
Home » Intel » intel HDMI Arria 10 FPGA IP Design Example User Guide

HDMI Arria 10 FPGA IP Design Example
User Guide

HDMI Intel® Arria 10 FPGA IP
Design Example User Guide

intel HDMI Arria 10 FPGA IP Design Example User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/hdmi-arria-10-fpga-ip-design-example-manual.pdf

Updated for Intel®Quartus®
Prime Design Suite: 22.4

IP Version: 19.7.1

Contents
1 HDMI Intel® FPGA IP Design Example Quick Start Guide for Intel® Arria® 10
Devices
2 HDMI 2.1 Design Example (Support FRL = 1)
3 HDMI 2.0 Design Example (Support FRL = 0)
4 HDCP Over HDMI 2.0/2.1 Design Example
5 HDMI Intel Arria 10 FPGA IP Design Example User Guide Archives
6 Revision History for HDMI Intel Arria 10 FPGA IP Design Example User Guide
7 Documents / Resources
8 Related Posts

HDMI Intel® FPGA IP Design Example Quick Start Guide for Intel® Arria® 10 Devices

The HDMI Intel® 10 devices features a simulating testbench and a hardware design that supports compilation
and hardware testing.
FPGA IP design example for Intel Arria®
The HDMI Intel FPGA IP offers the following design examples:

HDMI 2.1 RX-TX retransmit design with fixed rate link (FRL) mode enabled

HDMI 2.0 RX-TX retransmit design with FRL mode disabled

HDCP over HDMI 2.0 design

Note: The HDCP feature is not included in the Intel® Quartus Prime Pro Edition software.
To access the HDCP feature, contact Intel at
https://www.intel.com/content/www/us/en/broadcast/products/programmable/applications/connectivity-
solutions.html.
When you generate a design example, the parameter editor automatically creates the files necessary to simulate,
compile, and test the design in hardware.
Figure 1. Development Steps

Related Information

https://www.intel.com/content/www/us/en/broadcast/products/programmable/applications/connectivity-solutions.html.

HDMI Intel FPGA IP User Guide
1.1. Generating the Design
Use the HDMI Intel FPGA IP parameter editor in the Intel Quartus Prime software to generate the design
examples. Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in writing
by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any
published information and before placing orders for products or services. *Other names and brands may be
claimed as the property of others.
Starting with the Nios® II EDS in the Intel Quartus Prime Pro Edition software version 19.2 and Intel Quartus
Prime Standard Edition software version 19.1, Intel has removed the Cygwin component in the Windows* version
of Nios II EDS, replacing it with Windows* Subsytem for Linux (WSL). If you are a Windows* user, you need to
install WSL prior to generating your design example.
Figure 2. Generating the Design Flow

1. Create a project targeting Intel Arria 10 device family and select the desired device.

2. In the IP Catalog, locate and double-click Interface Protocols ➤ Audio & Video ➤ HDMI Intel FPGA IP. The

New IP Variant or New IP Variation window appears.

3. Specify a top-level name for your custom IP variation. The parameter editor saves the IP variation settings in a

file named <your_ip>.ip or <your_ip>.qsys.

4. Click OK. The parameter editor appears.

5. On the IP tab, configure the desired parameters for both TX and RX.

6. Turn on the Support FRL parameter to generate the HDMI 2.1 design example in FRL mode. Turn it off to

generate the HDMI 2.0 design example without FRL.

7. On the Design Example tab, select Arria 10 HDMI RX-TX Retransmit.

8. Select Simulation to generate the testbench, and select Synthesis to generate the hardware design

example.You must select at least one of these options to generate the design example files. If you select both,

the generation time is longer.

9. For Generate File Format, select Verilog or VHDL.

10. For Target Development Kit, select Intel Arria 10 GX FPGA Development Kit. If you select a development kit,

then the target device (selected in step 4) changes to match the device on target board. For Intel Arria 10 GX

FPGA Development Kit, the default device is 10AX115S2F4I1SG.

11. Click Generate Example Design.

Related Information
How to install the Windows* Subsystem for Linux* (WSL) on Windows* OS?
1.2. Simulating the Design
The HDMI testbench simulates a serial loopback design from a TX instance to an RX instance. Internal video
pattern generator, audio sample generator, sideband data generator, and auxiliary data generator modules drive
the HDMI TX instance and the serial output from the TX instance connects to the RX instance in the testbench.
Figure 3. Design Simulation Flow

1. Go to the desired simulation folder.

2. Run the simulation script for the supported simulator of your choice. The script compiles and runs the testbench

in the simulator.

3. Analyze the results.

Table 1. Steps to Run Simulation

Simulator Working Directory Instructions

 Riviera-PR
O* /simulation/aldec

In the command line, type

vsim -c -do aldec.do

ModelSim* /simulation/mentor
In the command line, type

vsim -c -do mentor.do

 VCS* /simulation/synopsys/vcs
In the command line, type

source vcs_sim.sh

 VCS MX /simulation/synopsys/ vcsmx
In the command line, type

source vcsmx_sim.sh

 Xcelium* P
arallel /simulation/xcelium

In the command line, type

source xcelium_sim.sh

A successful simulation ends with the following message:
SYMBOLS_PER_CLOCK = 2
VIC = 4
FRL_RATE = 0
BPP = 0
AUDIO_FREQUENCY (kHz) = 48
AUDIO_CHANNEL = 8
Simulation pass
1.3. Compiling and Testing the Design

To compile and run a demonstration test on the hardware example design, follow these steps:

1. Ensure hardware example design generation is complete.

2. Launch the Intel Quartus Prime software and open the .qpf file.

• HDMI 2.1 design example with Support FRL enabled: project directory/quartus/a10_hdmi21_frl_demo.qpf

• HDMI 2.0 design example with Support FRL disabled: projectd irectory/quartus/a10_hdmi2_demo.qpf

3. Click Processing ➤ Start Compilation.

4. After successful compilation, a .sof file will be generated in the quartus/output_files directory.

5. Connect to the on-board FMC port B (J2):

• HDMI 2.1 design example with Support FRL enabled: Bitec HDMI 2.1 FMC Daughter Card Rev 9

Note: You can select the revision of your Bitec HDMI daughter card. Under the Design Example tab, set HDMI

Daughter Card Revision to either Revision 9, Revision or no daughter card. The default value is Revision 9.

• HDMI 2.0 design example with Support FRL disabled: Bitec HDMI 2.0 FMC Daughter Card Rev 11

6. Connect TX (P1) of the Bitec FMC daughter card to an external video source.

7. Connect RX (P2) of the Bitec FMC daughter card to an external video sink or video analyzer.

8. Ensure all switches on the development board are in default position.

9. Configure the selected Intel Arria 10 device on the development board using the generated .sof file (Tools ➤
Programmer).

10. The analyzer should display the video generated from the source.

Related Information
Intel Arria 10 FPGA Development Kit User Guide
1.4. HDMI Intel FPGA IP Design Example Parameters
Table 2.
HDMI Intel FPGA IP Design Example Parameters for Intel Arria 10 Devices These options are available for Intel
Arria 10 devices only.

Parameter Value Description

Available Design Example

Select Design Arria 10 HDMI RX-T
X Retransmit Select the design example to be generated.

Design Example Files

Simulation On, Off Turn on this option to generate the necessary files for the simulati
on testbench.

Synthesis On, Off Turn on this option to generate the necessary files for Intel Quartu
s Prime compilation and hardware demonstration.

Generated HDL Format

Generate File Form
at Verilog, VHDL

Select your preferred HDL format for the generated design exampl
e fileset.
Note: This option only determines the format for the generated to
p level IP files. All other files (e.g. example testbenches and top le
vel files for hardware demonstration) are in Verilog HDL format

Target Development Kit

Select Board No Development Kit
, Select the board for the targeted design example.

Arria 10 GX FPGA
Development Kit,

Custom Developme
nt Kit

• No Development Kit: This option excludes all hardware aspects f
or the design example. The IP core sets all pin assignments to virt
ual pins.
• Arria 10 GX FPGA Development Kit: This option automatically s
elects the project’s target device to match the device on this devel
opment kit. You may change the target device using the Change
Target Device parameter if your board revision has a different de
vice variant. The IP core sets all pin assignments according to the
development kit.

•Custom Development Kit: This option allows the design example
to be tested on a third party development kit with an Intel FPGA. Y
ou may need to set the pin assignments on your own.

Target Device

Change Target Devi
ce On, Off Turn on this option and select the preferred device variant for the

development kit.

HDMI 2.1 Design Example (Support FRL = 1)

The HDMI 2.1 design example in FRL mode demonstrates one HDMI instance parallel loopback comprising four
RX channels and four TX channels.
Table 3. HDMI 2.1 Design Example for Intel Arria 10 Devices

Design Example Data Rate Channel Mode Loopback Type

Arria 10 HDMI RX-TX Retransmit

• 12 Gbps (FRL)
• 10 Gbps (FRL)
• 8Gbps (FRL)
• 6 Gbps (FRL)
• 3 Gbps (FRL)
• <6 Gbps (TMDS)

Simplex
Parallel with FIFO buff
er

Features

The design instantiates FIFO buffers to perform a direct HDMI video stream passthrough between the HDMI

2.1 sink and source.

The design is capable to switch between FRL mode and TMDS mode during run time.

The design uses LED status for early debugging stage.

The design comes with HDMI RX and TX instances.

The design demonstrates the insertion and filtering of Dynamic Range and Mastering (HDR) InfoFrame in RX-

TX link module.

The design negotiates the FRL rate between the sink connected to TX and the source connected to RX. The

design passes through the EDID from the external sink to the on-board RX in default configuration. The Nios II

processor negotiates the link base on the capability of the sink connected to TX. You can also toggle the

user_dipsw on-board switch to manually control the TX and RX FRL capabilities.

The design includes several debugging features.

The RX instance receives a video source from the external video generator, and the data then goes through a

loopback FIFO before it is transmitted to the TX instance. You need to connect an external video analyzer,

monitor, or a television with HDMI connection to the TX core to verify the functionality.

2.1. HDMI 2.1 RX-TX Retransmit Design Block Diagram
The HDMI RX-TX retransmit design example demonstrates parallel loopback on simplex channel mode for HDMI
2.1 with Support FRL enabled.
Figure 4. HDMI 2.1 RX-TX Retransmit Block Diagram

2.2. Creating RX-Only or TX-Only Designs
For advanced users, you can use the HDMI 2.1 design to create a TX- or RX-only design.
Figure 5. Components Required for RX-Only or TX-Only Design

To use RX- or TX-only components, remove the irrelevant blocks from the design.
Table 4. RX-Only and TX-Only Design Requirements

User Requirements Preserve Remove Add

HDMI RX only RX Top

• TX Top
• RX-TX Link
• CPU Subsystem
• Transceiver Arbiter

–

HDMI TX only •TX Top
•CPU Sub-System

•RX Top
• RX-TX Link
•Transceiver Arbiter

Video Pattern
Generator(custom
module or generated from
the Video and Image Proc
essing (VIP) Suite)

Besides the RTL changes, you need to also edit the main.c script.
• For HDMI TX-only designs, decouple the wait for the HDMI RX lock status by removing the following lines and
replace with
tx_xcvr_reconfig(tx_frl_rate);
rx_hdmi_lock = READ_PIO(PIO_IN0_BASE, PIO_RX_LOCKED_OFFSET,
PIO_RX_LOCKED_WIDTH);
while (rx_hdmi_lock == 0) {
if (check_hpd_isr()) { break; }
// rx_vid_lock = READ_PIO(PIO_IN0_BASE, PIO_VID_LOCKED_OFFSET,
PIO_VID_LOCKED_WIDTH);
rx_hdmi_lock = READ_PIO(PIO_IN0_BASE, PIO_RX_LOCKED_OFFSET,
PIO_RX_LOCKED_WIDTH);
// Reconfig Tx after rx is locked
if (rx_hdmi_lock == 1) {
if (READ_PIO(PIO_IN0_BASE, PIO_LOOPBACK_MODE_OFFSET,
PIO_LOOPBACK_MODE_WIDTH) == 1) {
rx_frl_rate = READ_PIO(PIO_IN0_BASE, PIO_RX_FRL_RATE_OFFSET,
PIO_RX_FRL_RATE_WIDTH);

tx_xcvr_reconfig(rx_frl_rate);
} else {
tx_xcvr_reconfig(tx_frl_rate);
} } }
• For HDMI RX-only designs, keep only the following lines in the main.c script:
REDRIVER_INIT();
hdmi_rx_init();
2.3. Hardware and Software Requirements
Intel uses the following hardware and software to test the design example.
Hardware

Intel Arria 10 GX FPGA Development Kit

HDMI 2.1 Source (Quantum Data 980 48G Generator)

HDMI 2.1 Sink (Quantum Data 980 48G Analyzer)

Bitec HDMI FMC 2.1 daughter card (Revision 9)

HDMI 2.1 Category 3 cables (tested with Belkin 48Gbps HDMI 2.1 Cable)

Software

Intel Quartus Prime Pro Edition software version 20.1

2.4. Directory Structure
The directories contain the generated files for the HDMI Intel FPGA IP design example.
Figure 6. Directory Structure for the Design Example

Table 5. Generated RTL Files

Folders Files/Subfolders

common

clock_control.ip

clock_crosser.v

dcfifo_inst.v

edge_detector.sv

fifo.ip

output_buf_i2c.ip

test_pattern_gen.v

tpg.v

tpg_data.v

gxb

gxb_rx.ip

gxb_rx_reset.ip

gxb_tx.ip

gxb_tx_fpll.ip

gxb_tx_reset.ip

hdmi_rx

hdmi_rx.ip

hdmi_rx_top.v

Panasonic.hex

hdmi_tx
hdmi_tx.ip

hdmi_tx_top.v

i2c_slave

i2c_avl_mst_intf_gen.v

i2c_clk_cnt.v

i2c_condt_det.v

i2c_databuffer.v

i2c_rxshifter.v

i2c_slvfsm.v

i2c_spksupp.v

i2c_txout.v

i2c_txshifter.v

i2cslave_to_avlmm_bridge.v

pll

pll_hdmi_reconfig.ip

pll_frl.ip

pll_reconfig_ctrl.v

pll_tmds.ip

pll_vidclk.ip

quartus.ini

rxtx_link

altera_hdmi_hdr_infoframe.v

aux_mux.qsys

aux_retransmit.v

aux_src_gen.v

ext_aux_filter.v

rxtx_link.v

scfifo_vid.ip

reconfig

mr_rx_iopll_tmds/

mr_rxphy/

mr_tx_fpll/

altera_xcvr_functions.sv

mr_compare.sv

mr_rate_detect.v

mr_rx_rate_detect_top.v

mr_rx_rcfg_ctrl.v

mr_rx_reconfig.v

mr_tx_rate_detect_top.v

mr_tx_rcfg_ctrl.v

mr_tx_reconfig.v

rcfg_array_streamer_iopll.sv

rcfg_array_streamer_rxphy.sv

rcfg_array_streamer_rxphy_xn.sv

rcfg_array_streamer_txphy.sv

rcfg_array_streamer_txphy_xn.sv

rcfg_array_streamer_txpll.sv

sdc
a10_hdmi2.sdc

jtag.sdc

Table 6. Generated Simulation Files
Refer to the Simulation Testbench section for more information

Folders Files

aldec
/aldec.do

/rivierapro_setup.tcl

cadence

/cds.lib

/hdl.var

<cds_libs folder>

mentor
/mentor.do

/msim_setup.tcl

synopsys
/vcs/filelist.f

/vcs/vcs_setup.sh

/vcs/vcs_sim.sh

/vcsmx/synopsys_sim_setup

/vcsmx/vcsmx_setup.sh

/vcsmx/vcsmx_sim.sh

xcelium

/cds.lib

/hdl.var

/xcelium_setup.sh

/xcelium_sim.sh

<cds_libs folder>

common

/modelsim_files.tcl

/riviera_files.tcl

/vcs_files.tcl

/vcsmx_files.tcl

/xcelium_files.tcl

hdmi_rx
/hdmi_rx.ip

/Panasonic.hex

hdmi_tx /hdmi_tx.ip

Table 7. Generated Software Files

Folders Files

tx_control_src
Note: The tx_control folder also co
ntains duplicates of these files.

global.h

hdmi_rx.c

hdmi_rx.h

hdmi_tx.c

hdmi_tx.h

hdmi_tx_read_edid.c

hdmi_tx_read_edid.h

intel_fpga_i2c.c

intel_fpga_i2c.h

main.c

pio_read_write.c

pio_read_write.h

2.5. Design Components
The HDMI Intel FPGA IP design example consists of the common top-level components and HDMI TX and RX
top components.
2.5.1. HDMI TX Components
The HDMI TX top components include the TX core top-level components, and the IOPLL, transceiver PHY reset
controller, transceiver native PHY, TX PLL, TX reconfiguration management, and the output buffer blocks.
Figure 7. HDMI TX Top Components

Table 8. HDMI TX Top Components

Module Description

HDMI TX Core
The IP receives video data from the top level and performs auxiliary data
encoding, audio data encoding, video data encoding, scrambling, TMDS
encoding or packetization.

IOPLL

The IOPLL (iopll_frl) generates the FRL clock for the TX core. This refere
nce clock receives the TX FPLL output clock.
FRL clock frequency = Data rate per lanes x 4 / (FRL characters per clock
x 18)

Transceiver PHY Reset Controller

The Transceiver PHY reset controller ensures a reliable initialization of th
e TX transceivers. The reset input of this controller is triggered from the to
p level, and it generates the corresponding analog and digital reset signal
to the Transceiver Native PHY block according to the reset sequencing in
side the block.
The tx_ready output signal from this block also functions as a reset signal
to the HDMI Intel FPGA IP to indicate the transceiver is up and running, a
nd ready to receive data from the core.

Transceiver Native PHY

Hard transceiver block that receives the parallel data from the HDMI TX c
ore and serializes the data from transmitting it.
Note: To meet the HDMI TX inter-channel skew requirement, set the TX c
hannel bonding mode option in the Intel Arria 10 Transceiver Native PHY
parameter editor to PMA and PCS bonding. You also need to add the m
aximum skew (set_max_skew) constraint requirement to the digital reset
signal from the transceiver reset controller (tx_digitalreset) as recommend
ed in the Intel Arria 10 Transceiver PHY User Guide.

TX PLL

The transmitter PLL block provides the serial fast clock to the Transceiver
Native PHY block. For this HDMI Intel FPGA IP design example, fPLL is u
sed as TX PLL.
TX PLL has two reference clocks.
• Reference clock 0 is connected to the programmable oscillator (with TM
DS clock frequency) for TMDS mode. In this design example, RX TMDS c
lock is used to connect to reference clock 0 for TMDS mode. Intel recom
mends you to use programmable oscillator with TMDS clock frequency fo
r reference clock 0.
• Reference clock 1 is connected to a fixed 100 MHz clock for FRL mode.

TX Reconfiguration Management

•In TMDS mode, the TX reconfiguration management block reconfigures t
he TX PLL for different output clock frequency according to the TMDS clo
ck frequency of the specific video.
•In FRL mode, the TX reconfiguration management block reconfigures th
e TX PLL to supply the serial fast clock for 3 Gbps, 6 Gbps, 8 Gbps, 10 G
bps and 12 Gbps according to FRL_Rate field in the 0x31 SCDC register.
•The TX reconfiguration management block switches the TX PLL
reference clock between reference clock 0 for TMDS mode and reference
clock 1 for FRL mode.

Output buffer This buffer acts as an interface to interact the I2C interface of the HDMI D
DC and redriver components.

Table 9.Transceiver Data Rate and Oversampling Factor Each Clock Frequency Range

Mode Data Rate
Oversampler 1
(2x oversample
)

Oversampler 2
(4x oversample
)

Oversample Fa
ctor

Oversampled D
ata Rate (Mbps)

TMDS 250–1000 On On 8 2000–8000

TMDS 1000–6000 On Off 2 2000–12000

FRL 3000 Off Off 1 3000

FRL 6000 Off Off 1 6000

FRL 8000 Off Off 1 8000

FRL 10000 Off Off 1 10000

FRL 12000 Off Off 1 12000

Figure 8. TX Reconfiguration Sequence Flow

2.5.2. HDMI RX Components
The HDMI RX top components include the RX core top-level components, optional I²C slave and EDID RAM,
IOPLL, transceiver PHY reset controller, RX native PHY, and the RX reconfiguration management blocks.
Figure 9. HDMI RX Top Components

Table 10. HDMI RX Top Components

Module Description

HDMI RX Core
The IP receives the serial data from the Transceiver Native PHY and perf
orms data alignment, channel deskew, TMDS decoding, auxiliary data de
coding, video data decoding, audio data decoding, and descrambling.

I2C Slave

I2C is the interface used for Sink Display Data Channel (DDC) and Status
and Data Channel (SCDC). The HDMI source uses the DDC to determine
the capabilities and characteristics of the sink by reading the Enhanced E
xtended Display Identification Data (E-EDID) data structure.
The 8-bit I2C slave addresses for E-EDID are 0xA0 and 0xA1. The LSB i
ndicates the access type: 1 for read and 0 for write. When an HPD event
occurs, the I2C slave responds to E-EDID data by reading from the on-chi
p
The I2C slave-only controller also supports SCDC for HDMI 2.0 and 2.1 T
he 9-bit I2C slave address for the SCDC are 0xA8 and 0xA9. When an H
PD event occurs, the I2C slave performs write or read transaction to or fro
m SCDC interface of the HDMI RX core.
Link training process for Fixed Rate Link (FRL) also happens through I2C
During an HPD event or when the source writes a different FRL rate to th
e FRL Rate register (SCDC registers 0x31 bit[3:0]), the link training proce
ss starts.
Note: This I2C slave-only controller for SCDC is not required if HDMI 2.0
or HDMI 2.1 is not intended

EDID RAM

The design stores the EDID information using the RAM 1-Port IP. A stand
ard two- wire (clock and data) serial bus protocol (I2C slave-only controlle
r) transfers the CEA-861-D Compliant E-EDID data structure. This EDID
RAM stores the E-EDID information.
•When in TMDS mode, the design supports EDID passthrough from TX to
RX. During EDID passthrough, when the TX is connected to the external
sink, the Nios II processor reads the EDID from the external sink and writ
es to the EDID RAM.
• When in FRL mode, the Nios II processor writes the pre-configured EDI
D for each link rate based on the HDMI_RX_MAX_FRL_RATE parameter
in the global.h script.
Use the following HDMI_RX_MAX_FRL_RATE inputs for the supported F
RL rate:
• 1: 3G 3 Lanes
• 2: 6G 3 Lanes
•3: 6G 4 Lanes
• 4: 8G 4 Lanes
•5: 10G 4 Lanes (default)
•6: 12G 4 Lanes

IOPLL

The HDMI RX uses two IOPLLs.
• The first IOPLL (pll_tmds) generates the RX CDR reference clock. This I
OPLL is only used in TMDS mode. The reference clock of this IOPLL rec
eives the TMDS clock. The TMDS mode uses this IOPLL because the C
DR cannot receive reference clocks below 50 MHz and the TMDS clock fr
equency ranges from 25 MHz to 340 MHz. This IOPLL provides clock fre
quency that is 5 times of the input reference clock for frequency range bet
ween 25 MHz to 50 MHz and provides the same clock frequency as input
reference clock for frequency range between 50 MHz to 340 MHz.
•The second IOPLL (iopll_frl) generates the FRL clock for the RX core.
This reference clock receives the CDR recovered clock.
FRL clock frequency = Data rate per lanes x 4 / (FRL characters per clock
x 18)

Transceiver PHY Reset Controller

The Transceiver PHY reset controller ensures a reliable initialization of th
e RX transceivers. The reset input of this controller is triggered by the RX
reconfiguration, and it generates the corresponding analog and digital res
et signal to the Transceiver Native PHY block according to the reset sequ
encing inside the block.

RX Native PHY

Hard transceiver block that receives the serial data from an external video
source. It deserializes the serial data to parallel data before passing the d
ata to the HDMI RX core. This block runs on Enhanced PCS for FRL mod
e.
RX CDR has two reference clocks.
• Reference clock 0 is connected to output clock of IOPLL TMDS (pll_t
mds), which is derived from the TMDS clock.
• Reference clock 1 is connected to a fixed 100 MHz clock. In TMDS mo
de, RX CDR is reconfigured to select reference clock 0, and in FRL mode
, RX CDR is reconfigured to select reference clock 1.

RX Reconfiguration Management

In TMDS mode, the RX reconfiguration management block implements ra
te detection circuitry with the HDMI PLL to drive the RX transceiver to ope
rate at any arbitrary link rates ranging from 250 Mbps to 6,000 Mbps.
In FRL mode, the RX reconfiguration management block reconfigures the
RX transceiver to operate at 3 Gbps, 6 Gbps, 8 Gbps, 10 Gbps, or 12 Gb
ps depending on the FRL rate in the SCDC_FRL_RATE register field
(0x31[3:0]). The RX reconfiguration management block switches
between Standard PCS/RX
for TMDS mode and Enhanced PCS for FRL mode.Refer to Figure 10 on
page 22.

Figure 10. RX Reconfiguration Sequence Flow
The figure illustrates the multi-rate reconfiguration sequence flow of the controller when it receives input data
stream and reference clock frequency, or when the transceiver is unlocked.

2.5.3. Top-Level Common Blocks
The top-level common blocks include the transceiver arbiter, the RX-TX link components, and the CPU
subsystem.
Table 11. Top-Level Common Blocks

Module Description

Transceiver Arbiter

This generic functional block prevents transceivers from recalibrating sim
ultaneously when either RX or TX transceivers within the same physical c
hannel require reconfiguration. The simultaneous recalibration impacts ap
plications where RX and TX transceivers within the same channel are ass
igned to independent IP implementations.
This transceiver arbiter is an extension to the resolution recommended for
merging simplex TX and simplex RX into the same physical channel. This
transceiver arbiter also assists in merging and arbitrating the Avalon® me
mory- mapped RX and TX reconfiguration requests targeting simplex RX
and TX transceivers within a channel as the reconfiguration interface port
of the transceivers can only be accessed sequentially.
The interface connection between the transceiver arbiter and TX/RX Nati
ve PHY/PHY Reset Controller blocks in this design example demonstrate
s a generic mode that applies for any IP combination using the
transceiver arbiter. The transceiver arbiter is not required when only eithe
r RX or TX transceiver is used in a channel.
The transceiver arbiter identifies the requester of a reconfiguration throug
h its Avalon memory-mapped reconfiguration interfaces and ensures that
the corresponding tx_reconfig_cal_busy or rx_reconfig_cal_busy is gated
accordingly.
For HDMI applications, only RX initiates reconfiguration. By channeling th
e Avalon memory-mapped reconfiguration request through the arbiter, the
arbiter identifies that the reconfiguration request originates from the RX,
which then gates tx_reconfig_cal_busy from asserting and allows rx_reco
nfig_cal_busy to assert. The gating prevents the TX transceiver from bein
g moved to calibration mode unintentionally.
Note: Because HDMI only requires RX reconfiguration, the tx_reconfig_m
gmt_* signals are tied off. Also, the Avalon memory- mapped interface is
not required between the arbiter and the TX Native PHY block. The block
s are assigned to the interface in the design example to demonstrate gen
eric transceiver arbiter connection to TX/RX Native PHY/PHY Reset Cont
roller

RX-TX Link

• The video data output and synchronization signals from HDMI RX core l
oop through a DCFIFO across the RX and TX video clock domains.
• The auxiliary data port of the HDMI TX core controls the auxiliary data th
at flow through the DCFIFO through backpressure. The backpressure
ensures there is no incomplete auxiliary packet on the auxiliary data port.
• This block also performs external filtering:
— Filters the audio data and audio clock regeneration packet from the a
uxiliary data stream before transmitting to the HDMI TX core auxiliary dat
a port.
— Filters the High Dynamic Range (HDR) InfoFrame from the HDMI RX
auxiliary data and inserts an example HDR InfoFrame to the auxiliary data
of the HDMI TX through the Avalon streaming multiplexer.

CPU Subsystem

The CPU subsystem functions as SCDC and DDC controllers, and source
reconfiguration controller.
• The source SCDC controller contains the I2C master controller. The I2C
master controller transfers the SCDC data structure from the FPGA sourc
e to the external sink for HDMI 2.0 operation. For example, if the outgoing
data stream is 6,000 Mbps, the Nios II processor commands the I2C mast
er controller to update the TMDS_BIT_CLOCK_RATIO and SCRAMBLER
_ENABLE bits of the sink TMDS configuration register to 1.
• The same I2C master also transfers the DDC data structure (E-EDID)
between the HDMI source and external sink.
• The Nios II CPU acts as the reconfiguration controller for the HDMI sour
ce. The CPU relies on the periodic rate detection from the RX
Reconfiguration Management module to determine if the TX requires rec
onfiguration. The Avalon memory-mapped slave translator provides the in
terface between the Nios II processor Avalon memory-mapped master int
erface and the Avalon memory-mapped slave interfaces of the externally i
nstantiated HDMI source’s IOPLL and TX Native PHY.
• Perform link training through I2C master interface with external sink

2.6. Dynamic Range and Mastering (HDR) InfoFrame Insertion and Filtering
The HDMI Intel FPGA IP design example includes a demonstration of HDR InfoFrame insertion in a RX-TX
loopback system.
HDMI Specification version 2.0b allows Dynamic Range and Mastering InfoFrame to be transmitted through HDMI
auxiliary stream. In the demonstration, the Auxiliary Packet Generator block supports the HDR insertion. You
need only to format the intended HDR InfoFrame packet as specified in the module’s signal list table and the
insertion of the HDR InfoFrame occurs once every video frame.
In this example configuration, in instances where the incoming auxiliary stream already includes HDR InfoFrame,
the streamed HDR content is filtered. The filtering avoids conflicting HDR InfoFrames to be transmitted and
ensures that only the values specified in the HDR Sample Data module are used.
Figure 11. RX-TX Link with Dynamic Range and Mastering InfoFrame Insertion
The figure shows the block diagram of RX-TX link including Dynamic Range and Mastering InfoFrame insertion
into the HDMI TX core auxiliary stream.

Table 12. Auxiliary Data Insertion Block (aux_retransmit) Signals

Signal Direction Width Description

Clock and Reset

clk Input 1
Clock input. This clock
should be connected to the vi
deo clock.

reset Input 1 Reset input.

Auxiliary Packet Signals

tx_aux_data Output 72

TX Auxiliary packet output fro
m the multiplexer.

tx_aux_valid Output 1

tx_aux_ready Output 1

tx_aux_sop Output 1

tx_aux_eop Output 1

rx_aux_data Input 72

RX Auxiliary data passed to t
he packet filter module befor
e entering the multiplexer.

rx_aux_valid Input 1

rx_aux_sop Input 1

rx_aux_eop Input 1

Control Signal

hdmi_tx_vsync Input 1

HDMI TX Video Vsync. This
signal should be synchronize
d to the link speed clock dom
ain.The core inserts the HDR
InfoFrame to the auxiliary str
eam at the rising edge of this
signal

Table 13. HDR Data Module (altera_hdmi_hdr_infoframe) Signals

Signal Direction Width Description

hb0 Output 8 Header byte 0 of the Dynamic Range and Mastering
InfoFrame: InfoFrame type code.

hb1 Output 8 Header byte 1 of the Dynamic Range and Mastering
InfoFrame: InfoFrame version number.

hb2 Output 8
Header byte 2 of the Dynamic Range and Mastering
InfoFrame: Length of InfoFrame.

pb Input 224 Data byte of the Dynamic Range and Mastering Info
Frame.

Table 14. Dynamic Range and Mastering InfoFrame Data Byte Bundle Bit-Fields

Bit-Field Definition Static Metadata Type 1

7:0 Data Byte 1: {5’h0, EOTF[2:0]}

15:8 Data Byte 2: {5’h0, Static_Metadata_Descriptor_ID[2:0]}

23:16 Data Byte 3: Static_Metadata_Descriptor display_primaries_x[0], LSB

31:24 Data Byte 4: Static_Metadata_Descriptor display_primaries_x[0], MSB

39:32 Data Byte 5: Static_Metadata_Descriptor display_primaries_y[0], LSB

47:40 Data Byte 6: Static_Metadata_Descriptor display_primaries_y[0], MSB

55:48 Data Byte 7: Static_Metadata_Descriptor display_primaries_x[1], LSB

63:56 Data Byte 8: Static_Metadata_Descriptor display_primaries_x[1], MSB

71:64 Data Byte 9: Static_Metadata_Descriptor display_primaries_y[1], LSB

79:72 Data Byte 10: Static_Metadata_Descriptor display_primaries_y[1], MSB

87:80 Data Byte 11: Static_Metadata_Descriptor display_primaries_x[2], LSB

95:88 Data Byte 12: Static_Metadata_Descriptor display_primaries_x[2], MSB

103:96 Data Byte 13: Static_Metadata_Descriptor display_primaries_y[2], LSB

111:104 Data Byte 14: Static_Metadata_Descriptor display_primaries_y[2], MSB

119:112 Data Byte 15: Static_Metadata_Descriptor white_point_x, LSB

127:120 Data Byte 16: Static_Metadata_Descriptor white_point_x, MSB

135:128 Data Byte 17: Static_Metadata_Descriptor white_point_y, LSB

143:136 Data Byte 18: Static_Metadata_Descriptor white_point_y, MSB

151:144 Data Byte 19: Static_Metadata_Descriptor max_display_mastering_luminance,
LSB

159:152 Data Byte 20: Static_Metadata_Descriptor max_display_mastering_luminance,
MSB

167:160 Data Byte 21: Static_Metadata_Descriptor min_display_mastering_luminance, L
SB

175:168 Data Byte 22: Static_Metadata_Descriptor min_display_mastering_luminance,
MSB

183:176 Data Byte 23: Static_Metadata_Descriptor Maximum Content Light Level, LSB

191:184 Data Byte 24: Static_Metadata_Descriptor Maximum Content Light Level, MSB

199:192 Data Byte 25: Static_Metadata_Descriptor Maximum Frame-average Light Level
, LSB

207:200 Data Byte 26: Static_Metadata_Descriptor Maximum Frame-average Light Level
, MSB

215:208 Reserved

223:216 Reserved

Disabling HDR Insertion and Filtering
Disabling HDR insertion and filter enables you to verify the retransmission of HDR content already available in the
source auxiliary stream without any modification in the RX-TX Retransmit design example.
To disable HDR InfoFrame insertion and filtering:

1. Set block_ext_hdr_infoframe to 1’b0 in the rxtx_link.v file to prevent the filtering of the HDR InfoFrame from the

Auxiliary stream.

2. Set multiplexer_in0_valid of the avalon_st_multiplexer instance in the altera_hdmi_aux_hdr.v file to 1’b0 to

prevent the Auxiliary Packet Generator from forming and inserting additional HDR InfoFrame into the TX

Auxiliary stream.

2.7. Design Software Flow
In the design main software flow, the Nios II processor configures the TI redriver setting and initializes the TX and
RX paths upon power-up.
Figure 12. Software Flow in main.c Script

The software executes a while loop to monitor sink and source changes, and to react to the changes. The

software may trigger TX reconfiguration, TX link training and start transmitting video.
Figure 13. TX Path Initialization Flowchart Initialize TX Path

Figure 14. RX Path Initialization Flowchart

Figure 15. TX Reconfiguration and Link Training Flowchart

Figure 16. Link Training LTS:3 Process at Specific FRL Rate Flowchart

Figure 17. HDMI TX Video Transmission Flowchart

2.8. Running the Design in Different FRL Rates
You may run your design in different FRL rates, other than the external sink’s default FRL rate.
To run the design in different FRL rates:

1. Toggle the on-board user_dipsw0 switch to ON position.

2. Open the Nios II command shell, then type nios2-terminal

3. Key in the following commands and press Enter to execute.

Command Description

h Show the help menu.

r0 Update the RX maximum FRL capability to FRL rate 0 (TMDS only).

r1 Update the RX maximum FRL capability to FRL rate 1 (3 Gbps).

r2 Update the RX maximum FRL capability to FRL rate 2 (6 Gbps, 3 lanes).

r3 Update the RX maximum FRL capability to FRL rate 3 (6 Gbps, 4 lanes).

r4 Update the RX maximum FRL capability to FRL rate 4 (8 Gbps).

r5 Update the RX maximum FRL capability to FRL rate 5 (10 Gbps).

r6 Update the RX maximum FRL capability to FRL rate 6 (12 Gbps).

t1 TX configures link rate to FRL rate 1 (3 Gbps).

t2 TX configures link rate to FRL rate 2 (6 Gbps, 3 lanes).

t3 TX configures link rate to FRL rate 3 (6 Gbps, 4 lanes).

t4 TX configures link rate to FRL rate 4 (8 Gbps).

t5 TX configures link rate to FRL rate 5 (10 Gbps).

t6 TX configures link rate to FRL rate 6 (12 Gbps).

2.9. Clocking Scheme
The clocking scheme illustrates the clock domains in the HDMI Intel FPGA IP design example.
Figure 18. HDMI 2.1 Design Example Clocking Scheme

Table 15. Clocking Scheme Signals

Clock Signal Name in Design Description

Management Clock mgmt_clk

A free running 100 MHz clock for these components:
• Avalon-MM interfaces for reconfiguration
— The frequency range requirement is between 100–
125 MHz.
• PHY reset controller for transceiver reset sequence
— The frequency range requirement is between 1–
500 MHz.
• IOPLL Reconfiguration
— The maximum clock frequency is 100 MHz.
• RX Reconfiguration Management
• TX Reconfiguration Management
• CPU
• I2C Master

I2C Clock i2c_clk
A 100 MHz clock input that clocks I2C slave, output bu
ffers, SCDC registers, and link training process in the
HDMI RX core, and EDID RAM.

TX PLL Reference Clock
0 tx_tmds_clk

Reference clock 0 to the TX PLL. The clock frequency
is the same as the expected TMDS clock frequency fro
m the HDMI TX TMDS clock channel. This reference c
lock is used in TMDS mode.
For this HDMI design example, this clock is connected
to the RX TMDS clock for demonstration purpose. In y
our application, you need to supply a dedicated clock
with TMDS clock frequency from a programmable oscil
lator for better jitter performance.

Note: Do not use a transceiver RX pin as a TX PLL ref
erence clock. Your design will fail to fit if you place the
HDMI TX refclk on an RX pin.

TX PLL Reference Clock
1

txfpll_refclk1/ rxphy_cdr_r
efclk1

Reference clock to the TX PLL and RX CDR, as well a
s IOPLL for vid_clk. The clock frequency is 100 MHz.

TX PLL Serial Clock tx_bonding_clocks Serial fast clock generated by TX PLL. The clock frequ
ency is set based on the data rate.

TX Transceiver Clock Out tx_clk

Clock out recovered from the transceiver, and the freq
uency varies depending on the data rate and symbols
per clock.
TX transceiver clock out frequency = Transceiver data r
ate/ Transceiver width
For this HDMI design example, the TX transceiver cloc
k out from channel 0 clocks the TX transceiver core inp
ut (tx_coreclkin), link speed IOPLL (pll_hdmi) referenc
e clock, and the video and FRL IOPLL (pll_vid_frl) refe
rence clock.

Video Clock tx_vid_clk/rx_vid_clk Video clock to TX and RX core. The clock runs at a fix
ed frequency of 225 MHz.

TX/RX FRL Clock tx_frl_clk/rx_frl_clk FRL clock to for TX and RX core.

RX TMDS Clock rx_tmds_clk

TMDS clock channel from the HDMI RX connector and
connects to an IOPLL to generate the reference clock f
or CDR reference clock 0. The core uses this clock wh
en it is in TMDS mode.

RX CDR Reference Clock
0 rxphy_cdr_refclk0

Reference clock 0 to RX CDR. This clock is derived fro
m the RX TMDS clock. The RX TMDS clock frequency
ranges from 25 MHz to 340 MHz while the RX CDR mi
nimum reference clock frequency is 50 MHz.
An IOPLL is used to generate a 5 clock frequency for t
he TMDS clock between 25 MHz to 50 MHz and gener
ate the same clock frequency for the TMDS clock betw
een 50 MHz – 340 MHz.

RX Transceiver Clock Out rx_clk

Clock out recovered from the transceiver, and the freq
uency varies depending on the data rate and transceiv
er width.
RX transceiver clock out frequency = Transceiver data
rate/ Transceiver width
For this HDMI design example, the RX transceiver cloc
k out from channel 1 clocks the RX transceiver core in
put (rx_coreclkin) and FRL IOPLL (pll_frl) reference clo
ck.

2.10. Interface Signals

The tables list the signals for the HDMI design example with FRL enabled.
Table 16. Top-Level Signals

Signal Direction Width Description

On-board Oscillator Signal

clk_fpga_b3_p Input 1 100 MHz free running clock for core re
ference clock.

refclk4_p Input 1 100 MHz free running clock for
transceiver reference clock.

User Push Buttons and LEDs

user_pb Input 3 Push button to control the HDMI Intel
FPGA IP design functionality.

cpu_resetn Input 1 Global reset.

user_led_g Output 8

Green LED display.
Refer to Hardware Setup on page 48
for more information about the LED fu
nctions.

user_dipsw Input 1

User-defined DIP switch.
Refer to Hardware Setup on page 48
for more information about the DIP swi
tch functions.

HDMI FMC Daughter Card Pins on FMC Port B

fmcb_gbtclk_m2c_p_0 Input 1 HDMI RX TMDS clock.

fmcb_dp_m2c_p Input 4 HDMI RX clock, red, green, and blue
data channels.

fmcb_dp_c2m_p Output 4 HDMI TX clock, red, green, and blue d
ata channels.

fmcb_la_rx_p_9 Input 1 HDMI RX +5V power detect.

fmcb_la_rx_p_8 Output 1 HDMI RX hot plug detect.

fmcb_la_rx_n_8 Input 1 HDMI RX I2C SDA for DDC and SCD
C.

fmcb_la_tx_p_10 Input 1 HDMI RX I2C SCL for DDC and SCD
C.

fmcb_la_tx_p_12 Input 1 HDMI TX hot plug detect.

fmcb_la_tx_n_12 Input 1 HDMI I2C SDA for DDC and SCDC.

fmcb_la_rx_p_10 Input 1 HDMI I2C SCL for DDC and SCDC.

fmcb_la_tx_n_9 Input 1 HDMI I2C SDA for redriver control.

fmcb_la_rx_p_11 Input 1 HDMI I2C SCL for redriver control.

fmcb_la_tx_n_13 Output 1

HDMI TX +5V
Note: Only available when Bitec HDM
I Daughter Card Revision 9 is select
ed.

Table 17. HDMI RX Top-Level Signals

Signal Direction Width Description

Clock and Reset Signals

mgmt_clk Input 1 System clock input (100 MHz).

reset Input 1 System reset input.

rx_tmds_clk Input 1 HDMI RX TMDS clock.

i2c_clk Input 1 Clock input for DDC and SCDC interfa
ce.

Clock and Reset Signals

rxphy_cdr_refclk1 Input 1 Clock input for RX CDR reference cloc
k 1. The clock frequency is 100 MHz.

rx_vid_clk Output 1 Video clock output.

sys_init Output 1 System initialization to reset the syste
m upon power-up.

RX Transceiver and IOPLL Signals

rxpll_tmds_locked Output 1 Indicates the TMDS clock IOPLL is loc
ked.

rxpll_frl_locked Output 1 Indicates the FRL clock IOPLL is lock
ed.

rxphy_serial_data Input 4 HDMI serial data to the RX Native PH
Y.

rxphy_ready Output 1 Indicates the RX Native PHY is ready.

rxphy_cal_busy_raw Output 4 RX Native PHY calibration busy to the
transceiver arbiter.

rxphy_cal_busy_gated Input 4 Calibration busy signal from the transc
eiver arbiter to the RX Native PHY.

rxphy_rcfg_slave_write Input 4

Transceiver reconfiguration Avalon me
mory-mapped interface from the RX N
ative PHY to the transceiver arbiter.

rxphy_rcfg_slave_read Input 4

rxphy_rcfg_slave_address Input 40

rxphy_rcfg_slave_writedata Input 128

rxphy_rcfg_slave_readdata Output 128

rxphy_rcfg_slave_waitrequest Output 4

RX Reconfiguration Management

rxphy_rcfg_busy Output 1 RX Reconfiguration busy signal.

rx_tmds_freq Output 24 HDMI RX TMDS clock frequency mea
surement (in 10 ms).

rx_tmds_freq_valid Output 1 Indicates the RX TMDS clock frequen
cy measurement is valid.

rxphy_os Output 1
Oversampling factor:
•0: 1x oversampling
• 1: 5× oversampling

rxphy_rcfg_master_write Output 1

RX reconfiguration management Aval
on memory-mapped interface to trans
ceiver arbiter.

rxphy_rcfg_master_read Output 1

rxphy_rcfg_master_address Output 12

rxphy_rcfg_master_writedata Output 32

rxphy_rcfg_master_readdata Input 32

rxphy_rcfg_master_waitrequest Input 1

HDMI RX Core Signals

rx_vid_clk_locked Input 1 Indicates vid_clk is stable.

rxcore_frl_rate Output 4

Indicates the FRL rate that the RX cor
e is running.
• 0: Legacy Mode (TMDS)
• 1: 3 Gbps 3 lanes
• 2: 6 Gbps 4 lanes
• 3: 6 Gbps 4 lanes
• 4: 8 Gbps 4 lanes
• 5: 10 Gbps 4 lanes
• 6: 12 Gbps 4 lanes
• 7-15: Reserved

rxcore_frl_locked Output 4

Each bit indicates the specific lane tha
t has achieved FRL lock. FRL is locke
d when the RX core successfully perfo
rms alignment, deskew, and achieves
lane lock.
• For 3-lane mode, lane lock is achiev
ed when the RX core receives Scramb
ler Reset (SR) or Start-Super-Block (S
SB) for every 680 FRL character perio
ds for at least 3 times.
• For 4-lane mode, lane lock is achiev
ed when the RX core receives Scramb
ler Reset (SR) or Start-Super-Block (S
SB) for every 510 FRL character perio
ds for at least 3 times.

rxcore_frl_ffe_levels Output 4
Corresponds to the FFE_level bit in th
e SCDC 0x31 register bit [7:4] in the R
X core.

rxcore_frl_flt_ready Input 1

Asserts to indicate the RX is ready for
the link training process to start. When
asserted, the FLT_ready bit in the SC
DC register 0x40 bit 6 is asserted as w
ell.

rxcore_frl_src_test_config Input 8

Specifies the source test configuration
s. The value is written into the SCDC
Test Configuration register in the SCD
C register 0x35.

rxcore_tbcr Output 1

Indicates the TMDS bit to clock ratio; c
orresponds to the TMDS_Bit_Clock_R
atio register in the SCDC register
0x20 bit 1.
• When running in HDMI 2.0 mode, thi
s bit is asserted. Indicates the TMDS b
it to clock ratio of 40:1.
• When running in HDMI 1.4b, this bit i
s not asserted. Indicates the TMDS bit
to clock ratio of 10:1.
• This bit is unused for FRL mode.

rxcore_scrambler_enable Output 1

Indicates if the received data is scram
bled; corresponds to the Scrambling_
Enable field in the SCDC register 0x2
0 bit 0.

rxcore_audio_de Output 1

HDMI RX core audio interfaces
Refer to the Sink Interfaces section in
the HDMI Intel FPGA IP User Guide fo
r more information.

rxcore_audio_data Output 256

rxcore_audio_info_ai Output 48

rxcore_audio_N Output 20

rxcore_audio_CTS Output 20

rxcore_audio_metadata Output 165

rxcore_audio_format Output 5

rxcore_aux_pkt_data Output 72

HDMI RX core auxiliary interfaces
Refer to the Sink Interfaces section in
the HDMI Intel FPGA IP User Guide fo
r more information.

rxcore_aux_pkt_addr Output 6

rxcore_aux_pkt_wr Output 1

rxcore_aux_data Output 72

rxcore_aux_sop Output 1

rxcore_aux_eop Output 1

rxcore_aux_valid Output 1

rxcore_aux_error Output 1

rxcore_gcp Output 6 HDMI RX core sideband signals
Refer to the Sink Interfaces section in
the HDMI Intel FPGA IP User Guide fo
r more information.

rxcore_info_avi Output 123

rxcore_info_vsi Output 61

rxcore_locked Output 1

HDMI RX core video ports
Note: N = pixels per clock
Refer to the Sink Interfaces section in
the HDMI Intel FPGA IP User Guide fo
r more information.

rxcore_vid_data Output N*48

rxcore_vid_vsync Output N

rxcore_vid_hsync Output N

rxcore_vid_de Output N

rxcore_vid_valid Output 1

rxcore_vid_lock Output 1

rxcore_mode Output 1 HDMI RX core control and status ports
.
Note: N = symbols per clock
Refer to the Sink Interfaces section in
the HDMI Intel FPGA IP User Guide fo
r more information.

rxcore_ctrl Output N*6

rxcore_color_depth_sync Output 2

hdmi_5v_detect Input 1 HDMI RX 5V detect and hotplug detec
t. Refer to the Sink Interfaces section i
n the HDMI Intel FPGA IP User Guide
for more information.

hdmi_rx_hpd Output 1

rx_hpd_trigger Input 1

I2C Signals

hdmi_rx_i2c_sda Input 1
HDMI RX DDC and SCDC interface.

hdmi_rx_i2c_scl Input 1

RX EDID RAM Signals

edid_ram_access Input 1 HDMI RX EDID RAM access interface
.

edid_ram_address Input 8 Assert edid_ram_access when you wa
nt to write or read from the EDID RAM,
else this signal should be kept low.
When you assert edid_ram_access, th
e hotplug signal deasserts to allow writ
e or read to the EDID RAM. When EDI
D RAM access is completed, you shou
ld deassert edid_ram_assess and the
hotplug signal asserts. The source will
read the new EDID due to the hotplug
signal toggling.

edid_ram_write Input 1

edid_ram_read Input 1

edid_ram_readdata Output 8

edid_ram_writedata Input 8

edid_ram_waitrequest Output 1

Table 18.HDMI TX Top-Level Signals

Signal Direction Width Description

Clock and Reset Signals

mgmt_clk Input 1 System clock input (100 MHz).

reset Input 1 System reset input.

tx_tmds_clk Input 1 HDMI RX TMDS clock.

txfpll_refclk1 Input 1 Clock input for TX PLL reference clock
1. The clock frequency is 100 MHz.

tx_vid_clk Output 1 Video clock output.

tx_frl_clk Output 1 FRL clock output.

sys_init Input 1 System initialization to reset the syste
m upon power-up.

tx_init_done Input 1
TX initialization to reset the TX reconfi
guration management block and trans
ceiver reconfiguration interface.

TX Transceiver and IOPLL Signals

txpll_frl_locked Output 1 Indicates the link speed clock and FR
L clock IOPLL is locked.

txfpll_locked Output 1 Indicates the TX PLL is locked.

txphy_serial_data Output 4 HDMI serial data from the TX Native P
HY.

txphy_ready Output 1 Indicates the TX Native PHY is ready.

txphy_cal_busy Output 1 TX Native PHY calibration busy
signal.

txphy_cal_busy_raw Output 4 Calibration busy signal to the
transceiver arbiter.

txphy_cal_busy_gated Input 4 Calibration busy signal from the transc
eiver arbiter to the TX Native PHY.

txphy_rcfg_busy Output 1 Indicates the TX PHY reconfiguration i
s in progress.

txphy_rcfg_slave_write Input 4
Transceiver reconfiguration Avalon me
mory-mapped interface from the TX N
ative PHY to the transceiver arbiter.

txphy_rcfg_slave_read Input 4

txphy_rcfg_slave_address Input 40

txphy_rcfg_slave_writedata Input 128

txphy_rcfg_slave_readdata Output 128

txphy_rcfg_slave_waitrequest Output 4

TX Reconfiguration Management

tx_tmds_freq Input 24 HDMI TX TMDS clock frequency
value (in 10 ms).

tx_os Output 2

Oversampling factor:
• 0: 1x oversampling
•1: 2× oversampling
•2: 8x oversampling

txphy_rcfg_master_write Output 1

TX reconfiguration management
Avalon memory-mapped interface to t
ransceiver arbiter.

txphy_rcfg_master_read Output 1

txphy_rcfg_master_address Output 12

txphy_rcfg_master_writedata Output 32

txphy_rcfg_master_readdata Input 32

txphy_rcfg_master_waitrequest Input 1

tx_reconfig_done Output 1 Indicates that the TX reconfiguration p
rocess is completed.

HDMI TX Core Signals

tx_vid_clk_locked Input 1 Indicates vid_clk is stable.

txcore_ctrl Input N*6 HDMI TX core control interfaces.
Note: N = pixels per clock
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

txcore_mode Input 1

txcore_audio_de Input 1

HDMI TX core audio interfaces.
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

txcore_audio_mute Input 1

txcore_audio_data Input 256

txcore_audio_info_ai Input 49

txcore_audio_N Input 20

txcore_audio_CTS Input 20

txcore_audio_metadata Input 166

txcore_audio_format Input 5

txcore_aux_ready Output 1
HDMI TX core auxiliary interfaces.
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

txcore_aux_data Input 72

txcore_aux_sop Input 1

txcore_aux_eop Input 1

txcore_aux_valid Input 1

txcore_gcp Input 6 HDMI TX core sideband signals.
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

txcore_info_avi Input 123

txcore_info_vsi Input 62

txcore_i2c_master_write Input 1
TX I2C master Avalon memory-mappe
d interface to I2C master inside the TX
core.
Note: These signals are available only
when you turn on the Include I2C par
ameter.

txcore_i2c_master_read Input 1

txcore_i2c_master_address Input 4

txcore_i2c_master_writedata Input 32

txcore_i2c_master_readdata Output 32

txcore_vid_data Input N*48

HDMI TX core video ports.
Note: N = pixels per clockRef
er to the Source Interfaces section in t
he HDMI Intel FPGA IP User Guide fo
r more information.

txcore_vid_vsync Input N

txcore_vid_hsync Input N

txcore_vid_de Input N

txcore_vid_ready Output 1

txcore_vid_overflow Output 1

txcore_vid_valid Input 1

txcore_frl_rate Input 4

SCDC register interfaces.

txcore_frl_pattern Input 16

txcore_frl_start Input 1

txcore_scrambler_enable Input 1

txcore_tbcr Input 1

I2C Signals

nios_tx_i2c_sda_in Output 1
TX I2C Master interface for SCDC and
DDC from the Nios II processor to the
output buffer.
Note: If you turn on the Include I2C p
arameter, these signals will be placed i
nside the TX core and will not be visibl
e at this level.

nios_tx_i2c_scl_in Output 1

nios_tx_i2c_sda_oe Input 1

nios_tx_i2c_scl_oe Input 1

nios_ti_i2c_sda_in Output 1

TX I2C Master interface from the Nios
II processor to the output buffer to con
trol TI redriver on the Bitec HDMI 2.1
FMC daughter card.

nios_ti_i2c_scl_in Output 1

nios_ti_i2c_sda_oe Input 1

nios_ti_i2c_scl_oe Input 1

hdmi_tx_i2c_sda Input 1 TX I2C interfaces for SCDC and DDC
interfaces from the output buffer to the
HDMI TX connector.hdmi_tx_i2c_scl Input 1

hdmi_tx_ti_i2c_sda Input 1 TX I2C interfaces from the output buff
er to the TI redriver on the Bitec HDMI
2.1 FMC daughter card.hdmi_tx_ti_i2c_scl Input 1

tx_hpd_req Output 1
HDMI TX hotplug detect interfaces.

hdmi_tx_hpd_n Input 1

Table 19. Transceiver Arbiter Signals

Signal Direction Width Description

clk Input 1
Reconfiguration clock. This clock must
share the same clock with the reconfig
uration management blocks.

reset Input 1
Reset signal. This reset must share th
e same reset with the reconfiguration
management blocks.

rx_rcfg_en Input 1 RX reconfiguration enable signal.

tx_rcfg_en Input 1 TX reconfiguration enable signal.

rx_rcfg_ch Input 2
Indicates which channel to be reconfig
ured on the RX core. This signal must
always remain asserted.

tx_rcfg_ch Input 2
Indicates which channel to be reconfig
ured on the TX core. This signal must
always remain asserted.

rx_reconfig_mgmt_write Input 1

Reconfiguration Avalon memory-
mapped interfaces from the RX
reconfiguration management.

rx_reconfig_mgmt_read Input 1

rx_reconfig_mgmt_address Input 10

rx_reconfig_mgmt_writedata Input 32

rx_reconfig_mgmt_readdata Output 32

rx_reconfig_mgmt_waitrequest Output 1

tx_reconfig_mgmt_write Input 1

Reconfiguration Avalon memory-
mapped interfaces from the TX reconfi
guration management.

tx_reconfig_mgmt_read Input 1

tx_reconfig_mgmt_address Input 10

tx_reconfig_mgmt_writedata Input 32

tx_reconfig_mgmt_readdata Output 32

tx_reconfig_mgmt_waitrequest Output 1

reconfig_write Output 1

Reconfiguration Avalon memory-
mapped interfaces to the transceiver.

reconfig_read Output 1

reconfig_address Output 10

reconfig_writedata Output 32

rx_reconfig_readdata Input 32

rx_reconfig_waitrequest Input 1

tx_reconfig_readdata Input 1

tx_reconfig_waitrequest Input 1

rx_cal_busy Input 1 Calibration status signal from the RX t
ransceiver.

tx_cal_busy Input 1 Calibration status signal from the TX tr
ansceiver.

rx_reconfig_cal_busy Output 1 Calibration status signal to the RX tra
nsceiver PHY reset control.

tx_reconfig_cal_busy Output 1 Calibration status signal from the TX tr
ansceiver PHY reset control.

Table 20. RX-TX Link Signals

Signal Direction Width Description

vid_clk Input 1 HDMI video clock.

rx_vid_lock Input 3 Indicates HDMI RX video lock status.

rx_vid_valid Input 1

HDMI RX video interfaces.

rx_vid_de Input N

rx_vid_hsync Input N

rx_vid_vsync Input N

rx_vid_data Input N*48

rx_aux_eop Input 1

HDMI RX auxiliary interfaces.
rx_aux_sop Input 1

rx_aux_valid Input 1

rx_aux_data Input 72

tx_vid_de Output N

HDMI TX video interfaces.
Note: N = pixels per clock

tx_vid_hsync Output N

tx_vid_vsync Output N

tx_vid_data Output N*48

tx_vid_valid Output 1

tx_vid_ready Input 1

tx_aux_eop Output 1

HDMI TX auxiliary interfaces.

tx_aux_sop Output 1

tx_aux_valid Output 1

tx_aux_data Output 72

tx_aux_ready Input 1

Table 21. Platform Designer System Signals

Signal Direction Width Description

cpu_clk_in_clk_clk Input 1 CPU clock.

cpu_rst_in_reset_reset Input 1 CPU reset.

edid_ram_slave_translator_avalon_anti_slave_0_ad
dress Output 8

EDID RAM access interf
aces.

edid_ram_slave_translator_avalon_anti_slave_0_wri
te Output 1

edid_ram_slave_translator_avalon_anti_slave_0_rea
d Output 1

edid_ram_slave_translator_avalon_anti_slave_0_rea
ddata Input 8

edid_ram_slave_translator_avalon_anti_slave_0_wri
tedata Output 8

edid_ram_slave_translator_avalon_anti_slave_0_wai
trequest Input 1

hdmi_i2c_master_i2c_serial_sda_in Input 1

I2C Master interfaces fro
m the Nios II processor t
o the output buffer for D
DC and SCDC control.

hdmi_i2c_master_i2c_serial_scl_in Input 1

hdmi_i2c_master_i2c_serial_sda_oe Output 1

hdmi_i2c_master_i2c_serial_scl_oe Output 1

redriver_i2c_master_i2c_serial_sda_in Input 1

I2C Master interfaces fro
m the Nios II processor t
o the output buffer for TI
redriver setting configura
tion.

redriver_i2c_master_i2c_serial_scl_in Input 1

redriver_i2c_master_i2c_serial_sda_oe Output 1

redriver_i2c_master_i2c_serial_scl_oe Output 1

pio_in0_external_connection_export Input 32

Parallel input output inte
rfaces.
• Bit 0: Connected to the
user_dipsw signal to con
trol EDID passthrough m
ode.
•Bit 1: TX HPD request
•Bit 2: TX transceiver rea
dy
•Bits 3: TX
reconfiguration done
•Bits 4–7: Reserved
• Bits 8–11: RX FRL rate
• Bit 12: RX TMDS bit cl
ock ratio
• Bits 13–16: RX FRL loc
ked
• Bits 17–20: RX FFE lev
els
• Bit 21: RX alignment lo
cked

Signal Direction Width Description

•Bit 22: RX video lock
• Bit 23: User push butto
n 2 to read SCDC regist
ers from external sink
•Bits 24–31: Reserved

pio_out0_external_connection_export Output 32

Parallel input output inte
rfaces.
•Bit 0: TX HPD acknowle
dgment
•Bit 1: TX initialization is
done
• Bits 2–7: Reserved
• Bits 8–11: TX FRL rate
•Bits 12–27: TX FRL link
training pattern
• Bit 28: TX FRL start
• Bits 29–31: Reserved

pio_out1_external_connection_export Output 32

Parallel input output inte
rfaces.
• Bit 0: RX EDID RAM
access
• Bit 1: RX FLT ready
• Bits 2–7: Reserved
• Bits 8–15: RX FRL sou
rce test configuration
•Bits 16–31: Reserved

2.1. 1. Design RTL Parameters
Use the HDMI TX and RX Top RTL parameters to customize the design example.
Most of the design parameters are available in the Design Example tab of the HDMI Intel FPGA IP parameter

editor. You can still change the design example settings you made in the parameter editor through the RTL
parameters.
Table 22. HDMI RX Top Parameters

Parameter Value Description

SUPPORT_DEEP_COLOR • 0: No deep color
• : Deep color

Determines if the core can encode deep color
formats.

SUPPORT_AUXILIARY • 0: No AUX
•1: AUX

Determines if the auxiliary channel encoding i
s included.

SYMBOLS_PER_CLOCK 8 Supports 8 symbols per clock for Intel Arria 10
devices.

SUPPORT_AUDIO • 0: No audio
• 1: Audio Determines if the core can encode audio.

EDID_RAM_ADDR_WIDTH 8 (Default value) Log base 2 of the EDID RAM size.

BITEC_DAUGHTER_CARD_
REV

•0: Not targeting any Bitec HD
MI daughter card
•4: Supports Bitec HDMI daug
hter card revision 4
•6: Targeting Bitec HDMI daug
hter card revision 6
• 11: Targeting Bitec HDMI da
ughter card revision 11 (defau
lt)

Specifies the revision of the Bitec HDMI
daughter card used. When you change the rev
ision, the design may swap the transceiver
channels and invert the polarity according to t
he Bitec HDMI daughter card requirements. If
you set the BITEC_DAUGHTER_CARD_REV
parameter to 0, the design does not make any
changes to the transceiver channels and the p
olarity.

POLARITY_INVERSION • 0: Invert polarity
• 1: Do not invert polarity

Set this parameter to 1 to invert the value of e
ach bit of the input data. Setting this
parameter to 1 assigns 4’b1111 to the rx_polin
v port of the RX transceiver.

Table 23. HDMI TX Top Parameters

Parameter Value Description

USE_FPLL 1
Supports fPLL as TX PLL only for Intel Arria 1
0 devices. Always set this parameter to 1.

SUPPORT_DEEP_COLOR
•0: No deep color

• 1: Deep color
Determines if the core can encode deep color
formats.

SUPPORT_AUXILIARY • 0: No AUX
• 1: AUX

Determines if the auxiliary channel encoding i
s included.

SYMBOLS_PER_CLOCK 8 Supports 8 symbols per clock for Intel Arria 10
devices.

SUPPORT_AUDIO • 0: No audio
• 1: Audio Determines if the core can encode audio.

BITEC_DAUGHTER_CARD_
REV

• 0: Not targeting any Bitec H
DMI daughter card
• 4: Supports Bitec HDMI dau
ghter card revision 4
• 6: Targeting Bitec HDMI dau
ghter card revision 6
• 11: Targeting Bitec HDMI da
ughter card revision 11 (defau
lt)

Specifies the revision of the Bitec HDMI
daughter card used. When you change the rev
ision, the design may swap the transceiver
channels and invert the polarity according to t
he Bitec HDMI daughter card requirements. If
you set the BITEC_DAUGHTER_CARD_REV
parameter to 0, the design does not make any
changes to the transceiver channels and the p
olarity.

POLARITY_INVERSION • 0: Invert polarity
• 1: Do not invert polarity

Set this parameter to 1 to invert the value of e
ach bit of the input data. Setting this
parameter to 1 assigns 4’b1111 to the tx_polin
v port of the TX transceiver.

2.12. Hardware Setup
The HDMI FRL-enabled design example is HDMI 2.1 capable and performs a loopthrough demonstration for a
standard HDMI video stream.
To run the hardware test, connect an HDMI-enabled device—such as a graphics card with HDMI interface—to the
HDMI sink input. The design supports both HDMI 2.1 or HDMI 2.0/1.4b source and sink.

1. The HDMI sink decodes the port into a standard video stream and sends it to the clock recovery core.

2. The HDMI RX core decodes the video, auxiliary, and audio data to be looped back in parallel to the HDMI TX

core through the DCFIFO.

3. The HDMI source port of the FMC daughter card transmits the image to a monitor.

Note:
If you want to use another Intel FPGA development board, you must change the device assignments and the pin
assignments. The transceiver analog setting is tested for the Intel Arria 10 FPGA development kit and Bitec HDMI
2.1 daughter card. You may modify the settings for your own board.
Table 24. On-board Push Button and User LED Functions

Push Button/LED Function

cpu_resetn Press once to perform system reset.

user_dipsw

User-defined DIP switch to toggle the passthrough mode.
•OFF (default position) = Passthrough
HDMI RX on the FPGA gets the EDID from external sink and presents it t
o the external source it is connected to.
• ON = You may control the RX maximum FRL rate from the Nios II termin
al. The command modifies the RX EDID by manipulating the maximum F
RL rate value.
Refer to Running the Design in Different FRL Rates on page 33 for more i
nformation about setting the different FRL rates.

user_pb[0] Press once to toggle the HPD signal to the standard HDMI source.

user_pb[1] Reserved.

user_pb[2]
Press once to read the SCDC registers from the sink connected to the TX
of the Bitec HDMI 2.1 FMC daughter card.
Note: To enable read, you must set DEBUG_MODE to 1 in the software.

USER_LED[0]
RX TMDS clock PLL lock status.
•0 = Unlocked
• 1 = Locked

USER_LED[1]
RX transceiver ready status.
•0 = Not ready
• 1 = Ready

USER_LED[2]
RX link speed clock PLL, and RX video and FRL clock PLL lock status.
• 0 = Either one of the RX clock PLL is unlocked
• 1 = Both RX clock PLLs are locked

USER_LED[3]
RX HDMI core alignment and deskew lock status.
• 0 = At least 1 channel is unlocked
• 1 = All channels are locked

USER_LED[4]
RX HDMI video lock status.
• 0 = Unlocked
• 1 = Locked

USER_LED[5]
TX link speed clock PLL, and TX video and FRL clock PLL lock status.
•0 = Either one of the TX clock PLL is unlocked
• 1 = Both TX clock PLLs are locked

USER_LED[6]
USER_LED[7]

TX transceiver ready status.
• 0 = Not ready
• 1 = Ready
TX link training status.
• 0 = Failed
• 1 = Passed

2.13. Simulation Testbench
The simulation testbench simulates the HDMI TX serial loopback to the RX core.
Note:
This simulation testbench is not supported for designs with the Include I2C parameter enabled.
Figure 19. HDMI Intel FPGA IP Simulation Testbench Block Diagram

Table 25. Testbench Components

Component Description

Video TPG The video test pattern generator (TPG) provides the video stimulus.

Audio Sample Gen
The audio sample generator provides audio sample stimulus. The
generator generates an incrementing test data pattern to be transmitted t
hrough the audio channel.

Aux Sample Gen The aux sample generator provides the auxiliary sample stimulus. The ge
nerator generates a fixed data to be transmitted from the transmitter.

CRC Check This checker verifies if the TX transceiver recovered clock frequency
matches the desired data rate.

Audio Data Check The audio data check compares whether the incrementing test data patte
rn is received and decoded correctly.

Aux Data Check The aux data check compares whether the expected aux data is received
and decoded correctly on the receiver side.

The HDMI simulation testbench does the following verification tests:

HDMI Feature Verification

Video data

• The testbench implements CRC checking on the input and output video.
• It checks the CRC value of the transmitted data against the CRC calcula
ted in the received video data.
• The testbench then performs the checking after detecting 4 stable V-SY
NC signals from the receiver.

Auxiliary data

• The aux sample generator generates a fixed data to be transmitted from
the transmitter.
• On the receiver side, the generator compares whether the expected
auxiliary data is received and decoded correctly.

Audio data

•The audio sample generator generates an incrementing test data pattern
to be transmitted through the audio channel.
• On the receiver side, the audio data checker checks and compares whet
her the incrementing test data pattern is received and decoded correctly.

A successful simulation ends with the following message:
SYMBOLS_PER_CLOCK = 2
VIC = 4
FRL_RATE = 0
BPP = 0
AUDIO_FREQUENCY (kHz) = 48
AUDIO_CHANNEL = 8
Simulation pass
Table 26. HDMI Intel FPGA IP Design Example Supported Simulators

Simulator Verilog HDL VHDL

ModelSim – Intel FPGA Edition/ Mo
delSim – Intel FPGA Starter Edition Yes Yes

VCS/VCS MX Yes Yes

Riviera-PRO Yes Yes

Xcelium Parallel Yes No

2.14. Design Limitations
You need to consider some limitations when instantiating the HDMI 2.1 design example.

TX is unable to operate in TMDS mode when in non-passthrough mode. To test in TMDS mode, toggle the

user_dipsw switch back to passthrough mode.

The Nios II processor must serve the TX link training to completion without any interruption from other

processes.

2.15. Debugging Features
This design example provides certain debugging features to assist you.
2.15.1. Software Debugging Message
You can turn on the debugging message in the software to provide you run-time assistance.
To turn on the debugging message in the software, follow these steps:

1. Change the DEBUG_MODE to 1 in the global.h script.

2. Run script/build_sw.sh on the Nios II Command Shell.

3. Reprogram the generated software/tx_control/tx_control.elf file by running the command on the Nios II

Command Shell:

nios2-download -r -g software/tx_control/tx_control.elf

4. Run the Nios II terminal command on the Nios II Command Shell:

nios2-terminal

When you turn on the debugging message, the following information print out:

TI redriver settings on both TX and RX are read and displayed once after programming ELF file.

Status message for RX EDID configuration and hotplug process

Resolution with or without FRL support information extracted from EDID on the sink connected to the TX. This

information is displayed for every TX hotplug.

Status message for the TX link training process during TX link training.

2.15.2. SCDC Information from the Sink Connected to TX
You can use this feature to obtain SCDC information.

1. Run the Nios II terminal command on the Nios II Command Shell: nios2-terminal

2. Press user_pb[2] on the Intel Arria 10 FPGA development kit.

The software reads and displays the SCDC information on the sink connected to TX on the Nios II terminal.
2.15.3. Clock Frequency Measurement
Use this feature to check the frequency for the different clocks.

1. In the hdmi_rx_top and hdmi_tx_top files, uncomment “//`define DEBUG_EN 1”.

2. Add the refclock_measure signal from each mr_rate_detect instance to the Signal Tap Logic Analyzer to get

the clock frequency of each clock (in 10 ms duration).

3. Compile the design with Signal Tap Logic Analyzer.

4. Program the SOF file and run the Signal Tap Logic Analyzer.

Table 27. Clocks

Module mr_rate_detect Instance Clock to be Measured

hdmi_rx_top

rx_pll_tmds RX CDR reference clock 0

rx_clk0_freq RX transceiver clock out from channel 0

rx_vid_clk_freq RX video clock

rx_frl_clk_freq RX FRL clock

rx_hsync_freq Hsync frequency of the received video frame

hdmi_tx_top

tx_clk0_freq TX transceiver clock out from channel 0

vid_clk_freq TX video clock

frl_clk_freq TX FRL clock

tx_hsync_freq Hsync frequency of the video frame to be trans
mitted

2.16. Upgrading Your Design
Table 28. HDMI Design Example Compatibility with Previous Intel Quartus Prime Pro Edition Software Version

Design Example Variant Ability to Upgrade to Intel Quartus Prime Pro Editi
on 20.3

HDMI 2.1 Design Example (Support FRL = 1) No

For any non-compatible design examples, you need to do the following:

1. Generate a new design example in the current Intel Quartus Prime Pro Edition software version using the

same configurations of your existing design.

2. Compare the whole design example directory with the design example generated using the previous Intel

Quartus Prime Pro Edition software version. Port over the changes found.

HDMI 2.0 Design Example (Support FRL = 0)

The HDMI Intel FPGA IP design example demonstrates one HDMI instance parallel loopback comprising three

RX channels and four TX channels.
Table 29. HDMI Intel FPGA IP Design Example for Intel Arria 10 Devices

Design Example Data Rate Channel Mode Loopback Type

Arria 10 HDMI RX-TX Retransmit < 6,000 Mbps Simplex Parallel with FIFO buff
er

Features

The design instantiates FIFO buffers to perform a direct HDMI video stream passthrough between the HDMI

sink and source.

The design uses LED status for early debugging stage.

The design comes with RX and TX only options.

The design demonstrates the insertion and filtering of Dynamic Range and Mastering (HDR) InfoFrame in RX-

TX link module.

The design demonstrates the management of EDID passthrough from an external HDMI sink to an external

HDMI source when triggered by a TX hot-plug event.

The design allows run-time control through DIP switch and push-button to manage the HDMI TX core signals:

— mode signal to select DVI or HDMI encoded video frame

— info_avi[47], info_vsi[61], and audio_info_ai[48] signals to select auxiliary packet transmission through

sidebands or auxiliary data ports

The RX instance receives a video source from the external video generator, and the data then goes through a
loopback FIFO before it is transmitted to the TX instance.
You need to connect an external video analyzer, monitor, or a television with HDMI connection to the TX core to
verify the functionality.
3.1. HDMI 2.0 RX-TX Retransmit Design Block Diagram
The HDMI 2.0 RX-TX retransmit design example demonstrates parallel loopback on simplex channel mode for
HDMI Intel FPGA IP.
Figure 20. HDMI RX-TX Retransmit Block Diagram (Intel Quartus Prime Pro Edition)

Figure 21. HDMI RX-TX Retransmit Block Diagram (Intel Quartus Prime Standard Edition)

Related Information

Jitter of PLL Cascading or Non-Dedicated Clock Path for Arria 10 PLL Reference Clock Refer to this solution for
workaround if your design clocks experience additional
jitter.
3.2. Hardware and Software Requirements
Intel uses the following hardware and software to test the design example.
Hardware

Intel Arria 10 GX FPGA Development Kit

HDMI Source (Graphics Processor Unit (GPU))

HDMI Sink (Monitor)

Bitec HDMI FMC 2.0 daughter card (Revision 11)

HDMI cables

Note:
You can select the revision of your Bitec HDMI daughter card. Set the local parameter
BITEC_DAUGHTER_CARD_REV to 4, 6, or 11 in the top-level file (a10_hdmi2_demo.v). When you change the
revision, the design may swap the transceiver channels and invert the polarity according to the Bitec HDMI
daughter cardrequirements. If you set the BITEC_DAUGHTER_CARD_REV parameter to 0, the design does not
make any changes to the transceiver channels and the polarity. For HDMI 2.1 design examples, under the Design
Example tab, set HDMI Daughter Card Revision to either Revision 9, Revision 4, or no daughter card. The default
value is Revision 9.
Software

Intel Quartus Prime version 18.1 and later (for hardware testing)

ModelSim – Intel FPGA Edition, ModelSim – Intel FPGA Starter Edition, , RivieraPRO, VCS (Verilog HDL

only)/VCS MX, or Xcelium Parallel simulator

3.3. Directory Structure
The directories contain the generated files for the HDMI Intel FPGA IP design example.
Figure 22. Directory Structure for the Design Example

Table 30. Generated RTL Files

Folders Files

gxb

• /gxb_rx.qsys (Intel Quartus Prime Standard Edition)
• /gxb_rx.ip (Intel Quartus Prime Pro Edition)

• /gxb_rx_reset.qsys (Intel Quartus Prime Standard Edition)
• /gxb_rx_reset.ip (Intel Quartus Prime Pro Edition)

• /gxb_tx.qsys (Intel Quartus Prime Standard Edition)
• /gxb_tx.ip (Intel Quartus Prime Pro Edition)

• /gxb_tx_fpll.qsys (Intel Quartus Prime Standard Edition)
• /gxb_tx_fpll.ip (Intel Quartus Prime Pro Edition)

• /gxb_tx_reset.qsys (Intel Quartus Prime Standard Edition)
• /gxb_tx_reset.ip (Intel Quartus Prime Pro Edition)

hdmi_rx

•/hdmi_rx.qsys (Intel Quartus Prime Standard Edition)
•/hdmi_rx.ip (Intel Quartus Prime Pro Edition)

/hdmi_rx_top.v

/mr_clock_sync.v (Intel Quartus Prime Standard Edition)

/mr_hdmi_rx_core_top.v (Intel Quartus Prime Standard Edition)

/mr_rx_oversample.v (Intel Quartus Prime Standard Edition)

/symbol_aligner.v

Panasonic.hex (Intel Quartus Prime Pro Edition)

hdmi_tx • /hdmi_tx.qsys (Intel Quartus Prime Standard Edition)
•/hdmi_tx.ip (Intel Quartus Prime Pro Edition)

/hdmi_tx_top.v

/mr_ce.v (Intel Quartus Prime Standard Edition)

/mr_hdmi_tx_core_top.v (Intel Quartus Prime Standard Edition)

/mr_tx_oversample.v (Intel Quartus Prime Standard Edition)

i2c_master

(Intel Quartus Prime Standard Editi
on)

/i2c_master_bit_ctrl.v

/i2c_master_byte_ctrl.v

/i2c_master_defines.v

/i2c_master_top.v

/oc_i2c_master.v

/oc_i2c_master_hw.tcl

/timescale.v

i2c_slave

/edid_ram.qsys (Intel Quartus Prime Standard Edition)

/Panasonic.hex (Intel Quartus Prime Standard Edition)

/i2c_avl_mst_intf_gen.v

/i2c_clk_cnt.v

/i2c_condt_det.v

/i2c_databuffer.v

/i2c_rxshifter.v

/i2c_slvfsm.v

/i2c_spksupp.v

/i2c_txout.v

/i2c_txshifter.v

/i2cslave_to_avlmm_bridge.v

pll

• /pll_hdmi.qsys (Intel Quartus Prime Standard Edition)
• /pll_hdmi.ip (Intel Quartus Prime Pro Edition)

• /pll_hdmi_reconfig.qsys (Intel Quartus Prime Standard Edition)
• /pll_hdmi_reconfig.ip (Intel Quartus Prime Pro Edition)

quartus.ini

common

• /clock_control.qsys (Intel Quartus Prime Standard Edition)
• /clock_control.ip (Intel Quartus Prime Pro Edition)

• /fifo.qsys (Intel Quartus Prime Standard Edition)
• /fifo.ip (Intel Quartus Prime Pro Edition)

• /output_buf_i2c.qsys (Intel Quartus Prime Standard Edition)
•/output_buf_i2c.ip (Intel Quartus Prime Pro Edition)

/reset_controller.qsys (Intel Quartus Prime Standard Edition)

/clock_crosser.v

dcfifo_inst.v

debouncer.sv (Intel Quartus Prime Pro Edition)

hdr

/altera_hdmi_aux_hdr.v

/altera_hdmi_aux_snk.v

/altera_hdmi_aux_src.v

/altera_hdmi_hdr_infoframe.v

/avalon_st_mutiplexer.qsys

reconfig_mgmt

/mr_compare_pll.v

/mr_compare_rx.v

/mr_rate_detect.v

/mr_reconfig_master_pll.v

/mr_reconfig_master_rx.v

/mr_reconfig_mgmt.v

/mr_rom_pll_dprioaddr.v

/mr_rom_pll_valuemask_8bpc.v

/mr_rom_pll_valuemask_10bpc.v

/mr_rom_pll_valuemask_12bpc.v

/mr_rom_pll_valuemask_16bpc.v

/mr_rom_rx_dprioaddr_bitmask.v

/mr_rom_rx_valuemask.v

/mr_state_machine.v

sdc

/a10_hdmi2.sdc

/mr_reconfig_mgmt.sdc

/jtag.sdc

/rxtx_link.sdc

/mr_clock_sync.sdc (Intel Quartus Prime Standard Edition)

Table 31. Generated Simulation Files
Refer to the Simulation Testbench section for more information.

Folders Files

aldec
/aldec.do

/rivierapro_setup.tcl

cadence

/cds.lib

/hdl.var

<cds_libs folder>

mentor
/mentor.do

/msim_setup.tcl

synopsys

/vcs/filelist.f

/vcs/vcs_setup.sh

/vcs/vcs_sim.sh

/vcsmx/vcsmx_setup.sh

/vcsmx/vcsmx_sim.sh

/vcsmx/synopsys_sim_setup

xcelium

(Intel Quartus Prime Pro Edition)

/cds.lib

/hdl.var

/xcelium_setup.sh

/xcelium_sim.sh

<cds_libs folder>

common

(Intel Quartus Prime Pro Edition)

/modelsim_files.tcl

/riviera_files.tcl

/vcs_files.tcl

/vcsmx_files.tcl

/xcelium_files.tcl

hdmi_rx

• /hdmi_rx.qsys (Intel Quartus Prime Standard Edition)
• /hdmi_rx.ip (Intel Quartus Prime Pro Edition)

/hdmi_rx.sopcinfo (Intel Quartus Prime Standard Edition)

/Panasonic.hex (Intel Quartus Prime Pro Edition)

/symbol_aligner.v (Intel Quartus Prime Pro Edition)

hdmi_tx

• /hdmi_tx.qsys (Intel Quartus Prime Standard Edition)
• /hdmi_tx.ip (Intel Quartus Prime Pro Edition)

/hdmi_tx.sopcinfo (Intel Quartus Prime Standard Edition)

Table 32.Generated Software Files

Folders Files

tx_control_src
Note: The tx_control folder also co
ntains duplicates of these files.

/intel_fpga_i2c.c (Intel Quartus Prime Pro Edition)

/intel_fpga_i2c.h (Intel Quartus Prime Pro Edition)

/i2c.c (Intel Quartus Prime Standard Edition)

/i2c.h (Intel Quartus Prime Standard Edition)

/main.c

/xcvr_gpll_rcfg.c
/xcvr_gpll_rcfg.h
/ti_i2c.c (Intel Quartus Prime Standard Edition)
/ti_i2c.h (Intel Quartus Prime Standard Edition)

3.4. Design Components
The HDMI Intel FPGA IP design example requires these components.
Table 33. HDMI RX Top Components

Module Description

HDMI RX Core
The IP receives the serial data from the Transceiver Native PHY and perf
orms data alignment, channel deskew, TMDS decoding, auxiliary data de
coding, video data decoding, audio data decoding, and descrambling.

I2

I2C is the interface used for Sink Display Data Channel (DDC) and Status
and Data Channel (SCDC). The HDMI source uses the DDC to determine
the capabilities and characteristics of the sink by reading the Enhanced E
xtended Display Identification Data (E-EDID) data structure.
• The 8-bit I2C slave addresses for E-EDID are 0xA0 and 0xA1. The LSB
indicates the access type: 1 for read and 0 for write. When an HPD event
occurs, the I2C slave responds to E-EDID data by reading from the on-chi
p RAM.
• The I2C slave-only controller also supports SCDC for HDMI 2.0 operatio
ns. The 8-bit I2C slave address for the SCDC are 0xA8 and 0xA9. When
an HPD event occurs, the I2C slave performs write or read transaction to
or from SCDC interface of the HDMI RX core.
Note: This I2C slave-only controller for SCDC is not required if HDMI 2.0b
is not intended. If you turn on the Include I2C parameter, this block will b
e included inside the core and will not be visible at this level.

EDID RAM

The design stores the EDID information using the RAM 1-port IP core. A s
tandard two-wire (clock and data) serial bus protocol (I2C slave-only cont
roller) transfers the CEA-861-D Compliant E-EDID data structure. This E
DID RAM stores the E- EDID information.
Note: If you turn on the Include EDID RAM parameter, this block will be i
ncluded inside the core and will not be visible at this level.

IOPLL

The IOPLL generates the RX CDR reference clock, link speed clock, and
video clock for the incoming TMDS clock.
• Output clock 0 (CDR reference clock)
• Output clock 1 (Link speed clock)
• Output clock 2 (Video clock)
Note: The default IOPLL configuration is not valid for any HDMI resolutio
n. The IOPLL is reconfigured to the appropriate settings upon power up.

Transceiver PHY Reset Controller

The Transceiver PHY reset controller ensures a reliable initialization of th
e RX transceivers. The reset input of this controller is triggered by the RX
reconfiguration, and it generates the corresponding analog and digital res
et signal to the Transceiver Native PHY block according to the reset sequ
encing inside the block.

RX Native PHY
Hard transceiver block that receives the serial data from an external video
source. It deserializes the serial data to parallel data before passing the d
ata to the HDMI RX core.

RX Reconfiguration Management

RX reconfiguration management that implements rate detection circuitry
with the HDMI PLL to drive the RX transceiver to operate at any arbitrary l
ink rates ranging from 250 Mbps to 6,000 Mbps.
Refer to Figure 23 on page 63 below.

IOPLL Reconfiguration

IOPLL reconfiguration block facilitates dynamic real-time reconfiguration
of PLLs in Intel FPGAs. This block updates the output clock frequency an
d PLL bandwidth in real time, without reconfiguring the entire FPGA. This
block runs at 100 MHz in Intel Arria 10 devices.
Due to IOPLL reconfiguration limitation, apply the Quartus INI permit_nf_
pll_reconfig_out_of_lock=on during the IOPLL reconfiguration IP generati
on.
To apply the Quartus INI, include
“permit_nf_pll_reconfig_out_of_lock=on” in the quartus.ini file and place i
n the file the Intel Quartus Prime project directory. You should see a warni
ng message when you edit the IOPLL reconfiguration block (pll_hdmi_rec
onfig) in the Quartus Prime software with the INI.
Note: Without this Quartus INI, IOPLL reconfiguration cannot be
completed if the IOPLL loses lock during reconfiguration.

PIO The parallel input/output (PIO) block functions as control, status and reset
interfaces to or from the CPU sub-system.

Figure 23. Multi-Rate Reconfiguration Sequence Flow
The figure illustrates the multi-rate reconfiguration sequence flow of the controller when it receives input data
stream and reference clock frequency, or when the transceiver is unlocked.

Table 34. HDMI TX Top Components

Module Description

HDMI TX Core The IP core receives video data from the top level and performs TMDS encoding, auxiliar
y data encoding, audio data encoding, video data encoding, and scrambling.

I2C Master

I2C is the interface used for Sink Display Data Channel (DDC) and Status and Data Chan
nel (SCDC). The HDMI source uses the DDC to determine the capabilities and characteri
stics of the sink by reading the Enhanced Extended Display Identification Data (E-EDID)
data structure.
• As DDC, I2C Master reads the EDID from the external sink to configure the EDID inform
ation EDID RAM in the HDMI RX Top or for video processing.
• As SCDC, I2C master transfers the SCDC data structure from the FPGA source to the e
xternal sink for HDMI 2.0b operation. For example, if the outgoing data stream is above 3
,400 Mbps, the Nios II processor commands the I2C master to update the TMDS_BIT_CL
OCK_RATIO and SCRAMBLER_ENABLE bits of the sink SCDC configuration register to
1.

IOPLL

The IOPLL supplies the link speed clock and video clock from the incoming TMDS clock.
• Output clock 1 (Link speed clock)
• Output clock 2 (Video clock)
Note: The default IOPLL configuration is not valid for any HDMI resolution. The IOPLL is
reconfigured to the appropriate settings upon power up.

Transceiver PHY R
eset Controller

The Transceiver PHY reset controller ensures a reliable initialization of the TX transceiver
s. The reset input of this controller is triggered from the top level, and it generates the corr
esponding analog and digital reset signal to the Transceiver Native PHY block according t
o the reset sequencing inside the block.
The tx_ready output signal from this block also functions as a reset signal to the HDMI Int
el FPGA IP to indicate the transceiver is up and running, and ready to receive data from t
he core.

Transceiver Native
PHY

Hard transceiver block that receives the parallel data from the HDMI TX core and serializ
es the data from transmitting it.
Reconfiguration interface is enabled in the TX Native PHY block to demonstrate the conn
ection between TX Native PHY and transceiver arbiter. No reconfiguration is performed f
or TX Native PHY.
Note: To meet the HDMI TX inter-channel skew requirement, set the TX channel bonding
mode option in the Intel Arria 10 Transceiver Native PHY parameter editor to PMA and P
CS bonding. You also need to add the maximum skew (set_max_skew) constraint requir
ement to the digital reset signal from the transceiver reset controller (tx_digitalreset) as re
commended in the Intel Arria 10 Transceiver PHY User Guide.

TX PLL The transmitter PLL block provides the serial fast clock to the Transceiver Native PHY blo
ck. For this HDMI Intel FPGA IP design example, fPLL is used as TX PLL.

IOPLL Reconfigurat
ion

IOPLL reconfiguration block facilitates dynamic real-time reconfiguration of PLLs in Intel
FPGAs. This block updates the output clock frequency and PLL bandwidth in real time, w
ithout reconfiguring the entire FPGA. This block runs at 100 MHz in Intel Arria 10 devices.
Due to IOPLL reconfiguration limitation, apply the Quartus INI permit_nf_pll_reconfig_out
_of_lock=on during the IOPLL reconfiguration IP generation.
To apply the Quartus INI, include “permit_nf_pll_reconfig_out_of_lock=on” in the
quartus.ini file and place in the file the Intel Quartus Prime project directory. You should s
ee a warning message when you edit the IOPLL reconfiguration block
(pll_hdmi_reconfig) in the Intel Quartus Prime software with the INI.
Note: Without this Quartus INI, IOPLL reconfiguration cannot be completed if the IOPLL l
oses lock during reconfiguration.

PIO The parallel input/output (PIO) block functions as control, status and reset interfaces to or
from the CPU sub-system.

Table 35. Transceiver Data Rate and Oversampling Factor for Each TMDS Clock Frequency Range

TMDS Clock Frequen
cy (MHz) TMDS Bit clock Ratio Oversampling Factor Transceiver Data Rate (Mbps)

85–150 1 Not applicable 3400–6000

100–340 0 Not applicable 1000–3400

50–100 0 5 2500–5000

35–50 0 3 1050–1500

30–35 0 4 1200–1400

25–30 0 5 1250–1500

Table 36. Top-Level Common Blocks

Module Description

Transceiver Arbiter

This generic functional block prevents transceivers from recalibrating sim
ultaneously when either RX or TX transceivers within the same physical c
hannel require reconfiguration. The simultaneous recalibration impacts ap
plications where RX and TX transceivers within the same channel are ass
igned to independent IP implementations.
This transceiver arbiter is an extension to the resolution recommended for
merging simplex TX and simplex RX into the same physical channel. This
transceiver arbiter also assists in merging and arbitrating the Avalon-MM
RX and TX reconfiguration requests targeting simplex RX and TX
transceivers within a channel as the reconfiguration interface port of the tr
ansceivers can only be accessed sequentially.
The interface connection between the transceiver arbiter and TX/RX Nati
ve PHY/PHY Reset Controller blocks in this design example demonstrate
s a generic mode that apply for any IP combination using the transceiver
arbiter. The transceiver arbiter is not required when only either RX or TX t
ransceiver is used in a channel.
The transceiver arbiter identifies the requester of a reconfiguration throug
h its Avalon-MM reconfiguration interfaces and ensures that the correspo
nding tx_reconfig_cal_busy or rx_reconfig_cal_busy is gated accordingly.
For HDMI application, only RX initiates reconfiguration. By channeling the
Avalon-MM reconfiguration request through the arbiter, the arbiter identifi
es that the reconfiguration request originates from the RX, which then gat
es tx_reconfig_cal_busy from asserting and allows rx_reconfig_cal_busy
to assert. The gating prevents the TX transceiver from being moved to cal
ibration mode unintentionally.

Note: Because HDMI only requires RX reconfiguration, the tx_reconfig_m
gmt_* signals are tied off. Also, the Avalon-MM interface is not required b
etween the arbiter and the TX Native PHY block. The blocks are assigned
to the interface in the design example to demonstrate generic transceiver
arbiter connection to TX/RX Native PHY/PHY Reset Controller.

RX-TX Link

• The video data output and synchronization signals from HDMI RX core l
oop through a DCFIFO across the RX and TX video clock domains.
• The General Control Packet (GCP), InfoFrames (AVI, VSI and AI), auxili
ary data, and audio data loop through DCFIFOs across the RX and TX lin
k speed clock domains.
• The auxiliary data port of the HDMI TX core controls the auxiliary data th
at flow through the DCFIFO through backpressure. The backpressure
ensures there is no incomplete auxiliary packet on the auxiliary data port.
• This block also performs external filtering:
— Filters the audio data and audio clock regeneration packet from the a
uxiliary data stream before transmitting to the HDMI TX core auxiliary dat
a port.
Note: To disable this filtering, press user_pb[2]. Enable this filtering to ens
ure there is no duplication of audio data and audio clock regeneration pac
ket in the retransmitted auxiliary data stream.
— Filters the High Dynamic Range (HDR) InfoFrame from the HDMI RX
auxiliary data and inserts an example HDR InfoFrame to the auxiliary data
of the HDMI TX through the Avalon ST multiplexer.

CPU Sub-System

The CPU sub-system functions as SCDC and DDC controllers, and sourc
e reconfiguration controller.
• The source SCDC controller contains the I2C master controller. The I2C
master controller transfers the SCDC data structure from the FPGA sourc
e to the external sink for HDMI 2.0b operation. For example, if the outgoin
g data stream is 6,000 Mbps, the Nios II processor commands the I2C ma
ster controller to update the TMDS_BIT_CLOCK_RATIO and SCRAMBLE
R_ENABLE bits of the sink TMDS configuration register to 1.
• The same I2C master also transfers the DDC data structure (E-EDID)
between the HDMI source and external sink.
• The Nios II CPU acts as the reconfiguration controller for the HDMI sour
ce. The CPU relies on the periodic rate detection from the RX
Reconfiguration Management module to determine if the TX requires rec
onfiguration. The Avalon-MM slave translator provides the interface betw
een the Nios II processor Avalon-MM master interface and the Avalon-M
M slave interfaces of the externally instantiated HDMI source’s IOPLL an
d TX Native PHY.
• The reconfiguration sequence flow for TX is same as RX, except that th
e PLL and transceiver reconfiguration and the reset sequence is
performed sequentially. Refer to Figure 24 on page 67.

Figure 24. Reconfiguration Sequence Flow

The figure illustrates the Nios II software flow that involves the controls for I2C master and HDMI source.

3.5. Dynamic Range and Mastering (HDR) InfoFrame Insertion and Filtering
The HDMI Intel FPGA IP design example includes a demonstration of HDR InfoFrame insertion in a RX-TX
loopback system.
HDMI Specification version 2.0b allows Dynamic Range and Mastering InfoFrame to be transmitted through HDMI
auxiliary stream. In the demonstration, the Auxiliary Data Insertion block supports the HDR insertion. You need
only to format the intended HDR InfoFrame packet as specified in the module’s signal list table and use the
provided AUX Insertion Control module to schedule the insertion of the HDR InfoFrame once every video frame.
In this example configuration, in instances where the incoming auxiliary stream already includes HDR InfoFrame,
the streamed HDR content is filtered. The filtering avoids conflicting HDR InfoFrames to be transmitted and
ensures that only the values specified in the HDR Sample Data module are used.
Figure 25. RX-TX Link with Dynamic Range and Mastering InfoFrame Insertion
The figure shows the block diagram of RX-TX link including Dynamic Range and Mastering InfoFrame insertion
into the HDMI TX core auxiliary stream.

Table 37. Auxiliary Data Insertion Block (altera_hdmi_aux_hdr) Signals

Signal Direction Width Description

Clock and Reset

clk Input 1
Clock input. This clock
should be connected to the li
nk speed clock.

reset Input 1 Reset input.

Auxiliary Packet Generator and Multiplexer Signals

multiplexer_out_data Output 72

Avalon streaming output from
the multiplexer.

multiplexer_out_valid Output 1

multiplexer_out_ready Output 1

multiplexer_out_startofpacket Output 1

multiplexer_out_endofpacket Output 1

multiplexer_out_channel Output 11

multiplexer_in_data Input 72 Avalon streaming input to the
In1 port of the multiplexer.
HDMI TX Video Vsync. This
signal should be synchronize
d to the link speed clock dom
ain.
The core inserts the HDR Inf
oFrame to the auxiliary strea
m at the rising edge of this si
gnal.

multiplexer_in_valid Input 1

multiplexer_in_ready Input 1

multiplexer_in_startofpacket Input 1

multiplexer_in_endofpacket
hdmi_tx_vsync

Input
Input

1
1

Table 38. HDR Data Module (altera_hdmi_hdr_infoframe) Signals

Signal Direction Width Description

hb0 Output 8 Header byte 0 of the Dynamic Range and Mastering InfoFrame: Info
Frame type code.

hb1 Output 8 Header byte 1 of the Dynamic Range and Mastering InfoFrame: Info
Frame version number.

hb2 Output 8 Header byte 2 of the Dynamic Range and Mastering InfoFrame: Len
gth of InfoFrame.

pb Input 224 Data byte of the Dynamic Range and Mastering InfoFrame.

Table 39. Dynamic Range and Mastering InfoFrame Data Byte Bundle Bit-Fields

Bit-Field Definition Static Metadata Type 1

7:0 Data Byte 1: {5’h0, EOTF[2:0]}

15:8 Data Byte 2: {5’h0, Static_Metadata_Descriptor_ID[2:0]}

23:16 Data Byte 3: Static_Metadata_Descriptor display_primaries_x[0], LSB

31:24 Data Byte 4: Static_Metadata_Descriptor display_primaries_x[0], MSB

39:32 Data Byte 5: Static_Metadata_Descriptor display_primaries_y[0], LSB

47:40 Data Byte 6: Static_Metadata_Descriptor display_primaries_y[0], MSB

55:48 Data Byte 7: Static_Metadata_Descriptor display_primaries_x[1], LSB

63:56 Data Byte 8: Static_Metadata_Descriptor display_primaries_x[1], MSB

71:64 Data Byte 9: Static_Metadata_Descriptor display_primaries_y[1], LSB

79:72 Data Byte 10: Static_Metadata_Descriptor display_primaries_y[1], MSB

87:80 Data Byte 11: Static_Metadata_Descriptor display_primaries_x[2], LSB

95:88 Data Byte 12: Static_Metadata_Descriptor display_primaries_x[2], MSB

103:96 Data Byte 13: Static_Metadata_Descriptor display_primaries_y[2], LSB

111:104 Data Byte 14: Static_Metadata_Descriptor display_primaries_y[2], MSB

119:112 Data Byte 15: Static_Metadata_Descriptor white_point_x, LSB

127:120 Data Byte 16: Static_Metadata_Descriptor white_point_x, MSB

135:128 Data Byte 17: Static_Metadata_Descriptor white_point_y, LSB

143:136 Data Byte 18: Static_Metadata_Descriptor white_point_y, MSB

151:144 Data Byte 19: Static_Metadata_Descriptor max_display_mastering_luminance,
LSB

159:152 Data Byte 20: Static_Metadata_Descriptor max_display_mastering_luminance,
MSB

167:160 Data Byte 21: Static_Metadata_Descriptor min_display_mastering_luminance, L
SB

175:168 Data Byte 22: Static_Metadata_Descriptor min_display_mastering_luminance,
MSB

183:176 Data Byte 23: Static_Metadata_Descriptor Maximum Content Light Level, LSB

191:184 Data Byte 24: Static_Metadata_Descriptor Maximum Content Light Level, MSB

199:192 Data Byte 25: Static_Metadata_Descriptor Maximum Frame-average Light Level
, LSB

207:200 Data Byte 26: Static_Metadata_Descriptor Maximum Frame-average Light Level
, MSB

215:208 Reserved

223:216 Reserved

Disabling HDR Insertion and Filtering
Disabling HDR insertion and filter enables you to verify the retransmission of HDR content already available in the
source auxiliary stream without any modification in the RX-TX Retransmit design example.
To disable HDR InfoFrame insertion and filtering:

1. Set block_ext_hdr_infoframe to 1’b0 in the rxtx_link.v file to prevent the filtering of the HDR InfoFrame from the

Auxiliary stream.

2. Set multiplexer_in0_valid of the avalon_st_multiplexer instance in the altera_hdmi_aux_hdr.v file to 1’b0 to

prevent the Auxiliary Packet Generator from forming and inserting additional HDR InfoFrame into the TX

Auxiliary stream.

3.6. Clocking Scheme
The clocking scheme illustrates the clock domains in the HDMI Intel FPGA IP design example.
Figure 26. HDMI Intel FPGA IP Design Example Clocking Scheme (Intel Quartus Prime Pro Edition)

Figure 27. HDMI Intel FPGA IP Design Example Clocking Scheme (Intel Quartus Prime Standard Edition)

Table 40. Clocking Scheme Signals

Clock Signal Name in De
sign Description

TX IOPLL/ TX PL
L Reference Cloc
k 1

hdmi_clk_in

Reference clock to the TX IOPLL and TX PLL. The clock frequency i
s the same as the expected TMDS clock frequency from the HDMI T
X TMDS clock channel.
For this HDMI Intel FPGA IP design example, this clock is connected
to the RX TMDS clock for demonstration purpose. In your
application, you need to supply a dedicated clock with TMDS clock fr
equency from a programmable oscillator for better jitter
performance.
Note: Do not use a transceiver RX pin as a TX PLL reference clock.
Your design will fail to fit if you place the HDMI TX refclk on an RX pi
n.

TX Transceiver C
lock Out tx_clk

Clock out recovered from the transceiver, and the frequency varies d
epending on the data rate and symbols per clock.
TX transceiver clock out frequency = Transceiver data rate/ (Symbol
per clock*10)

TX PLL Serial Cl
ock tx_bonding_clocks Serial fast clock generated by TX PLL. The clock frequency is set ba

sed on the data rate.

TX/RX Link Spee
d Clock ls_clk

Link speed clock. The link speed clock frequency depends on the ex
pected TMDS clock frequency, oversampling factor, symbols per clo
ck, and TMDS bit clock ratio.

TMDS Bit Clock Ratio Link Speed Clock Frequency

0 TMDS clock frequency/ Symbol p
er clock

1 TMDS clock frequency *4 / Symb
ol per clock

TX/RX Video
Clock vid_clk

Video data clock. The video data clock frequency is derived from the TX link spe
ed clock based on the color depth.

TMDS Bit Clock Ratio Video Data Clock Frequency

0 TMDS clock/ Symbol per clock/ C
olor depth factor

1 TMDS clock *4 / Symbol per clock
/ Color depth factor

Bits per Color Color Depth Factor

8 1

10 1.25

12 1.5

16 2.0

RX TMDS Cl
ock tmds_clk_in TMDS clock channel from the HDMI RX and connects to the reference clock to t

he IOPLL.

RX CDR Ref
erence Clock
0 /TX PLL R
eference Clo
ck 0

fr_clk Free running reference clock to RX CDR and TX PLL. This clock is required for
power-up calibration.

RX CDR Ref
erence Clock
1

iopll_outclk0

Reference clock to the RX CDR of RX transceiver.

Data Rate RX Reference Clock Frequency

Data rate <1 Gbps 5× TMDS clock frequency

1 Gbps< Data rate

<3.4 Gbps TMDS clock frequency

Data rate >3.4 Gbps 4× TMDS clock frequency

• Data Rate <1 Gbps: For oversampling to meet transceiver minimum data rate r
equirement.
• Data Rate >3.4 Gbps: To compensate for the TMDS bit rate to clock ratio of 1/
40 to maintain the transceiver data rate to clock ratio at 1/10.
Note: Do not use a transceiver RX pin as a CDR reference clock. Your design wi
ll fail to fit if you place the HDMI RX refclk on an RX pin.

RX Transceiv
er Clock Out rx_clk

Clock out recovered from the transceiver, and the frequency varies depending o
n the data rate and symbols per clock.

RX transceiver clock out frequency = Transceiver data rate/ (Symbol per clock*1
0)

Management
Clock mgmt_clk A free running 100 MHz clock for these components:

• Avalon-MM interfaces for reconfiguration
— The frequency range requirement is between 100– 125 MHz.
•, PHY reset controller for transceiver reset sequence
— The frequency range requirement is between 1–500 MHz.
• IOPLL Reconfiguration
— The maximum clock frequency is 100 MHz.
• RX Reconfiguration for management
• CPU
• I2C Master

I2C Clock i2c_clk A 100 MHz clock input that clocks I2C slave, SCDC registers in the H
DMI RX core, and EDID RAM.

Related Information

Using Transceiver RX Pin as CDR Reference Clock

Using Transceiver RX Pin as TX PLL Reference Clock

3.7. Interface Signals
The tables list the signals for the HDMI Intel FPGA IP design example.
Table 41. Top-Level Signals

Signal Direction Width Description

On-board Oscillator Signal

clk_fpga_b3_p Input 1 100 MHz free running clock for core reference clock

REFCLK_FMCB_P
(Intel Quartus Prim
e Pro Edition)

Input 1 625 MHz free running clock for transceiver reference
clock; this clock can be of any frequency

User Push Buttons and LEDs

user_pb Input 1 Push button to control the HDMI Intel FPGA IP design fu
nctionality

cpu_resetn Input 1 Global reset

user_led_g Output 4
Green LED display
Refer to Hardware Setup on page 89 for more informatio
n about the LED functions.

user_led_r Output 4
Red LED display
Refer to Hardware Setup on page 89 for more informatio
n about the LED functions.

HDMI FMC Daughter Card Pins on FMC Port B

fmcb_gbtclk_m2c_p_0 Input 1 HDMI RX TMDS clock

fmcb_dp_m2c_p Input 3

HDMI RX red, green, and blue data channels
• Bitec daughter card revision 11
— [0]: RX TMDS Channel 1 (Green)
— [1]: RX TMDS Channel 2 (Red)
— [2]: RX TMDS Channel 0 (Blue)
• Bitec daughter card revision 4 or 6
— [0]: RX TMDS Channel 1 (Green)— polarity inverted
— [1]: RX TMDS Channel 0 (Blue)— polarity inverted
— [2]: RX TMDS Channel 2 (Red)— polarity inverted

fmcb_dp_c2m_p Output 4

HDMI TX clock, red, green, and blue data channels
• Bitec daughter card revision 11
— [0]: TX TMDS Channel 2 (Red)
— [1]: TX TMDS Channel 1 (Green)
— [2]: TX TMDS Channel 0 (Blue)
— [3]: TX TMDS Clock Channel
• Bitec daughter card revision 4 or 6
— [0]: TX TMDS Clock Channel
— [1]: TX TMDS Channel 0 (Blue)
— [2]: TX TMDS Channel 1 (Green)
— [3]: TX TMDS Channel 2 (Red)

fmcb_la_rx_p_9 Input 1 HDMI RX +5V power detect

fmcb_la_rx_p_8 Inout 1 HDMI RX hot plug detect

fmcb_la_rx_n_8 Inout 1 HDMI RX I2C SDA for DDC and SCDC

fmcb_la_tx_p_10 Input 1 HDMI RX I2C SCL for DDC and SCDC

fmcb_la_tx_p_12 Input 1 HDMI TX hot plug detect

fmcb_la_tx_n_12 Inout 1 HDMI I2C SDA for DDC and SCDC

fmcb_la_rx_p_10 Inout 1 HDMI I2C SCL for DDC and SCDC

fmcb_la_tx_p_11 Inout 1 HDMI I2C SDA for redriver control

fmcb_la_rx_n_9 Inout 1 HDMI I2C SCL for redriver control

Table 42. HDMI RX Top-Level Signals

Signal Direction Width Description

Clock and Reset Signals

mgmt_clk Input 1 System clock input (100 MHz)

fr_clk (Intel Quartus Pri
me Pro Edition) Input 1

Free running clock (625 MHz) for primary transceive
r reference clock. This clock is required for transceiv
er calibration during power-up state. This clock can
be of any frequency.

reset Input 1 System reset input

Signal Direction Width Description

Clock and Reset Signals

reset_xcvr_powerup (Intel Q
uartus Prime Pro Edition) Input 1

Transceiver reset input. This signal is asserted dur
ing the reference clocks switching process (from fr
ee running clock to TMDS clock) in power-up stat
e.

tmds_clk_in Input 1 HDMI RX TMDS clock

i2c_clk Input 1 Clock input for DDC and SCDC interface

vid_clk_out Output 1 Video clock output

ls_clk_out Output 1 Link speed clock output

sys_init Output 1 System initialization to reset the system upon pow
er-up

RX Transceiver and IOPLL Signals

rx_serial_data Input 3 HDMI serial data to the RX Native PHY

gxb_rx_ready Output 1 Indicates RX Native PHY is ready

gxb_rx_cal_busy_out Output 3 RX Native PHY calibration busy to the transceiv
er arbiter

gxb_rx_cal_busy_in Input 3 Calibration busy signal from the transceiver arbi
ter to the RX Native PHY

iopll_locked Output 1 Indicate IOPLL is locked

gxb_reconfig_write Input 3

Transceiver reconfiguration Avalon-MM interfac
e from the RX Native PHY to the transceiver arb
iter

gxb_reconfig_read Input 3

gxb_reconfig_address Input 30

gxb_reconfig_writedata Input 96

gxb_reconfig_readdata Output 96

gxb_reconfig_waitrequest Output 3

RX Reconfiguration Management

rx_reconfig_en Output 1 RX Reconfiguration enables signal

measure Output 24 HDMI RX TMDS clock frequency measurement
(in 10 ms)

measure_valid Output 1 Indicates the measure signal is valid

os Output 1
Oversampling factor:
• 0: No oversampling
• 1: 5× oversampling

reconfig_mgmt_write Output 1
RX reconfiguration management Avalon memor
y-mapped interface to transceiver arbiterreconfig_mgmt_read Output 1

reconfig_mgmt_address Output 12

reconfig_mgmt_writedata Output 32

reconfig_mgmt_readdata Input 32

reconfig_mgmt_waitreque
st Input 1

HDMI RX Core Signals

TMDS_Bit_clock_Ratio Output 1 SCDC register interfaces

audio_de Output 1

HDMI RX core audio interfaces
Refer to the Sink Interfaces section in the HDMI Inte
l FPGA IP User Guide for more information.

audio_data Output 256

audio_info_ai Output 48

audio_N Output 20

audio_CTS Output 20

audio_metadata Output 165

audio_format Output 5

aux_pkt_data Output 72

HDMI RX core auxiliary interfaces
Refer to the Sink Interfaces section in the HDMI Inte
l FPGA IP User Guide for more information.

aux_pkt_addr Output 6

aux_pkt_wr Output 1

aux_data Output 72

aux_sop Output 1

aux_eop Output 1

aux_valid Output 1

aux_error Output 1

gcp Output 6

HDMI RX core sideband signals
Refer to the Sink Interfaces section in the HDMI Inte
l FPGA IP User Guide for more information.

info_avi Output 112

info_vsi Output 61

colordepth_mgmt_sync Output 2

vid_data Output N*48

HDMI RX core video ports
Note: N = symbols per clock
Refer to the Sink Interfaces section in the HDMI Inte
l FPGA IP User Guide for more information.

vid_vsync Output N

vid_hsync Output N

vid_de Output N

mode Output 1
HDMI RX core control and status ports
Note: N = symbols per clock
Refer to the Sink Interfaces section in the HDMI Inte
l FPGA IP User Guide for more information.

ctrl Output N*6

locked Output 3

vid_lock Output 1

in_5v_power Input 1 HDMI RX 5V detect and hotplug detect Refer to the
Sink Interfaces section in the HDMI Intel FPGA IP U
ser Guide for more information.hdmi_rx_hpd_n Inout 1

hdmi_rx_i2c_sda Inout 1
HDMI RX DDC and SCDC interface

hdmi_rx_i2c_scl Inout 1

RX EDID RAM Signals

edid_ram_access Input 1

HDMI RX EDID RAM access interface.
Assert edid_ram_access when you want to write or
read from the EDID RAM, else this signal should be
kept low.

edid_ram_address Input 8

edid_ram_write Input 1

edid_ram_read Input 1

edid_ram_readdata Output 8

edid_ram_writedata Input 8

edid_ram_waitrequest Output 1

Table 43. HDMI TX Top-Level Signals

Signal Direction Width Description

Clock and Reset Signals

mgmt_clk Input 1 System clock input (100 MHz)

fr_clk (Intel Quartus P
rime Pro Edition) Input 1

Free running clock (625 MHz) for primary transceiv
er reference clock. This clock is required for transc
eiver calibration during power-up state. This clock c
an be of any frequency.

reset Input 1 System reset input

hdmi_clk_in Input 1
Reference clock to TX IOPLL and TX PLL. The
clock frequency is the same as the TMDS clock fre
quency.

vid_clk_out Output 1 Video clock output

ls_clk_out Output 1 Link speed clock output

sys_init Output 1 System initialization to reset the system upon powe
r-up

reset_xcvr Input 1 Reset to TX transceiver

reset_pll Input 1 Reset to IOPLL and TX PLL

reset_pll_reconfig Output 1 Reset to PLL reconfiguration

TX Transceiver and IOPLL Signals

tx_serial_data Output 4
HDMI serial data from the TX Native P
HY

gxb_tx_ready Output 1 Indicates TX Native PHY is ready

gxb_tx_cal_busy_out Output 4 TX Native PHY calibration busy signal
to the transceiver arbiter

gxb_tx_cal_busy_in Input 4 Calibration busy signal from the transc
eiver arbiter to the TX Native PHY

TX Transceiver and IOPLL Signals

iopll_locked Output 1 Indicate IOPLL is locked

txpll_locked Output 1 Indicate TX PLL is locked

gxb_reconfig_write Input 4

Transceiver reconfiguration Avalon me
mory-mapped interface from the TX N
ative PHY to the transceiver arbiter

gxb_reconfig_read Input 4

gxb_reconfig_address Input 40

gxb_reconfig_writedata Input 128

gxb_reconfig_readdata Output 128

gxb_reconfig_waitrequest Output 4

TX IOPLL and TX PLL Reconfiguration Signals

pll_reconfig_write/
tx_pll_reconfig_write

Input 1

TX IOPLL/TX PLL reconfiguration Ava
lon memory-mapped interfaces

pll_reconfig_read/ tx_pll_reconfig_rea
d Input 1

pll_reconfig_address/ tx_pll_reconfig_
address Input 10

pll_reconfig_writedata/ tx_pll_reconfig
_writedata Input 32

pll_reconfig_readdata/ tx_pll_reconfig
_readdata Output 32

pll_reconfig_waitrequest/
tx_pll_reconfig_waitrequest Output 1

os Input 2

Oversampling factor:
• 0: No oversampling
• 1: 3× oversampling
• 2: 4× oversampling
• 3: 5× oversampling

measure Input 24 Indicates the TMDS clock frequency o
f the transmitting video resolution.

HDMI TX Core Signals

ctrl Input 6*N HDMI TX core control interfaces
Note: N = Symbols per clock
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

mode Input 1

TMDS_Bit_clock_Ratio Input 1 SCDC register interfaces

Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

Scrambler_Enable Input 1

audio_de Input 1 HDMI TX core audio interfaces

Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

audio_mute Input 1

audio_data Input 256

continued…

HDMI TX Core Signals

audio_info_ai Input 49

audio_N Input 22

audio_CTS Input 22

audio_metadata Input 166

audio_format Input 5

i2c_master_write Input 1
TX I2C master Avalon memory-mappe
d interface to I2C master inside the TX
core.
Note: These signals are available only
when you turn on the Include I2C par
ameter.

i2c_master_read Input 1

i2c_master_address Input 4

i2c_master_writedata Input 32

i2c_master_readdata Output 32

aux_ready Output 1
HDMI TX core auxiliary interfaces

Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

aux_data Input 72

aux_sop Input 1

aux_eop Input 1

aux_valid Input 1

gcp Input 6 HDMI TX core sideband signals
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

info_avi Input 113

info_vsi Input 62

vid_data Input N*48
HDMI TX core video ports
Note: N = symbols per clock
Refer to the Source Interfaces section
in the HDMI Intel FPGA IP User Guide
for more information.

vid_vsync Input N

vid_hsync Input N

vid_de Input N

I2C and Hot Plug Detect Signals

nios_tx_i2c_sda_in (Intel Quartus Pri
me Pro Edition)
Note: When you turn on the Include I
2C parameter, this signal is placed in t
he TX core and will not be visible at th
is level.

Output 1

I2C Master Avalon memory-mapped i
nterfaces

nios_tx_i2c_scl_in (Intel Quartus Prim
e Pro Edition)
Note: When you turn on the Include I
2C parameter, this signal is placed in t
he TX core and will not be visible at th
is level.

Output 1

nios_tx_i2c_sda_oe (Intel Quartus Pri
me Pro Edition)
Note: When you turn on the Include I
2C parameter, this signal is placed in t
he TX core and will not be visible at th
is level.

Input 1

continued…

I2C and Hot Plug Detect Signals

nios_tx_i2c_scl_oe (Intel Quartus Pri
me Pro Edition)
Note: When you turn on the Include I
2C parameter, this signal is placed in t
he TX core and will not be visible at th
is level.

Input 1

nios_ti_i2c_sda_in (Intel Quartus Prim
e Pro Edition) Output 1

nios_ti_i2c_scl_in (Intel Quartus Prim
e Pro Edition) Output 1

nios_ti_i2c_sda_oe (Intel Quartus Pri
me Pro Edition) Input 1

nios_ti_i2c_scl_oe (Intel Quartus Prim
e Pro Edition) Input 1

hdmi_tx_i2c_sda Inout 1
HDMI TX DDC and SCDC interfaces

hdmi_tx_i2c_scl Inout 1

hdmi_ti_i2c_sda (Intel Quartus Prime
Pro Edition) Inout 1

I2C interface for Bitec Daughter Card
Revision 11 TI181 Control

hdmi_tx_ti_i2c_sda (Intel Quartus Pri
me Standard Edition) Inout 1

hdmi_ti_i2c_scl (Intel Quartus Prime
Pro Edition) Inout 1

hdmi_tx_ti_i2c_scl (Intel Quartus Prim
e Standard Edition) Inout 1

tx_i2c_avalon_waitrequest Output 1

Avalon memory-mapped interfaces of
I2C master

tx_i2c_avalon_address (Intel Quartus
Prime Standard Edition) Input 3

tx_i2c_avalon_writedata (Intel Quartu
s Prime Standard Edition) Input 8

tx_i2c_avalon_readdata (Intel
Quartus Prime Standard Edition) Output 8

tx_i2c_avalon_chipselect (Intel
Quartus Prime Standard Edition) Input 1

tx_i2c_avalon_write (Intel Quartus Pri
me Standard Edition) Input 1

tx_i2c_irq (Intel Quartus Prime
Standard Edition) Output 1

tx_ti_i2c_avalon_waitrequest

(Intel Quartus Prime Standard Edition) Output 1

tx_ti_i2c_avalon_address (Intel Quart
us Prime Standard Edition) Input 3

tx_ti_i2c_avalon_writedata (Intel Quar
tus Prime Standard Edition) Input 8

tx_ti_i2c_avalon_readdata (Intel Quar
tus Prime Standard Edition) Output 8

continued…

I2C and Hot Plug Detect Signals

tx_ti_i2c_avalon_chipselect (Intel Qua
rtus Prime Standard Edition) Input 1

tx_ti_i2c_avalon_write (Intel Quartus
Prime Standard Edition) Input 1

tx_ti_i2c_irq (Intel Quartus Prime Stan
dard Edition) Output 1

hdmi_tx_hpd_n Input 1

HDMI TX hotplug detect interfacestx_hpd_ack Input 1

tx_hpd_req Output 1

Table 44. Transceiver Arbiter Signals

Signal Direction Width Description

clk Input 1
Reconfiguration clock. This clock must
share the same clock with the reconfig
uration management blocks.

reset Input 1
Reset signal. This reset must share th
e same reset with the reconfiguration
management blocks.

rx_rcfg_en Input 1 RX reconfiguration enable signal

tx_rcfg_en Input 1 TX reconfiguration enable signal

rx_rcfg_ch Input 2
Indicates which channel to be reconfig
ured on the RX core. This signal must
always remain asserted.

tx_rcfg_ch Input 2
Indicates which channel to be reconfig
ured on the TX core. This signal must
always remain asserted.

rx_reconfig_mgmt_write Input 1

Reconfiguration Avalon-MM interfaces
from the RX reconfiguration managem
ent

rx_reconfig_mgmt_read Input 1

rx_reconfig_mgmt_address Input 10

rx_reconfig_mgmt_writedata Input 32

rx_reconfig_mgmt_readdata Output 32

rx_reconfig_mgmt_waitrequest Output 1

tx_reconfig_mgmt_write Input 1

Reconfiguration Avalon-MM interfaces
from the TX reconfiguration managem
ent

tx_reconfig_mgmt_read Input 1

tx_reconfig_mgmt_address Input 10

tx_reconfig_mgmt_writedata Input 32

tx_reconfig_mgmt_readdata Output 32

tx_reconfig_mgmt_waitrequest Output 1

reconfig_write Output 1 Reconfiguration Avalon-MM interfaces
to the transceiverreconfig_read Output 1

continued…

Signal Direction Width Description

reconfig_address Output 10

reconfig_writedata Output 32

rx_reconfig_readdata Input 32

rx_reconfig_waitrequest Input 1

tx_reconfig_readdata Input 1

tx_reconfig_waitrequest Input 1

rx_cal_busy Input 1 Calibration status signal from the RX t
ransceiver

tx_cal_busy Input 1 Calibration status signal from the TX tr
ansceiver

rx_reconfig_cal_busy Output 1 Calibration status signal to the RX tra
nsceiver PHY reset control

tx_reconfig_cal_busy Output 1 Calibration status signal from the TX tr
ansceiver PHY reset control

Table 45. RX-TX Link Signals

Signal Direction Width Description

reset Input 1 Reset to the video/audio/auxiliary/ sid
ebands FIFO buffer.

hdmi_tx_ls_clk Input 1 HDMI TX link speed clock

hdmi_rx_ls_clk Input 1 HDMI RX link speed clock

hdmi_tx_vid_clk Input 1 HDMI TX video clock

hdmi_rx_vid_clk Input 1 HDMI RX video clock

hdmi_rx_locked Input 3 Indicates HDMI RX locked status

hdmi_rx_de Input N

HDMI RX video interfaces
Note: N = symbols per clock

hdmi_rx_hsync Input N

hdmi_rx_vsync Input N

hdmi_rx_data Input N*48

rx_audio_format Input 5

HDMI RX audio interfaces

rx_audio_metadata Input 165

rx_audio_info_ai Input 48

rx_audio_CTS Input 20

rx_audio_N Input 20

rx_audio_de Input 1

rx_audio_data Input 256

rx_gcp Input 6

HDMI RX sideband interfacesrx_info_avi Input 112

rx_info_vsi Input 61

continued…

Signal Direction Width Description

rx_aux_eop Input 1

HDMI RX auxiliary interfaces
rx_aux_sop Input 1

rx_aux_valid Input 1

rx_aux_data Input 72

hdmi_tx_de Output N

HDMI TX video interfaces

Note: N = symbols per clock

hdmi_tx_hsync Output N

hdmi_tx_vsync Output N

hdmi_tx_data Output N*48

tx_audio_format Output 5

HDMI TX audio interfaces

tx_audio_metadata Output 165

tx_audio_info_ai Output 48

tx_audio_CTS Output 20

tx_audio_N Output 20

tx_audio_de Output 1

tx_audio_data Output 256

tx_gcp Output 6

HDMI TX sideband interfacestx_info_avi Output 112

tx_info_vsi Output 61

tx_aux_eop Output 1

HDMI TX auxiliary interfaces

tx_aux_sop Output 1

tx_aux_valid Output 1

tx_aux_data Output 72

tx_aux_ready Output 1

Table 46. Platform Designer System Signals

Signal Direction Width Description

cpu_clk (Intel Quartus Prime Standard Edition)

Input 1 CPU clockclock_bridge_0_in_clk_clk (Intel Quartus Prime Pro
Edition)

cpu_clk_reset_n (Intel Quartus Prime Standard Edit
ion)

Input 1 CPU reset
reset_bridge_0_reset_reset_n (Intel Quartus Prime
Pro Edition)

tmds_bit_clock_ratio_pio_external_connectio
n_export Input 1 TMDS bit clock ratio

measure_pio_external_connection_export Input 24 Expected TMDS clock fr
equency

continued…

Signal Direction Width Description

measure_valid_pio_external_connection_expor t Input 1 Indicates measure PIO i
s valid

i2c_master_i2c_serial_sda_in (Intel Quartus Prime
Pro Edition) Input 1

I2C Master interfaces

i2c_master_i2c_serial_scl_in (Intel Quartus Prime
Pro Edition) Input 1

i2c_master_i2c_serial_sda_oe (Intel Quartus Prime
Pro Edition) Output 1

i2c_master_i2c_serial_scl_oe (Intel Quartus Prime
Pro Edition) Output 1

i2c_master_ti_i2c_serial_sda_in (Intel Quartus Prim
e Pro Edition) Input 1

i2c_master_ti_i2c_serial_scl_in (Intel Quartus Prim
e Pro Edition) Input 1

i2c_master_ti_i2c_serial_sda_oe (Intel Quartus Pri
me Pro Edition) Output 1

i2c_master_ti_i2c_serial_scl_oe (Intel Quartus Prim
e Pro Edition) Output 1

oc_i2c_master_av_slave_translator_avalon_an ti_s
lave_0_address (Intel Quartus Prime Pro Edition) Output 3

I2C Master Avalon mem
ory-mapped interfaces f
or DDC and SCDC

oc_i2c_master_av_slave_translator_avalon_an ti_s
lave_0_write (Intel Quartus Prime Pro Edition) Output 1

oc_i2c_master_av_slave_translator_avalon_an ti_s
lave_0_readdata (Intel Quartus Prime Pro Edition) Input 32

oc_i2c_master_av_slave_translator_avalon_an ti_s
lave_0_writedata (Intel Quartus Prime Pro Edition) Output 32

oc_i2c_master_av_slave_translator_avalon_an ti_s
lave_0_waitrequest (Intel Quartus Prime Pro Editio
n)

Input 1

oc_i2c_master_av_slave_translator_avalon_an ti_s
lave_0_chipselect (Intel Quartus Prime Pro Edition) Output 1

oc_i2c_master_ti_avalon_anti_slave_address (Intel
Quartus Prime Standard Edition) Output 3

I2C Master Avalon mem
ory-mapped interfaces f
or Bitec daughter card re
vision 11, T1181 control

oc_i2c_master_ti_avalon_anti_slave_write (Intel Qu
artus Prime Standard Edition) Output 1

oc_i2c_master_ti_avalon_anti_slave_readdata (Intel
Quartus Prime Standard Edition) Input 32

oc_i2c_master_ti_avalon_anti_slave_writedat a (Int
el Quartus Prime Standard Edition) Output 32

oc_i2c_master_ti_avalon_anti_slave_waitrequ est (
Intel Quartus Prime Standard Edition) Input 1

oc_i2c_master_ti_avalon_anti_slave_chipsele ct (In
tel Quartus Prime Standard Edition) Output 1

continued…

Signal Direction Width Description

edid_ram_access_pio_external_connection_exp ort Output 1 EDID RAM access interf
aces.
Assert edid_ram_access
pio external_connecti
on_ export when you wa
nt to write to or read fro
m the EDID RAM on the
RX top. Connect EDID R
AM access Avalon-MM s
lave in Platform Designe
r to the EDID RAM interf
ace on the top-level RX
modules.

edid_ram_slave_translator_address Output 8

edid_ram_slave_translator_write Output 1

edid_ram_slave_translator_read Output 1

edid_ram_slave_translator_readdata Input 8

edid_ram_slave_translator_writedata Output 8

edid_ram_slave_translator_waitrequest Input 1

powerup_cal_done_export (Intel Quartus Prime Pro
Edition) Input 1

RX PMA
Reconfiguration Avalon
memory-mapped interfa

rx_pma_cal_busy_export (Intel Quartus Prime Pro
Edition) Input 1

rx_pma_ch_export (Intel Quartus Prime Pro Edition
) Output 2

rx_pma_rcfg_mgmt_address (Intel Quartus Prime P
ro Edition)

Output 12

rx_pma_rcfg_mgmt_write (Intel Quartus Prime Pro
Edition) Output 1

rx_pma_rcfg_mgmt_read (Intel Quartus Prime Pro
Edition) Output 1

rx_pma_rcfg_mgmt_readdata (Intel Quartus Prime
Pro Edition) Input 32

ces

rx_pma_rcfg_mgmt_writedata (Intel Quartus Prime
Pro Edition) Output 32

rx_pma_rcfg_mgmt_waitrequest (Intel Quartus Pri
me Pro Edition) Input 1

rx_pma_waitrequest_export (Intel Quartus Prime Pr
o Edition) Input 1

rx_rcfg_en_export (Intel Quartus Prime Pro Edition) Output 1

rx_rst_xcvr_export (Intel Quartus Prime Pro Edition) Output 1

tx_pll_rcfg_mgmt_translator_avalon_anti_sla ve_w
aitrequest Input 1

TX PLL Reconfiguration
Avalon memory-mapped
interfaces

tx_pll_rcfg_mgmt_translator_avalon_anti_sla ve_wr
itedata

Output 32

tx_pll_rcfg_mgmt_translator_avalon_anti_sla ve_ad
dress Output 10

tx_pll_rcfg_mgmt_translator_avalon_anti_sla ve_wr
ite Output 1

tx_pll_rcfg_mgmt_translator_avalon_anti_sla ve_re
ad Output 1

tx_pll_rcfg_mgmt_translator_avalon_anti_sla ve_re
addata Input 32

continued…

Signal Direction Width Description

tx_pll_waitrequest_pio_external_connection_ expor
t Input 1 TX PLL waitrequest

tx_pma_rcfg_mgmt_translator_avalon_anti_sla ve_
address Output 12

TX PMA Reconfiguration
Avalon memory-mapped
interfaces

tx_pma_rcfg_mgmt_translator_avalon_anti_sla ve_
write Output 1

tx_pma_rcfg_mgmt_translator_avalon_anti_sla ve_
read Output 1

tx_pma_rcfg_mgmt_translator_avalon_anti_sla ve_
readdata Input 32

tx_pma_rcfg_mgmt_translator_avalon_anti_sla ve_
writedata Output 32

tx_pma_rcfg_mgmt_translator_avalon_anti_sla ve_
waitrequest Input 1

tx_pma_waitrequest_pio_external_connection_ exp
ort Input 1 TX PMA waitrequest

tx_pma_cal_busy_pio_external_connection_exp ort Input 1 TX PMA Recalibration B
usy

tx_pma_ch_export Output 2 TX PMA Channels

tx_rcfg_en_pio_external_connection_export Output 1 TX PMA Reconfiguration
Enable

tx_iopll_rcfg_mgmt_translator_avalon_anti_s lave_
writedata Output 32

TX IOPLL
Reconfiguration Avalon
memory-mapped interfa
ces

tx_iopll_rcfg_mgmt_translator_avalon_anti_s lave_r
eaddata Input 32

tx_iopll_rcfg_mgmt_translator_avalon_anti_s lave_
waitrequest Input 1

tx_iopll_rcfg_mgmt_translator_avalon_anti_s lave_
address Output 9

tx_iopll_rcfg_mgmt_translator_avalon_anti_s lave_
write Output 1

tx_iopll_rcfg_mgmt_translator_avalon_anti_s lave_r
ead Output 1

tx_os_pio_external_connection_export Output 2

Oversampling factor:
• 0: No oversampling
• 1: 3× oversampling
• 2: 4× oversampling
• 3: 5× oversampling

tx_rst_pll_pio_external_connection_export Output 1 Reset to IOPLL and TX
PLL

tx_rst_xcvr_pio_external_connection_export Output 1 Reset to TX Native PHY

wd_timer_resetrequest_reset Output 1 Watchdog timer reset

color_depth_pio_external_connection_export Input 2 Color depth

tx_hpd_ack_pio_external_connection_export Output 1 For TX hotplug detect ha
ndshakingtx_hpd_req_pio_external_connection_export Input 1

3.8. Design RTL Parameters
Use the HDMI TX and RX Top RTL parameters to customize the design example.
Most of the design parameters are available in the Design Example tab of the HDMI Intel FPGA IP parameter
editor. You can still change the design example settings you
made in the parameter editor through the RTL parameters.

Table 47. HDMI RX Top Parameters

Parameter Value Description

SUPPORT_DEEP_COLOR • 0: No deep color
• 1: Deep color

Determines if the core can encode deep color
formats.

SUPPORT_AUXILIARY • 0: No AUX
• 1: AUX

Determines if the auxiliary channel encoding i
s included.

SYMBOLS_PER_CLOCK 8 Supports 8 symbols per clock for Intel Arria 10
devices.

SUPPORT_AUDIO • 0: No audio
• 1: Audio Determines if the core can encode audio.

EDID_RAM_ADDR_WIDTH (I
ntel Quartus Prime Standard
Edition)

8 (Default value) Log base 2 of the EDID RAM size.

BITEC_DAUGHTER_CARD_
REV

• 0: Not targeting any Bitec H
DMI daughter card
• 4: Supports Bitec HDMI dau
ghter card revision 4
• 6: Targeting Bitec HDMI dau
ghter card revision 6
•11: Targeting Bitec HDMI dau
ghter card revision 11 (default
)

Specifies the revision of the Bitec HDMI
daughter card used. When you change the rev
ision, the design may swap the transceiver
channels and invert the polarity according to t
he Bitec HDMI daughter card requirements. If
you set the BITEC_DAUGHTER_CARD_REV
parameter to 0, the design does not make any
changes to the transceiver channels and the p
olarity.

POLARITY_INVERSION • 0: Invert polarity
• 1: Do not invert polarity

Set this parameter to 1 to invert the value of e
ach bit of the input data. Setting this
parameter to 1 assigns 4’b1111 to the rx_polin
v port of the RX transceiver.

Table 48. HDMI TX Top Parameters

Parameter Value Description

USE_FPLL 1
Supports fPLL as TX PLL only for Intel Cyclon
e® 10 GX devices. Always set this parameter t
o 1.

SUPPORT_DEEP_COLOR • 0: No deep color
• 1: Deep color

Determines if the core can encode deep color
formats.

SUPPORT_AUXILIARY • 0: No AUX
• 1: AUX

Determines if the auxiliary channel encoding i
s included.

SYMBOLS_PER_CLOCK 8 Supports 8 symbols per clock for Intel Arria 10
devices.

continued…

Parameter Value Description

SUPPORT_AUDIO • 0: No audio
• 1: Audio Determines if the core can encode audio.

BITEC_DAUGHTER_CARD_
REV

• 0: Not targeting any Bitec H
DMI daughter card
• 4: Supports Bitec HDMI dau
ghter card revision 4
• 6: Targeting Bitec HDMI dau
ghter card revision 6
• 11: Targeting Bitec HDMI da
ughter card revision 11 (defau
lt)

Specifies the revision of the Bitec HDMI
daughter card used. When you change the rev
ision, the design may swap the transceiver
channels and invert the polarity according to t
he Bitec HDMI daughter card requirements. If
you set the BITEC_DAUGHTER_CARD_REV
parameter to 0, the design does not make any
changes to the transceiver channels and the p
olarity.

POLARITY_INVERSION • 0: Invert polarity
• 1: Do not invert polarity

Set this parameter to 1 to invert the value of e
ach bit of the input data. Setting this
parameter to 1 assigns 4’b1111 to the tx_polin
v port of the TX transceiver.

3.9. Hardware Setup
The HDMI Intel FPGA IP design example is HDMI 2.0b capable and performs a loopthrough demonstration for a
standard HDMI video stream.
To run the hardware test, connect an HDMI-enabled device—such as a graphics card with HDMI interface—to the
Transceiver Native PHY RX block, and the HDMI sink
input.

1. The HDMI sink decodes the port into a standard video stream and sends it to the clock recovery core.

2. The HDMI RX core decodes the video, auxiliary, and audio data to be looped back in parallel to the HDMI TX

core through the DCFIFO.

3. The HDMI source port of the FMC daughter card transmits the image to a monitor.

Note:
If you want to use another Intel FPGA development board, you must change the device assignments and the pin
assignments. The transceiver analog setting is tested for the Intel Arria 10 FPGA development kit and Bitec HDMI
2.0 daughter card. You may modify the settings for your own board.

Table 49. On-board Push Button and User LED Functions

Push Button/LED Function

cpu_resetn Press once to perform system reset.

user_pb[0] Press once to toggle the HPD signal to the standard HDMI source.

user_pb[1] • Press and hold to instruct the TX core to send the DVI encoded signal.
• Release to send the HDMI encoded signal.

user_pb[2]
• Press and hold to instruct the TX core to stop sending the InfoFrames fr
om the sideband signals.
• Release to resume sending the InfoFrames from the sideband signals.

USER_LED[0]
RX HDMI PLL lock status.
• 0 = Unlocked
• 1 = Locked

USER_LED[1] RX transceiver ready status.

continued…

Push Button/LED Function

• 0 = Not ready
• 1 = Ready

USER_LED[2]
RX HDMI core lock status.
• 0 = At least 1 channel unlocked
• 1 = All 3 channels locked

USER_LED[3]
RX oversampling status.
• 0 = Non-oversampled (data rate > 1,000 Mbps in Intel Arria 10 device)
• 1 = Oversampled (data rate < 100 Mbps in Intel Arria 10 device)

USER_LED[4]
TX HDMI PLL lock status.
• 0 = Unlocked
• 1 = Locked

USER_LED[5]
TX transceiver ready status.
• 0 = Not ready
• 1 = Ready

USER_LED[6]
TX transceiver PLL lock status.
• 0 = Unlocked
• 1 = Locked

USER_LED[7]
TX oversampling status.
• 0 = Non-oversampled (data rate > 1,000 Mbps in Intel Arria 10 device)
• 1 = Oversampled (data rate < 1,000 Mbps in Intel Arria 10 device)

3.10. Simulation Testbench
The simulation testbench simulates the HDMI TX serial loopback to the RX core.
Note:
This simulation testbench is not supported for designs with the Include I2C parameter enabled.

3. HDMI 2.0 Design Example (Support FRL = 0)
683156 | 2022.12.27
Figure 28. HDMI Intel FPGA IP Simulation Testbench Block Diagram

Table 50. Testbench Components

Component Description

Video TPG The video test pattern generator (TPG) provides the video stimulus.

Audio Sample Gen
The audio sample generator provides audio sample stimulus. The
generator generates an incrementing test data pattern to be transmitted t
hrough the audio channel.

Aux Sample Gen The aux sample generator provides the auxiliary sample stimulus. The ge
nerator generates a fixed data to be transmitted from the transmitter.

CRC Check This checker verifies if the TX transceiver recovered clock frequency
matches the desired data rate.

Audio Data Check The audio data check compares whether the incrementing test data patte
rn is received and decoded correctly.

Aux Data Check The aux data check compares whether the expected aux data is received
and decoded correctly on the receiver side.

The HDMI simulation testbench does the following verification tests:

HDMI Feature Verification

Video data

• The testbench implements CRC checking on the input and output video.
• It checks the CRC value of the transmitted data against the CRC calcula
ted in the received video data.
• The testbench then performs the checking after detecting 4 stable V-SY
NC signals from the receiver.

Auxiliary data

• The aux sample generator generates a fixed data to be transmitted from
the transmitter.
• On the receiver side, the generator compares whether the expected
auxiliary data is received and decoded correctly.

Audio data

• The audio sample generator generates an incrementing test data patter
n to be transmitted through the audio channel.
• On the receiver side, the audio data checker checks and compares whet
her the incrementing test data pattern is received and decoded correctly.

A successful simulation ends with the following message:
SYMBOLS_PER_CLOCK = 2
VIC = 4
FRL_RATE = 0
BPP = 0
AUDIO_FREQUENCY (kHz) = 48
AUDIO_CHANNEL = 8
Simulation pass

Table 51. HDMI Intel FPGA IP Design Example Supported Simulators

Simulator Verilog HDL VHDL

ModelSim – Intel FPGA Edition/ Mo
delSim – Intel FPGA Starter Edition Yes Yes

VCS/VCS MX Yes Yes

Riviera-PRO Yes Yes

Xcelium Parallel Yes No

3.11. Upgrading Your Design
Table 52. HDMI Design Example Compatibility with Previous Intel Quartus Prime Pro Edition Software
Version

Design Example Variant Ability to Upgrade to Intel Quartus Prime Pro Editi
on 20.3

HDMI 2.0 Design Example (Support FRL = 0) No

For any non-compatible design examples, you need to do the following:

1. Generate a new design example in the current Intel Quartus Prime Pro Edition software version using the

same configurations of your existing design.

2. Compare the whole design example directory with the design example generated using the previous Intel

Quartus Prime Pro Edition software version. Port over the changes found.

HDCP Over HDMI 2.0/2.1 Design Example

The HDCP over HDMI hardware design example helps you to evaluate the functionality of the HDCP feature and
enables you to use the feature in your Intel Arria 10 designs.
Note:
The HDCP feature is not included in the Intel Quartus Prime Pro Edition software. To access the HDCP feature,
contact Intel at
https://www.intel.com/content/www/us/en/broadcast/products/programmable/applications/connectivity-
solutions.html.

4.1. High-bandwidth Digital Content Protection (HDCP)
High-bandwidth Digital Content Protection (HDCP) is a form of digital rights protection to create a secure
connection between the source to the display.
Intel created the original technology, which is licensed by the Digital Content Protection LLC group. HDCP is a
copy protection method where the audio/video stream is encrypted between the transmitter and the receiver,
protecting it against illegal copying.
The HDCP features adheres to HDCP Specification version 1.4 and HDCP Specification version 2.3.
The HDCP 1.4 and HDCP 2.3 IPs perform all computation within the hardware core logic with no confidential
values (such as private key and session key) being accessible from outside the encrypted IP.

Table 53. HDCP IP Functions

HDCP IP Functions

HDCP 1.4 IP

• Authentication exchange
— Computation of master key (Km)
— Generation of random An
— Computation of session key (Ks), M0 and R0.
• Authentication with repeater
— Computation and verification of V and V’
• Link integrity verification
— Computation of frame key (Ki), Mi and Ri.

continued…

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

https://www.intel.com/content/www/us/en/broadcast/products/programmable/applications/connectivity-solutions.html

*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

HDCP IP Functions

• All cipher modes including hdcpBlockCipher, hdcpStreamCipher, hdcpRekeyCipher, an
d hdcpRngCipher
• Original encryption status signaling (DVI) and enhanced encryption status signaling (H
DMI)
• True random number generator (TRNG)
— Hardware based, full digital implementation and non-deterministic random number ge
nerator

HDCP 2.3 IP

• Master Key (km), Session Key (ks) and nonce (rn, riv) generation
— Compliant to NIST.SP800-90A random number generation
• Authentication and key exchange
— Generation of random numbers for rtx and rrx compliant to NIST.SP800-90A random
number generation
— Signature verification of receiver certificate (certrx) using DCP public key (kpubdcp)
— 3072 bits RSASSA-PKCS#1 v1.5
— RSAES-OAEP (PKCS#1 v2.1) encryption and decryption of Master Key (km)
— Derivation of kd (dkey0, dkey1) using AES-CTR mode
— Computation and verification of H and H’
— Computation of Ekh(km) and km (pairing)
• Authentication with repeater
— Computation and verification of V and V’
— Computation and verification of M and M’
• System renewability (SRM)
— SRM signature verification using kpubdcp
— 3072 bits RSASSA-PKCS#1 v1.5
• Session Key exchange
• Generation and computation of Edkey(ks) and riv.
• Derivation of dkey2 using AES-CTR mode
• Locality Check
— Computation and verification of L and L’
— Generation of nonce (rn)
• Data stream management
— AES-CTR mode based key stream generation
• Asymmetric crypto algorithms
— RSA with modulus length of 1024 (kpubrx) and 3072 (kpubdcp) bits
— RSA-CRT (Chinese Remainder Theorem) with modulus length of 512 (kprivrx) bits an
d exponent length of 512 (kprivrx) bits
• Low-level cryptographic function
— Symmetric crypto algorithms
• AES-CTR mode with a key length of 128 bits
— Hash, MGF and HMAC algorithms
• SHA256
• HMAC-SHA256
• MGF1-SHA256
— True random number generator (TRNG)
• NIST.SP800-90A compliant
• Hardware based, full digital implementation and non-deterministic random number gen
erator

4.1.1. HDCP Over HDMI Design Example Architecture
The HDCP feature protects data as the data is transmitted between devices connected through an HDMI or other
HDCP-protected digital interfaces.
The HDCP-protected systems include three types of devices:

4. HDCP Over HDMI 2.0/2.1 Design Example
683156 | 2022.12.27
• Sources (TX)
• Sinks (RX)
• Repeaters
This design example demonstrates the HDCP system in a repeater device where it accepts data, decrypts, then
re-encrypts the data, and finally retransmits data. Repeaters have both HDMI inputs and outputs. It instantiates
the FIFO buffers to perform a direct HDMI video stream pass-through between the HDMI sink and source. It may
perform some signal processing, such as converting videos into a higher resolution format by replacing the FIFO
buffers with the Video and Image Processing (VIP) Suite IP cores.

Figure 29. HDCP Over HDMI Design Example Block Diagram

The following descriptions about the architecture of the design example correspond to the HDCP over HDMI
design example block diagram. When SUPPORT FRL = 1 or
SUPPORT HDCP KEY MANAGEMENT = 1, the design example hierarchy is slightly different from Figure 29 on
page 95 but the underlying HDCP functions remain the
same.

1. The HDCP1x and HDCP2x are IPs that are available through the HDMI Intel FPGA IP parameter editor. When

you configure the HDMI IP in the parameter editor, you can enable and include either HDCP1x or HDCP2x or

both IPs as part of the subsystem. With both HDCP IPs enabled, the HDMI IP configures itself in the cascade

topology where the HDCP2x and HDCP1x IPs are connected back-to-back.

• The HDCP egress interface of the HDMI TX sends unencrypted audio video data.

• The unencrypted data gets encrypted by the active HDCP block and sent back into the HDMI TX over the

HDCP Ingress interface for transmission over the link.

• The CPU subsystem as the authentication master controller ensures that only one of the HDCP TX IPs is

active at any given time and the other one is passive.

• Similarly, the HDCP RX also decrypts data received over the link from an external HDCP TX.

2. You need to program the HDCP IPs with Digital Content Protection (DCP) issued production keys. Load the

following keys:

Table 54. DCP-issued Production Keys

HDCP TX/RX Keys

HDCP2x

TX 16 bytes: Global Constant (lc128)

RX

• 16 bytes (same as TX): Global Constant (lc

128)

• 320 bytes: RSA Private Key (kprivrx)

• 522 bytes: RSA Public Key Certificate (certr

x)

HDCP1x

TX
• 5 bytes: TX Key Selection Vector (Aksv)

• 280 bytes: TX Private Device Keys (Akeys)

RX
• 5 bytes: RX Key Selection Vector (Bksv)

• 280 bytes: RX Private Device Keys (Bkeys)

The design example implements the key memories as simple dual-port, dual-clock synchronous RAM. For

small key size like HDCP2x TX, the IP implements the key memory using registers in regular logic.

Note: Intel does not provide the HDCP production keys with the design example or Intel FPGA IPs under any

circumstances. To use the HDCP IPs or the design example, you must become an HDCP adopter and acquire

the production keys directly from the Digital Content Protection LLC (DCP).

To run the design example, you either edit the key memory files at compile time to include the production keys

or implement logic blocks to securely read the production keys from an external storage device and write them

into the key memories at run time.

3. You can clock the cryptographic functions implemented in the HDCP2x IP with any frequency up to 200 MHz.

The frequency of this clock determines how quickly the

HDCP2x authentication operates. You can opt to share the 100 MHz clock used for Nios II processor but the

authentication latency would be doubled compared to using a 200 MHz clock.

4. The values that must be exchanged between the HDCP TX and the HDCP RX are communicated over the

HDMI DDC interface (I2 C serial interface) of the HDCP-

protected interface. The HDCP RX must present a logical device on the I2C bus for each link that it supports.

The I2C slave is duplicated for HDCP port with device address of 0x74. It drives the HDCP register port

(Avalon-MM) of both the HDCP2x and HDCP1x RX IPs.

5. The HDMI TX uses the IC master to read the EDID from RX and transfer the SCDC data that is required for

HDMI 2.0 operation to RX. The same I2C master that is driven by the Nios II processor is also used to transfer

the HDCP messages between TX and RX. The I2C master is embedded in the CPU subsystem.

6. The Nios II processor acts as the master in the authentication protocol and drives the control and status

registers (Avalon-MM) of both the HDCP2x and HDCP1x TX

IPs. The software drivers implements the authentication protocol state machine including certificate signature

verification, master key exchange, locality check, session key exchange, pairing, link integrity check

(HDCP1x), and authentication with repeaters, such as topology information propagation and stream

management information propagation. The software drivers do not implement any of the cryptographic

functions required by the authentication protocol. Instead, the HDCP IP hardware implements all the

cryptographic functions ensuring no confidential values can be accessed.

7. In a true repeater demonstration where propagating topology information upstream is required, the Nios II

processor drives the Repeater Message Port (Avalon-MM) of both HDCP2x and HDCP1x RX IPs. The Nios II

processor clears the RX REPEATER bit to 0 when it detects the connected downstream is not HDCPcapable or

when no downstream is connected. Without downstream connection, the RX system is now an end-point

receiver, rather than a repeater. Conversely, the Nios II processor sets the RX REPEATER bit to 1 upon

detecting the downstream is HDCP-capable.

4.2. Nios II Processor Software Flow
The Nios II software flowchart includes the HDCP authentication controls over HDMI application.
Figure 30. Nios II Processor Software Flowchart

1. The Nios II software initializes and resets the HDMI TX PLL, TX transceiver PHY, I2C master and the external

TI retimer.

2. The Nios II software polls periodic rate detection valid signal from RX rate detection circuit to determine

whether video resolution has changed and if TX reconfiguration is required. The software also polls the TX hot-

plug detect signal to determine whether a TX hot-plug event has occurred.

3. When a valid signal received from RX rate detection circuit, the Nios II software reads the SCDC and clock

depth values from the HDMI RX and retrieves the clock frequency band based on the detected rate to

determine whether HDMI TX PLL and transceiver PHY reconfiguration are required. If TX reconfiguration is

required, the Nios II software commands the I2C master to send the SCDC value over to external RX. It then

commands to reconfigure the HDMI TX PLL and TX transceiver

PHY, followed by device recalibration, and reset sequence. If the rate does not change, neither TX

reconfiguration nor HDCP re-authentication is required.

4. When a TX hot-plug event has occurred, the Nios II software commands the I2C master to send the SCDC

value over to external RX, and then read EDID from RX

and update the internal EDID RAM. The software then propagates the EDID information to the upstream.

5. The Nios II software starts the HDCP activity by commanding the I2C master to read offset 0x50 from external

RX to detect if the downstream is HDCP-capable, or

otherwise:

• If the returned HDCP2Version value is 1, the downstream is HDCP2xcapable.

• If the returned value of the entire 0x50 reads are 0’s, the downstream is HDCP1x-capable.

• If the returned value of the entire 0x50 reads are 1’s, the downstream is either not HDCP-capable or inactive.

• If the downstream is previously not HDCP-capable or inactive but is currently HDCP-capable, the software

sets the REPEATER bit of the repeater upstream (RX) to 1 to indicate the RX is now a repeater.

• If the downstream is previously HDCP-capable but is currently not HDCPcapable or inactive, the software

sets the REPEATER bit of to 0 to indicate the RX is now an endpoint receiver.

6. The software initiates the HDCP2x authentication protocol that includes RX certificate signature verification,

master key exchange, locality check, session key exchange, pairing, authentication with repeaters such as

topology information propagation.

7. When in authenticated state, the Nios II software commands the I2C master to poll the RxStatus register from

external RX, and if the software detects the REAUTH_REQ bit is set, it initiates re-authentication and disables

TX encryption.

8. When the downstream is a repeater and the READY bit of the RxStatus register is set to 1, this usually

indicates the downstream topology has changed. So, the Nios II software commands the I2C master to read

the ReceiverID_List from downstream and verify the list. If the list is valid and no topology error is detected, the

software proceeds to the Content Stream Management module. Otherwise, it initiates re-authentication and

disables TX encryption.

9. The Nios II software prepares the ReceiverID_List and RxInfo values and then writes to the Avalon-MM

Repeater Message port of the repeater upstream (RX). The RX then propagates the list to external TX

(upstream).

10. Authentication is complete at this point. The software enables TX encryption.

11. The software initiates the HDCP1x authentication protocol that includes key exchange and authentication with

repeaters.

12. The Nios II software performs link integrity check by reading and comparing Ri’ and Ri from external RX

(downstream) and HDCP1x TX respectively. If the values

do not match, this indicates loss of synchronization and the software initiates reauthentication and disables TX

encryption.

13. If the downstream is a repeater and the READY bit of the Bcaps register is set to 1, this usually indicates that

the downstream topology has changed. So, the Nios II software commands the I2C master to read the KSV list

value from downstream and verify the list. If the list is valid and no topology error is detected, the software

prepares the KSV list and Bstatus value and writes to the Avalon-MM Repeater Message port of the repeater

upstream (RX). The RX then propagates the list to external TX (upstream). Otherwise, it initiates

reauthentication and disables TX encryption.

4.3. Design Walkthrough
Setting up and running the HDCP over HDMI design example consists of five stages.

1. Set up the hardware.

2. Generate the design.

3. Edit the HDCP key memory files to include your HDCP production keys.

a. Store plain HDCP production keys in the FPGA (Support HDCP Key Management = 0)

b. Store encrypted HDCP production keys in the external flash memory or EEPROM (Support HDCP Key

Management = 1)

4. Compile the design.

5. View the results.

4.3.1. Set Up the Hardware
The first stage of the demonstration is to set up the hardware.
When SUPPORT FRL = 0, follow these steps to set up the hardware for the demonstration:

1. Connect the Bitec HDMI 2.0 FMC daughter card (revision 11) to the Arria 10 GX development kit at FMC port

B.

2. Connect the Arria 10 GX development kit to your PC using a USB cable.

3. Connect an HDMI cable from the HDMI RX connector on the Bitec HDMI 2.0 FMC daughter card to an HDCP-

enabled HDMI device, such as a graphic card with HDMI output.

4. Connect another HDMI cable from the HDMI TX connector on the Bitec HDMI 2.0 FMC daughter card to an

HDCP-enabled HDMI device, such as a television with HDMI input.

When SUPPORT FRL = 1, follow these steps to set up the hardware for the demonstration:

1. Connect the Bitec HDMI 2.1 FMC daughter card (Revision 9) to the Arria 10 GX development kit at FMC port B.

2. Connect the Arria 10 GX development kit to your PC using a USB cable.

3. Connect an HDMI 2.1 Category 3 cables from HDMI RX connector on the Bitec HDMI 2.1 FMC daughter card

to an HDCP-enabled HDMI 2.1 source, such as Quantum Data 980 48G Generator.

4. Connect another HDMI 2.1 Category 3 cables from the HDMI TX connector on the Bitec HDMI 2.1 FMC

daughter card to an HDCP-enabled HDMI 2.1 sink, such as

Quantum Data 980 48G Analyzer.

4.3.2. Generate the Design
After setting up the hardware, you need to generate the design.
Before you begin, ensure to install the HDCP feature in the Intel Quartus Prime Pro Edition software.

1. Click Tools ➤ IP Catalog, and select Intel Arria 10 as the target device family.

Note: The HDCP design example supports only Intel Arria 10 and Intel Stratix® 10 devices.

2. In the IP Catalog, locate and double-click HDMI Intel FPGA IP. The New IP variation window appears.

3. Specify a top-level name for your custom IP variation. The parameter editor saves the IP variation settings in a

file named <your_ip>.qsys or <your_ip>.ip.

4. Click OK. The parameter editor appears.

5. On the IP tab, configure the desired parameters for both TX and RX.

6. Turn on the Support HDCP 1.4 or Support HDCP 2.3 parameter to generate the HDCP design example.

7. Turn on the Support HDCP Key Management parameter if you want to store the HDCP production key in an

encrypted format in the external flash memory or EEPROM. Otherwise, turn off the Support HDCP Key

Management parameter to store the HDCP production key in plain format in the FPGA.

8. On the Design Example tab, select Arria 10 HDMI RX-TX Retransmit.

9. Select Synthesis to generate the hardware design example.

10. For Generate File Format, select Verilog or VHDL.

11. For Target Development Kit, select Arria 10 GX FPGA Development Kit. If you select the development kit, then

the target device (selected in step 4) changes to match the device on the development kit. For Arria 10 GX

FPGA Development Kit, the default device is 10AX115S2F45I1SG.

12. Click Generate Example Design to generate the project files and the software Executable and Linking Format

(ELF) programming file.

4.3.3. Include HDCP Production Keys
4.3.3.1. Store plain HDCP production keys in the FPGA (Support HDCP Key Management = 0)
After generating the design, edit the HDCP key memory files to include your production keys.
To include the production keys, follow these steps.

1. Locate the following key memory files in the <project directory>/rtl/hdcp/ directory:

• hdcp2x_tx_kmem.v

• hdcp2x_rx_kmem.v

• hdcp1x_tx_kmem.v

• hdcp1x_rx_kmem.v

2. Open the hdcp2x_rx_kmem.v file and locate the predefined facsimile key R1 for Receiver Public Certificate and

RX Private Key and Global Constant as shown in the examples below.

Figure 31. Wire Array of Facsimile Key R1 for Receiver Public Certificate

Figure 32. Wire Array of Facsimile Key R1 for RX Private Key and Global Constant

3. Locate the placeholder for the production keys and replace with your own production keys in their respective

wire array in big endian format.

Figure 33. Wire Array of HDCP Production Keys (Placeholder)

4. Repeat Step 3 for all other key memory files. When you have finished including your production keys in all the

key memory files, ensure that the USE_FACSIMILE parameter is set to 0 at the design example top level file

(a10_hdmi2_demo.v)

4.3.3.1.1. HDCP Key Mapping from DCP Key Files
The following sections describes the mapping of the HDCP production keys stored in DCP key files into the wire
array of the HDCP kmem files.
4.3.3.1.2. hdcp1x_tx_kmem.v and hdcp1x_rx_kmem.v files
For hdcp1x_tx_kmem.v and hdcp1x_rx_kmem.v files

These two files are sharing the same format.

To identify the correct HDCP1 TX DCP key file for hdcp1x_tx_kmem.v, make sure the first 4 bytes of the file are

“0x01, 0x00, 0x00, 0x00”.

To identify the correct HDCP1 RX DCP key file for hdcp1x_rx_kmem.v, make sure the first 4 bytes of the file are

“0x02, 0x00, 0x00, 0x00”.

The keys in the DCP key files are in little-endian format. To use in kmem files, you must convert them into big-

endian.

Figure 34. Byte mapping from HDCP1 TX DCP key file into hdcp1x_tx_kmem.v

Note:
The byte number displays in below format:

Key size in bytes * key number + byte number in current row + constant offset + row size in bytes * row

number.

308*n indicates that each key set has 308 bytes.

7*y indicates that each row has 7 bytes.

Figure 35. HDCP1 TX DCP key file filling with junk values

Figure 36. Wire Arrays of hdcp1x_tx_kmem.v
Example of hdcp1x_tx_kmem.v and how its wire arrays map to the example of HDCP1 TX DCP key file in Figure

35 on page 105.

4.3.3.1.3. hdcp2x_rx_kmem.v file
For hdcp2x_rx_kmem.v file

To identify the correct HDCP2 RX DCP key file for hdcp2x_rx_kmem.v, make sure the first 4 bytes of the file are

“0x00, 0x00, 0x00, 0x02”.

The keys in the DCP key files are in little-endian format.

Figure 37. Byte mapping from HDCP2 RX DCP key file into hdcp2x_rx_kmem.v
Figure below shows the exact byte mapping from HDCP2 RX DCP key file into hdcp2x_rx_kmem.v.

Note:
The byte number displays in below format:

Key size in bytes * key number + byte number in current row + constant offset + row size in bytes * row

number.

862*n indicates that each key set has 862 bytes.

16*y indicates that each row has 16 bytes. There is an exception in cert_rx_prod where ROW 32 has only 10

bytes.

Figure 38. HDCP2 RX DCP key file filling with junk values

Figure 39. Wire Arrays of hdcp2x_rx_kmem.v
This figure shows the wire arrays for hdcp2x_rx_kmem.v (cert_rx_prod, kprivrx_qinv_prod, and lc128_prod) map
to the example of HDCP2 RX DCP key file in
Figure 38 on page 108.

4.3.3.1.4. hdcp2x_tx_kmem.v file
For hdcp2x_tx_kmem.v file:

To identify the correct HDCP2 TX DCP key file for hdcp2x_tx_kmem.v, make sure the first 4 bytes of the file are

“0x00, 0x00, 0x00, 0x01”.

The keys in the DCP key files are in little-endian format.

Alternatively, you can apply the lc128_prod from hdcp2x_rx_kmem.v directly into hdcp2x_tx_kmem.v. The keys

share the same values.

Figure 40. Wire array of hdcp2x_tx_kmem.v
This figure shows the exact byte mapping from HDCP2 TX DCP key file into hdcp2x_tx_kmem.v.

4.3.3.2. Store encrypted HDCP production keys in the external flash memory or EEPROM (Support HDCP
Key Management = 1)
Figure 41. High Level Overview of HDCP Key Management

When Support HDCP Key Management parameter is turned on, you hold control of HDCP production key
encryption by using the key encryption software utility (KEYENC) and key programmer design that Intel provides.
You must provide the HDCP production keys and a 128 bits HDCP protection key. The HDCP protection key
encrypts the HDCP production key and store the key in the external flash memory (for example, EEPROM) on
HDMI daughter card.
Turn on the Support HDCP Key Management parameter and the key decryption feature (KEYDEC) becomes
available in the HDCP IP cores. The same HDCP protection
key should be used in the KEYDEC to retrieve the HDCP production keys at run time for processing engines.
KEYENC and KEYDEC support Atmel AT24CS32 32-Kbit serial EEPROM, Atmel AT24C16A 16-Kbit serial
EEPROM and compatible I2C EEPROM devices with at least 16-Kbit rom size.

Note:

1. For HDMI 2.0 FMC daughter card Revision 11, make sure the EEPROM on the daughter card is Atmel

AT24CS32. There are two different sizes of EEPROM used on Bitec HDMI 2.0 FMC daughter card Revision 11.

2. If you had previously used KEYENC to encrypt the HDCP production keys and turned on Support HDCP Key

Management in version 21.2 or earlier, you need to re-encrypt the HDCP production keys using the KEYENC

software utility and regenerate the HDCP IPs from version 21.3

onwards.

4.3.3.2.1. Intel KEYENC
KEYENC is a command line software utility that Intel uses to encrypt the HDCP production keys with a 128 bits
HDCP protection key that you provide. KEYENC outputs encrypted HDCP production keys in hex or bin or header
file format. KEYENC also generates mif file containing your provided 128 bits HDCP protection key. KEYDEC
requires the mif file.

System Requirement:

1. x86 64-bit machine with Windows 10 OS

2. Visual C++ Redistributable package for Visual Studio 2019(x64)

Note:
You must install Microsoft Visual C++ for VS 2019. You can check whether Visual C++ redistributable is installed
from Windows ➤ Control Panel ➤ Programs and Features. If Microsoft Visual C++is installed, you can see Visual
C++ xxxx
Redistributable (x64). Otherwise, you can download and install Visual C++
Redistributable from Microsoft website. Refer to the related information for the download link.

Table 55. KEYENC Command Line Options

Command Line Options Arguement/Description

-k
<HDCP protection key file>
Text file containing only the 128 bits HDCP protection key in hexa
decimal. Example: f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff

-hdcp1tx <HDCP 1.4 TX production keys file>
HDCP 1.4 transmitter production keys file from DCP (.bin file)

-hdcp1rx <HDCP 1.4 RX production keys file>
HDCP 1.4 receiver production keys file from DCP (.bin file)

-hdcp2tx <HDCP 2.3 TX production keys file>
HDCP 2.3 transmitter production keys file from DCP (.bin file)

-hdcp2rx <HDCP 2.3 RX production keys file>
HDCP 2.3 receiver production keys file from DCP (.bin file)

-hdcp1txkeys <HDCP key range> Specify the key range for selected input (.bin)
files
-hdcp1txkeys|hdcp1rxkeys|hdcp2rxkeys n-m where
n = key start (1 or >1) m = key end (n or >n) Example:
Select 1 to 1000 keys from each HDCP 1.4 TX, HDCP 1.4 RX and
HCDP
2.3 RX production keys file.
“-hdcp1txkeys 1-1000 -hdcp1rxkeys 1-1000 -hdcp2rxkeys 1-1000”

-hdcp1rxkeys

-hdcp2rxkeys

continued…

Command Line Options Arguement/Description

Note: 1. If you are not using any HDCP production keys file, you
will not require the HDCP key range. If you are not using the argu
ment in command line, the default key range is 0.
2. You can also select different index of the keys for HDCP
production keys file. However, number of keys should match the s
elected options.
Example: Select different 100 keys
Select first 100 keys from HDCP 1.4 TX production keys file “-hdc
p1txkeys 1-100”
Select keys 300 to 400 for HDCP 1.4 RX production keys file “-hd
cp1rxkeys 300-400”
Select keys 600 to 700 for HDCP 2.3 RX production keys file “-hd
cp2rxkeys 600-700”

-o

Output file format <bin|hex|h>. Default is hex file.
Generate encrypted HDCP production keys in binary file format: -
o bin Generate encrypted HDCP production keys in hex file forma
t: -o hex Generate encrypted HDCP production keys in header file
format: -o h

–check-keys

Print number of keys available in input files. Example:

keyenc.exe -hdcp1tx <HDCP 1.4 TX production keys file> -hdcp1r
x
<HDCP 1.4 RX production keys file> -hdcp2tx <HDCP 2.3 TX pro
duction keys file> -hdcp2rx <HDCP 2.3 RX production keys file> –
check-keys

Note: use parameter –check-keys at the end of the command line
as mentioned in above example.

–version Print KEYENC version number

You can selectively choose HDCP 1.4 and/or HDCP 2.3 production keys to encrypt. For example, to use only
HDCP 2.3 RX production keys to encrypt, use only -hdcp2rx
<HDCP 2.3 RX production keys file> -hdcp2rxkeys <HDCP key range> in command line parameters.
Table 56. KEYENC Common Error Message Guideline

Error Message Guideline

ERROR: HDCP protection key file missing Missing command line parameter -k <HDCP protection key file>

ERROR: key should be 32 hex digits (e.g. f
0f1f2f3f4f5f6f7f8f9fafbfcfdfeff)

HDCP protection key file should contain only the HDCP protection
key in 32 hexadecimal digits.

ERROR: Please specify the key range Key range is not specified for the given input HDCP production ke
ys file.

ERROR: Invalid key range Key range specified for -hdcp1txkeys or -hdcp1rxkeys or -hdcp2rx
keys is not correct.

ERROR: cannot create <Filename> Check the folder permission from the keyenc.exe is being run.

ERROR: -hdcp1txkeys input is invalid Input key range format for HDCP 1.4 TX production keys is invalid
. Correct format is “-hdcp1txkeys n-m” where n >= 1, m >= n

ERROR: -hdcp1rxkeys input is invalid
Input key range format for HDCP 1.4 RX production keys is
invalid. Correct format is “-hdcp1rxkeys n-m” where n >= 1, m >=
n

ERROR: -hdcp2rxkeys input is invalid
Input key range format for HDCP 2.3 RX production keys is
invalid. Correct format is “-hdcp2rxkeys n-m” where n >= 1, m >=
n

continued…

Error Message Guideline

ERROR: Invalid file <filename> Invalid HDCP production keys file.

ERROR: file type missing for -o option Command line parameter missing for –o <bin|hex|h>.

ERROR: invalid filename – <filename> <filename> is invalid, please use the valid filename without
special characters.

Encrypt Single Key for Single EEPROM
Run the following command line from Windows command prompt to encrypt single key of HDCP 1.4 TX, HDCP
1.4 RX, HDCP 2.3 TX and HDCP 2.3 RX with output file format of header file for single EEPROM:
keyenc.exe -k <HDCP protection key file> -hdcp1tx <HDCP 1.4 TX production keys file> -hdcp1rx <HDCP 1.4 RX
production keys file> -hdcp2tx <HDCP 2.3 TX production keys file> -hdcp2rx <HDCP 2.3 RX production keys file>
-hdcp1txkeys 1-1 -hdcp1rxkeys 1-1 -hdcp2rxkeys 1-1 -o h

Encrypt N Keys for N EEPROMs
Run the following command line from Windows command prompt to encrypt N keys (starting from key 1) of HDCP
1.4 TX, HDCP 1.4 RX, HDCP 2.3 TX and HDCP 2.3 RX with output file format of hex file for N EEPROMs:

keyenc.exe -k <HDCP protection key file> -hdcp1tx <HDCP 1.4 TX production keys file> -hdcp1rx <HDCP 1.4 RX
production keys file> -hdcp2tx <HDCP 2.3 TX production keys file> -hdcp2rx <HDCP 2.3 RX production keys file>
-hdcp1txkeys 1<N> -hdcp1rxkeys 1-<N> -hdcp2rxkeys 1-<N> -o hex where N is >= 1 and should match for all the
options.

Related Information
Microsoft Visual C++ for Visual Studio 2019
Provides the Microsoft Visual C++ x86 redistributable package (vc_redist.x86.exe) for download. If the link
changes, Intel recommends you to search “Visual C++ redistributable” from Microsoft search engine.

4.3.3.2.2. Key Programmer
To program the encrypted HDCP production keys onto the EEPROM, follow these steps:

1. Copy the key programmer design files from the following path to your working directory: <IP Root

Directory>/hdcp2x/hw_demo/key_programmer/<Device Family Name>

2. Copy the software header file (hdcp_key<Number>.h) generated from the KEYENC software utility (section

Encrypt Single Key for Single EEPROM on page 113) to the software/key_programmer_src/ directory and

rename it as hdcp_key.h.

3. Run ./runall.tcl. This script executes the following commands:

• Generate IP catalog files

• Generate the Platform Designer system

• Create an Intel Quartus Prime project

• Create a software workspace and build the software

• Perform a full compilation

4. Download the Software Object File (.sof) to the FPGA to program the encrypted HDCP production keys onto

the EEPROM.

Generate the Stratix 10 HDMI RX-TX Retransmit design example with Support HDCP 2.3 and Support HDCP 1.4
parameters turned on, then follow the following step to include the HDCP protection key.

Copy the mif file (hdcp_kmem.mif) generated from the KEYENC software utility (section Encrypt Single Key for

Single EEPROM on page 113) to the <project directory>/quartus/hdcp/ directory.

4.3.4. Compile the Design
After you include your own plain HDCP production keys in the FPGA or program the encrypted HDCP production
keys to the EEPROM, you can now compile the design.

1. Launch the Intel Quartus Prime Pro Edition software and open <project

directory>/quartus/a10_hdmi2_demo.qpf.

2. Click Processing ➤ Start Compilation.

4.3.5. View the Results
At the end of the demonstration, you will be able to view the results on the HDCPenabled HDMI external sink.
To view the results of the demonstration, follow these steps:

1. Power up the Intel FPGA board.

2. Change the directory to <project directory>/quartus/.

3. Type the following command on the Nios II Command Shell to download the Software Object File (.sof) to the

FPGA. nios2-configure-sof output_files/<Intel Quartus Prime project name>.sof

4. Power up the HDCP-enabled HDMI external source and sink (if you haven’t done so). The HDMI external sink

displays the output of your HDMI external source.

4.3.5.1. Push Buttons and LED Functions
Use the push buttons and LED functions on the board to control your demonstration.

Table 57. Push Button and LED Indicators (SUPPORT FRL = 0)

Push Button/LED Functions

cpu_resetn Press once to perform system reset.

user_pb[0] Press once to toggle the HPD signal to the standard HDMI s
ource.

user_pb[1]

• Press and hold to instruct the TX core to send the DVI enc
oded signal.
• Release to send the HDMI encoded signal.
• Make sure the incoming video is in 8 bpc RGB color space.

user_pb[2]

• Press and hold to instruct the TX core to stop sending the I
nfoFrames from the sideband signals.
• Release to resume sending the InfoFrames from the sideb
and signals.

user_led[0]
RX HDMI PLL lock status.
• 0: Unlocked
• 1: Locked

 user_led[1]
RX HDMI core lock status
• 0: At least 1 channel unlocked
• 1: All 3 channels locked

user_led[2]
RX HDCP1x IP decryption status.
• 0: Inactive
• 1: Active

 user_led[3]
RX HDCP2x IP decryption status.
• 0: Inactive
• 1: Active

 user_led[4]
TX HDMI PLL lock status.
• 0: Unlocked
• 1: Locked

 user_led[5]
TX transceiver PLL lock status.
• 0: Unlocked
• 1: Locked

 user_led[6]
TX HDCP1x IP encryption status.
• 0: Inactive
• 1: Active

 user_led[7]
TX HDCP2x IP encryption status.
• 0: Inactive
• 1: Active

Table 58. Push Button and LED Indicators (SUPPORT FRL = 1)

Push Button/LED Functions

cpu_resetn Press once to perform system reset.

user_dipsw

User-defined DIP switch to toggle the passthrough mode.
• OFF (default position) = Passthrough
HDMI RX on the FPGA gets the EDID from external sink and presents it to t
he external source it is connected to.
• ON = You may control the RX maximum FRL rate from the Nios II terminal.
The command modifies the RX EDID by manipulating the maximum FRL rat
e value.
Refer to Running the Design in Different FRL Rates on page 33 for more i
nformation about setting the different FRL rates.

continued…

Push Button/LED Functions

user_pb[0] Press once to toggle the HPD signal to the standard HDMI source.

user_pb[1] Reserved.

user_pb[2]
Press once to read the SCDC registers from the sink connected to the TX of
the Bitec HDMI 2.1 FMC daughter card.
Note: To enable read, you must set DEBUG_MODE to 1 in the software.

user_led_g[0]
RX FRL clock PLL lock status.
• 0: Unlocked
• 1: Locked

user_led_g[1]
RX HDMI video lock status.
• 0: Unlocked
• 1: Locked

user_led_g[2]
RX HDCP1x IP decryption status.
• 0: Inactive
• 1: Active

user_led_g[3]
RX HDCP2x IP decryption status.
• 0: Inactive
• 1: Active

user_led_g[4]
TX FRL clock PLL lock status.
• 0: Unlocked
• 1: Locked

user_led_g[5]
TX HDMI video lock status.
• 0 = Unlocked
• 1 = Locked

user_led_g[6]
TX HDCP1x IP encryption status.
• 0: Inactive
• 1: Active

user_led_g[7]
TX HDCP2x IP encryption status.
• 0: Inactive
• 1: Active

4.4. Protection of Encryption Key Embedded in FPGA Design
Many FPGA designs implement encryption, and there is often the need to embed secret keys in the FPGA
bitstream. In newer device families, such as Intel Stratix 10 and Intel Agilex, there is a Secure Device Manager
block that can securely provision and manage these secret keys. Where these features do not exist, you can

secure the content of the FPGA bitstream, including any embedded secret user keys, with encryption.
The user keys should be kept secure within your design environment, and ideally add to the design using an
automated secure process. The following steps show how you can implement such a process with Intel Quartus
Prime tools.

1. Develop and optimize the HDL in Intel Quartus Prime in a non-secure environment.

2. Transfer the design to a secure environment and implement an automated process to update the secret key.

The on-chip memory embed the key value. When the key is updated, the memory initialization file (.mif) can

change and the “quartus_cdb –update_mif” assembler flow can change the HDCP protection key without re-

compiling. This step is very quick to run and preserves the original timing.

3. The Intel Quartus Prime bitstream then encrypt with the FPGA key before transferring the encrypted bitstream

back to the non-secure environment for final testing and deployment.

It is recommended to disable all debug access that can recover the secret key from the FPGA. You can disable
the debug capabilities completely by disabling the JTAG port, or selectively disable and review that no debug
features such as in-system memory editor or Signal Tap can recover the key. Refer to AN 556: Using the Design
Security Features in Intel FPGAs for further information on using FPGA security features including specific steps
on how to encrypt the FPGA bitstream and configure security options such as disabling JTAG access.

Note:
You can consider the additional step of obfuscation or encryption with another key of the secret key in the MIF
storage.
Related Information
AN 556: Using the Design Security Features in Intel FPGAs

4.5. Security Considerations
When using the HDCP feature, be mindful of the following security considerations.

When designing a repeater system, you must block the received video from entering the TX IP in the following

conditions:

— If the received video is HDCP-encrypted (i.e. encryption status hdcp1_enabled or hdcp2_enabled from the

RX IP is asserted) and the transmitted video is not HDCP-encrypted (i.e. encryption status hdcp1_enabled or

hdcp2_enabled from the TX IP is not asserted).

— If the received video is HDCP TYPE 1 (i.e. streamid_type from the RX IP is asserted) and the transmitted

video is HDCP 1.4 encrypted (i.e. encryption status hdcp1_enabled from the TX IP is asserted)

You should maintain the confidentiality and integrity of your HDCP production keys, and any user encryption

keys.

Intel strongly recommends you to develop any Intel Quartus Prime projects and design source files that contain

encryption keys in a secure compute environment to protect the keys.

Intel strongly recommends you to use the design security features in FPGAs to protect the design, including

any embedded encryption keys, from unauthorized copying, reverse engineering, and tampering.

Related Information
AN 556: Using the Design Security Features in Intel FPGAs

4.6. Debug Guidelines
This section describes the useful HDCP status signal and software parameters that can be used for debugging. It
also contains frequently asked questions (FAQ) about running the design example.

4.6.1. HDCP Status Signals
There are several signals that are useful to identify the working condition of the HDCP IP cores. These signals are
available at the design example top-level and are tied to the onboard LEDs:

Signal Name Function

hdcp1_enabled_rx RX HDCP1x IP Decryption Status 0: Inactive
1: Active

hdcp2_enabled_rx RX HDCP2x IP Decryption Status 0: Inactive
1: Active

hdcp1_enabled_tx TX HDCP1x IP Encryption Status 0: Inactive
1: Active

hdcp2_enabled_tx TX HDCP2x IP Encryption Status 0: Inactive
1: Active

Refer to Table 57 on page 115 and Table 58 on page 115 for their respective LED placements.
The active state of these signals indicates that the HDCP IP is authenticated and receiving/sending encrypted
video stream. For each direction, only HDCP1x or HDCP2x
encryption/decryption status signals is active. For example, if either hdcp1_enabled_rx or hdcp2_enabled_rx is
active, the HDCP on the RX side is enabled and decrypting the encrypted video stream from the external video
source.

4.6.2. Modifying HDCP Software Parameters
To facilitate the HDCP debugging process, you can modify the parameters in hdcp.c.
The table below summarizes the list of configurable parameters and their functions.

Parameter Function

SUPPORT_HDCP1X Enable HDCP 1.4 on TX side

SUPPORT_HDCP2X Enable HDCP 2.3 on TX side

DEBUG_MODE_HDCP Enable debug messages for TX HDCP

REPEATER_MODE Enable repeater mode for HDCP design example

To modify the parameters, change the values to the desired values in hdcp.c. Before starting the compilation,
make the following change in the build_sw_hdcp.sh:

1. Locate the following line and comment it out to prevent the modified software file being replaced by the original

files from the Intel Quartus Prime Software installation path.

2. Run “./build_sw_hdcp.sh” to compile the updated software.

3. The generated .elf file can be included into the design through two methods:

a. Run “nios2-download -g <elf file name>”. Reset the system after the downloading process is completed to

ensure proper functionality.

b. Run “quartus_cdb –-update_mif” to update the memory initialization files. Run assembler to generate new

.sof file which includes the updated software.

4.6.3. Frequently Asked Questions (FAQ)
Table 59. Failure Symptoms and Guidelines

Numb
er

Failure Sym
ptom Guideline

1.

The RX is re
ceiving encry
pted video, b
ut the TX is s
ending a stat
ic video in bl
ue or black c
olor.

This is due to the unsuccessful TX authentication with external sink. A HDCP-capable
repeater must not transmit the video in unencrypted format if the incoming video from t
he upstream is encrypted. To achieve this, a static video in blue or black colour
replaces the outgoing video when the TX HDCP encryption status signal is inactive wh
ile the RX HDCP decryption status signal is active.
For the exact guidelines, refer to Security Considerations on page 117. However, thi
s behavior may deter the debugging process when enabling the HDCP design. Below i
s the method to disable the video blocking in the design example:
1. Locate the following port connection at the top level of the design example. This port
belongs to the hdmi_tx_top module.
2. Modify the port connection into the following line:

2.

TX HDCP en
cryption statu
s signal is ac
tive but snow
picture is dis
played at the
 downstream
 sink.

This is due to the downstream sink does not decrypt the outgoing encrypted video corr
ectly.
Make sure you provide the global constant (LC128) to the TX HDCP IP. The value mus
t be the production value and correct.

3.

TX HDCP en
cryption stat
us signal is u
nstable or al
ways
inactive.

This is due to the unsuccessful TX authentication with downstream sink. To facilitate th
e debugging process, you can enable the DEBUG_MODE_HDCP parameter in hdcp.c
. Refer to Modifying HDCP Software Parameters on page 118 on the guidelines. Th
e following 3a-3c could be the possible causes of unsuccessful TX authentication.

3a.

The software
 debug log k
eeps printing
 this messag
e “HDCP 1.4
is not suppor
ted by the do
wnstream (R
x)”.

The message indicates the downstream sink does not support both HDCP 2.3 and HD
CP 1.4.
Make sure the downstream sink supports HDCP 2.3 or HDCP 1.4.

3b.
TX authentic
ation fails hal
fway.

This is due to any part of the TX authentication such as signature verification, locality c
heck etc can fail. Make sure the downstream sink is using production key but not facsi
mile key.

3c.

The software
 debug log k
eeps printing
 “Re- authent
ication

This message indicates the downstream sink has requested re-authentication because
the received video was not decrypted correctly. Make sure you provide the global
constant (LC128) to the TX HDCP IP. The value must be the production value and the
value is correct.

continued…

Numb
er

Failure Sym
ptom Guideline

is required” a
fter the HDC
P authenticat
ion is comple
ted.

4.

RX HDCP de
cryption stat
us signal is i
nactive altho
ugh the upstr
eam source
has enabled
HDCP.

This indicates that the RX HDCP IP has not achieved the authenticated state. By defau
lt, the REPEATER_MODE parameter is enabled in the design example. If the REPEA
TER_MODE is enabled, make sure the TX HDCP IP is authenticated.

When the REPEATER_MODE parameter is enabled, the RX HDCP IP attempts authe
ntication as a repeater if the TX is connected to a HDCP-capable sink. The
authentication stops halfway while waiting for the TX HDCP IP to complete the authenti
cation with downstream sink and pass the RECEIVERID_LIST to the RX HDCP IP. Ti
meout as defined in the HDCP Specification is 2 seconds. If the TX HDCP IP is unable
to complete the authentication in this period, the upstream source treats the authentica
tion as fail and initiates re-authentication as specified in the HDCP Specification.

Note: • Refer to Modifying HDCP Software Parameters on page 118 for the method
to disable the REPEATER_MODE parameter for debugging purpose. After disabling th
e REPEATER_MODE parameter, the RX HDCP IP always attempt authentication as a
n endpoint receiver. The TX HDCP IP does not gate the authentication process.

• If the REPEATER_MODE parameter is not enabled, make sure the HDCP key
provided to the HDCP IP is the production value and the value is correct.

5.

RX HDCP de
cryption stat
us signal is u
nstable.

This means the RX HDCP IP has requested re-authentication right after the
authenticated state is achieved. This is probably due to the incoming encrypted video i
s not decrypted correctly by the RX HDCP IP. Make sure the global constant (LC128) p
rovided to the RX HDCP IP core is production value and the value is correct.

HDMI Intel Arria 10 FPGA IP Design Example User Guide Archives

For the latest and previous versions of this user guide, refer to HDMI Intel® Arria 10 FPGA IP Design Example
User Guide. If an IP or software version is not listed, the user guide for the previous IP or software version
applies.
IP versions are the same as the Intel Quartus Prime Design Suite software versions up to v19.1. From Intel
Quartus Prime Design Suite software version 19.2 or later, IP
cores have a new IP versioning scheme.

Revision History for HDMI Intel Arria 10 FPGA IP Design Example User Guide

Document Version Intel Quartus
Prime Version IP Version Changes

2022.12.27 22.4 19.7.1

Added a new parameter for selecting HDMI daugh
ter card revision to the Hardware and Software Re
quirements section of the design example for HD
MI 2.0 (non-FRL mode).

2022.07.29 22.2 19.7.0

• Notification of removal of Cygwin component fro
m the Windows* version of Nios II EDS and the re
quirement to install WSL for Windows* users.
• Updated daughter card version from Revision 4 t
o 9 where applicable throughout the document.

2021.11.12 21.3 19.6.1

• Updated the subsection Store encrypted HDCP
production keys in the external flash memory or E
EPROM (Support HDCP Key Management = 1) to
describe the new key encryption software utility (K
EYENC).
• Removed the following figures:
— Data array of Facsimile Key R1 for RX Private
Key
— Data arrays of HDCP Production Keys (Place
holder)
— Data array of HDCP Protection Key (Predefin
ed key)
— HDCP protection key initialized in
hdcp2x_tx_kmem.mif
— HDCP protection key initialized in hdcp1x_rx_
kmem.mif
— HDCP protection key initialized in
hdcp1x_tx_kmem.mif
• Moved subsection HDCP Key Mapping from DC
P Key Files from Debug Guidelines to Store plain
HDCP production keys in the FPGA (Support HD
CP Key Management = 0).

2021.09.15 21.1 19.6.0 Removed reference to ncsim

2021.05.12 21.1 19.6.0

• Added When SUPPORT FRL = 1 or SUPPORT
HDCP KEY MANAGEMENT = 1 to the description
for Figure 29 HDCP Over HDMI Design Example
Block Diagram.
• Added the steps in HDCP key memory files in D
esign Walkthrough.
• Added When SUPPORT FRL = 0 to the section
Setup the ardware.
• Added the step to turn on Support HDCP Key M
anagement parameter in Generate the Design.
• Added a new subsection Store encrypted HDCP
production keys in the external flash memory or E
EPROM (Support HDCP Key Management = 1).

continued…

Document Version Intel Quartus
Prime Version IP Version Changes

• Renamed Table Push Button and LED Indicators
to Push Button and LED Indicators (SUPPORT FR
L = 0).
• Added Table Push Button and LED Indicators (S
UPPORT FRL = 1).
• Added a new chapter Protection of Encryption K
ey Embedded in FPGA Design.
• Added a new chapter Debug Guidelines and sub
sections HDCP Status Signals, Modifying HDCP
Software Parameter and Frequently Asked Questi
ons.

2021.04.01 21.1 19.6.0

• Updated Figure Components Required for RX-O
nly or TX-Only Design.
• Updated Table Generated RTL Files.
• Updated Figure HDMI RX Top Components.
• Removed Section HDMI RX Top Link Training Pr
ocess.
• Updated the steps in Running the Design in Diffe
rent FRL Rates.
• Updated Figure HDMI 2.1 Design Example
Clocking Scheme.
• Updated Table Clocking Scheme Signals.
• Updated Figure HDMI RX-TX Block Diagram to
add a connection from Transceiver Arbiter to TX to
p.

2020.09.28 20.3 19.5.0

• Removed the note that the HDMI 2.1 design exa
mple in FRL mode supports only speed grade –1
devices in the HDMI Intel FPGA IP Design Exampl
e Quick Start Guide for Intel Arria 10 Devices and
HDMI 2.1 Design Example (Support FRL = 1) sect
ions. The design supports all speed grades.
• Removed ls_clk information from all HDMI 2.1 d
esign example related sections. The ls_clk domain
is no longer used in the design example.
• Updated the block diagrams for the HDMI 2.1 de
sign example in FRL mode in the HDMI 2.1 Desig
n Example (Support FRL = 1), Creating RX- Only
or TX-Only Designs Design Components, and Clo
cking Scheme sections.
• Updated the directories and generated files list i
n the Directory Structure sections.
• Removed irrelevant signals, and added or edite
d the description of the following HDMI 2.1 design
example signals in the Interface Signals section:
— sys_init
— txpll_frl_locked
— tx_os
— txphy_rcfg* signals
— tx_reconfig_done
— txcore_tbcr
— pio_in0_external_connection_export
• Added the following parameters in the Design
RTL Parameters section:
— EDID_RAM_ADDR_WIDTH
— BITEC_DAUGHTER_CARD_REV
— USE FPLL
— POLARITY_INVERSION

continued…

Document Version Intel Quartus
Prime Version IP Version Changes

• Updated the block diagrams for the HDMI 2.0 de
sign example for Intel Quartus Prime Pro Edition s
oftware in the HDMI 2.0 Design Example (Support
FRL = 0), Creating RX-Only or TX-Only Designs D
esign Components, and Clocking Scheme section
s.
• Updated the clock and reset signal names in the
Dynamic Range and Mastering (HDR) InfoFrame I
nsertion and Filtering section.
• Removed irrelevant signals, and added or edited
the description of the following HDMI 2.0 design e
xample signals in the Interface Signals section:
— clk_fpga_b3_p
— REFCLK_FMCB_P
— fmcb_la_tx_p_11
— fmcb_la_rx_n_9e
— fr_clck
— reset_xcvr_powerup
— nios_tx_i2c* signals
— hdmi_ti_i2c* signals
— tx_i2c_avalon* signals
— clock_bridge_0_in_clk_clk
— reset_bridge_0_reset_reset_n
— i2c_master* signals
— nios_tx_i2c* signals
— measure_valid_pio_external_connectio n_exp
ort
— oc_i2c_av_slave_translator_avalon_an ti_slav
e_0* signals
— powerup_cal_done_export
— rx_pma_cal_busy_export
— rx_pma_ch_export
— rx_pma_rcfg_mgmt* signals
• Added a note that the simulation testbench is no
t supported for designs with the Include I2C para
meter enabled and updated the simulation messa
ge in the Simulation Testbench section.
• Updated the Upgrading Your Design section.

2020.04.13 20.1 19.4.0

• Added a note that the HDMI 2.1 design example
in FRL mode supports only speed grade –1
devices in the HDMI Intel FPGA IP Design Exampl
e Quick Start Guide for Intel Arria 10 Devices and
Detailed Description for HDMI 2.1 Design
Example (Support FRL = 1) sections.
• Moved the HDCP Over HDMI Design Example f
or Intel Arria 10 Devices section from the HDMI Int
el FPGA IP User Guide.
• Edited the Simulating the Design section to inclu
de the audio sample generator, sideband data gen
erator, and auxiliary data generator and updated t
he successful simulation message.
• Removed the note that stated simulation is avail
able only for Support FRL disabled designs note.
Simulation is now available for Support FRL enab
led designs as well.
• Updated the feature description in the Detailed D
escription for HDMI 2.1 Design Example (Support
FRL Enabled) section.

continued…

Document Version Intel Quartus
Prime Version IP Version Changes

• Edited the block diagram in the HDMI 2.1 RX-TX
Design Block Diagram, Design Components, and
Creating RX-Only or TX-Only Designs sections for
HDMI 2.1 design example. Added new component
s and removed components that are no longer
applicable.
• Edited the main.c script instruction in the Creatin
g RX-Only or TX-Only Designs section.
• Updated the Directory Structure sections to add
new folders and files for both HDMI 2.0 and HDMI
2.1 design examples.
• Updated the Hardware and Software Requireme
nts section for HDMI 2.1 design example.
• Updated the block diagram and the signal descri
ptions in the Dynamic Range and Mastering (HDR
) InfoFrame Insertion and Filtering section for HD
MI 2.1 design example.
• Added a new section, Running the Design in Diff
erent FRL Rates, for the HDMI 2.1 design exampl
es.
• Updated the block diagram and the signal descri
ptions in the Clocking Scheme section for HDMI 2.
1 design example.
• Added description about user DIP switch in the
Hardware Setup section for HDMI 2.1 design exa
mple.
• Updated the Design Limitations section for HDMI
 2.1 design example.
• Updated the Upgrading Your Design section.
• Updated the Simulation Testbench sections for
both HDMI 2.0 and HDMI 2.1 design examples.

2020.01.16 19.4 19.3.0

• Updated the HDMI Intel FPGA IP Design
Example Quick Start Guide for Intel Arria 10 Devic
es section with information about the newly added
HDMI 2.1 design example with FRL mode.
• Added a new chapter, Detailed Description for H
DMI 2.1 Design Example (Support FRL Enabled) t
hat contains all the relevant information about the
newly added design example.
• Renamed the HDMI Intel FPGA IP Design Exam
ple Detailed Description to Detailed Description for
HDMI 2.0 Design Example for better clarity.

2019.10.31 18.1 18.1

• Added generated files in the
tx_control_src folder: ti_i2c.c and ti_i2c.h.
• Added support for FMC daughter card revision 1
1 in the Hardware and Software Requirements an
d Compiling and Testing the Design sections.
• Removed the Design Limitation section. The limi
tation regarding the timing violation on the maximu
m skew constraints was resolved in version
18.1 of the HDMI Intel FPGA IP.
• Added a new RTL parameter, BITEC_DAUGHT
ER_CARD_REV, to enable you to select the revisi
on of the Bitec HDMI daughter card.

continued…

Document Version Intel Quartus
Prime Version IP Version Changes

• Updated the description for fmcb_dp_m2c_p an
d fmcb_dp_c2m_p signals to include information a
bout the FMC daughter card revisions 11, 6, and 4
.
• Added the following new signals for Bitec
daughter card revision 11:
— hdmi_tx_ti_i2c_sda
— hdmi_tx_ti_i2c_scl
— oc_i2c_master_ti_avalon_anti_slave_a ddress
— oc_i2c_master_ti_avalon_anti_slave_w rite
— oc_i2c_master_ti_avalon_anti_slave_r eaddat
a
— oc_i2c_master_ti_avalon_anti_slave_w ritedat
a
— oc_i2c_master_ti_avalon_anti_slave_w
aitrequest
• Added a section about Upgrading Your Design.

2017.11.06 17.1 17.1

• Renamed HDMI IP core to HDMI Intel FPGA IP
as per Intel rebranding.
• Changed the term Qsys to Platform Designer.
• Added information about Dynamic Range and M
astering InfoFrame (HDR) insertion and filtering fe
ature.
• Updated the directory structure:
— Added script and software folders and files.
— Updated common and hdr files.
— Removed atx files.
— Differentiated files for Intel Quartus Prime Stan
dard Edition and Intel Quartus Prime Pro Edition.
• Updated the Generating the Design section to ad
d the device used as 10AX115S2F4I1SG.
• Edited the transceiver data rate for 50-100 MHz
TMDS clock frequency to 2550-5000 Mbps.
• Updated the RX-TX link information that you can
release the user_pb[2] button to disable external fi
ltering.
• Updated the Nios II software flow diagram that i
nvolves the controls for I2C master and HDMI sou
rce.
• Added information about the Design Example G
UI parameters.
• Added HDMI RX and TX Top design parameters
.
• Added these HDMI RX and TX top-level signals:
— mgmt_clk
— reset
— i2c_clk
— hdmi_clk_in
— Removed these HDMI RX and TX top-level sig
nals:
• version
• i2c_clk

continued…

Document Version Intel Quartus
Prime Version IP Version Changes

• Added a note that the transceiver analog setting
is tested for the Intel Arria 10 FPGA Development
Kit and Bitec HDMI 2.0 Daughter card. You may m
odify the analog setting for your board.
• Added a link for workaround to avoid jitter of PL
L cascading or non-dedicated clock paths for Intel
Arria 10 PLL reference clock.
• Added a note that you cannot use a transceiver
RX pin as a CDR refclk for HDMI RX or as a TX P
LL refclk for HDMI TX.
• Added a note about how to add set_max_skew
constraint for designs that use TX PMA and PCS
bonding.

2017.05.08 17.0 17.0

• Rebranded as Intel.
• Changed part number.
• Updated the directory structure:
— Added hdr files.
— Changed qsys_vip_passthrough.qsys to nios.q
sys.
— Added files designated for Intel Quartus Prime
Pro Edition.
• Updated information that the RX-TX Link block al
so performs external filtering on the High Dynamic
Range (HDR) Infoframe from the HDMI RX auxilia
ry data and inserts an example HDR Infoframe to t
he auxiliary data of the HDMI TX through Avalon
ST multiplexer.
• Added a note for the Transceiver Native PHY
description that to meet the HDMI TX inter-
channel skew requirement, you need to set the TX
channel bonding mode option in the Arria 10 Trans
ceiver Native PHY parameter editor to PMA and
PCS bonding.
• Updated description for os and measure signals.
• Modified the oversampling factor for different tra
nsceiver data rate at each TMDS clock frequency
range to support TX FPLL direct clock scheme.
• Changed TX IOPLL to TX FPLL cascade clockin
g scheme to TX FPLL direct scheme.
• Added TX PMA reconfiguration signals.
• Edited USER_LED[7] oversampling status. 1 indi
cates oversampled (data rate < 1,000 Mbps in Arri
a 10 device).
• Updated HDMI Design Example Supported Simu
lators table. VHDL not supported for NCSim.
• Added link to archived version of the Arria 10 HD
MI IP Core Design Example User Guide.

2016.10.31 16.1 16.1 Initial release.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at

any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

 Online Version

 Send Feedback
ID: 683156

Version: 2022.12.27

Documents / Resources

intel HDMI Arria 10 FPGA IP Design Example [pdf] User Guide
HDMI Arria 10 FPGA IP Design Example, HDMI Arria, 10 FPGA IP Design Example, Design Ex
ample

Manuals+,

https://manuals.plus/m/e288510e13ea69400eb2b0c09ccfedb1ccf4907cd70ca651242fe128f7a42105
https://manuals.plus/m/e288510e13ea69400eb2b0c09ccfedb1ccf4907cd70ca651242fe128f7a42105_optim.pdf
https://manuals.plus/

	intel HDMI Arria 10 FPGA IP Design Example User Guide
	HDMI Intel® FPGA IP Design Example Quick Start Guide for Intel® Arria® 10 Devices
	HDMI 2.1 Design Example (Support FRL = 1)
	HDMI 2.0 Design Example (Support FRL = 0)
	HDCP Over HDMI 2.0/2.1 Design Example
	HDMI Intel Arria 10 FPGA IP Design Example User Guide Archives
	Revision History for HDMI Intel Arria 10 FPGA IP Design Example User Guide
	Documents / Resources

