VDD_12V_EXT VDD_12V C C C TW 1 TW 2 TW 3 TW 4 TW 5 TW 11 TW 13 M3 HOLE NOT P LATED TW 6 M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED TW 7 TW 8 TW 9 TW 10 TW 12 TW 14 TW 15 TW 16 M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATED M3 HOLE NOT P LATEMD3 HOLE NOT P LATED TW 17 TW 18 TW 19 M3 HOLE NOT P LMA3THEDOLE NOT P LATEMD3 HOLE NOT P LATED UM3198 Schematic diagrams page 55/83 page 56/83 UM3198 - Rev 1 VDD_5V P W M_S X_LS _1 P W M_S X_HS _1 P W M_DX_LS _1 P W M_DX_HS _1 P W M_S X_LS _2 P W M_S X_HS _2 FAN I_ C T_ a d c I_ C T_ a d c Id c 1 _ LE M Id c 2 _ LE M NTC _ LV1 _ Te m p NTC _ LV2 _ Te m p NTC _ HV_ Te m p TEMP I_ C T_ a d c V_bus _DC1 V_bus _DC2 Figure 69. STDES-DABBIDIR - main board circuit schematic (2 of 6) J3 S OLDER J UMP ER3 J4 S OLDER J UMP ER3 J5 S OLDER J UMP ER3 3 2 1 P1 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A 21A 22A 23A 24A 25A 26A 27A 28A 29A 30A 31A 32A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A 21A 22A 23A 24A 25A 26A 27A 28A 29A 30A 31A 32A 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B 17B 18B 19B 20B 21B 22B 23B 24B 25B 26B 27B 28B 29B 30B 31B 32B 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B 17B 18B 19B 20B 21B 22B 23B 24B 25B 26B 27B 28B 29B 30B 31B 32B Digital P ower Connector VDD_3.3V P W M_DX_LS _2 P W M_DX_HS _2 1 2 3 P W M_S X_LS _1 GND_S X_HS _1 P W M_S X_HS _1 P W M_DX_LS _1 GND_S X_LS _1 GND_DX_HS _1 1 2 3 J7 S OLDER J UMP ER3 P W M_S X_LS _2 GND_S X_HS _2 J8 S OLDER J UMP ER3 J9 S OLDER J UMP ER3 3 2 1 3 2 1 P W M_S X_HS _2 P W M_DX_LS _2 GND_S X_LS _2 GND_DX_HS _2 1 2 3 1 1 2 2 3 3 J6 S OLDER J UMP ER3 P W M_DX_HS _1 GND_DX_LS _1 J 10 S OLDER J UMP ER3 P W M_DX_HS _2 GND_DX_LS _2 UM3198 Schematic diagrams UM3198 - Rev 1 Figure 70. STDES-DABBIDIR - main board circuit schematic (3 of 6) G_S X_HS _1 S _S X_HS _1 1 J17 1 J50 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 G_DX_HS _1 S _DX_HS _1 1 J18 1 J51 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 G_S X_LS _1 S _S X_LS _1 1 J21 1 J52 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 G_DX_LS _1 S _DX_LS _1 1 J22 1 J53 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 P WM_S X_HS _1 GND_S X_HS _1 1 J25 1 J54 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 P WM_DX_HS _1 GND_DX_HS _1 1 J26 1 J55 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 P WM_S X_LS _1 GND_S X_LS _1 1 J29 1 J56 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 P WM_DX_LS _1 GND_DX_LS _1 1 J30 1 J57 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 VDD_DRIVER 1 J31 1 J59 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 VDD_12V 1 J34 1 J58 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 G_S X_HS _2A S _S X_HS _2A G_S X_HS _2B S _S X_HS _2B G_S X_LS _2A S _S X_LS _2A G_S X_LS _2B S _S X_LS _2B P WM_S X_HS _2 GND_S X_HS _2 P WM_S X_LS _2 GND_S X_LS _2 1 J11 1 J60 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J13 1 J62 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J15 1 J64 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J19 1 J66 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J23 1 J68 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J27 1 J70 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 G_DX_HS _2A S _DX_HS _2A G_DX_HS _2B S _DX_HS _2B G_DX_LS _2A S _DX_LS _2A G_DX_LS _2B S _DX_LS _2B P WM_DX_HS _2 GND_DX_HS _2 P WM_DX_LS _2 GND_DX_LS _2 1 J12 1 J61 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J14 1 J63 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J16 1 J65 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J20 1 J67 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J24 1 J69 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J28 1 J71 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 VDD_DRIVER 1 J32 1 J72 VDD_12V 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 1 J35 1 J74 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 VDD_DRIVER 1 J33 1 J73 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 VDD_12V 1 J36 1 J75 6 0 6 1 -0 -0 0 -1 5 -0 0 -0 0 -0 3 -0 UM3198 Schematic diagrams page 57/83 UM3198 - Rev 1 BUS _LEM_DC1+ BUS _LEM_DC1- J39 74651195 J45 TP 70 TES T P OINT 74651195 TP 71 TES T P OINT 3 2 4 1 Figure 71. STDES-DABBIDIR - main board circuit schematic (4 of 6) C11 25uF 3 2 4 1 C12 25uF POWER_P_1 C183 100nF C184 100nF C185 100nF C186 100nF P OW ER _N_1 TP 66 TES T P OINJT37 O UTA_ D AB1 O UTB_ D AB1 74651195 J41 1 2 T1 Coilcra ft-CS T3015-100E 74651195 TP 69 TES T P OINT TP 67 J38 TES T P OINT O UTA_ D AB2 74651195 J42 O UTB_ D AB2 74651195 TP 68 TES T P OINT POWER_P_2 4 3 I_CT- I_CT+ P OW ER _N_2 1 2 A T2 C B D C177 1uF C178 1uF C179 1uF C180 1uF C181 1uF C182 1uF C187 1uF 3 2 4 1 C14 40uF 3 2 4 1 C15 40uF 3 2 4 1 BUS _LEM_DC2+ BUS _LEM_DC2J40 C16 40uF TP 72 74651195 TES T P OINT J46 TP 73 74651195 TES T P OINT NTC _ HV+ U4 G_S X_LS _1 S _S X_LS _1 P OW ER _N_1 G2 S2 N2A N2B N2C N2D G2 S2 N2A N2B N2C N2D POWER_P_1 TP 48 TES T P OINT TP 52 TES T P OINT P1 P2 P1 P3 P2 P4 P3 P5 P4 P6 P7 P5 P6 P8 P7 P8 T1 T1 T2 T2 NTC _ HV- G4 S4 N4A N4B N4C N4D S1 G1 OUT1A OUT1B OUT1C OUT1D S3 G3 OUT2A OUT2B OUT2C OUT2D G4 S4 N4A N4B N4C N4D S1 G1 OUT1A OUT1B OUT1C OUT1D S3 G3 OUT2A OUT2B OUT2C OUT2D G_DX_LS _1 S _DX_LS _1 P OW ER _N_1 S _S X_HS _1 G_S X_HS _1 TP 49 TES T P OINT O UTA_ D AB1 S _DX_HS _1 G_DX_HS _1 TP 50 TES T P OINT G_S X_HS _2A G_S X_HS _2B S _S X_HS _2A S _S X_HS _2B G_S X_LS _2A G_S X_LS _2B S _S X_LS _2A S _S X_LS _2B O UTB_ D AB1 TP 51 TES T P OINT TP 27 TES TP OINT_1MM 1 TP 28 TES TP OINT_1MM 1 TP 29 TES TP OINT_1MM 1 TP 30 TES TP OINT_1MM 1 P OW ER _N_1 POWER_P_1 O UTA_ D AB1 O UTB_ D AB1 TP 31 TES TP OINT_1MM 1 TP 32 TES TP OINT_1MM 1 TP 33 TES TP OINT_1MM 1 TP 34 TES TP OINT_1MM 1 P OW ER _N_2 POWER_P_2 O UTA_ D AB2 O UTB_ D AB2 POWER_P_2 P_8 P_7 P_6 P_5 P_4 P_3 P_2 P_1 GH_1 GH_2 S H_1 S H_2 GL_1 GL_2 S L_1 S L_2 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 U5 T1 T2 NTC _ LV1 + NTC _ LV1 - OUT_1 OUT_2 OUT_3 OUT_4 OUT_5 OUT_6 OUT_7 OUT_8 OUT_9 OUT_10 O UTA_ D AB2 POWER_P_2 P_8 P_7 P_6 P_5 P_4 P_3 P_2 P_1 G_DX_HS _2A G_DX_HS _2B S _DX_HS _2A S _DX_HS _2B G_DX_LS _2A G_DX_LS _2B S _DX_LS _2A S _DX_LS _2B GH_1 GH_2 S H_1 S H_2 GL_1 GL_2 S L_1 S L_2 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 U6 T1 T2 NTC _ LV2 + NTC _ LV2 - OUT_1 OUT_2 OUT_3 OUT_4 OUT_5 OUT_6 OUT_7 OUT_8 OUT_9 OUT_10 O UTB_ D AB2 P OW ER _N_2 TP60 TP59 TP58 TP57 TP56 TP55 TP74 TP75 TP61 TP54 TP53 TP62 TES TTPEOS TINPTOINTETS TTPEOS TINPTOINT TES TTPEOS TINTPETOS TINTPETOS TINPTOINT TES TTPEOS TINTPETOS TINTPETOS TINPTOINT P OW ER _N_2 OUTB_DAB2 OUTA_DAB2 POWER_P_2 P OW ER _N_2 W41 HEX NUT M3 W42 HEX NUT M3 W38 HEX NUT M3 W35 HEX NUT M3 W39 HEX NUT M3 W36 HEX NUT M3 W40 HEX NUT M3 W37 HEX NUT M3 W53 W54 W55 W50 HEX NUT M5 HEX NUT M5 HEX NUT M5 HEX NUT M5 W43 HEX S TANDOFF M3 W57 HEX S TANDOFF M3 W59 HEX S TANDOFF M3 W60 HEX S TANDOFF M3 W45 W46 W47 W48 HEX NUT M5 HEX NUT M5 HEX NUT M5 HEX NUT M5 W56 HEX S TANDOFF M3 W58 HEX S TANDOFF M3 W61 HEX S TANDOFF M3 W62 HEX S TANDOFF M3 UM3198 Schematic diagrams page 58/83 page 59/83 UM3198 - Rev 1 P OWER_P _1 R11 3.9M TP 8 Te s tP oint_Ring R13 3.9M R16 3.9M R24 22K C36 1 nF /1 6 V P OWER_N_1 GND_DC1 P OWER_P _2 R34 3.6M TP 17 Te s tP oint_Ring R37 3.6M R39 3.6M R44 33K C54 1 nF /1 6 V P OWER_N_2 GND_DC2 Figure 72. STDES-DABBIDIR - main board circuit schematic (5 of 6) 5 V_ DC 1 VDD_5V 1 1 2 TP 5 F6 0 3 0 Ohm@ 1 0 0 MHz Te s tP oint_Ring F7 0 3 0 Ohm@ 1 0 0 MHz 2 C30 1 uF /2 5 V C31 1 0 0 nF /2 5 V GND_DC1 GND_DC1 U8 1 8 2 VDD1 VDD2 7 3 VIN VOUTP 6 4 S HTDN VOUTN 5 GND1 GND2 AMC 1 3 1 1 QDWVRQ1 GND_DC1 C33 C32 4.7uF/25V 100nF/25V R20 0 R25 0 R21 1.8K R26 1.8K VDD_5V F8 30Ohm@100MHz 0 1 TP 4 Te s tP oint_Ring 2 C28 C29 100nF/25V 1uF/25V R17 3K 8 U9A 3 + V+ 1 R22 C35 2 - V- N.M. 4 TS V912IDT 0 R27 TP 9 8 C37 N.M. 5+ 6- 4 U9B Te s tP oint_Ring V+ 7 VTS V912IDT V_bus _DC1 3K VDD_5V F5 2 1 LE M1 CAS R 15-NP R8 14 Vc Ref 11 3 0 Ohm@ 100 0 MHz 13 12 GND OUT N.M. C25 C26 1uF/25V 100nF/25V N.M. OUT-1 OUT-2 OUT-3 8 IN-3 IN-1 IN-2 9 10 1 2 3 BUS _LEM_DC1+ BUS _LEM_DC1R14 VDD_5V 100 1 VDD_5V F4 0 3 0 Ohm@ 1 0 0 MHz 2 TP 1 Te s tP oint_Ring C34 N.M. R10 4.12K-0.1% TP 6 Te s tP oint_Ring R15 R9 10K-0.1% 3+ 4- 2 5 C23 C24 1uF/25V 100nF/25V TP 2 U7 Te s tP oint_Ring R12 1 TP 7 0 TS V911ILT R0 18TL431UA1C0L3T 10K-0.1% R19 1.65K-0.1% Te s tP oint_Ring R23 N.M. 2 REF 3A K1 N.M. TP 3 Te s tP oint_Ring Id c 1 _ LE M C27 N.M. VDD_5V 1 F9 0 3 0 Ohm@ 1 0 0 MHz U11 1779205141 C38 1 uF /2 5 V 1 C39 1 0 0 nF /2 5 V2 +VIN -VIN +V0 7 -VO 5 5 V_ DC 1 C40 1 uF /2 5 V 2 GND_DC1 5 V_ DC 2 1 30Ohm@100MHz 0 2 TP 16 F14 Te s tP oint_Ring VDD_5V 1 0 F13 30Ohm@100MHz 0 2 C49 1 uF /2 5 V C50 1 0 0 nF /2 5 V GND_DC2 GND_DC2 U14 1 8 2 VDD1 VDD2 7 3 VIN VOUTP 6 4 S HTDN VOUTN 5 GND1 GND2 AMC 1 3 1 1 QDWVRQ1 GND_DC2 C51 4 .7 uF /2 5 V C52 1 0 0 nF /2 5 V R41 R42 0 1.8K R45 R46 0 1.8K VDD_5V 1 0 F12 3 0 Ohm@ 1 0 0 MHz 2 TP 15 Te s tP oint_Ring C46 C47 100nF/25V 1uF/25V C53 N.M. R40 3K 8 U15A 3 + V+ 1 R43 2 - V- 4 TS V912IDT 0 R47 3K TP 18 8 C55 N.M. 5+ 6- 4 U15B Te s tP oint_Ring V+ 7 V_bus _DC2 V- TS V912IDT VDD_5V 1 0 0 F16 0 0 3 0 Ohm@ 1 0 0 MHz U20 1779205141 5 V_ DC 2 2 1 +VIN C58 C59 1uF/25V 100nF/2 5V -VIN +V0 7 -VO 5 C60 1 uF /2 5 V GND_DC2 VDD_5V F11 2 1 0 LE M2 CAS R 50-NP R28 14 Vc 11 Re f 3 0 Ohm@ 1 0 0 MHz 13 GND OUT 12 N.M. C43 C44 1uF/25V 100nF/25V N.M. OUT-2 OUT-3 9 OUT-1 IN-2 IN-3 2 IN-1 10 3 8 1 BUS _LEM_DC2+ BUS _LEM_DC2R32 VDD_5V 100 1 VDD_5V F10 0 30Ohm@100MHz 2 TP 10 Te s tP oint_Ring C48 N.M. R30 4.22K-0.1% TP 13 Te s tP oint_Ring R33 R29 20K-0.1% 3+ 4- 2 5 C41 C42 1uF/25V 100nF/25V TP 11 U12 1 Te s tP oint_Ring R31 TP 14 0 TS V911ILT R0 35TL431UA1C3L3T 13.7K-0.1% R36 13K-0.1% Te s tP oint_Ring R38 N.M. 2 REF 3A K1 N.M. TP 12 Te s tP oint_Ring Id c 2 _ LE M C45 N.M. R49 VDD_5V 100 I_ C T+ I_ C T- TP 22 Te s tP oint_RinRg50 2 REF 3A K1 U18 0 R54 TLVH431AIL3T 0 C63 N.M. R55 N.M. N.M. TP 20 Te s tP oint_Ring R48 R66 TP 19 0 1 CT7e6s tP oint_Ring N.M. R58 N.M. N.M. VDD_5V 1 0 F15 30Ohm@100MHz 0 2 8 3+ 2- 4 U17A V+ 1 VTS V912IDT R56 C56 1 uF /2 5 V C57 1 0 0 nF /2 5 V R51 0 N.M. N.M. C65 N.M. R52 0 C61 N.M. C62 N.M. 8 5+ 6- 4 U17B V+ 7 VTS V912IDT R57 0 TP 21 Te s tP oint_Ring R53 I_CT_a dc 0 C64 N.M. UM3198 Schematic diagrams UM3198 - Rev 1 R60 5.6k D8 LED_Ye llow J76 1 21 2 Con2 J47 1 2 1 2 Con2 A C TP 24 Te s tP oint_Ring Q1 S TS 6NF 20V 6 1 5 2 8 3 7 TP 23 Te s tP oint_Ring R62 4 F AN 22 R64 33k Figure 73. STDES-DABBIDIR - main board circuit schematic (6 of 6) R59 C66 470 1 0 0 n F /2 5 V U19 1 5 NC GND1 2 GND 3 4 VOUT VCC R5 .611kTPS2T5LM2 0 W 8 7 F C67 1 0 0 n F /2 5 V VDD_5V Te s tP oint_Ring TP 26 TEMP Te s tP oint_Ring R63 10k C68 1 0 0 n F /2 5 V VDD_5V R108 1k R110 1.07k-0.1% R114 5.76k-0.1% TP 42 Te s tP oint_Ring VDD_re f_NTC_HV NTC_HV+ NTC _ HV- U29 TLVH431AIL3T R 1 3 1VDD_ 5 VVDD_ 5 V L30 2 1 0 0 R132 0 22Ohm @ 100MHz 5 R111 910R-0.1% 3+ 4- U27 1 2 TS V911IYLT 2 REF 3A K1 VDD_re f_NTC_HV R117 1.5k-0.1% R118 680-0.1% C171 100nF 25V C172 1uF 25V Te s tP oint_Ring TP 43 NTC_HV_Te m p TP 63 Te s tP oint_Ring HS 1 S K_56_100_AL F AN1 F AN2 F AN3 F AN4 F AN5 F AN6 FAN FAN FAN FAN FAN FAN 109P0412G3013 109P0412G3013 109P0412G3013 109P0412G3013 109P0412G3013 109P0412G3013 VDD_5V R119 1k R120 1.07k-0.1% R122 5.76k-0.1% TP 44 Te s tP oint_Ring VDD_re f_NTC_LV2 NTC _ LV2 + NTC _ LV2 - U31 TLVH431AIL3T R134 0 R133 0 VDD_5VVDD_5V L31 2 1 0 22Ohm@ 100MHz 5 R121 910R-0.1% 3+ 4- U30 1 2 TS V911IYLT 2 REF 3A K1 VDD_re f_NTC_LV2 R123 1.5k-0.1% R124 680-0.1% C173 100nF 25V C174 1uF 25V Te s tP oint_Ring TP 45 NTC_LV2_Te m p TP 64 Te s tP oint_Ring VDD_5V R125 1k R126 1.07k-0.1% R128 5.76k-0.1% TP 46 Te s tP oint_Ring VDD_re f_NTC_LV1 NTC _ LV1 + NTC _ LV1 - U33 TLVH431AIL3T R135 0 VDD_5VVDD_5V L32 2 1 0 22Ohm @ 100MHz R136 0 R127 910R-0.1% 5 3+ 4- U32 1 2 TS V911IYLT 2 REF 3A K1 VDD_re f_NTC_LV1 R129 1.5k-0.1% R130 680-0.1% C175 100nF 25V C176 1uF 25V Te s tP oint_Ring TP 47 NTC_LV1_Te m p TP 65 Te s tP oint_Ring UM3198 Schematic diagrams page 60/83 UM3198 - Rev 1 VDD_ 1 2 V C9 2 .2 u F 2 FB2 1 2 03 0 Oh m @ 1 0 0 MHz 1 2 1 2 1 2 1 L1 22uH C13 4 7 0 n F/5 0 V DC1 7 +VOUT 6 COM 5 -VO UT VINVIN+ R12P22005D VDD_ 1 2 V DC2 7 +VOUT 6 COM 5 -VO UT 2 1 VIN- VIN+ R12P22005D 1 1 1 C25 2 .2 u F 2 FB4 10 2 3 0 Oh m @ 1 0 0 MHz 0 2 2 L2 C26 22uH 4 7 0 n F/5 0 V 2 1 2 1 2 1 2 1 C4 2 .2 u F C5 2 .2 u F 2 1 C10 2 .2 u F C11 2 .2 u F 2 1 2 1 2 1 Figure 74. STDES-DABBIDIR - driver board for full bridge circuit schematic TP 1 Te s tP o in t VH_ S X_ HS C6 100nF C12 100nF TP 4 Te s tP o in t S _ S X_ HS TP 7 Te s tP o in t VL_ S X_ HS TP 5 Te s tP o in t VDD_ DR IVER FB1 1 2 1 0 3 00Oh m @ 1 0 0 MHz C1 1uF 1 1 C2 100nF C3 1 n F/5 0 V 2 2 2 P WM_ S X_ HS S IG+_ S X_ HS S IG-_ S X_ HS GND_ S X_ HS 2 R2 100 R6 100 2 1 TP 2 Te s tP o in t C7 2 2 0 p F/5 0 V TP 6 Te s tP o in t 1 C8 2 2 0 p F/5 0 V U1 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C VL_ S X_ HS R1 0 R3 22 G_ S X_ HS VH_ S X_ HS R5 22 TP 8 Te s tP o in t VH_ S X_ LS VH_ S X_ HS Q1 2 S TF1 3 6 0 R4 1 2 12 6 .8 /2 W R7 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q2 4 2 VL_ S X_ HS TP 3 Te s tP o in t R8 N.M. R9 N.M. R10 D1 47k TZMB2 0 -GS 0 8 C14 D2 N.M. TZMB3 V3 -GS 0 8 G_ S X_ HS G_ S X_ HS S _ S X_ HS S _ S X_ HS VDD_ DR IVER VDD_ 1 2 V JP1 1 1 N.M. JP2 1 1 N.M. JP3 1 1 N.M. JP4 1 1 N.M. S IG+_ S X_ HS S IG-_ S X_ HS S IG+_ S X_ LS S IG-_ S X_ LS S IG+_ DX_ LS S IG-_ DX_ LS S IG+_ DX_ HS S IG-_ DX_ HS 1 C15 2 .2 u F C16 2 .2 u F C17 100nF 2 2 1 1 C24 2 .2 u F 2 C23 2 .2 u F 2 C22 100nF 1 TP 9 Te s tP o in t S _ S X_ LS TP 1 4 Te s tP o in t VL_ S X_ LS TP 1 1 Te s tP o in t 2 S IG+_ S X_ LS P WM_ S X_ LS GND_ S X_ LS S IG-_ S X_ LS VDD_ DR IVER FB3 1 2 0 3 0 Oh m @ 1 0 0 MHz 1 C19 1uF 2 1 2 1 C18 100nF C20 1 n F/5 0 V 2 TP 1 0 Te s tP o in t R12 1 100 R18 2 C21 2 2 0 p F/5 0 V TP 1 3 Te s tP o in t U2 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C 1 100 C27 2 2 0 p F/5 0 V VL_ S X_ LS R11 1 2 12 0 R13 22 G_ S X_ LS R15 22 VH_ S X_ LS VH_ S X_ LS Q3 2 S TF1 3 6 0 R14 1 2 12 6 .8 /2 W R16 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q4 4 2 VL_ S X_ LS TP 1 2 Te s tP o in t R17 N.M. R19 N.M. R20 D3 47k TZMB2 0 -GS 0 8 C28 D4 N.M. TZMB3 V3 -GS 0 8 G_ S X_ LS G_ S X_ LS S _ S X_ LS S _ S X_ LS VDD_ DR IVER VDD_ 1 2 V GND VDD_ DR IVER VDD_ 1 2 V P WM_ S X_ HS GND_ S X_ HS P WM_ S X_ LS GND_ S X_ LS P WM_ DX_ LS GND_ DX_ LS P WM_ DX_ HS GND_ DX_ HS JP5 1 1 N.M. JP6 1 1 N.M. JP7 1 1 N.M. JP8 1 1 N.M. JP9 1 1 N.M. JP10 1 1 N.M. JP11 1 1 N.M. JP12 1 1 N.M. JP13 1 1 N.M. JP14 1 1 N.M. JP15 1 1 N.M. JP16 1 1 N.M. JP17 1 1 N.M. JP18 1 1 N.M. JP19 1 1 N.M. JP20 1 1 N.M. G_ S X_ HS S _ S X_ HS G_ DX_ HS S _ DX_ HS G_ S X_ LS S _ S X_ LS G_ DX_ LS S _ DX_ LS TP 1 5 Te s tP o in t VH_ DX_ HS 1 1 1 VDD_ 1 2 V C36 2 .2 u F 1 C40 4 7 0 n F/5 0 V 1 DC3 7 +VOUT 6 COM 5 -VO UT 2 1 VIN- VIN+ R12P22005D L3 22uH 1 2 2 2 FB6 1 2 0 3 0 Oh m @ 1 0 0 MHz 2 1 2 C29 2 .2 u F 2 C30 2 .2 u F 2 C31 100nF TP 1 6 Te s tP o in t S _ DX_ HS 1 1 C37 2 .2 u F 2 C39 2 .2 u F 2 C38 100nF TP 2 1 Te s tP o in t VL_ DX_ HS TP 1 8 Te s tP o in t VDD_ DR IVER FB5 1 2 0 0 3 0 Oh m @ 1 0 0 MHz 1 0 0 C32 1uF 1 1 C33 100nF C34 1 n F/5 0 V 2 2 2 P WM_ DX_ HS S IG+_ DX_ HS S IG-_ DX_ HS GND_ DX_ HS 2 R22 100 R27 100 2 1 TP 1 7 Te s tP o in t C35 2 2 0 p F/5 0 V TP 2 0 Te s tP o in t 1 C41 2 2 0 p F/5 0 V U3 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C VL_ DX_ HS R21 0 G_ DX_ HS R23 22 R25 22 VH_ DX_ HS VH_ DX_ HS Q5 2 S TF1 3 6 0 R24 1 2 12 6 .8 /2 W R26 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q6 4 2 VL_ DX_ HS TP 1 9 Te s tP o in t R28 N.M. R29 N.M. R30 D5 47k TZMB2 0 -GS 0 8 D6 TZMB3 V3 -GS 0 8 C42 N.M. G_ DX_ HS G_ DX_ HS S _ DX_ HS S _ DX_ HS TP 2 2 Te s tP o in t VH_ DX_ LS 1 1 1 VDD_ 1 2 V C52 2 .2 u F 2 FB8 1 2 0 3 00Oh m @ 1 0 0 MHz 1 2 1 2 1 DC4 7 +VOUT 6 COM 5 -VO UT 2 1 VIN- VIN+ R12P22005D L4 22uH C54 4 7 0 n F/5 0 V 2 1 2 C43 2 .2 u F C44 2 .2 u F C45 100nF 2 2 TP 2 3 Te s tP o in t S _ DX_ LS 1 1 C50 2 .2 u F 2 C51 2 .2 u F 2 C53 100nF TP 2 8 Te s tP o in t VL_ DX_ LS 2 TP 2 6 Te s tP o in t S IG+_ DX_ LS P WM_ DX_ LS GND_ DX_ LS S IG-_ DX_ LS VDD_ DR IVER FB7 1 2 0 3 0 Oh m @ 1 0 0 MHz 1 0 C46 1uF 1 C47 100nF 1 C48 1 n F/5 0 V 2 2 2 R32 100 R40 100 1 1 2 TP 2 4 Te s tP o in t C49 2 2 0 p F/5 0 V U4 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C TP 2 7 Te s tP o in t C55 2 2 0 p F/5 0 V VL_ DX_ LS R31 0 G_ DX_ LS R33 22 R35 22 VH_ DX_ LS VH_ DX_ LS Q7 2 S TF1 3 6 0 R34 1 2 12 6 .8 /2 W R36 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q8 4 2 VL_ DX_ LS TP 2 5 Te s tP o in t R37 N.M. R38 N.M. R39 D7 47k TZMB2 0 -GS 0 8 C56 D8 N.M. TZMB3 V3 -GS 0 8 G_ DX_ LS G_ DX_ LS S _ DX_ LS S _ DX_ LS UM3198 Schematic diagrams page 61/83 UM3198 - Rev 1 Figure 75. STDES-DABBIDIR - driver board for half bridge circuit schematic (1 of 2) VDD_ DRIVE R VDD_12V GND VDD_ DRIVE R VDD_12V VDD_12V F2 1 2 0 3 0 Ohm@ 1 0 0 MHz 2 C12 2.2uF 1 2 1 2 DC1 2 1 VINVIN+ 7 +VOUT COM 6 5 -VOUT R12P 22005D 1 L1 C13 22uH 470nF TP 1 5000 VH_LS 1 1 C6 22uF 2 2 C5 2.2uF C4 0.1uF TP 4 5000 S _LS 1 1 C11 22uF C9 2.2uF C10 0.1uF 2 2 TP 7 5000 VL_LS TP 8 5000 VH_HS 1 1 VDD_12V C26 2.2uF 1 DC2 2 1 VINVIN+ 7 +VOUT 6 COM -VOUT 5 R12P 22005D 1 L2 C27 22uH 470nF 1 2 2 2 F4 1 2 0 3 0 Ohm@ 1 0 0 MHz C17 22uF 2 C16 2.2uF C18 0.1uF 2 TP 9 5000 S _HS 1 1 C23 22uF 2 C24 2.2uF C25 0.1uF 2 TP 14 5000 VL_HS TP 5 5000 TP 11 5000 P WM_LS S IG+_LS S IG-_LS GND_LS VDD_ DRIVE R 3 0 Ohm@ 1 0 0 MHz 1 2 F1 0 100nF 1 1nF C1 C2 C3 2 1 uF /2 5 V TP 2 5000 R2 100 R6 100 C7 220pF TP 6 5000 C8 220pF U1 1 8 2 3 VDD IN+ GNDIS O CLAMP 7 6 4 INGND GOUT VH 5 S TGAP 2S iCS C VL_LS R1 0 VH_LS G_LS R3 22 R5 22 VH_LS Q1 2S TF1360 R4 1 12 2 8.2/2W R7 1 2 12 6.8/2W 3 1 2S TF2550 Q2 4 2 VL_LS GND_HS S IG-_HS S IG+_HS P WM_HS VDD_ DRIVE R R15 3 0 Ohm@ 1 0 0 MHz 1 2 F 30 100nF C19 C20 1 uF /2 5 V TP 10 5000 100 R19 100 C22 220pF TP 13 5000 C28 220pF 2 1 1nF C21 U2 1 8 2 VDD GNDIS O 7 3 4 IN+ IN- CLAMP GOUT 6 5 GND VH S TGAP 2S iCS C VL_HS R14 0 G_HS R16 22 R18 22 VH_HS VH_HS Q3 2S TF1360 R17 1 12 2 8.2/2W R20 1 12 2 6.8/2W 3 1 2S TF2550 Q4 4 2 VL_HS TP 3 5000 R8 N.M. R9 R10 D1 N.M. 47k TZMB20-GS 08 D2 TZMB3V3-GS 08 C14 N.M. G_LS G_LS S _LS S _LS R11 N.M. R12 R13 D3 N.M. 47k TZMB20-GS 08 D4 TZMB3V3-GS 08 C15 N.M. TP 12 5000 R21 N.M. R22 R23 D5 N.M. 47k TZMB20-GS 08 D6 TZMB3V3-GS 08 C29 N.M. VDD_ DRIVE R GND VDD_12V GND G_HS G_HS JP1 1 1 NM JP2 11 NM JP3 1 1 NM JP4 1 1 NM S _HS S _HS R24 N.M. R25 R26 D7 N.M. 47k TZMB20-GS 08 D8 TZMB3V3-GS 08 C30 N.M. S IG+_LS S IG-_LS S IG+_HS S IG-_HS JP5 1 1 NM JP6 11 NM JP7 1 1 NM JP8 1 1 NM JP9 1 1 J P 10 NM 11 NM JP11 1 1 J P 12NM 1 1 NM JP13 1 1 J P 14NM 1 1 NM JP15 11 J P 16NM 1 1 NM G_HS S _HS G_LS S _LS Figure 76. STDES-DABBIDIR - driver board for half bridge circuit schematic (1 of 1) VDD_ DRIVE R VDD_12V GND VDD_ DRIVE R VDD_12V VDD_12V F2 1 2 0 3 0 Ohm@ 1 0 0 MHz 2 C12 2.2uF 1 2 1 2 DC1 2 1 VINVIN+ 7 +VOUT COM -VOUT 6 5 R12P 22005D 1 L1 C13 22uH 470nF TP 1 5000 VH_LS 1 1 C6 22uF 2 2 C5 2.2uF C4 0.1uF TP 4 5000 S _LS 1 1 C11 22uF C9 2.2uF C10 0.1uF 2 2 TP 7 5000 VL_LS TP 8 5000 VH_HS 1 1 VDD_12V C26 2.2uF 1 DC2 2 1 VINVIN+ 7 +VOUT 6 COM -VOUT 5 R12P 22005D 1 L2 C27 22uH 470nF 1 2 2 2 F4 1 2 0 3 0 Ohm@ 1 0 0 MHz C17 22uF 2 C16 2.2uF C18 0.1uF 2 TP 9 5000 S _HS 1 1 C23 22uF 2 C24 2.2uF C25 0.1uF 2 TP 14 5000 VL_HS TP 5 5000 TP 11 5000 P WM_LS S IG+_LS S IG-_LS GND_LS VDD_ DRIVE R 3 0 Ohm@ 1 0 0 MHz 1 2 F1 0 100nF 1 1nF C1 C2 C3 2 1 uF /2 5 V TP 2 5000 R2 100 R6 100 C7 220pF TP 6 5000 C8 220pF U1 1 8 2 3 VDD IN+ GNDIS O CLAMP 7 6 4 INGND GOUT VH 5 S TGAP 2S iCS C VL_LS R1 0 VH_LS G_LS R3 22 R5 22 VH_LS Q1 2S TF1360 R4 1 2 12 8.2/2W R7 1 2 12 6.8/2W 3 1 2S TF2550 Q2 4 2 VL_LS GND_HS S IG-_HS S IG+_HS P WM_HS VDD_ DRIVE R R15 3 0 Ohm@ 1 0 0 MHz 1 2 F 30 100nF C19 C20 1 uF /2 5 V TP 10 5000 100 R19 100 C22 220pF TP 13 5000 C28 220pF 2 1 1nF C21 U2 1 8 2 VDD GNDIS O 7 3 4 IN+ IN- CLAMP GOUT 6 5 GND VH S TGAP 2S iCS C VL_HS R14 0 G_HS R16 22 R18 22 VH_HS VH_HS Q3 2S TF1360 R17 1 12 2 8.2/2W R20 1 12 2 6.8/2W 3 1 2S TF2550 Q4 4 2 VL_HS TP 3 5000 R8 N.M. R9 R10 D1 N.M. 47k TZMB20-GS 08 D2 TZMB3V3-GS 08 C14 N.M. G_LS G_LS S _LS S _LS R11 N.M. R12 R13 D3 N.M. 47k TZMB20-GS 08 D4 TZMB3V3-GS 08 C15 N.M. TP 12 5000 R21 N.M. R22 R23 D5 N.M. 47k TZMB20-GS 08 D6 TZMB3V3-GS 08 C29 N.M. VDD_ DRIVE R GND VDD_12V GND G_HS G_HS JP1 1 1 NM JP2 11 NM JP3 1 1 NM JP4 1 1 NM S _HS S _HS R24 N.M. R25 R26 D7 N.M. 47k TZMB20-GS 08 D8 TZMB3V3-GS 08 C30 N.M. S IG+_LS S IG-_LS S IG+_HS S IG-_HS JP5 1 1 NM JP6 11 NM JP7 1 1 NM JP8 1 1 NM JP9 1 1 J P 10 NM 1 1 NM JP11 11 J P 12NM 1 1 NM JP13 1 1 J P 14NM 1 1 NM JP15 11 J P 16NM 1 1 NM G_HS S _HS G_LS S _LS UM3198 Schematic diagrams page 62/83 UM3198 - Rev 1 Figure 77. STDES-DABBIDIR - control board circuit schematic TP 1 Te s tP o in t VH_ S X_ HS 1 1 1 VDD_ 1 2 V C9 2 .2 u F 2 FB2 1 2 3 0 Oh m @ 1 0 0 MHz 1 2 1 1 2 1 L1 22uH C13 4 7 0 n F/5 0 V DC1 7 +VOUT 6 COM 5 -VO UT VINVIN+ R12P22005D 2 0 2 1 2 C4 2 .2 u F C5 2 .2 u F 2 1 C10 2 .2 u F C11 2 .2 u F 2 2 1 2 C6 100nF C12 100nF TP 4 Te s tP o in t S _ S X_ HS TP 7 Te s tP o in t VL_ S X_ HS TP 8 Te s tP o in t VH_ S X_ LS 1 1 1 VDD_ 1 2 V DC2 7 +VOUT 6 COM 5 -VO UT 2 1 VIN0 VIN+ 0 R12P22005D 1 1 1 C25 2 .2 u F 2 FB4 1 2 3 0 Oh m @ 1 0 0 MHz 2 2 L2 C26 22uH 4 7 0 n F/5 0 V 2 1 2 C15 2 .2 u F C16 2 .2 u F C17 100nF 2 2 1 1 C24 2 .2 u F 2 C23 2 .2 u F 2 C22 100nF TP 9 Te s tP o in t S _ S X_ LS TP 1 4 Te s tP o in t VL_ S X_ LS TP 5 Te s tP o in t VDD_ DR IVER FB1 1 2 1 3 0 Oh m @ 1 0 0 MHz C1 1uF 1 1 C2 100nF C3 1 n F/5 0 V 2 2 2 P WM_ S X_ HS S IG+_ S X0_ HS0 S IG-_ S X_ HS GND_ S X_ HS 2 R2 100 R6 100 2 1 TP 2 Te s tP o in t C7 2 2 0 p F/5 0 V TP 6 Te s tP o in t 1 C8 2 2 0 p F/5 0 V U1 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C VL_ S X_ HS R1 0 R3 22 G_ S X_ HS VH_ S X_ HS R5 22 VH_ S X_ HS Q1 2 S TF1 3 6 0 R4 1 2 12 6 .8 /2 W R7 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q2 4 2 VL_ S X_ HS TP 3 Te s tP o in t R8 N.M. R9 N.M. R10 D1 47k TZMB2 0 -GS 0 8 D2 TZMB3 V3 -GS 0 8 C14 N.M. G_ S X_ HS G_ S X_ HS S _ S X_ HS S _ S X_ HS TP 1 1 Te s tP o in t 2 0 S IG+_ S X_ LS P WM_ S X_ LS GND_ S X_ LS S IG-_ S X_ LS VDD_ DR IVER FB3 1 2 3 0 Oh m @ 1 0 0 MHz 1 C19 1uF 2 1 2 1 C18 100nF C20 1 n F/5 0 V 2 TP 1 0 Te s tP o in t R12 1 100 R18 2 C21 2 2 0 p F/5 0 V TP 1 3 Te s tP o in t U2 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C 1 100 C27 2 2 0 p F/5 0 V VL_ S X_ LS R11 1 2 12 0 R13 22 G_ S X_ LS R15 22 VH_ S X_ LS VH_ S X_ LS Q3 2 S TF1 3 6 0 R14 1 2 12 6 .8 /2 W R16 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q4 4 2 VL_ S X_ LS TP 1 2 Te s tP o in t R17 N.M. R19 N.M. R20 D3 47k TZMB2 0 -GS 0 8 D4 TZMB3 V3 -GS 0 8 C28 N.M. G_ S X_ LS G_ S X_ LS S _ S X_ LS S _ S X_ LS VDD_ DR IVER VDD_ 1 2 V JP1 1 1 N.M. JP2 1 1 N.M. JP3 1 1 N.M. JP4 1 1 N.M. S IG+_ S X_ HS S IG-_ S X_ HS S IG+_ S X_ LS S IG-_ S X_ LS S IG+_ DX_ LS S IG-_ DX_ LS S IG+_ DX_ HS S IG-_ DX_ HS P WM_ S X_ HS GND_ S X_ HS P WM_ S X_ LS GND_ S X_ LS P WM_ DX_ LS GND_ DX_ LS P WM_ DX_ HS GND_ DX_ HS JP5 1 1 N.M. JP6 1 1 N.M. JP7 1 1 N.M. JP8 1 1 N.M. JP9 1 1 N.M. JP10 1 1 N.M. JP11 1 1 N.M. JP12 1 1 N.M. JP13 1 1 N.M. JP14 1 1 N.M. JP15 1 1 N.M. JP16 1 1 N.M. JP17 1 1 N.M. JP18 1 1 N.M. JP19 1 1 N.M. JP20 1 1 N.M. G_ S X_ HS S _ S X_ HS G_ DX_ HS S _ DX_ HS G_ S X_ LS S _ S X_ LS G_ DX_ LS S _ DX_ LS VDD_ DR IVER VDD_ 1 2 V GND VDD_ DR IVER VDD_ 1 2 V TP 1 5 Te s tP o in t VH_ DX_ HS 0 VDD_ 1 2 V C36 2 .2 u F 1 C40 4 7 0 n F/5 0 V 1 DC3 7 +VOUT 6 COM 5 -VO UT 2 1 VIN- VIN+ R12P22005D L3 22uH 1 2 2 2 FB6 1 2 3 0 Oh m @ 1 0 0 MHz 2 1 2 1 1 1 C29 2 .2 u F 2 C30 2 .2 u F 2 C31 100nF TP 1 6 Te s tP o in t S _ DX_ HS 1 1 C37 2 .2 u F 2 C39 2 .2 u F 2 C38 100nF TP 2 1 Te s tP o in t VL_ DX_ HS 0 0 TP 2 2 Te s tP o in t VH_ DX_ LS 1 1 1 VDD_ 1 2 V C52 2 .2 u F 2 FB8 1 2 3 0 Oh m @ 1 0 0 MHz 1 2 1 2 1 DC4 7 +VOUT 6 COM 5 -VO UT 2 1 VIN- VIN+ R12P22005D L4 22uH C54 4 7 0 n F/5 0 V 2 1 2 C43 2 .2 u F C44 2 .2 u F C45 100nF 2 2 TP 2 3 Te s tP o in t S _ DX_ LS 1 1 C50 2 .2 u F 2 C51 2 .2 u F 2 C53 100nF TP 2 8 Te s tP o in t VL_ DX_ LS TP 1 8 Te s tP o in t VDD_ DR IVER FB5 1 2 0 0 3 0 Oh m @ 1 0 0 MHz 1 0 0 C32 1uF 1 1 C33 100nF C34 1 n F/5 0 V 2 2 2 P WM_ DX_ HS S IG+_ DX_ HS S IG-_ DX_ HS GND_ DX_ HS 0 0 2 R22 100 R27 100 2 1 TP 1 7 Te s tP o in t C35 2 2 0 p F/5 0 V TP 2 0 Te s tP o in t 1 C41 2 2 0 p F/5 0 V U3 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C VL_ DX_ HS R21 0 G_ DX_ HS R23 22 R25 22 VH_ DX_ HS VH_ DX_ HS Q5 2 S TF1 3 6 0 R24 1 2 12 6 .8 /2 W R26 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q6 4 2 VL_ DX_ HS TP 1 9 Te s tP o in t R28 N.M. R29 N.M. R30 D5 47k TZMB2 0 -GS 0 8 C42 D6 N.M. TZMB3 V3 -GS 0 8 G_ DX_ HS G_ DX_ HS S _ DX_ HS S _ DX_ HS 2 TP 2 6 Te s tP o in t S IG+_ DX_ LS P WM_ DX_ LS GND_ DX_ LS S IG-_ DX_ LS VDD_ DR IVER FB7 1 2 1 3 0 Oh m @ 1 0 0 MHz C46 1uF 1 C47 100nF 1 C48 1 n F/5 0 V 2 2 2 R32 100 R40 100 1 1 2 TP 2 4 Te s tP o in t C49 2 2 0 p F/5 0 V U4 1 8 2 VDD GNDISO 7 3 IN+ CLAMP 6 4 IN- GOUT 5 GND VH S TGAP 2 S iC S C TP 2 7 Te s tP o in t C55 2 2 0 p F/5 0 V VL_ DX_ LS R31 0 G_ DX_ LS R33 22 R35 22 VH_ DX_ LS VH_ DX_ LS Q7 2 S TF1 3 6 0 R34 1 2 12 6 .8 /2 W R36 1 2 12 4 .7 /2 W 3 1 2 S TF2 5 5 0 Q8 4 2 VL_ DX_ LS TP 2 5 Te s tP o in t R37 N.M. R38 N.M. R39 D7 47k TZMB2 0 -GS 0 8 D8 TZMB3 V3 -GS 0 8 C56 N.M. G_ DX_ LS G_ DX_ LS S _ DX_ LS S _ DX_ LS UM3198 Schematic diagrams page 63/83 UM3198 Bill of materials 10 Bill of materials Item 1 2 3 4 Q.ty 1 1 2 1 Table 28. STDES-DABBIDIR bill of materials Ref. Part/value Table 29. Main board bill of - materials Table 30. Driver board for full bridge bill of - materials Table 31. Driver board for half bridge bill of - materials Table 32. STDE S-DABBIDIR control board Description Manufacturer Order code Main board ST Not available for separate sale Driver board for full bridge ST Not available for separate sale Driver board for half bridge ST Control board ST Not available for separate sale Not available for separate sale Item 1 2 3 4 5 6 7 8 Q.ty 5 3 15 2 3 16 14 2 Table 29. Main board bill of materials Ref. Part/value C1 C4 C6 C7 C9 33uF/25V C2 C5 C10 470nF/25V C3 C8 C23 C25 C29 C30 C38 C40 C41 C43 C47 C49 C56 C58 C60 1uF/25V C11 C12 25uF C14 C15 C16 40uF C24 C26 C28 C31 C32 C39 C42 C44 C46 C50 C52 C57 C59 C66 C67 C68 C27 C34 C35 C37 C45 C48 C53 C55 C61 C62 C63 C64 C65 C76 100nF/25V N.M. C33 C51 4.7uF/25V Description Manufacturer Order code Cap Pol Radial (Electrolytic); 6.60 mm X 6.60 mm X 5.50 mm H body WURTH 865230443004 CAPACITOR CERAMIC SMD WURTH 0603 885012206075 CAPACITOR CERAMIC SMD WURTH 0603 885012206076 WCAP-FTDB DC-Link Capacitor,32.5m WURTH m,25uF WCAP-FTDB DC-Link Capacitor,32.5m WURTH m,40uF 890744428006CS 890764428004CS CAPACITOR CERAMIC SMD WURTH 0603 885012206071 CAPACITOR CERAMIC SMD ANY 0603 CAPACITOR CERAMIC SMD WURTH 0603 ANY 885012106012 UM3198 - Rev 1 page 64/83 UM3198 Bill of materials Item 9 10 11 12 13 14 15 16 17 18 19 20 21 Q.ty 2 3 3 7 4 5 3 16 6 1 2 8 52 Ref. Part/value Description Manufacturer Order code C36 C54 1nF/16V CAPACITOR CERAMIC SMD WURTH 0603 885012006029 C171 C173 C175 100nF 25V CAPACITOR CERAMIC SMD 0603 Würth Elektronik 885012206071R C172 C174 C176 1uF 25V CAPACITOR CERAMIC SMD 0603 Würth Elektronik 885012206076 C177 C178 C179 C180 C181 C182 1uF C187 CAPACITOR CERAMIC SMD WURTH 2220 885342214001 C183 C184 C185 C186 100nF CAPACITOR CERAMIC SMD WURTH 2220 885342214173 D1 D2 D3 D4 D7 Led Green LED GREEN CLEAR 0805 SMD Wurth 150080YS75000 D5 D6 D8 LED_Yellow LED YELLOW CLEAR 0805 SMD Wurth 150080GS75000 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 30Ohm@100M Hz FERRITE BEAD 30 OHM 0805 WURTH 1LN 742792030 FAN1 FAN2 FAN3 FAN4 FAN5 FAN6 109P0412G301 3 Sanyo Denki 109P Series Axial Fan, 12 V dc, DC Operation, 25.1m³/h, 3.72W, 40 x 40 x 28mm Sanyo Denki 109P0412G3013 SK 56 100 AL | HS1 SK_56_100_AL FISCHER fischerelektronik SK 56 100 AL ELEKTRONIK J1 J2 Dev3 SWITCH SLIDE SPDT 500MA WURTH 12V 450301014042 J3 J4 J5 J6 J7 SOLDER J8 J9 J10 JUMPER3 TIN DROP JUMPER 0603 3pin J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29 J30 J31 J32 J33 J34 J35 J36 J50 J51 J52 J53 J54 J55 6061-0-00-15-0 0-00-03-0 J56 J57 J58 J59 J60 J61 J62 J63 J64 J65 J66 J67 J68 J69 J70 J71 J72 J73 J74 J75 Circuit Board Hardware - PCB RECPT. GOLD/ Mill-Max NICKEL .106 IN. PRESSFIT 6061-0-00-15-00-00-03-0 UM3198 - Rev 1 page 65/83 UM3198 Bill of materials Item 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Q.ty 8 2 2 3 1 1 1 1 7 7 2 1 3 14 3 4 Ref. Part/value Description Manufacturer Order code J37 J38 J39 J40 J41 J42 J45 J46 74651195 Power to the Board 10MM 40A SOLDER SCREW M4 WURTH 74651195 J47 J76 Con2 CONN TERM BLOCK 2POS 5.08MM PCB Wurth 691213510002 JP1 JP2 Con2 CONN TERM BLOCK 2POS 5.08MM PCB Wurth 691213510002 L30 L31 L32 22Ohm@100M Hz Würth Elektronik 742792021 LEM1 CASR 15-NP SENSOR CURRENT HALL 15A AC/DC LEM USA Inc. CASR 15-NP LEM2 CASR 50-NP SENSOR CURRENT HALL 15A AC/DC LEM USA Inc. CASR 50-NP Connector Erni P1 CON64AB 284166 32X2 ERNI 284166 female Q1 STS6NF20V, SO-8 MOSFET N-CH 20V 6A 8SOIC ST STS6NF20V R1 R2 R3 R4 R5 R6 R7 5.6k CHIP RESISTOR SMD 1% 1/4W 1206 ANY ANY R8 R23 R28 R38 R55 R56 R58 N.M. CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY R9 R15 10K-0.1% CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP R10 4.12K-0.1% RESISTOR SMD 1% 1/10W ANY ANY 0603 R11 R13 R16 3.9M CHIP RESISTOR SMD 1% 1/4W 1206 ANY ANY R12 R18 R20 R22 R25 R31 R35 R41 R43 0 R45 R48 R50 R53 R54 CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY R14 R32 R49 100 CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY R17 R27 R40 R47 3K CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY UM3198 - Rev 1 page 66/83 UM3198 Bill of materials Item 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Q.ty 1 4 1 1 1 1 3 1 2 3 1 1 1 1 Ref. R19 R21 R26 R42 R46 R24 R29 R30 R33 R34 R37 R39 R36 R44 R64 R51 R52 R57 R59 R60 R61 R62 Part/value 1.65K-0.1% 1.8K 22K 20K-0.1% 4.22K-0.1% 13.7K-0.1% 3.6M 13K-0.1% 33K 0 470 5.6k 5.1k 22 Description Manufacturer CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/4W 1206 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY ANY Order code UM3198 - Rev 1 page 67/83 UM3198 Bill of materials Item 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Q.ty 1 1 3 3 3 3 3 3 6 1 1 22 4 8 Ref. R63 R66 R108 R119 R125 R110 R120 R126 R111 R121 R127 R114 R122 R128 R117 R123 R129 R118 R124 R130 R131 R132 R133 R134 R135 R136 T1 T2 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 TP15 TP16 TP17 TP18 TP19 TP20 TP21 TP22 TP23 TP24 TP25 TP26 TP27 TP28 TP29 TP30 TP31 TP32 TP33 TP34 Part/value Description Manufacturer Order code CHIP 10k RESISTOR SMD 1% 1/10W ANY ANY 0603 CHIP 1 RESISTOR ANY ANY SMD 2512 CHIP 1k RESISTOR SMD 1% 1/10W 0603 1.07k-0.1% CHIP RESISTOR SMD 1% 1/10W 0603 910R-0.1% CHIP RESISTOR SMD 0.1% 1/10W 0603 5.76k-0.1% CHIP RESISTOR SMD 1% 1/10W 0603 1.5k-0.1% CHIP RESISTOR SMD 0.1% 1/10W 0603 680-0.1% CHIP RESISTOR SMD 0.1% 1/10W 0603 CHIP 0 RESISTOR SMD 0.1% 1/10W 0603 Coilcraft- Tranf,Radio CST3015-100E 1:100,80A Coilcraft CST3015-100E Frenetic_3201104 TestPoint_Ring TestPoint RIng ANY ANY TestPoint_Ring TestPoint RIng ANY TESTPOINT_1 MM ANY UM3198 - Rev 1 page 68/83 UM3198 Bill of materials Item 66 67 68 69 70 71 72 73 74 75 76 77 78 Q.ty 9 25 19 1 2 2 2 2 3 2 1 2 1 Ref. Part/value Description Manufacturer Order code TP42 TP43 TP44 TP45 TP46 TP47 TP63 TP64 TP65 TestPoint_Ring Polo terminale RS Pro, diam. foro 1mm, Bronzo fosforoso ANY ANY TP48 TP49 TP50 TP51 TP52 TP53 TP54 TP55 TP56 TP57 TP58 TP59 TP60 TP61 TP62 TP66 TP67 TP68 TP69 TP70 TP71 TP72 TP73 TP74 TP75 TEST POINT PC TEST POINT NATURAL Harwin Inc. S1751-46R TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8 TW9 TW10 TW11 TW12 TW13 TW14 TW15 TW16 TW17 TW18 TW19 M3 HOLE NOT PLATED Mounting Hole M3 not plated Pan Head U1 LD29080DT50R , DPAK IC REG LINEAR 5V 800MA DPAK ST LD29080DT50R U10 U13 TL431ACL3T, SOT23 IC VREF SHUNT ADJ SOT23-3 ST TL431ACL3T U11 U20 1779205141 DC DC CONVERTER 5V 1W WURTH 1779205141 U12 U7 TSV911ILT, SOT23-5L IC OPAMP GP 8MHZ RRO ST SOT23-5 TSV911ILT U14 U8 AMC1311QDW IC ISOLATION Texas VRQ1 8SOIC Instruments AMC1311QDWVRQ1 U15 U17 U9 TSV912IDT, SO-8 IC OPAMP GP 8MHZ RRO ST 8SO TSV912IDT U2 U3 LDL1117S33R, SOT-223 IC REG LINEAR 3.3V ST 800MA SOT223 LDL1117S33R ACEPACKTM 2 U4 A2F12M12W2- Full-bridge F1, ACEPACK 2 1200V, 12mO ST A2F12M12W2-F1 SiC U5 U6 A2H6M12W3 ACEPACKTM 2 - Half-bridge - 1200V, 6mO ST SiC MOSFET Gen2 and NTC A2H6M12W3 U18 TLVH431AIL3T, SOT23 IC VREF SHUNT ADJ SOT23-3 ST TLVH431AIL3T UM3198 - Rev 1 page 69/83 UM3198 Bill of materials Item 79 80 81 82 83 84 Q.ty 1 3 3 8 8 8 Ref. U19 U27 U30 U32 U29 U31 U33 W35 W36 W37 W38 W39 W40 W41 W42 W43 W56 W57 W58 W59 W60 W61 W62 W45 W46 W47 W48 W50 W53 W54 W55 Part/value Description STLM20W87F, SOT323-5L SENS TEMP ANLG VOLT SOT-323-5 TSV911IYLT, SOT23-5L IC OPAMP GP 8MHZ RRO SOT23-5 TLVH431AIL3T, SOT23 IC VREF SHUNT ADJ SOT23-3 HEX NUT M3 HEX NUT M3 HEX STANDOFF M3 HEX STANDOFF M3X0.5 STEEL 50MM HEX NUT M5 HEX NUT M5 Manufacturer ST ST ST ANY WURTH ANY Order code STLM20W87F TSV911IYLT TLVH431AIL3T 971500321 Item 1 2 3 4 5 6 7 8 9 Q.ty 4 12 4 20 8 4 4 4 4 Table 30. Driver board for full bridge bill of materials Ref. Part/value C1 C19 C32 C46 0603 (1608 Metric) C2 C6 C12 C17 C18 C22 C31 C33 C38 C45 C47 C53 0603 (1608 Metric) C3 C20 C34 C48 0603 (1608 Metric) C4 C5 C9 C10 C11 C15 C16 C23 C24 C25 C29 C30 C36 C37 C39 C43 C44 C50 C51 C52 0805 (2012 Metric) C7 C8 C21 C27 C35 C41 C49 C55 0603 (1608 Metric) C13 C26 C40 C54 0805 (2012 Metric) C14 C28 C42 C56 D1 D3 D5 D7 D2 D4 D6 D8 DO-213AC, MINI-MELF, SOD-80 DO-213AC, MINI-MELF, SOD-80 Description Manufacturer Order code CAPACITOR CERAMIC SMD 0603 Wurth Electronics Inc. 885012206076 CAPACITOR CERAMIC SMD 0603 Wurth Electronics Inc. 885012206095 CAPACITOR CERAMIC SMD 0603 Wurth Electronics Inc. 885012006063 CAPACITOR CERAMIC SMD 0805 Wurth Electronics Inc. 885012207079 CAPACITOR CERAMIC SMD 0603 Wurth Electronics Inc. CAPACITOR CERAMIC SMD 0805 Wurth Electronics Inc. 885012006059 885012207102 N.M. ANY DIODE ZENER Vishay 20V 500MW Semiconductor TZMB20-GS08 SOD80 Diodes Division DIODE ZENER Vishay 3.3V 500MW Semiconductor TZMB3V3-GS08 SOD80 Diodes Division UM3198 - Rev 1 page 70/83 UM3198 Bill of materials Item 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Q.ty 4 8 20 4 4 4 3 8 8 4 4 8 4 1 Ref. DC1 DC2 DC3 DC4 FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 JP1 JP2 JP3 JP4 JP5 JP6 JP7 JP8 JP9 JP10 JP11 JP12 JP13 JP14 JP15 JP16 JP17 JP18 JP19 JP20 Part/value 0.77" L x 0.39" W x 0.49" H (19.5mm x 9.8mm x 12.5mm) 0805 (2012 Metric) L1 L2 L3 L4 0805 (2012 Metric) Q1 Q3 Q5 Q7 Q2 Q4 Q6 Q8 TO-243AA, SOT-89 TO-243AA, SOT-89 R1 R21 R31 1210 (3225 Metric) R2 R6 R12 R18 R22 R27 R32 R40 0603 (1608 Metric) R3 R5 R13 R15 R23 R25 R33 R35 1210 (3225 Metric) R4 R14 R24 R34 2512 (6332 metric) R7 R16 R26 R36 2512 (6332 metric) R8 R9 R17 R19 R28 R29 R37 R38 0603 (1608 Metric) R10 R20 R30 R39 0603 (1608 Metric) R11 1206 (3216 Metric) Description Manufacturer Order code CONV DC/DC 2W 12VIN +20/-5VOUT T Recom Power R12P22005D FERRITE BEAD 30 OHM 0805 1LN Wurth Electronics Inc. 74279206 IC & Component Sockets .060" Dia St Pins Mill-Max 3560-1-00-15-00-00-03-0 FIXED IND 22UH 130MA 3.7 OHM SMD Taiyo Yuden TRANS NPN 60V 3A SOT-89 ST TRANS PNP 50V 5A SOT 89 ST CHIP RESISTOR SMD ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY CHIP RESISTOR SMD ANY CHIP RESISTOR SMD ANY CHIP RESISTOR SMD ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY CHIP RESISTOR SMD 1% 1/10W 0603 ANY CHIP RESISTOR SMD 5% 1/4W 1206 ANY LBC2012T220M 2STF1360 2STF2550 ANY ANY ANY ANY ANY ANY ANY ANY UM3198 - Rev 1 page 71/83 UM3198 Bill of materials Item 24 25 Q.ty 28 4 Ref. TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 TP15 TP16 TP17 TP18 TP19 TP20 TP21 TP22 TP23 TP24 TP25 TP26 TP27 TP28 U1 U2 U3 U4 Part/value Description Manufacturer Order code 0.100" Dia x 0.180" L (2.54mm x 4.57mm) TEST POINT PC MINI .040"D ANY RED ANY Galvanically 8-SOIC (0.295", isolated 4 A 7.50mm Width), single gate ST SO 8 WIDE 300 driver for SiC MOSFETs STGAP2SICSC Item 1 2 3 4 5 6 7 8 9 Q.ty 2 2 1 4 6 4 4 2 4 Table 31. Driver board for half bridge bill of materials Ref. Part/value C1 C19 0603 (1608 Metric) C2 C20 0603 (1608 Metric) C3 0603 (1608 Metric) C4 C10 C18 C25 0603 (1608 Metric) C5 C9 C12 C16 0805 (2012 C24 C26 Metric) C6 C11 C17 C23 1210 (3225 Metric) C7 C8 C22 C28 0603 (1608 Metric) C13 C27 C14 C15 C29 C30 0805 (2012 Metric) Description Manufacturer Order code CAPACITOR CERAMIC SMD 0603 (MLCC) GRM 1µF, ±10%, 25V cc, SMD Wurth Electronics Inc. 885012206076 CAPACITOR CERAMIC SMD 0603 (MLCC) GRM 100nF, ±10%, 25V cc, SMD Wurth Electronics Inc. 885012206071 CAPACITOR CERAMIC SMD 0603 (MLCC) C 1nF, ±10%, 25V cc, SMD Wurth Electronics Inc. 885012006044 CAP CER 0.1UF 50V X7R 0603 Wurth Electronics Inc. 885012206095 CAP CER 2.2UF 50V X7R 0805 Wurth Electronics Inc. 885012207079 CAP CER 22UF Würth 25V X5R 1210 Elektronik 885012109014 CAPACITOR CERAMIC SMD 0603 (MLCC) C 220pF, ±5%, 1kV cc, SMD Wurth Electronics Inc. 885012006059 CAPACITOR CERAMIC SMD 0805 Wurth Electronics Inc. 885012207102 N.M. ANY UM3198 - Rev 1 page 72/83 UM3198 Bill of materials Item 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Q.ty 1 4 4 2 4 16 2 2 2 2 4 4 2 2 8 4 Ref. Part/value C21 0603 (1608 Metric) D1 D3 D5 D7 D2 D4 D6 D8 DC1 DC2 F1 F2 F3 F4 JP1 JP2 JP3 JP4 JP5 JP6 JP7 JP8 JP9 JP10 JP11 JP12 JP13 JP14 JP15 JP16 L1 L2 Q1 Q3 Q2 Q4 R1 R14 DO-213AC, MINI-MELF, SOD-80 DO-213AC, MINI-MELF, SOD-80 0.77" L x 0.39" W x 0.49" H (19.5mm x 9.8mm x 12.5mm) 0805 (2012 Metric) 0805 (2012 Metric) TO-243AA, SOT-89 TO-243AA, SOT-89 1210 (3225 Metric) R2 R6 R15 R19 R3 R5 R16 R18 1210 (3225 Metric) R4 R17 2512 (6332 metric) R7 R20 2512 (6332 metric) R8 R9 R11 R12 R21 R22 R24 R25 R10 R13 R23 R26 0603 (1608 Metric) Description Manufacturer Order code CAPACITOR CERAMIC SMD 0603 (MLCC) C 1nF, ±10%, 25V cc, SMD Wurth Electronics Inc. 885012006044 DIODE ZENER Vishay 20V 500MW Semiconductor TZMB20-GS08 SOD80 Diodes Division DIODE ZENER Vishay 3.3V 500MW Semiconductor TZMB3V3-GS08 SOD80 Diodes Division CONV DC/DC 2W 12VIN +20/-5VOUT T RECOM R12P22005D FERRITE BEAD 30 OHM 0805 1LN Wurth Electronics Inc. 742792030 IC & Component Sockets .060" Dia St Pins Mill-Max 3560-1-00-15-00-00-03-0 FIXED IND 22UH 130MA 3.7 OHM SMD Taiyo Yuden TRANS NPN 60V 3A SOT-89 ST TRANS PNP 50V 5A SOT 89 ST CHIP RESISTOR SMD Resistore SMD Bourns 100O ±1%, 0,1W, 0603, serie CR0603 ANY CHIP RESISTOR SMD CHIP RESISTOR SMD CHIP RESISTOR SMD N.M. N.M. CHIP RESISTOR SMD 1% 1/10W 0603 LBC2012T220M 2STF1360 2STF2550 ANY N.M. UM3198 - Rev 1 page 73/83 UM3198 Bill of materials Item 26 27 Q.ty 14 2 Ref. TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 U1 U2 Part/value Description Manufacturer Order code 0.100" Dia x 0.180" L (2.54mm x 4.57mm) TEST POINT PC MINI .040"D ANY RED ANY Galvanically 8-SOIC (0.295", isolated 4 A 7.50mm Width), single gate ST SO 8 WIDE 300 driver for SiC MOSFETs STGAP2SICSC Item 1 2 3 4 5 6 7 8 9 10 11 12 Q.ty 1 20 7 17 1 1 3 1 7 2 1 5 Table 32. STDES-DABBIDIR control board Ref. Value Description Manufacturer Order code CN56 Jtag_SWD_Ada pter 10 Way, 2 Row, Vertical Pin Header Wurth 62201021121 C3,C6,C7,C28, C34,C36,C37,C 45,C48,C49,C5 1,C52,C53,C55, C59,C61,C62,C 65,C66,C134 100nF Multilayer Ceramic Capacitor MLCC Wurth 885012206046 C2,C27,C35,C4 7,C50,C58,C64 1uF Multilayer Ceramic Capacitor MLCC Wurth 885012206076 C11,C12,C13,C 14,C20,C21,C2 2,C24,C30,C31, C32,C33,C38,C 40,C42,C43,C1 40 100pF Multilayer Ceramic Capacitor MLCC Wurth 885012006057 C135 220nF Multilayer Ceramic Capacitor MLCC ANY ANY Multilayer C18 470nF Ceramic Capacitor Wurth 885012207102 MLCC C15,C23,C29 2.2nF Multilayer Ceramic Capacitor MLCC KEMET C0603C222J5GACTU C133 10uF Multilayer Ceramic Capacitor MLCC ANY ANY D2,D4,D5,D9,D 12,D13,D15 GREEN Green LED Wurth 150080GS75000 D3,D10 SMAJ5.0A-TR, SMA Uni-Directional TVS Diode, ST SMAJ5.0A-TR D7 RED Red LED Wurth 150080RS75000 F1,F2,F3,F4,F5 22Ohm@100M Hz Ferrite Beads Wurth 742792021 UM3198 - Rev 1 page 74/83 UM3198 Bill of materials Item 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Q.ty 2 1 1 2 1 1 1 13 36 10 7 2 26 1 5 Ref. JP1,JP7 JP2 J1 Value 3JP_pcb STRIP_2X3 i2C J2,J3 CON4 LED1 SMTL4-SBC L1 WE-CBF P1 CON 64 male R2,R4,R5,R8,R 10,R13,R16,R1 9,R44,R125,R1 10k 28,R129,R130 R6,R7,R9,R12, R14,R15,R20,R 21,R22,R24,R2 5,R26,R27,R28, R29,R31,R33,R 34,R36,R38,R4 0,R41,R42,R43, R47,R48,R49,R 52,R54,R55,R5 7,R58,R59,R60, R61,R62 N.M. R17,R39,R45,R 46,R50,R51,R5 3,R56,R131,R1 1k 33 R23,R30,R35,R 126,R127,R134, 0 R135 S1,S2 te_fsm4jsma TP1,TP2,TP3,T P4,TP5,TP6,TP 7,TP8,TP9,TP1 0,TP11,TP12,T P13,TP14,TP15 ,TP16,TP17,TP 18,TP19,TP20, TP21,TP22,TP2 4,TP25,TP26,T P27 TestPoint USB2 microUSB U2,U5,U6,U9,U TSV912IDT, 10 SO-8 Description Solder Jumper Selector Solder Jumper Selector 4 Way, 1 Row, Straight Pin Header 4 Way, 1 Row, Straight Pin Header LED Bivar, Verde, rosso, SMD, 2,4 V, 2 Led, PLCC 4 Ferrite Bead Multipole plug Manufacturer Order code Solder Jumper Selector Solder Jumper Selector Solder Jumper Selector Solder Jumper Selector Wurth 61300411121 Wurth 61300411121 BIVAR WE ERNI SMTL4-SBC 74279262 533406 Thick Film SMD Resistor ANY ANY RESISTOR ANY ANY Thick Film SMD ANY ANY Thick Film SMD Resistor ANY ANY Button Tactile Switch, Single Pole Single Throw (SPST) TE Connectivity FSM4JSMATR Test Terminal ANY ANY Micro USB Connector Receptacle Op Amp MOLEX ST 47346-0001 TSV912IDT UM3198 - Rev 1 page 75/83 UM3198 Bill of materials Item 28 Q.ty 1 Ref. U3 29 1 U23 30 1 31 1 U22 PCB Value Description Manufacturer Order code LD29080S33R, LDO Voltage PPACK 5 Regulators ST LD29080S33R STM32G474RE Tx_3TTC_EVAL , LQFP 64 STM32G474RE T3 ST 10x10x1.4 mm STM32G474RE ESDAL, SOT23-3L Dual-Element Uni-Directional ST TVS Diode ESDA6V1L FR4 4 LAYER PCB FR4- 4 Layer size 98x48x1.6mm UM3198 - Rev 1 page 76/83 Revision history Date 04-Dec-2023 Table 33. Document revision history Version 1 Changes Initial release. UM3198 UM3198 - Rev 1 page 77/83 UM3198 Contents Contents 1 Safety and compliance information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Dual active bridge topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Typical application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 DAB converter operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 4 STDES-DABBIDIR reference design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 4.1 Power stage of the STDES-DABBIDIR reference design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Driving stage of the STDES-DABBIDIR reference design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Control stage of the STDES-DABBIDIR reference design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 STDES-DABBIDIR hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 5.1 Input/output requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.1 Maximum input power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.2 Maximum DC input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.3 Nominal DC input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.4 Minimum DC input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.5 Maximum DC output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.6 Minimum DC output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.7 Nominal DC output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 Sensing circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.1 HV voltage sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.2 LV voltage sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2.3 HV current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.4 LV current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 Magnetics design requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.1 Transformer turn ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.2 Total resonance inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.3 Transformer peak magnetic field estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.4 Auxiliary inductance - peak magnetic field estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.5 Transformer Magnetizing inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.6 Magnetics section design proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4.1 Power device current stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4.2 Power switches conduction losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 UM3198 - Rev 1 page 78/83 UM3198 Contents 5.4.3 Power switch switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 STDES-DABBIDIR control implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 6.1 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 Peripheral configuration STM32CubeMX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.1 High-resolution timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2.2 ADC configuration and triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2.3 Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2.4 Finite state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 How to manage the STDES-DABBIDIR reference design . . . . . . . . . . . . . . . . . . . . . . . . . . .40 7.1 System setup requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.2 Safety precautions and protective equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.3 How to use the STDES-DABBIDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.4 How to connect the STDES-DABBIDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.5 How to set up the STDES-DABBIDIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.6 How to operate the STDES-DABBIDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.6.1 Mode 1 open loop, driving check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.6.2 Mode 2 open loop, phase shift power operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.6.3 Mode 3 closed loop, voltage control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.6.4 Mode 4 closed loop, current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8 STDES-DABBIDIR results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 8.1 Charging mode waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 10 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 UM3198 - Rev 1 page 79/83 UM3198 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. STDES-DABBIDIR reference design board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STDES-DABBIDIR reference design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 STDES-DC2DCDAB block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Typical DC battery charger architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SiC power module assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DAB topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DAB operation (combo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Simplified diagram of DAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Primary side referred simplified diagram of DAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power transfer vs phase shift in DAB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Average model of the DAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Simplified small signal equivalent circuit of DAB converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power stage blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STDES-DABBIDIRDF driver board based on 4xSTGAP2SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STDES-DABBIDIRDH driver board based on 2xSTGAP2SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STDES-DABBIDIR FW architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Control stage blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 HV voltage sensing equivalent circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STDES-DABBIDIR HV sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 LV sensing equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 STDES-DABBIDIR LV sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 HV current sensing equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 STDES-DABBIDIR HV current sensing circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 LV Current sensing equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STDES-DABBIDIR LV current sensing circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Frenetic 32011-04-Design-Report (design requirements section). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Frenetic 32011-04 Transformer winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Frenetic 32011-04 Auxiliary inductor windings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3D image of transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3D model of transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3D model of auxiliary inductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Switch RMS current equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Control block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CUBE ecosystem development flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DPC development flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32G474 MCU pinout configuration for STDES-DABBIDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Generic phase shift - HRTIM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 HRTIM pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 HRTIM modulation pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ADC clock scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ADC clock source selection (STM32CubeMX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 CubeMX ADC Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 SPS ADC sampling requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32CubeMX ADC1 Regular conversion configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32CubeMX ADC2 regular conversion configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 HRTIM ADC trigger CubeMX configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 HRTIM compare unit enabled for ADC triggering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STDES-DABBIDIR configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Application Init functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Finite state machine bubble representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STDES-DABBIDIR FSM application service execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Power equipment connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Connecting the STDES-DABBIDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 UM3198 - Rev 1 page 80/83 UM3198 List of figures Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. ST-LINK/V2 ISOL + adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ST-LINK/V2 ISOL connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 IAR EWARM program procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 IAR EWARM debug procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Mode 1 test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Typical PWM and driving voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Open loop, phase shift power operation Vin=400V Vout=210V PS=0.06 Iload=9A . . . . . . . . . . . . . . . . . . . . . 48 Open loop, phase shift power operation Vin=800V Vout=420V PS=0.06 Iload=16A . . . . . . . . . . . . . . . . . . . . 49 Open loop, phase shift power operation Vin=800V Vout=330V(VCTRL) Iload=17A . . . . . . . . . . . . . . . . . . . . 50 Open loop, phase shift power operation Vin=800V Vout=410V(VCTRL) Iload=15A . . . . . . . . . . . . . . . . . . . . 50 Open loop, phase shift power operation Vin=800V Vout=410V(VCTRL) Iload=31A . . . . . . . . . . . . . . . . . . . . 51 Switching waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Maximum power waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 STDESDABBIDIR Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 STDES-DABBIDIR - main board circuit schematic (1 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 STDES-DABBIDIR - main board circuit schematic (2 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 STDES-DABBIDIR - main board circuit schematic (3 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 STDES-DABBIDIR - main board circuit schematic (4 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 STDES-DABBIDIR - main board circuit schematic (5 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 STDES-DABBIDIR - main board circuit schematic (6 of 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 STDES-DABBIDIR - driver board for full bridge circuit schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 STDES-DABBIDIR - driver board for half bridge circuit schematic (1 of 2). . . . . . . . . . . . . . . . . . . . . . . . . . . 62 STDES-DABBIDIR - driver board for half bridge circuit schematic (1 of 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 62 STDES-DABBIDIR - control board circuit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 UM3198 - Rev 1 page 81/83 UM3198 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 HV-side input voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 HV sensing input and output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 STDES-DABBIDIR effective value of HV sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 HV-side output voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 LV sensing input and output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 STDES-DABBIDIR effective value of LV sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 HV-side current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Parameters for HV-side op amp conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Theoretical overall parameters of HV current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 LV-side current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Parameters for LV-side op amp conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Theoretical overall parameters of HV current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Parameters for magnetic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Parameters for transformer peak magnetic field estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Clock Prescaler settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ADC and timer configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Converter signal connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Software compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Control section firmware configuration defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Hardware protection firmware configuration defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Hardware parameters firmware configuration defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Mode 1 test parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Example of frequency and dead time configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Mode 2 test parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Mode 3 test parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Mode 4 test parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 STDES-DABBIDIR bill of materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Main board bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Driver board for full bridge bill of materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Driver board for half bridge bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 STDES-DABBIDIR control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 UM3198 - Rev 1 page 82/83 UM3198 IMPORTANT NOTICE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2023 STMicroelectronics All rights reserved UM3198 - Rev 1 page 83/83