

iSMACONTROLLI SfAR-1M-2DI1AO Expansion Module 2 Digital Inputs 1 Analog Output User Manual

Home » iSMACONTROLLI » iSMACONTROLLI SfAR-1M-2DI1AO Expansion Module 2 Digital Inputs 1 Analog Output User Manual [™]

iSMACONTROLLI SfAR-1M-2DI1AO Expansion Module 2 Digital Inputs 1 Analog Output

Contents

- 1 Introduction
 - 1.1 Revision History
- 2 Safety Rules
- 3 Module Features
 - 3.1 Purpose and Description of the Module
 - 3.2 Technical Specification
 - 3.3 Dimensions
- 4 Communication
 - 4.1 Grounding and Shielding
 - **4.2 Network Termination**
 - 4.3 Types of Modbus Functions
 - 4.4 Communication Settings
 - 4.5 Watchdog
- 5 Indicators
- **6 Connections**
 - **6.1 Block Diagram**
 - **6.2 Power Supply Connection**
 - **6.3 Communication Bus Connection**
 - 6.4 Connection of Outputs
- 7 Modules Registers
 - 7.1 Registered Access
 - 7.2 Bit Access
- **8 Configuration Software**
- 9 Customer Support
- 10 Documents / Resources
 - 10.1 References
- 11 Related Posts

Introduction

Thank you for choosing our product.

This manual will help you with proper handling and operating of the device.

The information included in this manual have been prepared with utmost care by our professionals and serve as a description of the product without incurring any liability for the purposes of commercial law. This information does not discharge you from the liability of your own judgement and verification.

We reserve the right to change product specifications without notice.

Please read the instructions carefully and follow the recommendations concluded therein.

WARNING!

Failure to follow instructions can result in equipment damage or impede the use of the hardware or software.

Revision History

Rev.	Date	Description
3.1	25 May 2022	Rebranded

Safety Rules

- Improper wiring of the product can damage it and lead to other hazards. Make sure that the product has been correctly wired before turning the power on.
- Before wiring or removing/mounting the product, make sure to turn the power off. Failure to do so might cause an electric shock.
- Do not touch electrically charged parts such as power terminals. Doing so might cause an electric shock.
- Do not disassemble the product. Doing so might cause an electric shock or faulty operation.
- Use the product only within the operating ranges recommended in the specification (temperature, humidity, voltage, shock, mounting direction, atmosphere, etc.). Failure to do so might cause a fire or faulty operation.
- Firmly tighten the wires to the terminal. Failure to do so might cause a fire.
- Avoid installing the product in close proximity to high-power electrical devices and cables, inductive loads, and switching devices. Proximity of such objects may cause an uncontrolled interference, resulting in an instable operation of the product.
- Proper arrangement of the power and signal cabling affects the operation of the entire control system. Avoid laying the power and signal wiring in parallel cable trays. It can cause interferences in monitored and control signals.
- It is recommended to power controllers/modules with AC/DC power suppliers. They provide better and more stable insulation for devices compared to AC/AC transformer systems, which transmit disturbances and transient phenomena like surges and bursts to devices. They also isolate products from inductive phenomena from other transformers and loads.
- Power supply systems for the product should be protected by external devices limiting overvoltage and effects
 of lightning discharges.
- Avoid powering the product and its controlled/monitored devices, especially high
 power and inductive loads, from a single power source. Powering devices from a single power source causes a
 risk of introducing disturbances from the loads to the control devices.
- If an AC/AC transformer is used to supply control devices, it is strongly recommended to use a maximum 100
 VA Class 2 transformer to avoid unwanted inductive effects, which are dangerous for devices.
- Long monitoring and control lines may cause loops in connection with the shared power supply, causing disturbances in the operation of devices, including external communication. It is recommended to use galvanic separators.
- To protect signal and communication lines against external electromagnetic interferences, use properly grounded shielded cables and ferrite beads.
- Switching the digital output relays of large (exceeding specification) inductive loads can cause interference
 pulses to the electronics installed inside the product. Therefore, it is recommended to use external
 relays/contactors, etc. to switch such loads. The use of controllers with triac outputs also limits similar
 overvoltage phenomena.
- Many cases of disturbances and overvoltage in control systems are generated by switched, inductive loads supplied by alternating mains voltage (AC 120/230 V). If they do not have appropriate built-in noise reduction circuits, it is recommended to use external circuits such as snubbers, varistors, or protection diodes to limit these effects.

Module Features

Purpose and Description of the Module

The SfAR-1M-2DI1AO module has 1 current analog output (0-20 mA or 4-20 mA) and 1 voltage analog output (0-10 V). Both outputs can be used at the same time. The module is equipped in two digital inputs. In addition, terminals IN1 and IN2 can be used to connect one encoder. Setting the output current or voltage value is done via RS485 (Modbus protocol), so the module can be easily integrated with popular PLCs, HMI, or PC equipped with an appropriate adapter.

This module is connected to the RS485 bus with a twisted-pair wire. Communication is via Modbus RTU or Modbus ASCII. The use of 32-bit ARM core processor provides fast processing and quick communication. The baud rate is configurable from 2400 to 115200.

The module is designed for mounting on a DIN rail in accordance with DIN EN 5002.

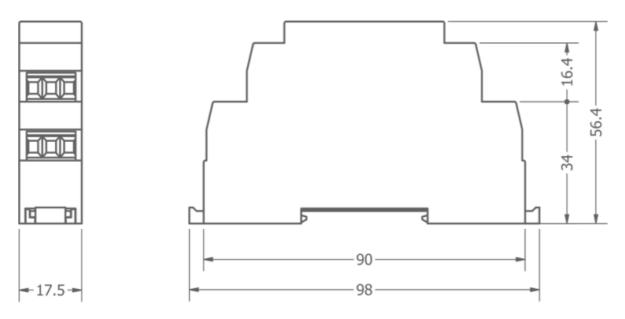
The module is equipped with a set of LEDs to indicate the status of inputs and outputs, which is useful for diagnostic purposes and helping to find errors.

Module configuration is done via USB by using a dedicated computer program. It also allows for changing the parameters using the Modbus protocol.

Technical Specification

	Voltage	10-38 V DC; 10-28 V AC	
Power Supply	Power consumption (with active Modbus t	1 W at 24 V DC	
	ransmission and high state on all inputs)	2 VA at 24 V AC	
Isolation	Isolation between power supply and I/O	1000 V DC	
	No. of outputs	1	
		0 V – 10 V (resolution 1.5 mV)	
	Voltage output	Max. load current 0-10 V 5 mA	
		Accuracy ± 2%	
		0 mA – 20 mA (resolution 5 μA)	
Analog Outputs	Current output	4 mA – 20 mA (value in ‰ – 1000 steps) (resolution 16 μA)	
		Max. resistance 500 ohm	
		Accuracy ±1%	
	Output resolution	12 bits	
	DAC time processing	16 ms/channel	

		No. of inputs	2
--	--	---------------	---


	Voltage range	0-36 V	
	Low state "0"	0-3 V	
Digital Inputs	High state "1"	6-36 V	
	Input impedance	4 kΩ	
	Isolation	1500 Vrms	
	Input Type	PNP or NPN	
	No. of counters	2	
Counters	Resolution	32-bit	
Sounters	Frequency	1 kHz (max.)	
	Impulse width	500 μs (min.)	
Tomporatura	Work	-20 °C to +65°C	
Temperature	Storage	-40 °C to +85°C	
	Power supply	3 pin	
	Communication	3 pin	
Connectors			

	Inputs	2 x 3 pin
	Configuration	mini USB
	Height	90 mm
Size	Length	56.4 mm
	Width	17.5 mm
Interface	RS485	Up to 128 devices

Dimensions

The appearance and dimensions of the module are shown below. The module is mounted directly to the rail in the DIN industry standard. Power connectors, communication and IOs are at the bottom and top of the module. USB connector configuration and indicators located on the front of the module.

• Figure 1. Dimensions

Communication

Grounding and Shielding

In most cases, I/O modules will be installed in an enclosure along with the other devices, which generate electromagnetic radiation. Relays, contactors, transformers, motor invertors, etc., are examples of such devices. Radiation can induce electrical noise into both power and signal lines, as well as direct radiation into the module. Whether or not the SfAR modules are immune to such effects, the interferences must be suppressed at their source if possible to ensure the proper functioning of the entire system. Appropriate grounding, shielding and other protective steps should be taken at the installation stage to prevent these effects. It is recommended to at least follow the rules below:

- line power cables must be routed with spatial separation from signal and data transmission cables;
- analog and digital signal cables should also be separated;
- it is recommended to use shielded cables for analog signals, cable shields should not be interrupted by intermediate terminals;
- the shielding should be earthed directly after the cable enters the cabinet.

It is recommended to install interference suppressors when switching inductive loads (e.g., coils of contactors, relays, solenoid valves). RC snubbers or varistors are suitable for AC voltage and freewheeling diodes for DC voltage loads. The suppressing elements must be connected as close to the coil as possible.

Network Termination

Transmission line effects often present problems for data communication networks. These problems include reflections and signal attenuation. To eliminate the presence of reflections of signal from the end of the cable, the cable must be terminated at both ends

with a resistor across the line adequate to its characteristic impedance. Both ends must be terminated since the propagation is bidirectional. In case of an RS485 twisted pair cable, this termination is typically 120Ω .

Types of Modbus Functions

There are 4 types of Modbus functions supported by the SfAR modules.

Table 3. Types of Modbus functions supported by the module

Туре	Beginning Address	Variable	Access	Modbus Command
1	00001	Digital Outputs	Bit Read/write	1, 5, 15
2	10001	Digital Inputs	Bit Read	2
3	30001	Input Registers	Registered Read	3
4	40001	Output Registers	Registered Read/write	4, 6, 16

Communication Settings

The data stored in the module's memory is given in the 16-bit registers. The access to registers is via Modbus

Default Settings

Table 4. Default settings

Parameter Name	Value
Address	1
Baud rate	19200
Parity	No
Data bits	8
Stop bits	1
Reply delay [ms]	0
Modbus type	RTU

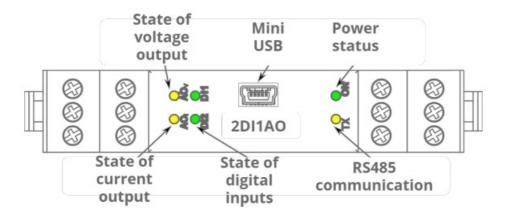
Configuration Registers

Table 5. Configuration registers

Modbus Address	Decimal Address	Hex Address	Name	Values
40003	2	0x02	Baud Rate	0 - 2400 1 - 4800 2 - 9600 3 - 19200 4 - 38400 5 - 57600 6 - 115200 other - value * 10
40005	4	0x04	Parity	0 – none 1 – odd 2 – even 3 – always 0 4 – always 1

40004	3	0x03	Stop Bits	1 – one stop bit 2 – tw o stop bits
40004	3	0x03	Data Bits	7 – 7 data bits 8 – 8 data bits
40006	5	0x05	Response Delay	Time in ms
40007	6	0x06	Modbus Mode	0 – RTU 1 – ASCII

Watchdog

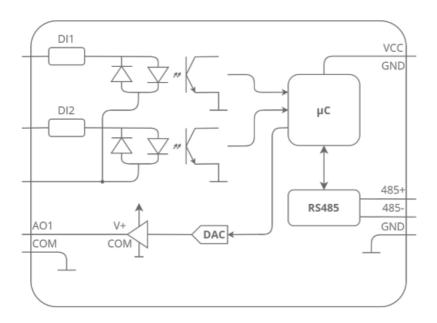

This 16-bits register specifies the time in milliseconds to watchdog reset. If the module does not receive any valid message within that time, all digital and analog outputs will be set to the default state.

This feature is useful if there is an interruption in data transmission and for security reasons. Output states must be set to the appropriate state in order to reassure the safety of persons or property.

The default value is 0 milliseconds, which means the watchdog function is disabled.

Indicators

Figure 2. Indicators


Table 6. Description of indicators

Indicator	Description
ON	The LED indicates that the module is correctly powered
TX	The LED lights up when the unit received the correct packet and sends the answer
DI1, DI2	The LED indicates that on the input is high state
DO1, DO2	The LED indicates that the output is on

Connections

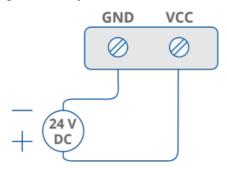
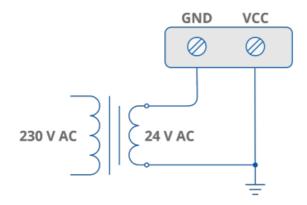
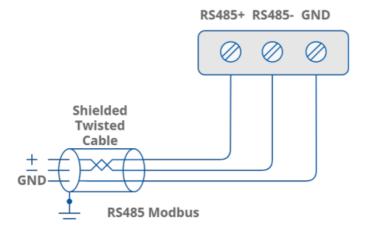

Block Diagram

Figure 3. Block diagram


DC Power Connection

• Figure 4. DC power connection


AC Power Connection

• Figure 5. AC power connection

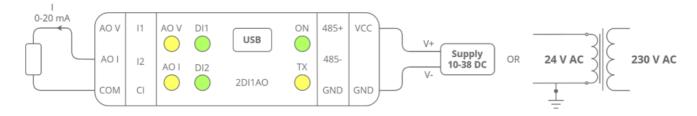
Communication Bus Connection

• Figure 6. Communication bus connection

Connection of Outputs

Connection of Voltage Output

• Figure 7. Connection of voltage output


Connection of Current Output

• Figure 8. Connection of current output

Connection of Digital Inputs

• Figure 9. Connection of digital inputs

Modules Registers

Registered Access

Table 7. Registered access

Modbus Addr ess	Decimal Addr	Hex Addres s	Register Name	Access	Description
30001	0	0x00	Version/Type	Read	Version and type of the device
30002	1	0x01	Address	Read	Module address
40003	2	0x02	Baud Rate	Read/write	RS485 baud rate

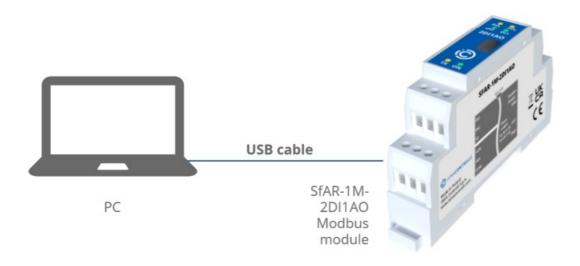
40004	3	0x03	Stop Bits & Data Bits	Read/write	No. of stop bits & data bits	
40005	4	0x04	Parity	Read/write	Parity bit	
40006	5	0x05	Response Delay	Read/write	Response delay in ms	
40007	6	0x06	Modbus Mode	Read/write	Modbus mode (ASCII or RTU)	
40009	8	0x08	Watchdog	Read/write	Watchdog	
40013	12	0x0C	Default Output State	Read/write	Default output state (a fter power on or watch dog reset)	
40033	32	0x20	Received Packets LS R (Least Significant R egister)	Read/write	No. of received packet s	
40034	33	0x21	Received Packets MS R (Most Significant Re gister)	Read/write		
40035	34	0x22	Incorrect Packets LSR	Read/write	No. of received packet	
40036	35	0x23	Incorrect Packets MS R	Read/write	No. of received packet s with error	
40037	36	0x24	Sent Packets LSR	Read/write	No. of a six six six	
40038	37	0x25	Sent Packets MSR	Read/write	No. of sent packets	
30051	50	0x32	Inputs	Read	Inputs state	

40052	51	0x33	Outputs	Read/write	Output state
40053	52	0x34	Counter 1 LSR	Read/write	32-bit counter 1
40054	53	0x35	Counter 1 MSR	Read/write	
40055	54	0x36	Counter 2 LSR	Read/write	32-bit counter 2

Modbus Addr ess	Decimal Addr	Hex Addres s	Register Name	Access	Description
40056	55	0x37	Counter 2 MSR	Read/write	
40061	60	0x3C	CCounter 1 LSR	Read/write	32-bit value of capture d counter 1
40062	61	0x3D	CCounter 1 MSR	Read/write	
40063	62	0x3E	CCounter 2 LSR	Read/write	32-bit value of capture d counter 2
40064	63	0x3F	CCounter 2 MSR	Read/write	
40069	68	0x44	Counter Config 1	Read/write	Counter configuration +1 - time measurement (if 0 cou nting impulses) +2 - autocatch counter every 1 sec +4 - catch value when input low + 8 - reset counter after catch +16 - reset coun ter if input low +32 - encoder
40070	69	0x45	Counter Config 2	Read/write	
40073	72	0x48	Catch	Read/write	Catch counter
40074	73	0x49	Status	Read/write	Captured counter

Bit Access

Table 8. Bit access


Modbus Address	Decimal Addres	Hex Addre	Register Name	Access	Description
193	192	0x0C0	Default state of out put 1	Read/write	Default state of outp ut 1
194	193	0x0C1	Default state of out put 2	Read/write	Default state of outp ut 2
10801	800	0x320	Input 1	Read	Input 1 state
10802	801	0x321	Input 2	Read	Input 2 state
817	816	0x330	Output 1	Read/write	Output 1 state
818	817	0x331	Output 2	Read/write	Output 2 state
1153	1152	0x480	Capture 1	Read/write	Capture counter 1
1154	1153	0x481	Capture 2	Read/write	Capture counter 2
1169	1168	0x490	Captured 1	Read/write	Captured value of co unter 1
1170	1169	0x491	Captured 2	Read/write	Captured value of co unter 2

Configuration Software

The SfAR Configurator is the type of software, which is designed to set the communication module registers over Modbus network as well as to read and write the current value of other registers of the module. It is a convenient way to test the system as well as to observe real-time changes in the registers.


Communication with the module is via the USB cable. The module does not require any drivers.

Figure 10. PC connection

The SfAR Configurator is a universal software, where it is possible to configure all available modules.

Figure 11. The SfAR Configurator

Customer Support

Documents / Resources

iSMACONTROLLI SfAR-1M-2DI1AO Expansion Module 2 Digital Inputs 1 Analog Output [

pdf] User Manual

SfAR-1M-2DI1AO Expansion Module 2 Digital Inputs 1 Analog Output, SfAR-1M-2DI1AO, Expansion Module 2 Digital Inputs 1 Analog Output, 2 Digital Inputs 1 Analog Output, 1 Analog Output, 1 Analog Output, 1 Analog Output, 1

References

• © iSMA CONTROLLI S.p.A.

Manuals+,