

IXYS DSEC60-12A High Performance Fast Recovery Diode **Owner's Manual**

Home » IXYS » IXYS DSEC60-12A High Performance Fast Recovery Diode Owner's Manual

Contents

- 1 IXYS DSEC60-12A High Performance Fast Recovery
- **2 Product Information**
- **3 Product Usage Instructions**
- **4 FAQ (Frequently Asked Questions)**
- **5 CIRCUIT DIAGRAM**
- 6 Features / Advantages
- 7 Applications
- 8 Package TO-247
- 9 Fast Diode
- 10 SYMBOLS IDENTIFICATION
- 11 Product Marking
- 12 Equivalent Circuits for Simulation
- 13 DIMENSION
- 14 Fast Diode
- 15 Documents / Resources
 - 15.1 References
- **16 Related Posts**

IXYS DSEC60-12A High Performance Fast Recovery Diode

Product Information

Specifications:

• Part Number: DSEC60-12A

VRSM: 1,12 VVRRM: 16 mV

IR: 0,25 AVF: 12 VIFAV: 200 A

• RMS Current: 70 A

• Virtual Junction Temperature: -55 to 150°C

Operation Temperature: -55 to 150°C
Storage Temperature: -55 to 150°C

Features:

- Planar passivated chips
- Very low leakage current
- · Very short recovery time
- Improved thermal behavior
- Low Irm-values
- · Soft recovery behavior
- Avalanche voltage rated for reliable operation

Applications:

- · Antiparallel diode for high frequency switching devices
- · Antisaturation diode
- Snubber diode
- Free-wheeling diode

- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

- TO-247
- · Industry standard outline
- · RoHS compliant
- Epoxy meets UL 94V-0

Product Usage Instructions

Mounting Instructions:

- 1. Ensure proper heat dissipation by mounting on a suitable heatsink.
- 2. Use the recommended mounting torque of 0.8-1.2 Nm.
- 3. Avoid applying excessive force during mounting to prevent damage.

Circuit Connection:

Connect the diode according to the application requirements, ensuring correct polarity and connections.

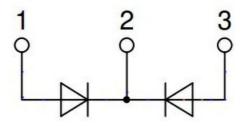
Operating Conditions:

- Operate within the specified temperature range of -55 to 150°C.
- Avoid exceeding the maximum RMS current rating of 70 A.

FAQ (Frequently Asked Questions)

What are the key features of the DSEC60-12A diode?

The key features include planar passivated chips, very low leakage current, very short recovery time, improved thermal behavior, and soft recovery behavior.


What applications is the DSEC60-12A diode suitable for?

The diode is suitable for use as an antiparallel diode for high frequency switching devices, antisaturation diode, snubber diode, free-wheeling diode, rectifiers in switch mode power supplies (SMPS), and uninterruptible power supplies (UPS).

· What is the recommended mounting torque for the TO-247 package?

The recommended mounting torque is between 0.8 and 1.2 Nm.

CIRCUIT DIAGRAM

Features / Advantages

- Planar passivated chips
- · Very low leakage current
- · Very short recovery time
- · Improved thermal behaviour
- · Very low Irm-values
- · Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- · Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications

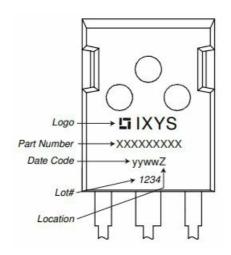
- Antiparallel diode for high frequency switching devices
- · Antisaturation diode
- Snubber diode
- · Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package TO-247

- · Industry standard outline
- · RoHS compliant
- Epoxy meets UL 94V-0

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

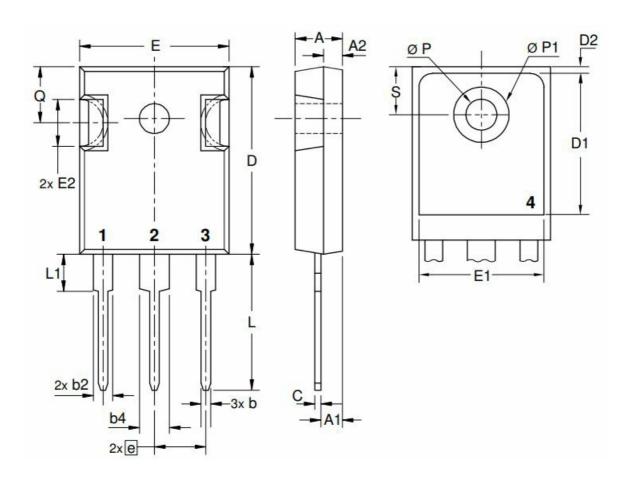

Fast Diode

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse block	ring voltage	$T_{VJ} = 25^{\circ}C$		347	1200	V
V _{RRM}	max. repetitive reverse blocking v	voltage	$T_{VJ} = 25^{\circ}C$. 95	1200	٧
I _R	reverse current, drain current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$. 20	250	μΑ
		V _R = 1200 V	$T_{VJ} = 150^{\circ}C$			1	mA
V _F	forward voltage drop	I _F = 30 A	$T_{VJ} = 25^{\circ}C$		- 33	2,74	V
		$I_F = 60 \text{ A}$				3,27	٧
		I _F = 30 A	T _{VJ} = 150°C			1,79	٧
		$I_F = 60 \text{ A}$				2,30	٧
IFAV	average forward current	T _C = 120°C	$T_{VJ} = 175^{\circ}C$			30	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage		$T_{VJ} = 175^{\circ}C$			1,12	٧
r _F	slope resistance } for power lo	oss calculation only				16	mΩ
RthJC	thermal resistance junction to case	se				0,9	K/W
R _{thCH}	thermal resistance case to heatsi	ink			0,25		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			165	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			200	Α
CJ	junction capacitance	$V_R = 600 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		12		pF
I _{RM}	max. reverse recovery current	Y	$T_{VJ} = 25^{\circ}C$		8,5		Α
		$I_{\rm F} = 30 \text{A}; V_{\rm B} = 600 \text{V}$	$T_{VJ} = 100$ °C		13		Α
t _{rr}	reverse recovery time	$\begin{cases} I_F = 30 \text{ A}; V_R = 600 \text{ V} \\ -di_F/dt = 200 \text{ A}/\mu\text{s} \end{cases}$	$T_{VJ} = 25^{\circ}C$		60		ns
18826)	$T_{VJ} = 100$ °C		170		ns

SYMBOLS IDENTIFICATION

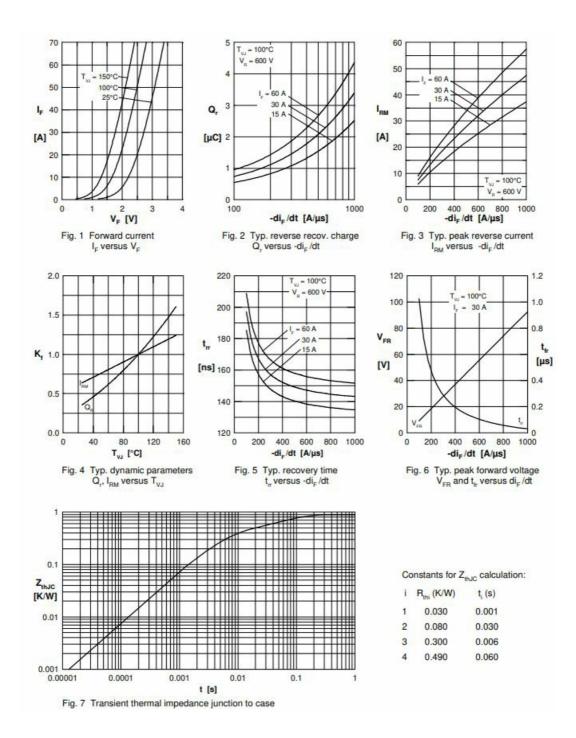
Packag e	TO-247		Ratings				
Symbol	Definition	Conditions	min	typ.	max	Un it	
I RMS	RMS current	per terminal 1)			70	Α	
TVJ	virtual junction temperatur e		-55		175	°C	
Тор	operation temperature		-55		150	°C	
Tstg	storage temperature		-55		150	°C	
Weight			6		g		
MD	mounting torque		0,8		1,2	N m	
F C	mounting force with clip		20		120	N	

Product Marking



Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantit y	Code N o.	
Standard	DSEC60-12A	DSEC60-12A	Tube	30	476412	

Equivalent Circuits for Simulation


1			* on die level	$T_{VJ} = 175^{\circ}C$
$I \rightarrow V_0$	R _o -	Fast Diode		
V _{0 max}	threshold voltage	1,12		V
R _{0 max}	slope resistance *	13,4		$m\Omega$

DIMENSION

Sym.	Inches		Millimeter min. max	,	
Sylli.	min. max.		willineter filli. Illaz	. .	
Α	0.185	0.209	4.70	5.30	
A1	0.087	0.102	2.21	2.59	
A2	0.059	0.098	1.50	2.49	
D	0.819 0.845		20.79 21.45		
E	0.610 0.640		15.48 16.24		
E2	0.170 0.216		4.31 5.48		
е	0.215 BSC		5.46 BSC		
L	0.780 0.800 19.8		19.80 20.30		
L1	- 0.177		- 4.49		
Ø P	0.140 0.144 3.55 3.65				
Q	0.212 0.244		5.38 6.19		
S	0.242 BSC		6.14 BSC		
b	0.039	0.055	0.99	1.40	
b2	0.065	0.094	1.65	2.39	
b4	0.102	0.135	2.59	3.43	
С	0.015	0.035	0.38	0.89	
D1	0.515	_	13.07	_	
D2	0.020	0.053	0.51	1.35	
E1	0.530	_	13.45	_	
Ø P1	_	0.29	_	7.39	

Fast Diode

Documents / Resources

IXYS DSEC60-12A High Performance Fast Recovery Diode [pdf] Owner's Manual DSEC60-12A High Performance Fast Recovery Diode, DSEC60-12A, High Performance Fast Recovery Diode, Fast Recovery Diode, Recovery Diode

References

- **Product Disclaimer**
- User Manual

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.