# **UG-20051 Interlaken 2nd Generation Intel Stratix 10 FPGA IP User Guide** Home » Intel » UG-20051 Interlaken 2nd Generation Intel Stratix 10 FPGA IP User Guide 🏗 UG-20051 Interlaken 2nd Generation Intel Stratix 10 FPGA IP UG-20051 Interlaken 2nd Generation Intel Stratix 10 FPGA IP User Guide #### Contents - 1 Quick Start Guide - 2 Design Example **Description** - **3 Customer Support** - 4 Documents / Resources - 4.1 References ### **Quick Start Guide** The Interlaken (2nd Generation) FPGA IP core provides a simulation testbench and a hardware design example that supports compilation and hardware testing. When you generate the design example, the parameter editor automatically creates the files necessary to simulate, compile, and test the design in hardware. The design example is also available for Interlaken Look-aside feature. You can download the compiled hardware design and run it on the Intel® Stratix® 10 GX/TX Transceiver Signal Integrity Development Kit. The testbench and design example supports numerous variants (parameter combinations) of the Interlaken IP core for H-tile, L-tile and E-tile device variations including NRZ and PAM4 mode. The Interlaken (2nd Generation) Intel® Stratix® 10 FPGA IP core generates design examples for all supported combinations of number of lanes and data rates. Figure 1. Development Steps for the Design Example The Interlaken (2nd Generation) IP core design example supports the following features: - Internal TX to RX serial loopback mode - · Automatically generates fixed size packets - · Basic packet checking capabilities - Ability to use System Console to reset the design for re-testing purpose - · PMA adaptation Figure 2. High-level Block Diagram for Interlaken (2nd Generation) Design Example #### **Related Information** - Interlaken (2nd Generation) Intel FPGA IP User Guide - Interlaken (2nd Generation) Intel FPGA IP Release Notes #### **Hardware and Software Requirements** To test the example design, use the following hardware and software: - Intel Quartus® Prime Pro Edition software - · System Console - Supported simulators: - Siemens\* EDA ModelSim\* SE or QuestaSim\* - Synopsys\* VCS\* - Cadence\* Xcelium\* - Intel Stratix 10 GX Transceiver Signal Integrity Development Kit (1SG280HU2F50E2VG) or Intel Stratix 10 TX Transceiver Signal Integrity Development Kit (1ST280EY2F55E2VG) for hardware testing #### **Related Information** - Intel Stratix 10 GX Transceiver Signal Integrity Development Kit User Guide - Intel Stratix 10 TX Transceiver Signal Integrity Development Kit User Guide ### **Directory Structure** The Interlaken (2nd Generation) IP core design example file directories contain the following generated files for the design example. Figure 3. Directory Structure of the Generated Interlaken (2nd Generation) Example Design 1. Generated only when you select "Enable Interlaken Look-aside mode" option in IP parameter editor. The hardware configuration, simulation, and test files are located in ### Table 1. Interlaken (2nd Generation) IP Core Hardware Design Example File Descriptions **These files are in the** /uflex\_ilk\_0\_example\_design/ example\_design/quartus directory. | File Names | Description | |-----------------------------------------------------|-------------------------------------------------------------------------------| | example_design.<br>qpf | Intel Quartus Prime project file. | | example_design.<br>qsf | Intel Quartus Prime project settings file | | example_design.<br>sdc jtag_timing_t<br>emplate.sdc | Synopsys Design Constraint file. You can copy and modify for your own design. | | sysconsole_testb<br>ench.tcl | Main file for accessing System Console | ### Table 2. Interlaken (2nd Generation) IP Core Testbench File Description This file is in the <design\_example\_installation\_dir>/uflex\_ilk\_0\_example\_design/ example\_desi | File Name | Description | |-----------|---------------------------| | top_tb.sv | Top-level testbench file. | ### Table 3. Interlaken (2nd Generation) IP Core Testbench Scripts These files are in the <design\_example\_installation\_dir>/uflex\_ilk\_0\_example\_design/ example\_de 4 | File Name | Description | |-------------|------------------------------------------------------------| | vcstest.sh | The VCS script to run the testbench. | | vlog_pro.do | The ModelSim SE or QuestaSim script to run the testb ench. | | xcelium.sh | The Xcelium script to run the testbench. | The hardware example design connects system and PLL reference clocks and required design components. After you program the device on the Intel Stratix 10 GX/TX Transceiver Signal Integrity Development Kit, the example design configures the IP core in internal loopback mode and generates packets on the IP core TX user data transfer interface. The IP core sends these packets on the internal loopback path through the transceiver. After the IP core receiver receives the packets on the loopback path, it processes the Interlaken packets and transmits them on the RX user data transfer interface. The example design checks that the packets received and transmitted match. The hardware example design includes external PLLs. You can examine the clear text files to view sample code that implements one possible method to connect external PLLs to the Interlaken (2nd Generation) FPGA IP. Figure 4. Interlaken (2nd Generation) IP Hardware Design Example High Level Block Diagram for L-tile and H-tile 6.25, 10.3125, 12.5 Gbps Variations Figure 5. Interlaken (2nd Generation) Hardware Design Example High Level Block Diagram for L-tile and H-tile 25.3 and 25.8 Gbps Variations #### The Interlaken (2nd Generation) hardware design example includes the following components: - 1. Interlaken (2nd Generation) FPGA IP - 2. Packet Generator and Packet Checker - 3. JTAG controller that communicates with System Console. You communicate with the client logic through the System Console. - 4. ATX PLL to generate the high-speed serial clock to drive the device transceiver channel for IP core variations that target an Intel Stratix 10 L-tile and H-tile device. - For 25.3 and 25.8 Gbps data rate variations, one ATX PLL drives two transceiver channels. - The frequency value of the tx\_serial\_clk coming out of the ATX PLL is half of the data rate. For example, the value of tx\_serial\_clk for 6.25 Gbps data rate variant is 3.125 GHz. - The IP core connects the ATX PLL to the <code>tx\_pll\_locked</code> and <code>tx\_pll\_powerdown</code> ports. This simple connection model is only one of many options available to you for configuring and connecting the external PLLs in your Interlaken design. Refer to Intel Stratix 10 GX Transceiver Signal Integrity Development Kit User Guide for more information on how to use ATX PLL for more than two channels. **Note:** The Interlaken (2nd Generation) hardware design example that targets an E-tile device do not require an ATX PLL. Figure 6. Interlaken (2nd Generation) Hardware Design Example High Level Block Diagram for E-tile NRZ Mode Variations (1) IO PLL is not present if you generate design example for Interlaken Look-aside mode. The Interlaken (2nd Generation) hardware design example that targets an E-tile PAM4 mode variation requires an additional clock mac\_clkin generated by IO PLL. This PLL must use the same reference clock that drives the pll\_ref\_clk. Figure 7. Interlaken (2nd Generation) Hardware Design Example High Level Block Diagram for E-tile PAM4 Mode Variations 1. IO PLL is not present if you generate design example for Interlaken Look-aside mode. #### **Related Information** - Intel Stratix 10 GX Transceiver Signal Integrity Development Kit User Guide - Intel Stratix 10 TX Transceiver Signal Integrity Development Kit User Guide ### **Generating the Design** ### Figure 8. Procedure ### Follow these steps to generate the hardware example design and testbench: 1. In the Intel Quartus Prime Pro Edition software, click File ➤ New Project Wizard to create a new Intel Quartus Prime project, or click File ➤ Open Project to open an existing Intel Quartus Prime project. The wizard prompts you to specify a device. - 2. Specify the device family Stratix 10 (GX/SX/MX/TX) and select device for your design. - 3. In the IP Catalog, locate and double-click Interlaken (2nd Generation) Intel FPGA IP. The New IP Variant window appears. - 4. Specify a top-level name <your\_ip> for your custom IP variation. The parameter editor saves the IP variation settings in a file named <your\_ip>.ip. - 5. Click OK. The parameter editor appears. Figure 9. Example Design Tab in the Interlaken (2nd Generation) Intel FPGA IP Parameter Editor - 6. On the IP tab, specify the parameters for your IP core variation. - 7. On the PMA Adaptation tab, specify the PMA adaptation parameters if you plan to use PMA adaptation for your E-tile device variations. This step is optional: - Select Enable adaptation load soft IP option. - **Note:** You must enable Enable Native PHY Debug Master Endpoint (NPDME) option on the IP tab when PMA adaptation is enabled. - Select a PMA adaptation preset for PMA adaptation Select parameter. - Click PMA Adaptation Preload to load the initial and continuous adaptation parameters. - Specify the number of PMA configurations to support when multiple PMA configurations are enabled using Number of PMA configuration parameter. - Select which PMA configuration to load or store using Select a PMA configuration to load or store. - Click Load adaptation from selected PMA configuration to load the selected PMA configuration settings. For more information about the PMA adaptation parameters, refer to the E-tile Transceiver PHY User - 8. On the Example Design tab, select the Simulation option to generate the testbench, and select the Synthesis option to generate the hardware example design. - Note: You must select at least one of the Simulation or Synthesis options generate the Example Design Files. - 9. For Generated HDL Format, select Verilog or VHDL. - 10. For Target Development Kit select the appropriate option. Note: The Intel Stratix 10 GX/TX Transceiver Signal Integrity Development Kit is only available when your project specifies Intel Stratix 10 device part number starting with: - 1SG165H/1SG210H/1SG250H/1SG280H/1SX165H/1SX210H/1SX250H/ 1SX280H/1ST280E/1ST250E (For H-tile) - ST280E/1ST250E (For E-tile) When you select the Development Kit option, the pin assignments are set according to the Intel Stratix 10 Development Kit device part number and may differ from your selected device. If you intend to test the design on hardware on a different PCB, select the None option and make the appropriate pin assignments in the .qsf file. - 11. Click Generate Example Design. The Select Example Design Directory window appears. - 12. If you want to modify the design example directory path or name from the defaults displayed (uflex\_ilk\_0\_example\_design), browse to the new path and type the new design example directory name. - 13. Click OK. #### **Related Information** - Intel Stratix 10 GX Transceiver Signal Integrity Development Kit User Guide - Parameter Settings Refer to this section for information on Interlaken (2nd generation) Intel FPGA IP parameters. - E-tile Transceiver PHY User Guide - Intel Stratix 10 TX Transceiver Signal Integrity Development Kit User Guide #### Simulating the Design Example Testbench Refer to Interlaken (2nd Generation) Hardware Design Example High Level Block for E-tile NRZ Mode Variations and Interlaken (2nd Generation) Hardware Design Example High Level Block for E-tile PAM4 Mode Variations block diagrams of the simulation testbench. Figure 10. Procedure #### Follow these steps to simulate the testbench: - 1. At the command prompt, change to the testbench simulation directory. The directory is <a href="mailto:</a><a href="mailto:</a> <a h - 2. Run the simulation script for the supported simulator of your choice. The script compiles and runs the testbench in the simulator. Your script should check that the SOP and EOP counts match after simulation is complete. Refer to the table Steps to Run Simulation. ### **Table 4. Steps to Run Simulation** | Simulator | Instructions | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------| | ModelSim SE or<br>QuestaSim | In the command line, type -do vlog_pro.do If you prefer to simulate without bringing up the ModelSim GUI, type vsim -c -do vlog_pro.d o | | VCS | In the command line, type sh vcstest.sh | | Xcelium | In the command line, type sh xcelium.sh | 3. Analyze the results. A successful simulation sends and receives packets, and displays "Test PASSED". The testbench for the design example completes the following tasks: - Instantiates the Interlaken (2nd Generation) Intel FPGA IP. - · Prints PHY status. - Checks metaframe synchronization (SYNC\_LOCK) and word (block) boundaries (WORD\_LOCK). - · Waits for individual lanes to be locked and aligned. - · Starts transmitting packets. - · Checks packet statistics: - CRC24 errors - SOPs - EOPs The following sample output illustrates a successful simulation test run in Interlaken mode: **Note:** The Interlaken design example simulation testbench sends 100 packets and receives 100 packets. The following sample output illustrates a successful simulation test run in Interlaken Look-aside mode: ``` Check TX and RX Counter equal or not READ_MM: address 4000014 = 00000001 De-assert Counter equal bit WRITE MM: address 4000001 gets 00000001 WRITE MM: address 4000001 gets 00000000 RX SOP COUNTER READ MM: address 400000c = 0000006a RX EOP COUNTER READ MM: address 400000d = 0000006a READ MM: address 4000010 = 00000000 Display Final Report 0 Detected Error 0 CRC24 errors reported 106 SOPs transmitted 106 EOPs transmitted 106 SOPs received 106 EOPs received Finish Simulation TEST PASSED ``` **Note:** The number of packets (SOPs and EOPs) varies per lane in Interlaken Lookaside design example simulation sample output. ### Compiling and Configuring the Design Example in Hardware Figure 11. Procedure To compile and run a demonstration test on the hardware example design, follow these steps: - 1. Ensure hardware example design generation is complete. - 2. In the Intel Quartus Prime Pro Edition software, open the Intel Quartus Prime project <a href="cdesign\_example\_installation\_dir>/example\_design/quartus/example\_design.qpf">cdesign\_example\_installation\_dir>/example\_design/quartus/example\_design.qpf</a>. - 3. On the Processing menu, click Start Compilation. - 4. After successful compilation, a .sof file is available in your specified directory. Follow these steps to program the hardware example design on the Intel Stratix 10 device: - a. Connect Development Kit to the host computer. - **b.** Launch the Clock Control application, which is part of the development kit, and set new frequencies for the design example. Below is the frequency setting in the Clock Control application: - If you are targeting your design on Intel Stratix 10 GX Signal Integrity Development Kit with H-tile device: - Si5341 (U5), OUT5- Set to the value of pll\_ref\_clk (1) per your design requirement - If you are targeting your design on Intel Stratix 10 TX Signal Integrity Development Kit with H-tile device: - Si5341 (U3), OUT3- 50 MHz - Si5341 (U3), OUT9- Set to the value of pll ref clk(1) per your design requirement - If you are targeting your design on Intel Stratix 10 TX Signal Integrity Development Kit with E-tile: - Si5341 (U3), OUT3- 100 MHz - Si5341 (U3), OUT7- Set to the value of pll\_ref\_clk(1) per your design requirement (in NRZ mode) - Si5341 (U3), OUT4- Set to the value of pll ref clk(1) per your design requirement (in PAM4 mode) - Si5341 (U3), OUT2- Set to the value of mac\_pll\_ref\_clk(1) per your design requirement (in PAM4 mode only) - c. On the Tools menu, click Programmer. - d. In the Programmer, click Hardware Setup. - e. Select a programming device. - **f.** Select and add the Intel Stratix 10 GX Signal Integrity Development Kit or Intel Stratix 10 TX Signal Integrity Development Kit to which your Intel Quartus Prime session can connect. - g. Ensure that Mode is set to JTAG. - **h.** Select the Intel Stratix 10 device and click Add Device. The Programmer displays a block diagram of the connections between the devices on your board. - i. In the row with your .sof, check the box for the .sof. - j. Check the box in the Program/Configure column. - k. Click Start. - (1) Not all frequencies can be derived by the Clock Control GUI application. #### **Related Information** - Programming Intel FPGA Devices on page 0 - Analyzing and Debugging Designs with System Console - Intel Stratix 10 TX Transceiver Signal Integrity Development Kit User Guide - Intel Stratix 10 GX Transceiver Signal Integrity Development Kit User Guide #### **Testing the Hardware Design Example** After you compile the Interlaken (2nd Generation) Intel FPGA IP core design example and configure your device, you can use the System Console to program the IP core and its embedded Native PHY IP core registers. Follow these steps to bring up the System Console and test the hardware design example: 1. In the Intel Quartus Prime Pro Edition software, on the Tools menu, click System Debugging Tools ➤ System Console. - 2. Change to the < design\_example\_installation\_dir>example\_design/ hwtest directory. - 3. To open a connection to the JTAG master, type the following command: ``` source sysconsole testbench.tcl ``` - 4. You can turn on internal serial loopback mode with the following design example commands: - a. stat: Prints general status info. - **b.** sys\_reset: Resets the system. - **c.** loop\_on: Turns on internal serial loopback. Note: You don't need to run this command in Intel Stratix 10 H-tile device variations. **d.** run\_example\_design: Runs the design example. **Note:** In Intel Stratix 10 H-tile device variations, you just need to run run\_example\_design command. The run\_example\_design runs the following commands in a sequence: sys\_reset->loop\_on->stat->gen\_on->stat->gen\_off. In Intel Stratix 10 E-tile device variations, you must run loop\_on command before run\_example\_design command. The run\_example\_design runs the following commands in a sequence: <a href="mailto:sys\_reset->stat->gen\_on->stat->gen\_off">sys\_reset->stat->gen\_on->stat->gen\_off</a>. **Note:** When you select the Enable adaptation load soft IP option, the run\_example\_design command performs the initial adaptation calibration on RX side by running the run\_load\_PMA\_configuration command. - 5. You can turn off internal serial loopback mode with the following design example command: - a. loop off: Turns off internal serial loopback. - 6. You can program the IP core with the following additional design example commands: - a. gen\_on: Enables packet generator. - b. gen off: Disables packet generator. - c. run test loop: Runs the test for <N> times for E-tile NRZ and PAM4 variations. - d. clear err: Clears all sticky error bits. - e. set test mode <min okt size> <max pkt size> <step> <num to run>: Sets up test to run in a specific mode. - **f.** get\_test\_mode: Prints the current test mode. - **g.** set\_burst\_size <burst\_size>: Sets burst size in bytes. - **h.** get\_burst\_size: Prints burst size information. The successful test prints HW\_TEST:PASS message. Below is the passing criteria for a test run: - No errors for CRC32, CRC24, and checker. - Transmitted SOPs and EOPs should be match with received. The following sample output illustrates a successful test run in Interlaken mode: The successful test prints HW\_TEST: PASS message. Below is the passing criteria for a test run: ``` INFO: INFO: Stop generating packtes ==== STATUS REPORT ==== TX KHz : 402813 RX KHz : 402813 Freq locks : 0x00000ff TX PLL lock : 0x000001 Align : 0x00c10f Rx LOA : 0x000000 Tx LOA : 0x000000 word lock : 0x00000ff sync lock : 0x00000ff CRC32 errors : 0 CRC24 errors : 0 CRC24 errors : 0 FIFO err flags : 0x000000 SOPs transmitted : 1087913770 EOPs transmitted : 1087913770 EOPs received : 1087913770 EOPs received : 1087913770 EOPs received : 1087913770 ECC corrected : 0 ECC error : 0 Elapsed 161 sec since powerup HW_TEST : PASS ``` - No errors for CRC32, CRC24, and checker. - Transmitted SOPs and EOPs should be match with received. The following sample output illustrates a successful test run in Interlaken Lookaside mode: ``` INFO: INFO: Stop generating packtes ==== STATUS REPORT ==== TX KHZ : 402813 RX KHZ : 402812 Freq locks : 0x0000fff TX PLL lock : 0x000001 Align : 0x00c10f Rx LOA : 0x000000 Tx LOA : 0x000000 word lock : 0x000fff sync lock : 0x000fff CRC32 errors : 0 CRC24 errors : 0 CRC24 errors : 0 SOPs transmitted : 461 EOPs received : 461 EOPs received : 461 Elapsed 171 sec since powerup HW_TEST : PASS ``` ### **Design Example Description** The design example demonstrates the functionalities of the Interlaken IP core. #### **Related Information** Interlaken (2nd Generation) Intel FPGA IP User Guide ### **Design Example Behavior** To test the design in hardware, type the following commands in the System Console:: 1. Source the setup file: ``` % source <design_example>uflex_ilk_0_example_design/example_design/hwtest/sysconsole_testbench.tcl ``` 2. Run the test: ``` % run_example_design ``` - 3. The Interlaken (2nd Generation) hardware design example completes the following steps: - a. Resets the Interlaken (2nd Generation) IP. - **b.** Configures the Interlaken (2nd Generation) IP in internal loopback mode. - **c.** Sends a stream of Interlaken packets with predefined data in the payload to the TX user data transfer interface of the IP core. - **d.** Checks the received packets and reports the status. The packet checker included in the hardware design example provides the following basic packet checking capabilities: - Checks that the transmitted packet sequence is correct. - Checks that the received data matches the expected values by ensuring both the start of packet (SOP) and end of packet (EOP) counts align while data is being transmitted and received. ### **Interface Signals** **Table 5. Design Example Interface Signals** | Port Name | Direction | Width (Bits) | Description | |-----------|-----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | System clock input. Clock frequency m ust be 50 MHz. | | clk50 | Input | 1 | This pin refers to CLK_50M_S10 on the lintel Stratix 10 GX Transceiver Signal Integrity Development Kit and CLK_BOT_PLL_100M_P on the Intel Stratix 10 TX Transceiver Signal Integrity Development Kit. | | | | | | | | | | | | mgmt_clk | Input | 1 | System clock input. Clock frequency m ust be 100 MHz. This signal is only available in Intel Stratix 10 E-tile device variations. This pin r efers to CLK_BOT_PLL_100M_P on the Intel Stratix 10 TX Transceiver Signal Integrity Development Kit. | |----------------------------------------------|--------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <pre>pll_ref_clk / pll_ref_clk[1:0](2)</pre> | Input | 1/2 | Transceiver reference clock. Drives the RX CDR PLL. pll_ref_clk[1] is only available when you enable <b>Preserve unused</b> Note: transceiver channels for PAM4 parameter in E-tile PAM4 mode IP variations. | | rx_pin | Input | Number of lanes | Receiver SERDES data pin. | | tx_pin | Output | Number of lanes | Transmit SERDES data pin. | | rx_pin_n | Input | Number of lanes | Receiver SERDES data pin. This signal is only available in E-tile PA M4 mode device variations. | | tx_pin_n | Output | Number of lanes | Transmit SERDES data pin. This signal is only available in E-tile PA M4 mode device variations. | | mac_clk_pll_ref | Input | 1 | This signal must be driven by a PLL and must use the same clock source that drives the pll_ref_clk. This signal is only available in E-tile PA M4 mode device variations. | | usr_pb_reset_n | Input | 1 | System reset. | | R | ام | at | ha | Ш | nf | ۸r | m | at | ion | |---|----|----|-----|------|----|----|---|----|------| | | | a | .cu | - 11 | | vı | | αı | IVII | Interface Signals Register Map Note: - Design Example register address starts with 0x20\*\* while the Interlaken IP core register address starts with 0x10\*\*. - Access code: RO—Read Only, and RW—Read/Write. - System console reads the design example registers and reports the test status on the screen. - (2) When you enable Preserve unused transceiver channels for PAM4 parameter, an additional reference clock port is added to preserve the unused PAM4 slave channel. **Table 6. Design Example Register Map for Interlaken Design Example** | Offset | Name | Access | Description | | | |---------------|---------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | 8'h00 | Reserved | | | | | | 8'h01 | Reserved | | | | | | 8'h02 | System PLL reset | RO | Following bits indicates system PLL reset request and enable value: • Bit [0] – sys_pll_rst_req • Bit [1] – sys_pll_rst_en | | | | 8'h03 | RX lane aligned | RO | Indicates the RX lane alignment. | | | | 8'h04 | WORD locked | RO | [NUM_LANES-1:0] - Word (block) boundaries identification. | | | | 8'h05 | Sync locked | RO | [NUM_LANES-1:0] - Metaframe synchronization. | | | | 8'h06 – 8'h09 | CRC32 error count | RO | Indicates the CRC32 error count. | | | | 8'h0A | CRC24 error count | RO | Indicates the CRC24 error count. | | | | 8'h0B | Overflow/Underflow signal | RO | <ul> <li>Following bits indicate:</li> <li>Bit [3] – TX underflow signal</li> <li>Bit [2] – TX overflow signal</li> <li>Bit [1] – RX overflow signal</li> </ul> | | | | 8'h0C | SOP count | RO | Indicates the number of SOP. | | | | 8'h0D | EOP count | RO | Indicates the number of EOP | | | | 8'h0E | Error count | RO | Indicates the number of following errors: • Loss of lane alignment • Illegal control word • Illegal framing pattern • Missing SOP or EOP indicator | | | | 8'h0F | send_data_mm_clk | RW | Write 1 to bit [0] to enable the generator signal. | | | | 8'h10 | Checker error | | Indicates the checker error. (SOP data error, Cha nnel number error, and PLD data error) | | | | 8'h11 | System PLL lock | RO | Bit [0] indicates PLL lock indication. | | | | 8'h14 | TX SOP count | RO | Indicates number of SOP generated by the packet generator. | | | | 8'h15 | TX EOP count | RO | Indicates number of EOP generated by the packet generator. | | | | 8'h16 | Continuous packet | RW | Write 1 to bit [0] to enable the continuous packet. | | | | 8'h39 | ECC error count | RO | Indicates number of ECC errors. | | | | 8'h40 | ECC corrected error count | RO | Indicates number of corrected ECC errors. | | | ## Table 7. Design Example Register Map for Interlaken Look-aside Design Example Use this register map when you generate the design example with Enable Interlaken Look-aside mode parameter turned on. | Offset | Name | Access | Description | | |---------------|-------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--| | 8'h00 | Reserved | | | | | 8'h01 | Counter reset | RO | Write 1 to bit [0] to clear TX and RX counter equal bit. | | | 8'h02 | System PLL reset | RO | Following bits indicates system PLL reset reque st and enable value: • Bit [0] - sys_pll_rst_req • Bit [1] - sys_pll_rst_en | | | | | | Dit [1] - 3y3_pii_13t_eti | | | 8'h03 | RX lane aligned | RO | Indicates the RX lane alignment. | | | 8'h04 | WORD locked | RO | [NUM_LANES-1:0] - Word (block) boundaries id entification. | | | 8'h05 | Sync locked | RO | [NUM_LANES-1:0] - Metadrama synchronization . | | | 8'h06 - 8'h09 | CRC32 error count | RO | Indicates the CRC32 error count. | | | 8'h0A | CRC24 error count | RO | Indicates the CRC24 error count. | | | 8'h0B | Reserved | | | | | 8'h0C | SOP count | RO | Indicates the number of SOP. | | | 8'h0D | EOP count | RO | Indicates the number of EOP | | | 8'h0E | Error count | RO | Indicates the number of following errors: • Loss of lane alignment • Illegal control word • Illegal framing pattern • Missing SOP or EOP indicator | | | 8'h0F | send_data_mm_clk | RW | Write 1 to bit [0] to enable the generator signal. | | | 8'h10 | Checker error | RO | Indicates the checker error. (SOP data error, Ch annel number error, and PLD data error) | | | 8'h11 | System PLL lock | RO | Bit [0] indicates PLL lock indication. | | | 8'h13 | Latency count | RO | Indicates number of latency. | | | 8'h14 | TX SOP count | RO | Indicates number of SOP generated by the packet generator. | | | 8'h15 | TX EOP count | RO | Indicates number of EOP generated by the packet generator. | | | 8'h16 | Continuous packet | RO | Write 1 to bit [0] to enable the continuous packe t. | |-------|------------------------|----|------------------------------------------------------| | 8'h17 | TX and RX counter equa | RW | Indicates TX and RX counter are equal. | | 8'h23 | Enable latency | WO | Write 1 to bit [0] to enable latency measurement . | | 8'h24 | Latency ready | RO | Indicates latency measurement are ready. | ### Interlaken (2nd Generation) Intel Stratix 10 FPGA IP Design Example User Guide Archives For the latest and previous versions of this user guide, refer to the Interlaken (2nd Generation) Intel Stratix 10 FPGA IP Design Example User Guide HTML version. Select the version and click Download. If an IP or software version is not listed, the user guide for the previous IP or software version applies. IP versions are the same as the Intel Quartus Prime Design Suite software versions up to v19.1. From Intel Quartus Prime Design Suite software version 19.2 or later, IP cores have a new IP versioning scheme. | Document Version | Intel Quartus<br>Prime Versio<br>n | IP Version | Changes | |------------------|------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2023.06.26 | 23.2 | 21.1.1 | Added VHDL support for synthesis and simulation mode I. | | 2022.08.03 | 21.3 | 20.0.1 | Corrected the device OPN for the Intel Stratix 10 GX Tra nsceiver Signal Integrity Development Kit. | | 2021.10.04 | 21.3 | 20.0.1 | <ul> <li>Added support for QuestaSim simulator.</li> <li>Removed support for NCSim simulator.</li> </ul> | | 2021.02.24 | 20.4 | 20.0.1 | <ul> <li>Added information about preserving the unused trans ceiver channel for PAM4 in section: Hardware Design Example Components.</li> <li>Added the pll_ref_clk[1] signal description in section: Interface Signals.</li> </ul> | | 2020.12.14 | 20.4 | 20.0.0 | <ul> <li>Updated sample hardware test output for Interlaken mode and Interlaken Look-aside mode in section <i>Tes ting the Hardware Design Example</i>.</li> <li>Updated register map for Interlaken Look-aside desig n example in section <i>Register Map</i>.</li> <li>Added a passing criteria for a successful hardware te st run in section <i>Testing the Hardware Design Examp le</i>.</li> </ul> | | 2020.10.16 | 20.2 | 19.3.0 | <ul> <li>Following changes made in <i>Testing the Hardware Desig n Example</i> section:</li> <li>Added a note to turn on internal serial loopback in Htile IP variations.</li> <li>Corrected command to run the initial adaptation calib ration on RX side.</li> </ul> | |------------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2020.06.22 | 20.2 | 19.3.0 | <ul> <li>The design example is available for Interlaken Lookaside mode.</li> <li>Added Figure: High-level Block Diagram for Interlake n (2nd Generation) Design Example.</li> <li>Updated following sections: <ul> <li>Hardware and Software Requirements</li> <li>Directory Structure</li> </ul> </li> <li>Modified the following figures to include Interlake n Look-aside related update: <ul> <li>Figure: Interlaken (2nd Generation) Hardware Design Example High Level Block Diagram for E- tile NRZ Mode Variations</li> <li>Figure: Interlaken (2nd Generation) Hardware Design Example High Level Block Diagram for E- tile PAM4 Mode Variations</li> </ul> </li> <li>Updated Figure: IP Parameter Editor.</li> <li>Added test run outputs for the Interlaken Look- aside in the following sections: <ul> <li>Simulating the Design Example Testbench</li> <li>Testing the Hardware Design Example</li> </ul> </li> <li>Added information about the frequency settings in the clock control application in section Compiling and Configuring the Design Example in Hardware.</li> <li>Added following new signals in Interface Signals</li> <li>section: <ul> <li>mgmt_clk</li> <li>tx_pin_n</li> <li>rx_pin_n</li> <li>mac_clk_pll_ref</li> </ul> </li> <li>Added register map for Interlaken Look-aside design example in section: Register Map.</li> </ul> | | 2020.03.10 | 19.3 | 19.2.1 | Corrected ATX PLL connection in Figure: Interlaken (2n d Generation) Hardware Design Example High Level Bl ock Diagram for L-tile and H-tile 25.3 and 25.8 Gbps Variations. | | 2019.09.30 | 19.3 | 19.2.1 | Removed clk100. The mgmt_clk serves as a reference c lock to the IO PLL in the following: • Figure: Interlaken (2nd Generation) Hardware Desig n Example High Level Block Diagram for E-tile NRZ Mode Variations. • Figure: Interlaken (2nd Generation) Hardware Desig n Example High Level Block Diagram for E-tile PAM4 Mode Variations. | |------------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2019.04.19 | 18.1.1 | 18.1.1 | Fixed typos in the section Hardware Design Example C omponents. | | 2018.12.24 | 18.1.1 | 18.1.1 | <ul> <li>Added new PMA adaptation feature in Intel Stratix 1 0 E-tile device variations.</li> <li>Added a note in <i>Testing the Hardware Design Examp le</i> section about system console command that performs initial adaptation.</li> </ul> | | 2018.09.24 | 18.1 | 18.1 | <ul> <li>Renamed the document title to Interlaken (2nd Generation) Intel Stratix 10 FPGA IP Design Example User Guide.</li> <li>Added support for Intel Stratix 10 devices with E- tile transceivers.</li> <li>Intel Stratix 10 TX and GX Transceiver Signal Integrit y Development Kit support is now available to test the design example on hardware.</li> <li>Modified Figure: Directory Structure of the Generated Example Design.</li> <li>Added Table: Interlaken (2nd Generation) IP Core Hardware Design Example File Descriptions and Table: Table: Interlaken (2nd Generation) IP Core Testbench File Descriptions.</li> <li>Added support for Cadence Xcelium Parallel Simulation.</li> <li>Added new section Hardware Design Example Components</li> <li>Added a note in Generating the Design section to clarify hardware support provided with the design example.</li> <li>Update the Simulating the Design Example Testbench section to include: <ul> <li>Scripts to run NCSim and Xcelium simulations.</li> <li>Design example testbench function.</li> <li>Added sample output of a successful simulation n test run.</li> </ul> </li> <li>Added new section Testing the Hardware Design Example.</li> <li>Added new section Testing the Hardware Design Example.</li> <li>Added following register information in Table: Design Example Register Map: <ul> <li>ECC corrected error count</li> <li>TX SOP Count</li> <li>TX EOP Count</li> </ul> </li> </ul> | |------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| **Table 8. Revision History** | Date | Changes | | | |------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | 2017.09.19 | <ul> <li>Made following changes to Simulating the Design section:</li> <li>Corrected simulation directory location.</li> <li>Updated command to simulate the testbench in VCS simulator.</li> <li>Modified testbench display message.</li> </ul> | | | | 2016.10.31 | Initial release | | | Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. \*Other names and brands may be claimed as the property of others. ISO 9001:2015 Registered ### **Customer Support** Updated for Intel® Quartus® Prime Design Suite: 23.2 IP Version: 21.1.1 #### **Documents / Resources** intel UG-20051 Interlaken 2nd Generation Intel Stratix 10 FPGA IP [pdf] User Guide UG-20051 Interlaken 2nd Generation Intel Stratix 10 FPGA IP, UG-20051, Interlaken 2nd Generation Intel Stratix 10 FPGA IP, Ceneration Intel Stratix 10 FPGA IP, Generation Intel Stratix 10 FPGA IP, Intel Stratix 10 FPGA IP, IP ### References - intel 1. Overview - intel 5. Interface Signals - intel 3.1. Main Parameters - intel 6. Register Map - intel 1. Quick Start Guide - intel 1. Quick Start Guide - User Manual #### Manuals+, Privacy Policy This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.