

INVENTRONICS SSM-760S MGR Series 760W Programmable Driver with INV Digital Dimming Owner's Manual

Home » INVENTRONICS » INVENTRONICS SSM-760S MGR Series 760W Programmable Driver with INV Digital Dimming Owner's Manual [™]

INVENTRONICS SSM-760S MGR Series 760W Programmable Driver with INV Digital Dimming

Contents

- 1 Features
- 2 Description
- 3 Models
- 4 I-V Operating Area
- **5 Input Specifications**
- 6 Output Specifications
- 7 General Specifications
- **8 Dimming Specifications**
- 9 Safety & EMC Compliance
- 10 Lifetime vs. Case Temperature
- 11 Inrush Current Waveform
- 12 Efficiency vs. Load
- 13 Power Factor
- 14 Total Harmonic Distortion
- 15 Hot-plugging Protection
- **16 Parallel LED Protection**
- 17 Protection Functions
 - 17.1 Input Under Voltage Protection Diagram
 - 17.2 Input Over Voltage Protection Diagram
 - 17.3 Rotary Switch and RJ12 Connector
- 18 Dimming
 - 18.1 0-10V Dimming
 - 18.2 PWM Dimming
 - 18.3 Resistor Dimming
 - 18.4 Time Dimming
 - 18.5 Output Lumen Compensation
 - 18.6 Minimum Dimming Level with 5% or 10%
 - Selectable
 - 18.7 Maximum Dimming Level with 9V or 10V
 - Selectable
 - 18.8 Fade Time Adjustable
 - 18.9 End Of Life
 - **18.10 Digital Dimming**
 - 18.11 Daisy Chain Application
- 19 Programming Connection Diagram
 - 19.1 Mechanical Outline
- 20 RoHS Compliance
- 21 Revision History
- 22 Customer Support
- 23 Documents / Resources
- **24 Related Posts**

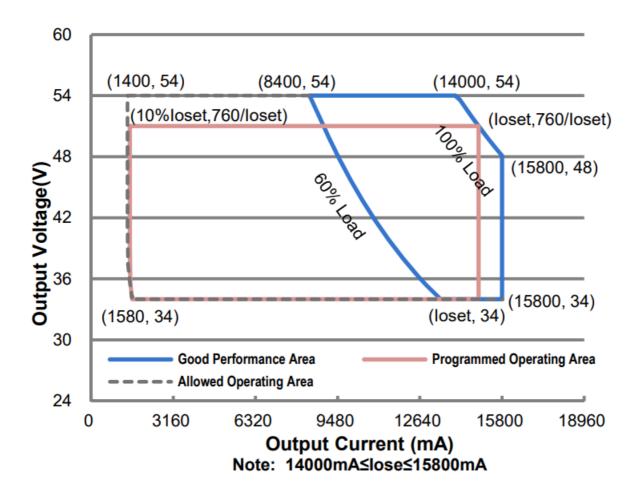
Features

- · Panel Mount Connectors Facilitates Installation
- Rotary Switch+RJ12 Connector
- · Hot-plugging Protection
- Parallel LED Protection
- Ultra High Efficiency (Up to 95%)
- Full Power at Wide Output Current Range (Constant Power)
- · Adjustable Output Current (AOC) with Programmability
- Isolated 0-10V/PWM/Resistor/3-Timer-Modes Dimmable
- INV Digital Dimming, UART Based Communication Protocol

- · Dim-to-Off
- Minimum Dimming Level with 5% or 10% Selectable
- Maximum Dimming Level with 9V or 10V Selectable
- Fade Time Adjustable
- · Low Inrush Current
- Output Lumen Compensation
- · End-of-Life Indicator
- Input Surge Protection: DM 6kV, CM 10kV
- All-Around Protection: IOVP, IUVP, OVP, SCP, OTP
- IP66 and UL Dry/Damp/Wet Location
- 5 Years Warranty

Description

The SSM-760SxxxMGR series is a 760W, constant-current, programmable and IP66 rated LED driver that operates from 249-528Vac input with excellent power factor. Created for many lighting applications including high mast, sports, UV-LED, aquaculture and horticulture, etc. It provides rotary switch, RJ12 connector and dim-to-off functionality. The dimming control supports 0-10V dimming as well as two-way communication via Digital Dimming, a UART based communication protocol. The high efficiency of these drivers and compact metal case enables them to run cooler, significantly improving reliability and extending product life. To ensure trouble-free operation, protection is provided against input surge, input under voltage, input over voltage, output over voltage, short circuit, and over temperature.


Models

Adjusta ble Out	Full- Power Cu	Defaul t Outp	Input Volt	· I Chith		Typical	Typical Pow er Factor		Madal Name
put Cur rent Ra nge	rrent Ran ge(1)	ut Cur rent	age Rang e(2)	Range	voltage ut Po	CV (3)	277V ac	480V ac	Model Number
1.4-15.8 A	14-15.8A	14A	249~528V ac 352~500V dc	34 ~ 54 Vdc	760 W	95.0%	0.99	0.96	SSM-760S15AMG R(4)

Notes:

- 1. Output current range with constant power at 760W.
- 2. Certified voltage range: UL, FCC 277-480Vac; otherwise: 277-400Vac.
- 3. Measured at 100% load and 480Vac input (see below "General Specifications" for details).
- 4. SELV output.

I-V Operating Area

Input Specifications

Parameter	Min.	Тур.	Max.	Notes
Input AC Voltage	249 Vac	_	528 Vac	
Input DC Voltage	352 Vdc	_	500 Vdc	
Input Frequency	47 Hz	_	63 Hz	
Lookago Current	_	_	0.75 MIU	UL 8750; 480Vac/ 60Hz
Leakage Current	_	_	0.70 mA	IEC 60598-1; 480Vac/ 60Hz
Input AC Current	_	_	3.24 A	Measured at 100% load and 277 Vac i nput.
input AC Current	_	_	1.87 A	Measured at 100% load and 480 Vac i nput.
Inrush Current(I2t)	_	_	1.80 A2s	At 480Vac input, 25°C cold start, durati on=6.06 ms, 10%lpk-10%lpk. See Inru sh Current Waveform for the details.
PF	0.90	_	_	At 277-480Vac,50-60Hz, 60%-
THD	_	_	20%	100%Load (456 – 760W)

Output Specifications

Parameter	Min.	Тур.	Max.	Notes
Output Current Tolerance	-5%loset	_	5%loset	100% load
Output Current Setting(loset R ange) SSM-760S15AMGR	1400 mA	_	15800 mA	
Output Current Setting Range with Constant Power SSM-760 S15AMGR	14000 mA	-	15800 mA	
Total Output Current Ripple (pk -pk)	_	5%lomax	10%lomax	100% load, 20 MHz BW
Output Current Ripple at < 200 Hz (pk-pk)	-	-	2%lomax	70%-100% load
Startup Overshoot Current	_	_	10%lomax	100% load

Parameter	Min.	Тур.	Max.	Notes
No Load Output Voltage SSM-7 60S15AMGR	_	_	60 V	
Line Regulation	_	_	±0.5%	100% load
Load Regulation	_	_	±3.0%	
Turn-on Delay Time	_	_	0.5 s	Measured at 277-480Vac input, 60%-100% Load
Temperature Coefficient of loset	_	0.03%/°C	_	Case temperature = 0°C ~Tc max

General Specifications

Parameter	Min.	Тур.	Max.	Notes
Efficiency at 277 Vac input: SS M-760S15AMGR lo= 14000 m A lo= 15800 mA	91.5% 91.5%	93.5% 93.5%	-	Measured at 100% load and steady-st ate temperature in 25°C ambient; (Efficiency will be about 2.0% lower if mea sured immediately after startup.)
Efficiency at 400 Vac input: SS M 760S15AMGR lo= 14000 m Alo= 15800 mA	92.5% 92.5%	94.5% 94.5%	-	Measured at 100% load and steady-st ate temperature in 25°C ambient; (Efficiency will be about 2.0% lower if mea sured immediately after startup.)
Efficiency at 480 Vac input: SS M 760S15AMGR Io= 14000 mA Io= 15800 mA	93.0% 93. 0%	95.0% 95. 0%	_	Measured at 100% load and steady-st ate temperature in 25°C ambient; (Efficiency will be about 2.0% lower if mea sured immediately after startup.)
Standby Power	_	1.5 W	_	Measured at 480Vac/50Hz; Dimming o
MTBF	-	224,000 H our	-	Measured at 480Vac input, 80%Load and 25°C ambient temperature (MIL-H DBK- 217F)
	_	111,000 Hours	_	Measured at 480Vac input, 80%Load and 70°C case temperature; See lifeti me vs. Tc curve for the details
Lifetime				

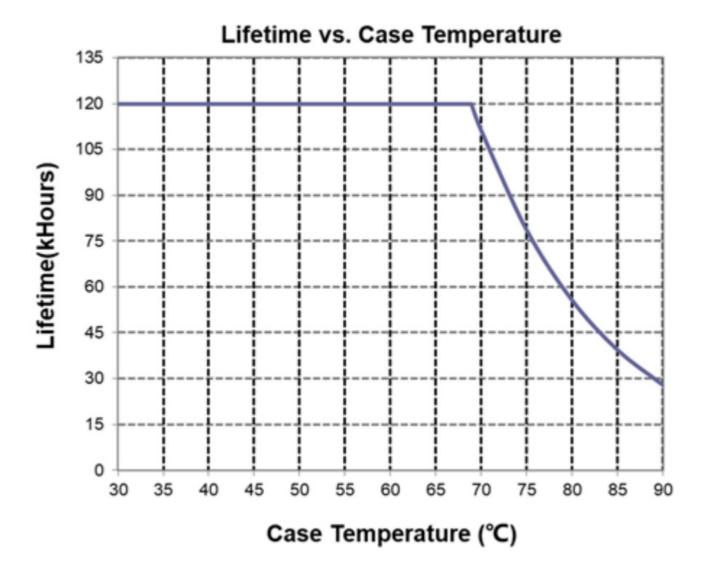
	_	50,000 Hours	_	Measured at 277Vac input, 100%Load and 40°C ambient temperature
Operating Case Temperature f or Safety Tc_s	-40°C	_	+90°C	
Operating Case Temperature f or Warranty Tc_w	-40°C	_	+80°C	Case temperature for 5 years warranty Humidity: 10%RH to 95%RH
Storage Temperature	-40°C	_	+85°C	Humidity: 5%RH to 95%RH
Dimensions Inches (L × W × H) Millimeters (L × W × H)	15.35 × 4.25 × 1.91 390 × 108 × 48		× 108 × 48.5	With mounting ear 16.34 × 4.25 × 1.91 415 × 108 × 48.5
Net Weight	_	3360 g	_	

Dimming Specifications

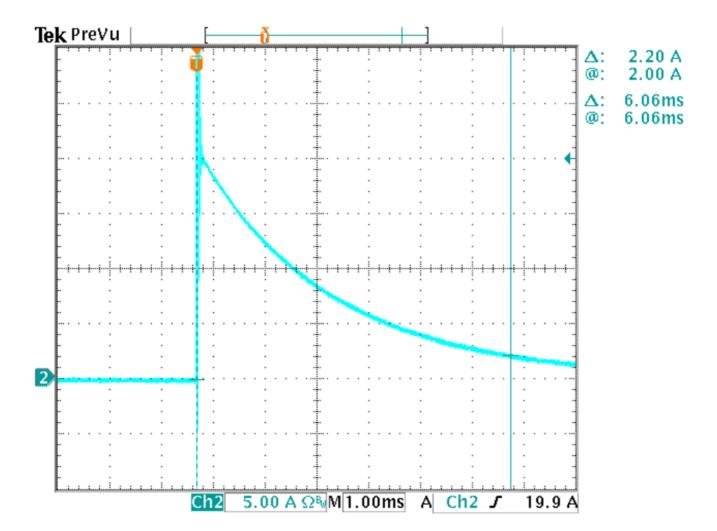
Parameter	Min.	Тур.	Max.	Notes
Absolute Maximum Voltage on the Vdim (+) Pin	-20 V	_	20 V	
Source Current on Vdim (+)Pi	90 uA	100 uA	110 uA	Vdim(+) = 0 V

Parameter		Min.	Тур.	Max.	Notes
Dimming Output Ra nge with 1 0%-100% (Default)	SSM-760S15AM GR	10%loset	_	loset	14000 mA ≤ loset ≤ 15800 mA
	SSM-760S15AM GR	1400 mA	_	loset	1400 mA ≤ loset 14000 mA
Dimming Output Ra nge with 5 %-100% (Settable)	SSM-760S15AM GR	5%loset	_	loset	14000 mA ≤ loset ≤ 15800 mA
	SSM-760S15AM GR	700 mA	-	loset	1400 mA ≤ loset 14000 mA

Recommended Dimming Input Range	0 V	_	10 V	Default 0-10V dimming mode.	
Dim off Voltage	0.35 V	0.5 V	0.65 V		
Dim on Voltage	0.55 V	0.7 V	0.85 V		
Hysteresis	_	0.2 V	_		
PWM_in High Level	3 V	_	10 V		
PWM_in Low Level	-0.3 V	_	0.6 V		
PWM_in Frequency Range	200 Hz	_	3 KHz		
PWM_in Duty Cycle	1%	_	99%		
PWM Dimming off (Positive Logic)	3%	5%	8%	Dimming mode set to PWM in Inventro	
PWM Dimming on (Positive Logic)	5%	7%	10%	nics Programing Software.	
PWM Dimming off (Negative Logic)	92%	95%	97%	† 	
PWM Dimming on (Negative Logic)	90%	93%	95%		
Hysteresis	_	2%	_		

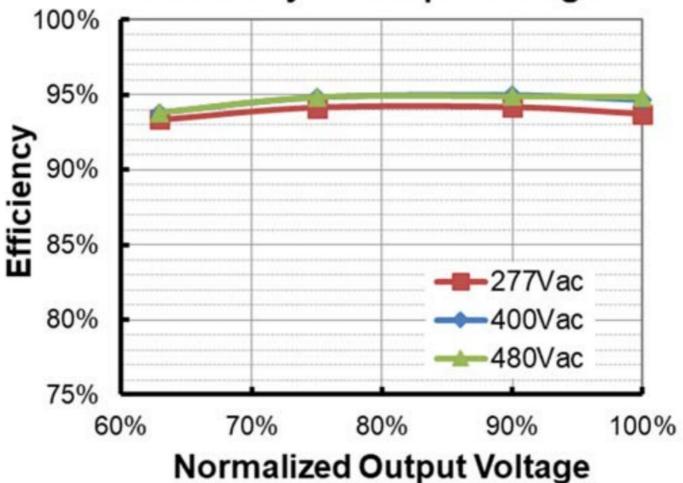

Safety &EMC Compliance

Safety Category	Standard				
UL/CUL	UL 8750,CAN/CSA-C22.2 No. 250.13				
CE	EN 61347-1, EN 61347-2-13				
СВ	IEC 61347-1, IEC 61347-2-13				
EMI Standards	Notes				
EN 55015(1)	Conducted emission Test &Radiated emission Test				
EN 61000-3-2	Harmonic current emissions				
EN 61000-3-3	Voltage fluctuations & flicker				
	ANSI C63.4 Class B				
FCC Part 15(1)	This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: [1] this device may not cause harmful interference, an d [2] this device must accept any interference received, including interference t hat may cause undesired Operation.				

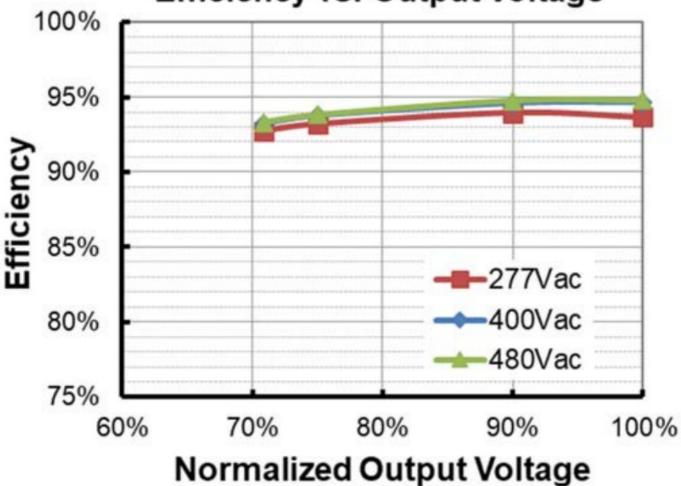

EMS Standards	Notes
EN 61000-4-2	Electrostatic Discharge (ESD): 8 kV air discharge, 4 kV contact discharge
EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test-RS
EN 61000-4-4	Electrical Fast Transient / Burst-EFT
EN 61000-4-5	Surge Immunity Test: AC Power Line: Differential Mode 6 kV, Common Mode 1 0 kV
EN 61000-4-6	Conducted Radio Frequency Disturbances Test-CS
EN 61000-4-8	Power Frequency Magnetic Field Test
EN 61000-4-11	Voltage Dips
EN 61547	Electromagnetic Immunity Requirements Applies To Lighting Equipment

Note: (1) This LED driver meets the EMI specifications above, but EMI performance of a luminaire that contains it depends also on the other devices connected to the driver and on the fixture itself

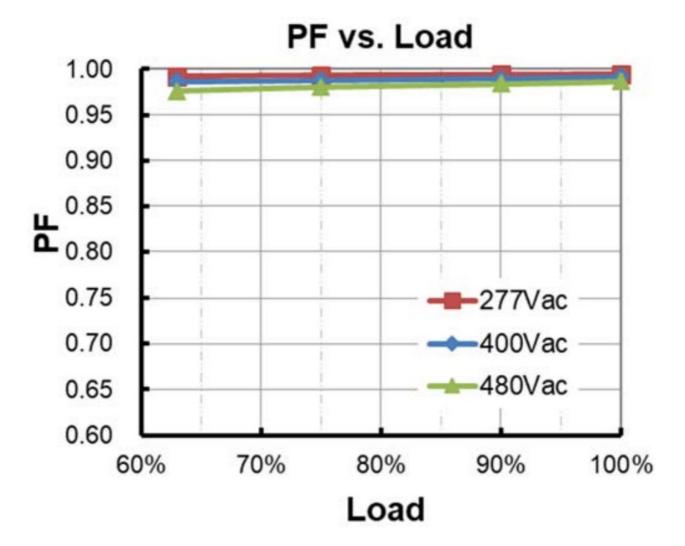
Lifetime vs. Case Temperature

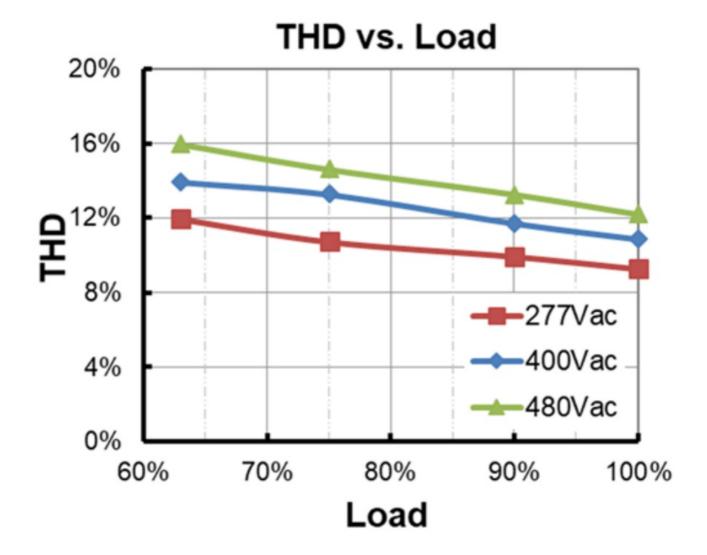


Inrush Current Waveform

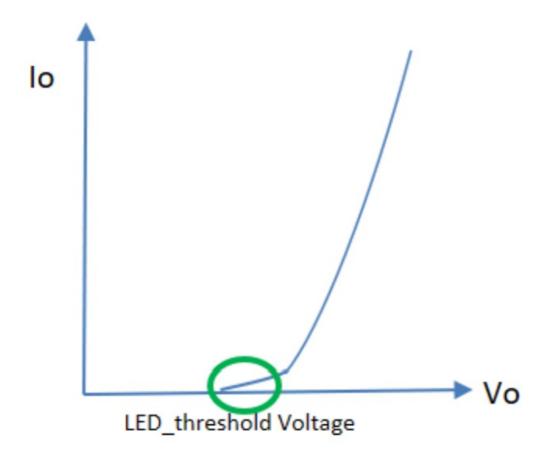


Efficiency vs. Load


SSM-760S15AMGR(lo=14000mA) Efficiency vs. Output Voltage


SSM-760S15AMGR(lo=15800mA) Efficiency vs. Output Voltage

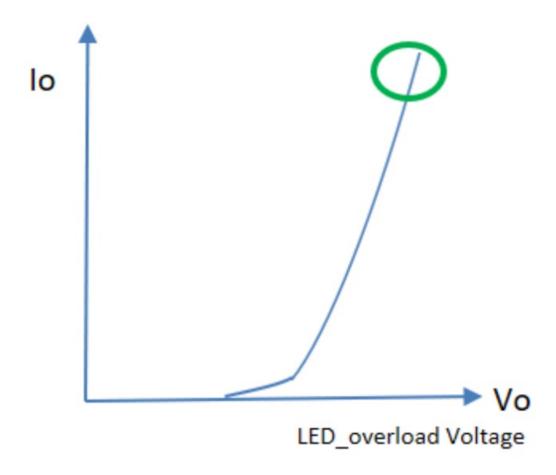
Power Factor



Total Harmonic Distortion

Hot-plugging Protection

This feature protects LEDs when connecting to a driver that is already powered on. This is disabled by default and can be enabled through the Inventronics Programing Software.


LED threshold voltage (Vth) is the minimum voltage required for current to flow through the LED load. After this threshold is met, the LED forward voltage (Vf) increases as the current increases. Set Vth close to, but higher than the actual LED threshold voltage for optimized performance. The greater the difference between the Vth setting and the actual LED threshold voltage, the higher the overshoot current will be. The Vth setting must be lower than Vf.

Please test, program, and tune this feature for each LED load design.

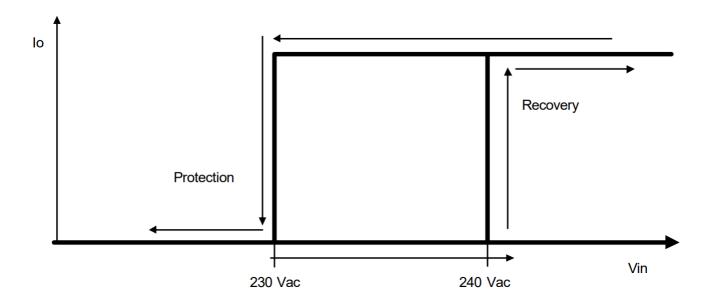
Parameter		Min.	Тур.	Max.	Notes
Hot-plugging Protection	LED Threshold Voltage Setting Range	44 V	_	54 V	Set Vth close to, but higher than the actual LED threshold voltage
rotoston	Setting Toleran ce	-2%	_	2%	

Parallel LED Protection

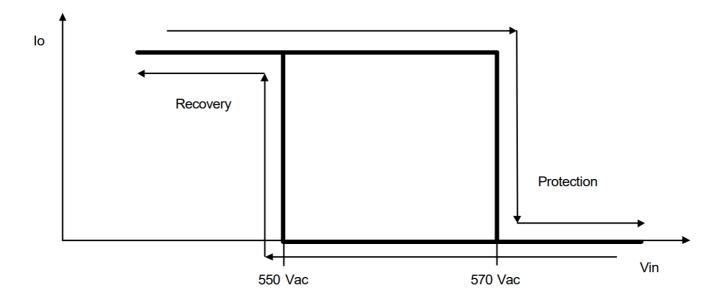
This feature helps protect parallel LEDs from a high, overcurrent condition by limiting the voltage. This is disabled by default and can be enabled through the Inventronics Programing Software.

Set V_overload close to, but higher than the maximum forward voltage for optimized performance. The greater the difference between the V_overload setting and the maximum forward voltage, the higher the overload stress will be. The V_overload setting must be higher than Vf.

Please test, program, and tune this feature for each LED load design.

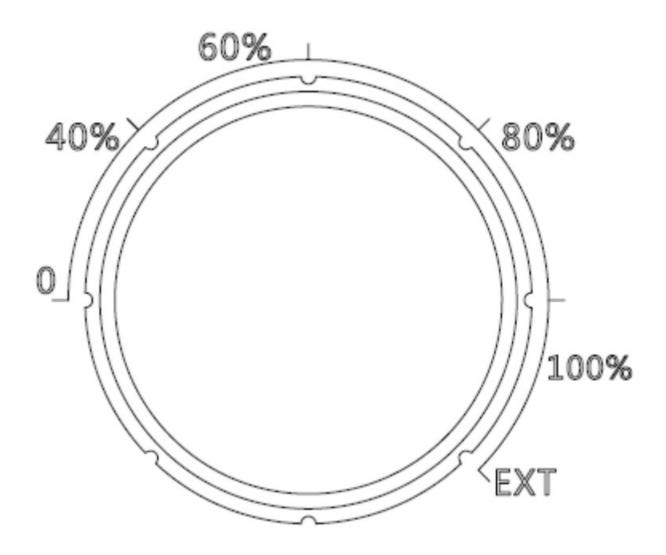

Parameter		Min.	Тур.	Max.	Notes
Parallel LED Protection	Overload Volta ge Setting Ran ge	47 V	_	56 V	Set V_overload close to, but higher than the maximum LED forward voltage
	Setting Toleran ce	-2%	_	2%	

Protection Functions

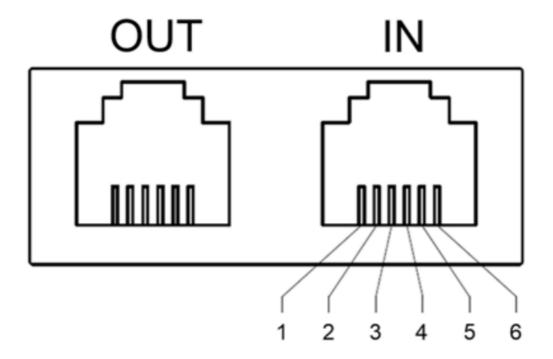

Parameter		Min.	Тур.	Мах.	Notes	
Over Temperature Protection		Decreases output current, returning to normal after over temperature is removed.				
Short Circuit Protection		Auto Recovery. No damage will occur when any output is short circuited. The output shall return to normal when the fault condition is removed.				
Over Voltage Protection		Limits output voltage at no load and in case the normal voltage limit fails.				
Input Under Voltage Prot ection (IUVP)	Input Protection Volt age	220 Vac	230 Vac	240 Vac	Turn off the output when the input voltage e falls below protection voltage.	
	Input Recovery Voltage	230 Vac	240 Vac	250 Vac	Auto Recovery. The driver will restart wh en the input voltage exceeds recovery voltage.	
Input Over V oltage Prote ction (IOVP)	Input Over Voltage Protect	550 Vac	570 Vac	590 Vac	Turn off the output when the input voltag e exceeds protection voltage.	
	Input Over Volt age Recovery	530 Vac	550 Vac	570 Vac	Auto Recovery. The driver will restart wh en the input voltage falls below recovery voltage.	
	Max. of Input O ver Voltage	_	-	590 Vac	The driver can survive for 8 hours with a stable input voltage stress of 590Vac.	

Note: When removing the protective cap of RJ12, the waterproof protection performance should be evaluated together with external connected system by users.

Input Under Voltage Protection Diagram



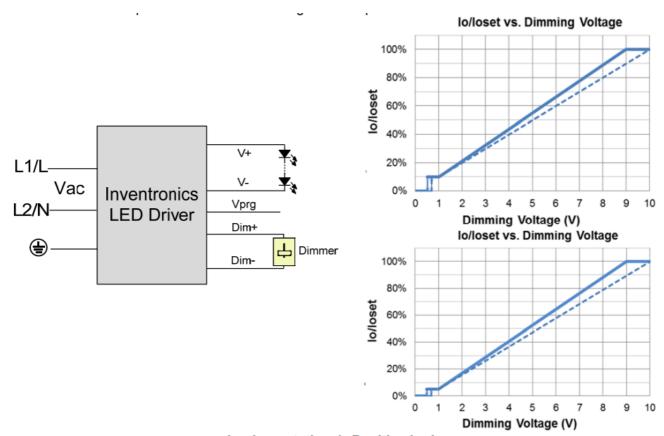
Input Over Voltage Protection Diagram



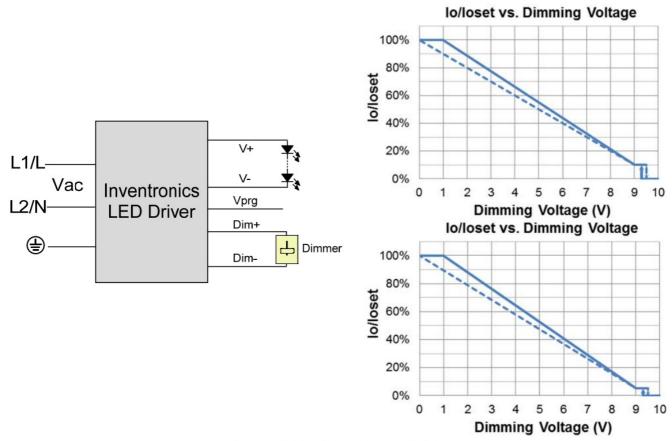
Rotary Switch and RJ12 Connector

Output current can be set as 0, 40%, 60%, 80%, 100% level by rotary switch and the output current can be dimmed by dimming wire in RJ12 connector when rotary switch is at 'EXT' position. The default mode is in 'EXT'

Pin	Function
1,6	Vprg
2,5	Dim+
3,4	Dim-



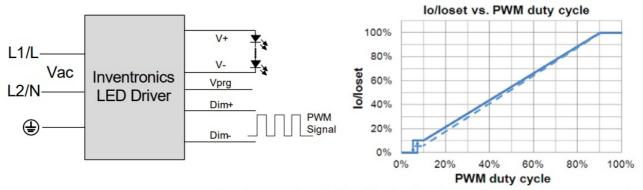
RJ12 Connector


Dimming

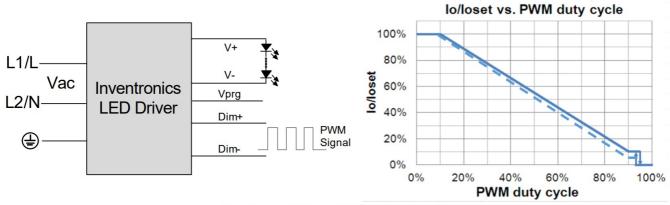
0-10V Dimming

The recommended implementation of the dimming control is provided below

Implementation 1: Positive logic


Implementation 2: Negative logic

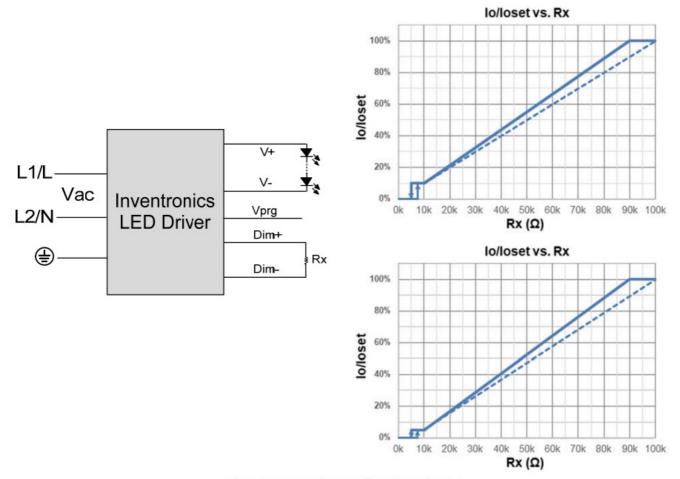
Notes:


- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. The dimmer can also be replaced by an active 0-10V voltage source signal or passive components like zener.
- 3. When 0-10V negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

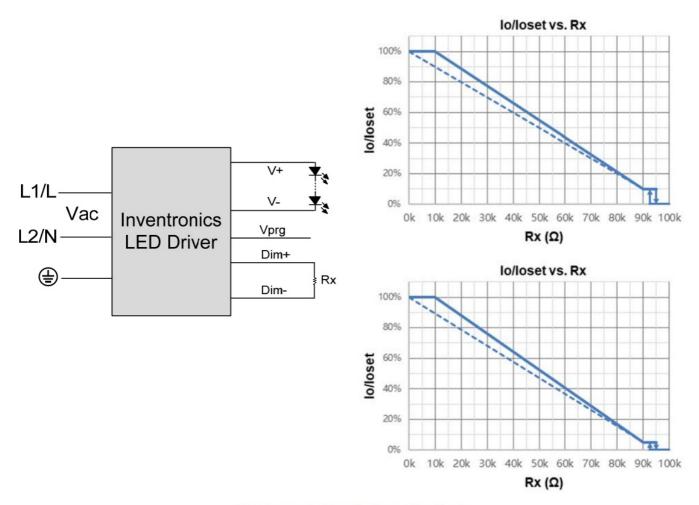
PWM Dimming

The recommended implementation of the dimming control is provided below.

Implementation 3: Positive logic


Implementation 4: Negative logic

Notes:


- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When PWM negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

Resistor Dimming

The recommended implementation of the dimming control is provided below.

Implementation 5: Positive logic

Implementation 6: Negative logic

Notes:

- 1. Do NOT connect Dim- to the output V- or V+, otherwise the driver will not work properly.
- 2. When resistor negative logic dimming mode and Dim+ is open, the driver will dim to off and be standby.

Time Dimming

Time dimming control includes 3 kinds of modes, they are Self Adapting-Midnight, Self Adapting Percentage and Traditional Timer.

- Self Adapting-Midnight: Automatically adjusts the dimming curve based on the on-time of past two days (if difference <15 minutes), assuming that the center point of the dimming curve is midnight local time.
- Self Adapting-Percentage: Automatically adjusts the on-time of each step by a constant percentage = (actual on-time for the past 2 days if difference <15 min) / (programmed on-time from the dimming curve).
- Traditional Timer: Follows the programmed timing curve after power on with no changes.

Output Lumen Compensation

Output Lumen Compensation (OLC) may be used to maintain constant light output over the life of the LEDs by driving them at a reduced current when new, then gradually increasing the drive current over time to counteract LED lumen degradation.

Minimum Dimming Level with 5% or 10% Selectable

The minimum dimming level can be set as 5% or 10% by Inventronics Multi Programmer,10% is default.

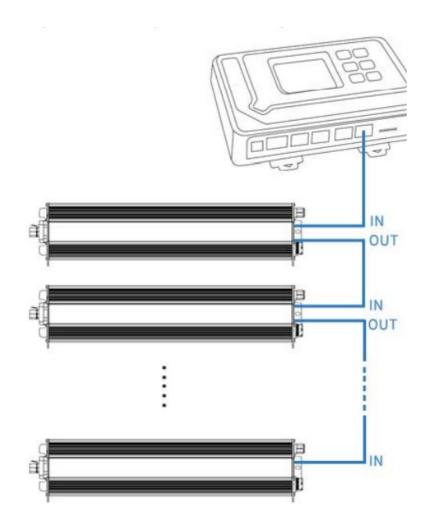
Maximum Dimming Level with 9V or 10V Selectable

The maximum dimming level can be set as corresponding dimming voltage is 9V or 10V by Inventronics Multi Programmer,9V is default.

Fade Time Adjustable

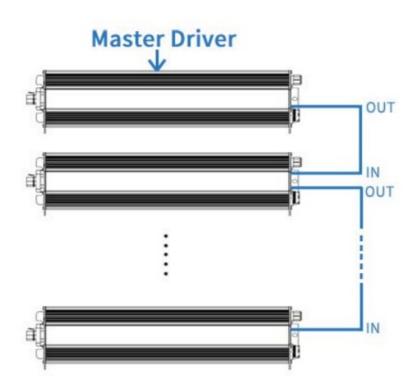
Soft-start time and dimming slope can be adjusted by Inventronics Multi Programmer to get customized fade time experience, disable mode is default.

End Of Life


End-of-Life (EOL) is providing a visual notification to a user that the LED module has reached the end of manufacturer-specified life and that the replacement is recommended. Once active, an indication is given at each power-up of the driver, which the driver indicates this through a lower light output during the first 1 minute before normal operation is continued.

Digital Dimming

Inventronics Digital Dimming is a UART (Universal Asynchronous Receive Transmitter) based communication protocol. Please refer to Inventronics Digital Dimming file for details


Daisy Chain Application

Daisy chain system can support synchronous dimming of up to 100 drivers due to unique dimming interface design, please pay attention to right sequence of 'IN' and 'OUT' port for RJ12 connection

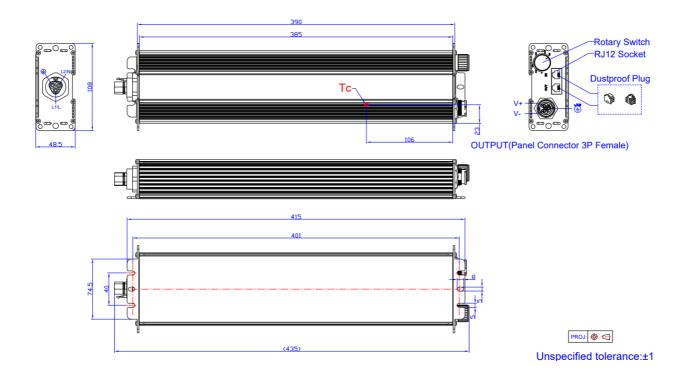
Daisy chain controlled by External Controller


Inventronics supports daisy chain connection for drivers that is dimmed by external controller. All drivers' rotary switch need to be tuned to 'EXT'.

Daisy chain controlled by Driver-self

Inventronics offers the solution to use driver itself to control daisy chain dimming without the controller. The rotary switch of the master driver is tuned to required dimming level when the rest of drivers are tuned to 'EXT'.

Programming Connection Diagram



Note: The driver does not need to be powered on during the programming process.

• Please refer to PRG-MUL2 (Programmer) datasheet for details.

Mechanical Outline

INPUT(Panel Connector 3P Male)

Note: This driver features UL Wet Location, IP66 panel mount connectors to streamline wiring in the field while still supporting stringent environmental conditions. The mating push-lock are not supplied by Inventronics. Please contact Wieland and Amphenol LTW or one of their suppliers for assistance sourcing the mating pushlock

Location	Series	Rating voltage /current	PN of connector on drive r	PN of mating push-lock
Vin	Wieland RST20i3	600V/10A	96.032.1055.7	96.031.0055.7 (Spring) or 96.031.4055.7 (Screw)
Vo	ALTW X-Lok,C-Size	300V/20A	ABAB-CAQ03000100	CC-03BFMB-QL8APP

RoHS Compliance

Our products comply with reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU, calling for the elimination of lead and other hazardous substances from electronic products.

Revision History

Change D ate	Rev.	Description of Change				
		Item	From	То		
2023-02-1 0	А	Datasheet Release	1	/		

Customer Support

www.inventronics-co.com

Tel: 86-571-56565800 Fax: 86-571-86601139 sales@inventronics-co.com

Documents / Resources

INVENTRONICS SSM-760S MGR Series 760W Programmable Driver with INV Digital Dim ming [pdf] Owner's Manual

SSM-760SxxxMGR 760W Programmable Driver with INV Digital Dimming, SSM-760S MGR Se ries 760W Programmable Driver with INV Digital Dimming, SSM-760S MGR Series, 760W Programmable Driver with INV Digital Dimming, SSM-760S MGR Series 760W Programmable Driver, 760W Programmable Driver, Programmable Driver

Manuals+,