
Home » Intel » intel UG-20080 Stratix 10 SoC UEFI Boot Loader User Guide

Contents
1 intel UG-20080 Stratix 10 SoC UEFI Boot Loader
2 Overview

2.1 UEFI Boot Flow Overview
3 System Requirements
4 Getting Started

4.1 Installing Software Components
4.2 Building the Secure Monitor
4.3 Prerequisites
4.4 UEFI Generated Files
4.5 Generating the FIP

5 Running UEFI on Intel Stratix 10 Hardware
5.1 Related Information
5.2 Debugging with DS
5.3 Booting Linux

6 Document Revision History for Intel Stratix 10 SoC UEFI Boot Loader User
Guide
7 Documents / Resources

7.1 References
8 Related Posts

intel UG-20080 Stratix 10 SoC UEFI Boot Loader

intel UG-20080 Stratix 10 SoC UEFI Boot Loader User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/ug-20080-stratix-10-soc-uefi-boot-loader-manual.pdf

Overview

This document provides comprehensive information on the Unified Extensible Firmware Interface (UEFI) boot
loader for Intel Stratix 10 SoC. The Intel Stratix 10 SoC provides a secure boot flow, consisting of

The boot ROM

The secure device manager (SDM)

The Secure Monitor

The UEFI boot loader

The Intel Stratix 10 SoC secure boot flow ensures that the system boot loader is signed with a cryptographic key,
validated by the firmware. The Secure Monitor stage also implements the TrustZone* model of secure partitioning.
This model divides the software environment into two isolated partitions, called the secure world and the non-
secure world. The two worlds can only communicate with each other through the Secure Monitor. The binary
image of the UEFI boot loader can be stored on Quad SPI flash SD/MMC card. On board power-up, the secure
device manager (SDM) loads the Secure Monitor directly onto Hard Processor System (HPS) on-chip RAM. Then
the Secure Monitor loads the UEFI boot loader in HPS DDR memory.

The Secure Monitor tasks include

Initializing DDR SDRAM memory

Configuring low level hardware, such as PLL, IOs, and pin MUXes, needed by nonsecure world software

The UEFI boot loader tasks include

Providing Ethernet support

Supporting basic hardware diagnostic features

Fetching subsequent boot software such as the operating system package or kernel image.

Note: For non-secure boot, the operating system package can include kernel image, device tree blob and
filesystem. For secure boot it can be a secure kernel.

UEFI Boot Flow Overview

System Requirements

To load and execute the Intel Stratix 10 SoC Unified Extensible Firmware Interface (UEFI) boot loader, your
system must meet the following requirements.

Minimum Hardware Requirements

Linux workstation with the following configuration:

Serial terminal, such as Minicom for Linux

microSD card slot or microSD card writer or SD capable writer with SD to microSD converter

Platform Capabilities

 Linux

Able to compile the UEFI boot loader Yes

Able to compile the Secure Monitor Yes

Minimum Software Requirements

Intel® SoC FPGA Embedded Development Suite (SoC EDS) v18.1 and above

Linaro aarch64-linux-gnu-gcc toolchain

Getting Started

Installing Software Components

Installing the Intel SoC EDS

You must install the Intel SoC EDS on your machine.

Download the Intel SoC EDS from the Download Center for FPGAs.

Installing the Compiler Toolchain

You compile the UEFI boot loader and the Secure Monitor with the GNU Toolchain (EABI Release) for Arm*
Processors. You can download the GNU Toolchain from Arm’s download page.

Linux: gcc-arm-8.3-2019.03-x86_64-aarch64-Linux-gnu.tar.xz

Building the Secure Monitor

As security becomes more and more important, a secured boot solution becomes a requirement in the embedded
world. To ensure comprehensive security and a trusted platform, secure partitioning is required. The Intel Stratix
10 device achieves secure partitioning by implementing the TrustZone model with Arm Trusted Firmware (ATF).
The TrustZone model splits the computing environment into two isolated worlds, the secure world and normal
world, which are linked by a software monitor called the Secure Monitor. The two worlds have separated logical
address space and peripherals. Communication between the two worlds is only possible by calling the privileged
Secure Monitor call (SMC) instruction.

The full secure boot solution is

BootRom

Secure Device Manager

Secure Monitor

Uboot/UEFI

Hypervisor

OS

Secure Monitor mode is a privileged mode and is always secure regardless of the state of the NS bit. The Secure
Monitor is code that runs in Secure Monitor mode and processes switches to and from the Secure world. The
overall security of the software relies on the security of this code along with the Secure boot code.

Related Information

www.trustedfirmware.org

General information about Arm Trusted Firmware

User Configuration

http://www.trustedfirmware.org

You can find all platform configurations in arm-trusted-firmware/plat/intel/soc/stratix10/include/socfpga_plat_def.h.
For user configuration, you must modify the boot sources based on your preferences. You select
BOOT_SOURCE_SDMMC if boot from SDMMC or select BOOT_SOURCE_QSPI if boot from QSPI.

#define BOOT_SOURCE BOOT_SOURCE_SDMMC

Note: To change the boot filename or offset, you can change the #define in this file.

Getting the Arm Trusted Firmware Source Code

The ATF source is at GitHub. To get the ATF source code, simply run the following steps

1. Open a terminal.

2. Create a new directory to check out the ATF source code from GitHub.

3. Change to this working directory and clone the ATF source from the Git trees as follows:

git clone https://github.com/altera-opensource/arm-trusted-firmware

4. When completed, change to the arm-trusted-firmware folder and perform a Git check out as follows:

cd arm-trusted-firmware

git checkout socfpga_v2.1

Related Information

Building the ATF.

Compiling the UEFI Source Code with the Linaro Tool Chain.

Running the Secure Monitor.

Building the ATF

This section describes how to build the ATF with the Linaro GCC compiler. To start building the ATF with the
Linaro GCC compiler, simply run the following steps

1. Change your directory to the ATF source code location as follows:

cd arm-trusted-firmware

2. Set the GCC path and environment variable CROSS_COMPILE to Linaro cross compile as follows: export

PATH=<your gcc directory>/\gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin/:$PATH

export ARCH=arm64

export CROSS_COMPILE=aarch64-linux-gnu-

3. Remove the build tree completely as follows:

make realclean

4. Build the ATF by using the following command:

make PLAT=stratix10 bl2 bl31

5. The following messages appear when the ATF build is successful

https://github.com/altera-opensource/arm-trusted-firmware

6. The table below lists the Secure Monitor output files.

Descriptions of Secure Monitor Files

File Path and Name Description

\build\stratix10\release\bl31.bin Generated binary file

\build\stratix10\release\bl31\bl31.elf Generated elf file

\build\stratix10\release\bl2.bin Generated binary file

\build\stratix10\release\bl2\bl2.elf Generated elf file

Building the UEFI Boot Loader

To build a UEFI boot loader, you obtain the UEFI source code and compile the UEFI source with the supported
toolchain.

The Unified Extensible Firmware Interface (UEFI) is a standardized firmware specification that simplifies and
secures platform initialization and firmware bootstrap operations. UEFI is currently developed and supported by
representatives from more than 250 industry-leading technology companies. Arm and the Linaro Enterprise Group
are also promoting the use of UEFI on Arm architecture because the UEFI specification helps standardize the boot

process for Arm processor-based platforms. UEFI technology is future-proofed through the standardization of
firmware design rather than proprietary firmware design. UEFI specifications promote business and technological
efficiency, improve performance and security, facilitate interoperability between devices, platforms and systems
and comply with next-generation technologies. The UEFI specification is peer-reviewed and published, allowing
developers to write firmware once per platform and reuse it without much modification. This reuse results in cost
and time savings during boot loader development. This framework uses the BSD license, permitting you to
optionally commercialize your implementation with minimal legal issues. You can compile the UEFI source code
either in a Windows or in a Linux system.

Prerequisites

Building the UEFI requires additional Linux packages. Depending on your Linux distribution, the command to
install the packages is different:

If you are using a Ubuntu distribution, type

sudo apt-get install uuid-dev build-essential

If you using a Fedora distribution, type

sudo yum install uuid-devel libuuid-devel

For building UEFI, the Python package is required. If Python is not already available on your system, running the
commands from the SoC EDS Embedded Command Shell provides the required Python dependency.

Obtaining the UEFI Source Code

The UEFI source code is located in GitHub. The following steps show you how to get the UEFI source code.

1. Open a terminal.

2. Clone the UEFI source from the Git trees.

git clone https://github.com/altera-opensource/uefi-socfpgaedk2

3. When completed, change to the edk2 folder and perform a Git checkout.

cd edk2

git checkout socfpga_udk201905

The edk2 platforms source code is located in GitHub. To get the edk2 platforms source code

git clone https://github.com/altera-opensource/edk2-platforms-socfpgaedk2-platforms

cd edk2-platforms

git checkout socfpga_udk201905

Compiling the UEFI Source Code with the Linaro Tool Chain

This section explains how to compile the UEFI source code with the Linaro toolchain in a Linux system

1. Open a terminal and enter the following command:

cd <your directory that contain edk2 and edk2-platforms>

https://github.com/altera-opensource/uefi-socfpgaedk2
https://github.com/altera-opensource/edk2-platforms-socfpgaedk2-platforms

export PATH=<your gcc directory>/\gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin/:$PATH

export CROSS_COMPILE= aarch64-linux-gnu-

export ARCH=arm64

export GCC48_AARCH64_PREFIX=aarch64-linux-gnu-

2. Set up the EDK_TOOLS_PATH:

export EDK_TOOLS_PATH=$PWD/edk2/BaseTools

3. Set up the a PACKAGES_PATH to point to the location of the repositories:

export PACKAGES_PATH= $PWD/edk2:$PWD/edk2-platforms/

4. Set up the WORKSPACE:

export WORKSPACE = $PWD

5. Set up the build environment:

edk2/edksetup.sh

6. Build BaseTools (ensure the python tools are installed):

make -C edk2/BaseTools

7. Compile the UEFI bootloader by entering the following command:

build -a AARCH64 -p Platform/Intel/Stratix10/Stratix10SoCPkg.dsc -t GCC48-b DEBUG -y report.log -j

build.log -Y PCD -Y LIBRARY -Y FLASH -Y DEPEX -Y BUILD_FLAGS -Y FIXED_ADDRESS

8. Your terminal displays a “Build Done” message after the UEFI is successfully compiled.

UEFI Generated Files

Compiling the UEFI source code creates the following files in the /Build/ Stratix10SoCPkg/RELEASE_GCC48
folder:

UEFI Generated Files

File Description

INTELSTRATIX10_EFI.fd
This file is the UEFI bootloader to b
oot UEFI shell and enable ethernet
feature or run a UEFI application

Generating the FIP

FIP is the payload that ATF’s BL2 loads into RAM and executed. The FIP contains the binary for BL31 and UEFI
bootloader, and a container that BL2 recognizes.

To build the FIP, follow these commands

export ARCH = ARM64

export CROSS_COMPILE= aarch64-linux-gnu-

cd <your arm-trusted-firmware source code directory>

Build the FIP by using the following command

make fip BL33= <your UEFI build

workspace>/Build/Stratix10SoCPKG/\DEBUG_GCC48/FV/INTELSTRATIX10_EFI.fd fip PLAT=stratix10

Running UEFI on Intel Stratix 10 Hardware

Running on a Physical Board with ATF and UEFI Bootloader

This section describes how to run the Secure Monitor on a physical board.

Generate a .sof file with ATF

1. Get a .sof file from the $SOCEDS_DEST_ROOT installation directory.

2. Convert the binary file bl2.bin, generated in Building the ATF.

aarch64-linux-gnu-objcopy -I binary -O ihex – \-change-addresses 0xffe00000 bl2.bin bl2.hex

3. Include the bootloader into the .sof file as follows:

quartus_pfg -c -o hps_path=bl2.hex \ghrd_1sx280lu2f50e2vg.sof ghrd_1sx280lu2f50e2vg_hps.sof

Related Information

Building the ATF.

Creating an SD Card Image

1. Generate UEFI Bootloader and FIP as in Building the UEFI Boot Loader and Generating the FIP.

2. Build Linux and root file system based on the instructions in Rocketboard.

3. Build the SD card image:

Get the make_image python script and make it executable

wget https://releases.rocketboards.org/release/2019.10/gsrd/tools/make_sdimage.py

chmod +x make_sdimage.py

https://releases.rocketboards.org/release/2019.10/gsrd/tools/make_sdimage.py

Prepare the fat partition contents:

mkdir fat && cd fat

cp <your linux image folder>/linux-socfpga/arch/arm64/boot/Image

cp <your device tree folder>/linux-socfpga/arch/arm64/boot/dts/altera/socfpga_stratix10_socdk.dtb

Prepare the root file system partition contents:

mkdir rootfs && cd rootfs

tar xf <your rootfs directory>/gsrd-console-image-*.tar.xz

Create the SD card image:

sudo ./make_sdimage.py -f -P fip.bin,num=3,format=raw,size=10M, type=A2 -P rootfs/\

*,num=2,format=ext3,size=1500M -P

Image,socfpga_stratix10_socdk.dtb,num=1,format=fat32,size=500M -s 2G -n sdimage.img

Note: If you already have an SD image with A2 partition, you can replace the FIP file with the command

below:

sudo dd if =arm-trusted-firmware/build/stratix10/release/fip.bin of=/dev/sdx3

Related Information

Compiling the UEFI Source Code with the Linaro Tool Chain.

Building the UEFI Boot Loader.

Running the Secure Monitor

1. Power up the board after the SD card is inserted.

2. Open Quartus programmer and program the board with the .sof file generated in Generating a .sof File with

ATF.

The board boots up from the ATF and automatically loads UEFI bootloader to boot UEFI shell.

Related Information

Generate a .sof file with ATF.

Debugging with DS

This section describes how to load ATF and UEFI bootloader to the physical board through DS.

1. Ensure that you have installed DS. Launch eclipse using the following command:

armds_ide &

2. Set up new debug connection

Step Illustration

3. After configuration is complete, connect to the target.

Note: You must program the board with ghrd_1sx280lu2f50e2vg_hps_debug.sof before connecting to

the target.

4. In the DS command console, you may load a debug script with the following contents to download the ATF and

UEFI bootloader to physical board.

Booting Linux

This section shows you how to boot Linux after UEFI enters the UEFI shell.

Booting from the UEFI Shell

1. Boot the board up to the UEFI shell, as described in Running the Secure Monitor.

2. Once the UEFI shell is loaded, enter the following command to boot Linux:

Image dtb=socfpga_stratix10_socdk.dtb console=ttyS0,115200 root=/dev/mmcb

Note: Make sure Linux image and dtb is stored in the SD card.

Document Revision History for Intel Stratix 10 SoC UEFI Boot Loader User Guide

Document Ver
sion Changes

2020.06.19

Updated the following sections:

Minimum Hardware Requirements

Minimum Software Requirements

Installing the Compiler Toolchain

User Configuration

Getting the Arm Trusted Firmware Source Code

Building the ATF

Obtaining the UEFI Source Code

Obtaining the edk2 Platform Source Code

Compiling the UEFI Source Code with the Linaro Tool Chain

UEFI Generated Files

Generate a .sof file with ATF

Creating an SD Card Image

Debugging with DS

Booting from the UEFI Shell

2019.03.28

Added a new section: Building the Secure Monitor to describe new boot stage and secure

boot.

Updated section: UEFI Generated Files.

Added a new section: Running UEFI on Intel Stratix 10 Hardware .

2017.06.19 Initial release.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in

accordance with Intel’s standard warranty but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

ID: 683134
Version: 2020.06.19

Documents / Resources

intel UG-20080 Stratix 10 SoC UEFI Boot Loader [pdf] User Guide
UG-20080 Stratix 10 SoC UEFI Boot Loader, UG-20080, Stratix 10 SoC UEFI Boot Loader, 10
SoC UEFI Boot Loader, UEFI Boot Loader

References

 FPGA Software Download Center

 Trusted Firmware - Open Source Secure Software - Trusted Firmware

 Arm GNU Toolchain | 8.3-2019.03 – Arm Developer

 GitHub - altera-opensource/arm-trusted-firmware: Official Intel SOCFPGA Arm-TF repository. Note:

(1) A "RC" labeled branch is for internal active development use and customer early access without

official customer support. (2) Latest stable branch (no RC l

 GitHub - altera-opensource/edk2-platforms-socfpga

 GitHub - altera-opensource/uefi-socfpga

 Index of /2019.10/gsrd/tools/

 Compile Linux for Stratix 10 | Documentation | RocketBoards.org

 1. Overview

 Intel ISO 9001:2015 Registrations

 Trusted Firmware - Open Source Secure Software - Trusted Firmware

Manuals+,

https://manuals.plus/m/3405af2a76a7da51e82a6fb010409cfa7a8d0e2e3ad180c231195a832280fab2
https://manuals.plus/m/3405af2a76a7da51e82a6fb010409cfa7a8d0e2e3ad180c231195a832280fab2_optim.pdf
http://fpgasoftware.intel.com/soceds/
http://www.trustedfirmware.org
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads/8-3-2019-03
https://github.com/altera-opensource/arm-trusted-firmware
https://github.com/altera-opensource/edk2-platforms-socfpga
https://github.com/altera-opensource/uefi-socfpga
https://releases.rocketboards.org/release/2019.10/gsrd/tools/
https://rocketboards.org/foswiki/Documentation/GSRDCompilingLinux_S10
https://www.intel.com/content/www/us/en/docs/programmable/683134/current/
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.trustedfirmware.org/
https://manuals.plus/

	intel UG-20080 Stratix 10 SoC UEFI Boot Loader User Guide
	intel UG-20080 Stratix 10 SoC UEFI Boot Loader
	Overview
	UEFI Boot Flow Overview

	System Requirements
	Getting Started
	Installing Software Components
	Building the Secure Monitor
	Prerequisites
	UEFI Generated Files
	Generating the FIP

	Running UEFI on Intel Stratix 10 Hardware
	Related Information
	Debugging with DS
	Booting Linux

	Document Revision History for Intel Stratix 10 SoC UEFI Boot Loader User Guide
	Documents / Resources
	References

