

INVENTRONICS SUM-760S MGR Series 760W Programmable Driver with INV Digital Dimming Owner's Manual

Home » INVENTRONICS » INVENTRONICS SUM-760S MGR Series 760W Programmable Driver with INV Digital Dimming Owner's Manual ™

SUM-760SxxxMGR Rev.A
760W Programmable Driver with INV Digital Dimming

Contents

- 1 Features
- 2 Description
- 3 I-V Operating Area
- **4 Input Specifications**
- **5 Output Specifications**
- 6 General Specifications7 Dimming Specifications
- 8 Safety &EMC Compliance
- 9 Derating
- 10 Power Factor
- 11 Programming Connection Diagram
- 12 Mechanical Outline
- 13 Documents / Resources
- 14 Related Posts

Features

•

¢ Sus F € C € CB □

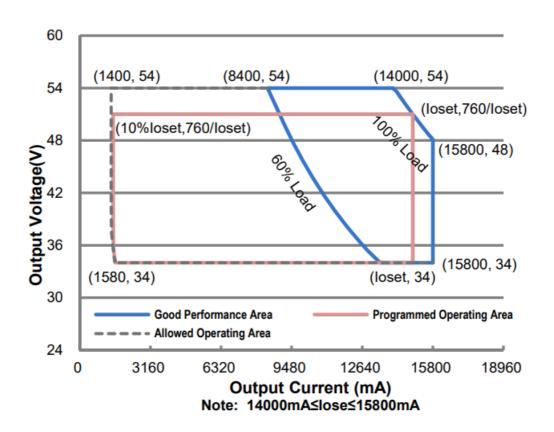
Panel Mount Connectors Facilitates Installation

- Rotary Switch+RJ12 Connector
- · Hot-plugging Protection
- Parallel LED Protection
- Ultra High Efficiency (Up to 95.5%)
- Full Power at Wide Output Current Range (Constant Power)
- Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/PWM/Resistor/3-Timer-Modes Dimmable
- INV Digital Dimming, UART Based Communication Protocol
- Dim-to-Off with Standby Power ≤ 0.5W
- Minimum Dimming Level with 5% or 10% Selectable
- Maximum Dimming Level with 9V or 10V Selectable
- · Fade Time Adjustable
- · Low Inrush Current
- · Output Lumen Compensation
- · End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: IOVP, IUVP, OVP, SCP, OTP
- IP66 and UL Dry/Damp/Wet Location
- 5 Years Warranty

Description

The SUM-760SxxxMGR series is a 760W, constant-current, programmable and IP66 rated LED driver that operates from 90-305Vac input with excellent power factor. Created for many lighting applications including high mast, sports, UV-LED, aquaculture and horticulture, etc. It provides rotary switch, RJ12 connector and dim-to-off functionality. The dimming control supports 0-10V dimming as well as two-way communication via Digital Dimming, a UART based communication protocol. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation,

protection is provided against input surge, input under voltage, input over voltage, output over voltage, short circuit, and over temperature.


Models

Adjusta ble Out	Full-Po wer	Defaul	Input Volt	Output	Max Typical		Typical Pow er Factor		
put Curr ent Ran ge	Current Range(1	t Outp ut Cur rent	age Rang e(2)	Voltage Range	Outp ut Po wer	Efficien cv (3)	120V ac	220V ac	Model Number
1.4-15.8 A	14- 15.8A	14 A	90~305Va c 127~300 Vdc	34 ~54V dc	760W	95.5%	0.99	0.96	SUM-760S15AMG R(4)

Notes:

- 1. Output current range with constant power at 760W.
- 2. Certified input voltage range: UL, FCC, CB 100-277Vac; otherwise: 100-240Vac
- 3. Measured at 100% load and 220Vac input (see below "General Specifications" for details).
- 4. SELV output

I-V Operating Area

Input Specifications

Parameter	Min.	Тур.	Max.	Notes	
Input AC Voltage	90 Vac	_	305 Vac		
Input DC Voltage	127 Vdc	_	300 Vdc		
Input Frequency	47 Hz	_	63 Hz		
Leakage Current	_	_	0.75 MIU	UL 8750; 277Vac/ 60Hz	
Leakage Current			0.70 mA	IEC 60598-1; 240Vac/ 60Hz	
Input AC Current	_	_	7.54 A	Measured at 100% load and 120 Vac i nput.	
	_	_	4.05 A	Measured at 100% load and 220 Vac i nput.	
Inrush Current(I2t)	_	_	1.87 A2s	At 220Vac input, 25°C cold start, durat ion=13.7 ms, 10%lpk-10%lpk. See Inrush Current Waveform for the details.	
PF	0.90	_	_	At 100-277Vac, 50-60Hz,60%-	
THD	_	_	20%	100%Load (456-760W)	
THD	_	_	10%	At 220-240Vac, 50-60Hz,75%- 100%Load (570-60W)	

Output Specifications

Parameter	Min.	Тур.	Max.	Notes
Output Current Tolerance	-5%loset	_	5%loset	100% load
Output Current Setting(loset R ange) SUM-760S15AMGR	1400 mA	_	15800 mA	
Output Current Setting Range with Constant Power SUM-760 S15AMGR	14000 mA	_	15800 mA	
Total Output Current Ripple (pk -pk)	_	5%lomax	10%lomax	100% load, 20 MHz BW
Output Current Ripple at < 200 Hz (pk-pk)	_	_	2%lomax	70%-100% load

Parameter	Min.	Тур.	Max.	Notes
Startup Overshoot Current	_	_	10%lomax	100% load
No Load Output Voltage SUM- 60S15AMGR	_	_	60 V	
Line Regulation	_	_	±0.5%	100% load
Load Regulation	_	_	±3.0%	
Turn-on Delay Time	_	_	0.5 s	Measured at 120-277Vac input, 60%-100% Load
Temperature Coefficient of loset	_	0.03%/°C	_	Case temperature = 0°C ~Tc max

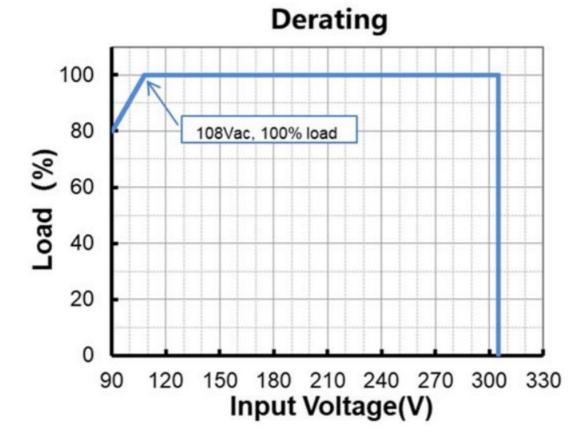
General Specifications

Parameter	Min.	Тур.	Max.	Notes
Efficiency at 120 Vac input: SU M-760S15AMGR lo= 14000 m A lo= 15800 mA	91.5% 91. 0%	93.5% 93. 0%		Measured at 100% load and steady-st ate temperature in 25°C ambient; (Efficiency will be about 2.0% lower if mea sured immediately after startup.)
Efficiency at 220 Vac input: SU M-60S15AMGR lo= 14000 mA lo= 15800 mA	93.5% 93. 0%	95.5% 95. 0%		Measured at 100% load and steady-st ate emperature in 25°C ambient;(Effici ency will be about 2.0% lower if measured immediately after startup.)
Efficiency at 277 Vac input: SU M-S15AMGRIo= 14000 mAlo= 15800 mA	93.5%93.5	95.5% 95. 5%		Measured at 100% load and steady-st ate emperature in 25°C ambient; (Effi ciency will be about 2.0% lower if mea sured immediately after startup.)
Standby Power	_	_	0.5 W	Measured at 230Vac/50Hz; Dimming o
MTBF	_	201,000 H ours	_	Measured at 220Vac input, 80%Load and 25°C ambient temperature (MIL-H DBK- 217F)
Lifetime	_	102,000 H ours	_	Measured at 220Vac input, 80%Load and 70°C case temperature; See lifetime vs. Tc curve for the details
	_	81,000 Ho urs	_	Measured at 220Vac input, 100%Load and 40°C ambient temperature
Operating Case Temperature f or SafetyTc_s	-40°C	_	+90°C	
Operating Case Temperature f or Warranty Tc_w	-40°C	_	+80°C	Case temperature for 5 years warranty Humidity: 10%RH to 95%RH
Storage Temperature	-40°C	_	+85°C	Humidity: 5%RH to 95%RH
Dimensions Inches (L × W × H) illimeters (L × W × H)	With mounting ear 16.34 × 4.25 × 1.91 415 × 108 × 48.5			
Net Weight	_	3500 g	_	

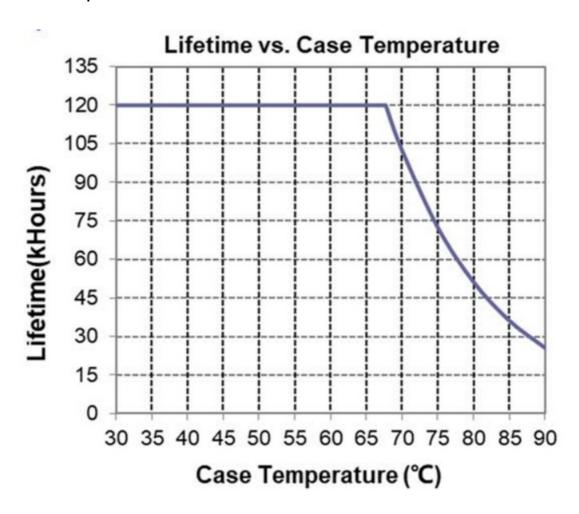
Dimming Specifications

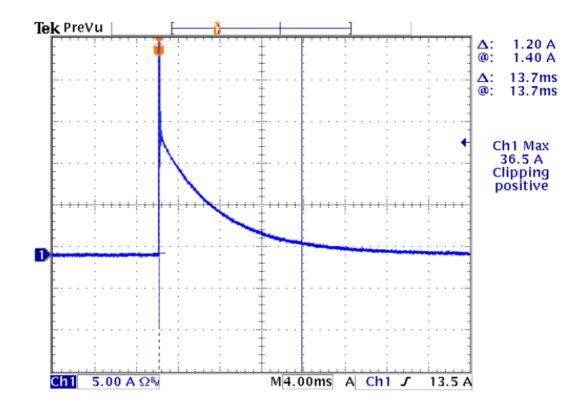
Parameter		Min.	Тур.	Max.	Notes
Absolute Max e Vdim (+) Pi	kimum Voltage on th	-20 V	_	20 V	
Source Curre	ent on Vdim (+)Pin	90 uA	100 uA	110 uA	Vdim(+) = 0 V
Dimming O utput Range	SUM-760S15AMG R	10%loset	_	loset	14000 mA ≤ loset ≤ 15800 mA
with 10%- 100% (Defa ult)	SUM-760S15AMG R	1400 mA	_	loset	1400 mA ≤ loset 14000 mA
Dimming O utput Range	SUM-760S15AMG R	5%loset	_	loset	14000 mA ≤ loset ≤ 15800 mA
with5%-100 % (Settable)	SUM-760S15AMG R	700 mA	-	loset	1400 mA ≤ loset 14000 mA
Recommended Dimming Input R ange		0 V	_	10 V	
Dim off Voltage	ge	0.35 V	0.5 V	0.65 V	Default 0-10V dimming mode.
Dim on Voltag	ge	0.55 V	0.7 V	0.85 V	
Hysteresis		_	0.2 V	_	
PWM_in High	n Level	3 V	_	10 V	
PWM_in Low	Level	-0.3 V	_	0.6 V	
PWM_in Fred	quency Range	200 Hz	_	3 KHz	
PWM_in Duty	/ Cycle	1%	_	99%	
PWM Dimming off (Positive Logic)		3%	5%	8%	Dimming mode set to PWM in Invent
PWM Dimming on (Positive Logic)		5%	7%	10%	ronics Programing Software.
PWM Dimming off (Negative Log ic)		92%	95%	97%	
PWM Dimming on (Negative Log ic)		90%	93%	95%	
Hysteresis		_	2%	_	

Safety &EMC Compliance

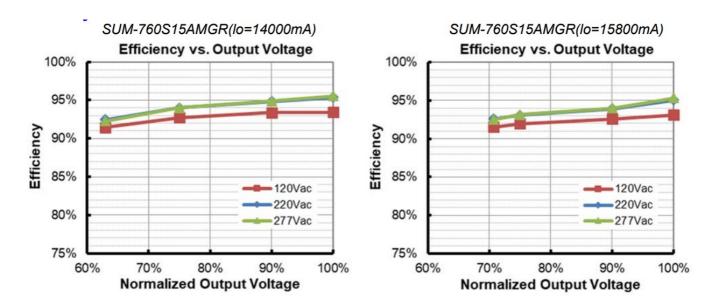

Safety Category	Standard
UL/CUL	UL 8750,CAN/CSA-C22.2 No. 250.13
CE	EN 61347-1, EN 61347-2-13
СВ	IEC 61347-1, IEC 61347-2-13
EMI Standards	Notes
EN 55015(1)	Conducted emission Test &Radiated emission Test
EN 61000-3-2	Harmonic current emissions

EMI Standards	Notes
EN 61000-3-3	Voltage fluctuations & flicker
	ANSI C63.4 Class B
FCC Part 15(1)	This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, an d [2] this device must accept any interference received, including interference t hat may cause undesired Operation.
EMS Standards	Notes
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 1 0 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips
EN 61547	Electromagnetic Immunity Requirements Applies To Lighting Equipment

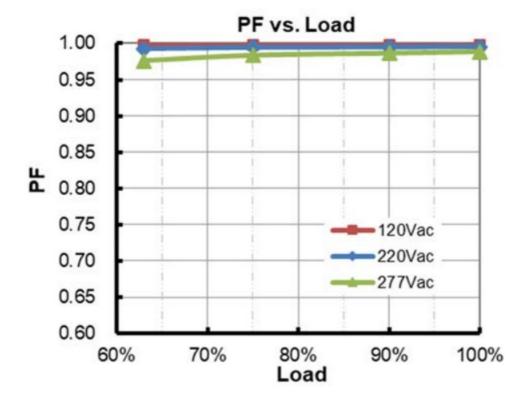

Note:

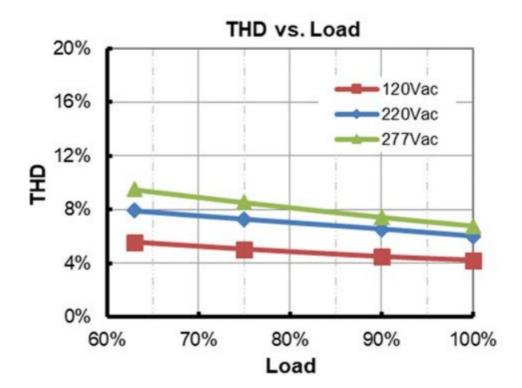

1. This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself.

Derating

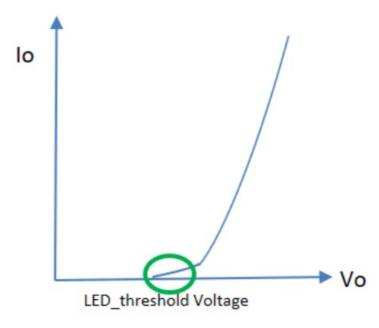


Lifetime vs. Case Temperature




Efficiency vs. Load SUM-760S15AMGR(lo=14000mA)

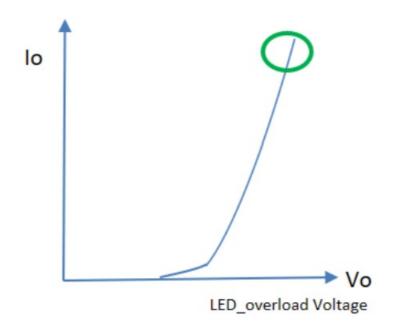
Power Factor



Total Harmonic Distortion

Hot-plugging Protection

This feature protects LEDs when connecting to a driver that is already powered on. This is disabled by default and can be enabled through the Inventronics Programing Software.

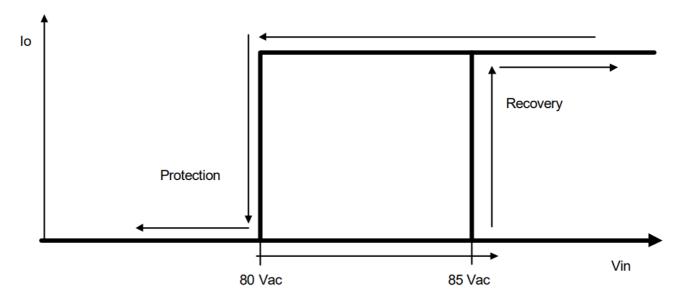

LED threshold voltage (Vth) is the minimum voltage required for current to flow through the LED load. After this threshold is met, the LED forward voltage (Vf) increases as the current increases.

Set Vth close to, but higher than the actual LED threshold voltage for optimized performance. The greater the difference between the Vth setting and the actual LED threshold voltage, the higher the overshoot current will be. The Vth setting must be lower than Vf. Please test, program, and tune this feature for each LED load design.

Parameter		Min.	Тур.	Max.	Notes
Hot-plugging	LED Threshold Voltage Setting Range	44 V	_	54 V	Set Vth close to, but higher than the actual LED threshold voltage
Protection	Setting Toleran ce	-2%	_	2%	

Parallel LED Protection

This feature helps protect parallel LEDs from a high, overcurrent condition by limiting the voltage. This is disabled by default and can be enabled through the Inventronics Programing Software.

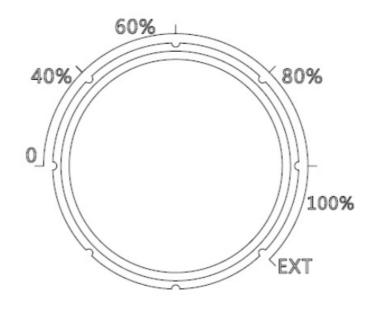

Set V_overload close to, but higher than the maximum forward voltage for optimized performance. The greater the difference between the V_overload setting and the maximum forward voltage, the higher the overload stress will be. The V_overload setting must be higher than Vf. Please test, program, and tune this feature for each LED load design.

Parameter		Min.	Тур.	Max.	Notes
Parallel LED	Overload Volta ge Setting Ran ge	47 V	_	56 V	Set V_overload close to, but higher than the maximum LED forward voltage
Protection	Setting Toleran ce	-2%	_	2%	

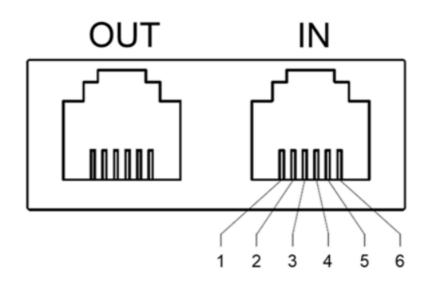
Protection Functions

Parameter		Min.	Тур.	Max.	Notes			
Over Tempera	Over Temperature Protection		Decreases output current, returning to normal after over temperature is remov ed.					
Short Circuit F	Protection	Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.						
Over Voltage	Protection	Limits outp	ut voltage at	no load and	in case the normal voltage limit fails.			
Input Under voltage Prot	Input Protection Volt age	70 Vac	80 Vac	90 Vac	Turn off the output when the input voltag e falls below protection voltage.			
ection (IUVP	Input Recovery Voltage	75 Vac	85 Vac	95 Vac	Auto Recovery. The driver will restart wh en the input voltage exceeds recovery voltage.			
	Input Over Volt age Recovery	310 Vac	320 Vac	330 Vac	Auto Recovery. The driver will restart wh en the input voltage falls below recovery voltage.			
Input Over V oltage Prote ction (IOVP)	Input Over Volt age Recovery	300 Vac	310 Vac	320 Vac	Auto Recovery. The driver will restart wh en the input voltage falls below recovery voltage.			
	Max. of Input O ver Voltage	_	_	350 Vac	The driver can survive for 8 hours with a stable input voltage stress of 350Vac.			

• Input Under Voltage Protection Diagram



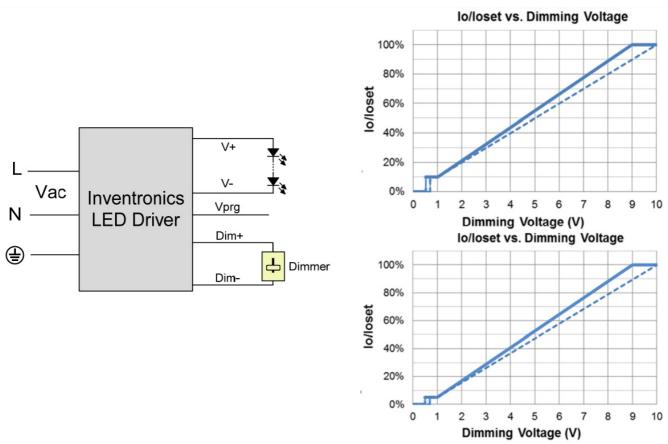
• Input Over Voltage Protection Diagram



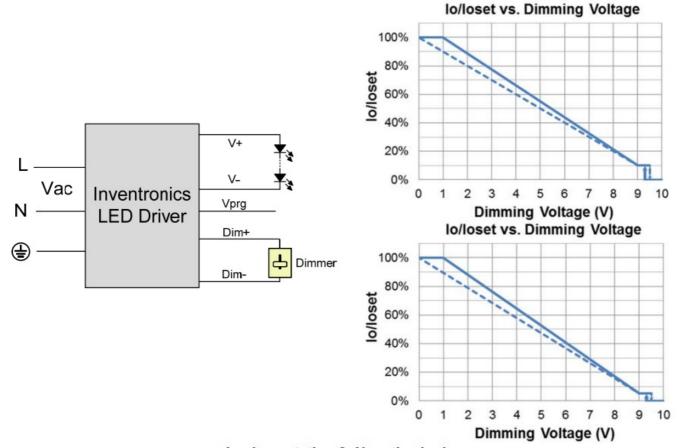
• Rotary Switch and RJ12 Connector

Output current can be set as 0, 40%, 60%, 80%, 100% level by rotary switch and the output current can be dimmed by dimming wire in RJ12 connector when rotary switch is at 'EXT' position. The default mode is in 'EXT'.

Rotary Switch


RJ12 Connector

Pin	Function
1,6	Vprg
2,5	Dim+
3,4	Dim-

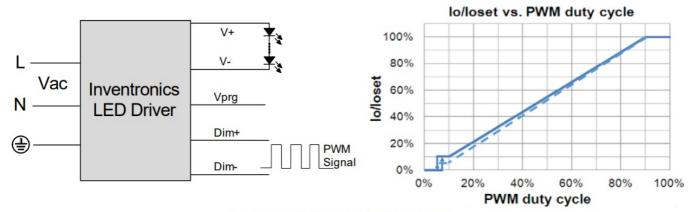

Dimming

• 0-10V Dimming

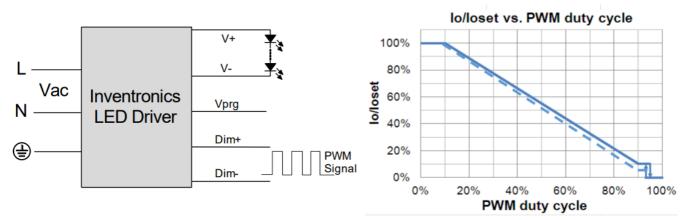
The recommended implementation of the dimming control is provided below.

Implementation 1: Positive logic

Implementation 2: Negative logic


Notes:

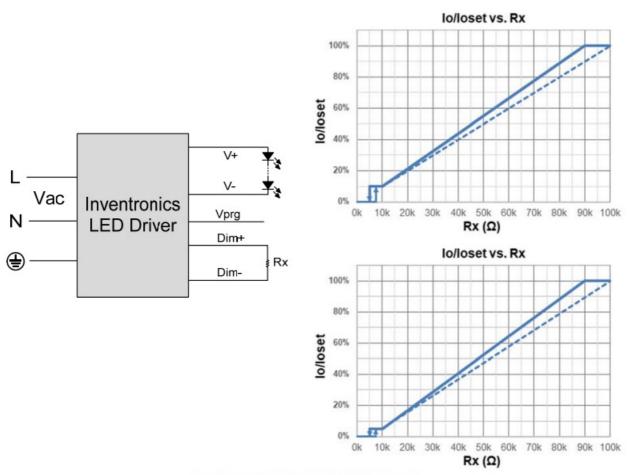
1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.


- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When 0-10V negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

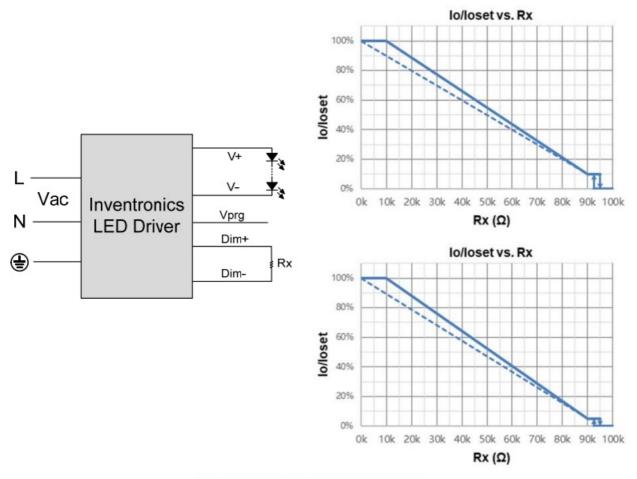
PWM Dimming

The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic


Implementation 4: Negative logic

Notes:


- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

Resistor Dimming

The recommended implementation of the dimming control is provided below.

Implementation 5: Positive logic

Implementation 6: Negative logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

• Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self Adapting Percentage and Traditional Timer.

Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.

Self Adapting-Percentage: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference <15 min) / (programmed on-time from the dimming curve).

Traditional Timer: Follows the programmed timing curve after power on with no changes.

Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

Minimum Dimming Level with 5% or 10% Selectable

The minimum dimming level can be set as 5% or 10% by Inventronics Multi Programmer, 10% is default.

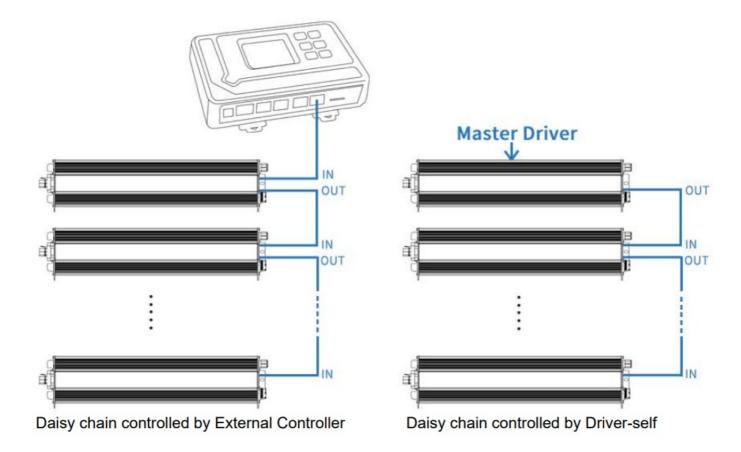
Maximum Dimming Level with 9V or 10V Selectable

The maximum dimming level can be set as corresponding dimming voltage is 9V or 10V by Inventronics Multi Programmer,9V is default.

Fade Time Adjustable

Soft-start time and dimming slope can be adjusted by Inventronics Multi Programmer to get customized fade time experience, disable mode is default.

End Of Life


End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

Digital Dimming

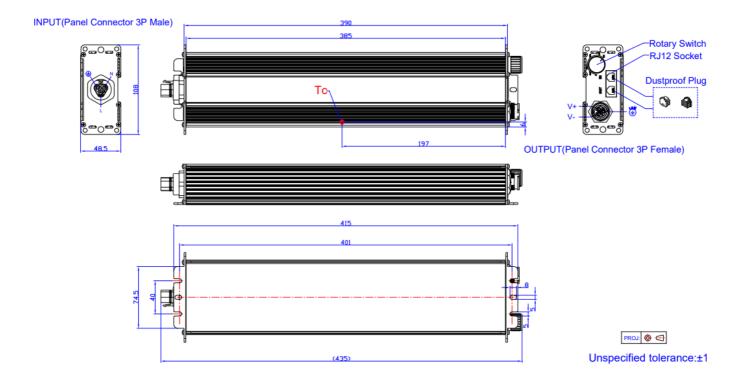
Inventronics Digital Dimming is a UART (Universal Asynchronous Receive Transmitter) based communication protocol. Please refer to Inventronics Digital Dimming file for details

Daisy Chain Application

Daisy chain system can support synchronous dimming of up to 100 drivers due to unique dimming interface design, please pay attention to right sequence of 'IN' and 'OUT' port for RJ12 connection.

Inventronics supports daisy chain connection for drivers that is dimmed by external controller. All drivers' rotary switch need to be tuned to 'EXT'.

Inventronics offers the solution to use driver itself to control daisy chain dimming without the controller. The rotary switch of the master driver is tuned to required dimming level when the rest of drivers are tuned to 'EXT'.


Programming Connection Diagram

Note: The driver does not need to be powered on during the programming process.

Please refer to PRG-MUL2 (Programmer) datasheet for details.

Mechanical Outline

Note: This driver features UL Wet Location, IP66 panel mount connectors to streamline wiring in the field while still supporting stringent environmental conditions. The mating push-lock are not supplied by Inventronics. Please contact Wieland and Amphenol LTW or one of their suppliers for assistance sourcing the mating push-lock.

Location	Series	Rating voltage /current	PN of connector on driv er	PN of mating push-lock
Vin	Wieland RST20i3	600V/10A	96.032.1055.7	96.031.0055.7 (Spring) or 9 6.031.4055.7 (Screw)
Vo	ALTW X-Lok,C-Size	300V/20A	ABAB-CAQ03000100	CC-03BFMB-QL8APP

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

Revision History

Change	Rev.	Description of Change				
Date		Item		From		То
2023-02-10	Α	Datasheet Release	/		/	

Specifications are subject to changes without notice.

All specifications are typical at 25°C unless otherwise stated.

www.inventronics-co.com

Tel: 86-571-56565800 Fax: 86-571-86601139 sales@inventronics-co.com

INVENTRONICS SUM-760S MGR Series 760W Programmable Driver with INV Digital Dim ming [pdf] Owner's Manual

SUM-760S MGR Series, 760W Programmable Driver with INV Digital Dimming, SUM-760S MG R Series 760W Programmable Driver with INV Digital Dimming, SUM-760S MGR Series 760W Programmable Driver, 760W Programmable Driver, Programmable Driver

Manuals+,