
Home » Intel » Get Started with Intel Trace Analyzer and Collector User Guide

Contents
1 Get Started with Intel Trace Analyzer and Collector
2 Get Started with Intel® Trace Analyzer and Collector
3 Trace Your MPI Application
4 Analyze the Most Active MPI Functions
5 Identify Disbalanced Communications
6 Improve Your Application Performance by Changing
Communications
7 Learn More
8 Notices and Disclaimers
9 Documents / Resources

9.1 References
10 Related Posts

Get Started with Intel Trace Analyzer and Collector

Get Started with Intel Trace Analyzer and Collector User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/get-started-with-intel-trace-analyzer-and-collector-manual.pdf

Get Started with Intel® Trace Analyzer and Collector

Use this Get Started document and a pre-collected trace file to walk through a basic MPI performance analysis
with Intel® Trace Analyzer and Collector.
Intel Trace Analyzer and Collector helps explore message passing interface (MPI) usage efficiency and identify
communication hotspots, synchronization bottlenecks, and load balancing. For more information about the
product, see Intel Trace Analyzer and Collector product page.

Download Intel Trace Analyzer and Collector

as a part of Intel® oneAPI HPC Toolkit

as a standalone tool

Prerequisites

Before running Intel Trace Analyzer and Collector, make sure you have installed the latest Intel® MPI Library

and Intel® oneAPI DPC++/C++ Compiler or Intel® Fortran Compiler.

This sets the required environment variables for compilers, the Intel MPI Library, and Intel Trace Analyzer and

Collector, and you are ready to trace your applications.

For more information, see: Intel® oneAPI HPC Toolkit System Requirements.

Understand the Workflow

1. Trace Your Application

2. Analyze the most active MPI functions

3. Identify problematic interactions

4. Improve your application performance by replacing the problem-causing function

Trace Your MPI Application

Generate a trace file to collect event logs for the following application behavior analysis.

1. Set up the environment for launching the Intel® Trace Analyzer and Collector by running the setvars script from

the oneAPI installation director

NOTE

By default, Intel Trace Analyzer and Collector is installed to /opt/intel/oneapi/itac for Linux* OS and to Program

Files (x86)\Intel\oneAPI\itac\latest for Windows* OS.

On Linux:

$ source /opt/intel/oneapi/setvars.sh

On Windows:

“C:\Program Files (x86)\Intel\oneAPI\setvars.bat”

2. Run your MPI application and generate a trace with the -trace option.

On Linux:

$ mpirun -trace -n 4 ./poisson_sendrecv.single

On Windows:

Compile the app and collect the trace.

For Intel oneAPI DPC++/C++ Compiler, run:

> mpiicc -trace poisson_sendrecv.single.c

For Intel Fortran Compiler, run:

> mpiifort -trace poisson_sendrecv.single.f

This example generates a trace (stf*) for a sample poisson_sendrcv.single MPI application

3. Open the generated .stf file with Intel Trace Analyzer with Intel Trace Analyzer and Collector.

On Linux:

$ traceanalyzer ./ poisson_sendrecv.single.stf

On Windows:

traceanalyzer poisson_sendrecv.single.stf

NOTE
For testing purposes, you can download a pre-collected trace file poisson_sendrecv.single.stf for the poisson used
in this document and open it with Intel Trace Analyzer and Collector.
The .stf file opens in the Summary Page view, which represents general information about your application
performance:

NOTE For more information about Intel Trace Analyzer and Collector functionality, see Learn More.

Analyze the Most Active MPI Functions

Analyze an MPI application behavior, find bottlenecks and identify serialization to find the ways to improve the
application performance.

1. From the Summary Page open the Event Timeline view by clicking Continue > Charts > Event Timeline for

deep analysis of the top MPI functions.

The chart displays individual process activities over time.

Application work is iterative, where each iteration consists of a computational part and MPI communications.

2. Identify a single iteration to focus on and zoom into it by dragging your mouse over the required time interval:

The trace view shows the section within the trace that you selected. The Event Timeline chart shows the

events that were active during the selected iteration.

Horizontal bars represent the processes with the functions called in these processes.

Black lines indicate messages sent between processes. These lines connect sending and receiving

processes.

Blue lines represent collective operations, such as broadcast or reduce operations.

3. Switch to the Flat Profile tab (A) to have a closer look at functions executing in the time point you (selected in

the Event Timeline.

4. Ungroup MPI functions to analyze MPI process activity in your application.

To do this, right-click the All Processes > Group MPI (B) in the Flat Profile and choose UngroupMPI. This

operation exposes the individual MPI calls.

5. Analyze the processes communicating with their direct neighbors using MPI_Sendrecv at the start of the

iteration. For example:

a. In the sample, the MPI_Sendrecv data exchange has a bottleneck: the process does not exchange

data with its next neighbor until the exchange with the previous one is complete. The Event Timelines

view displays this bottleneck as a staircase.

b. The MPI_Allreduce at the end of the iteration resynchronizes all processes; that is why this block has

the reverse staircase appearance.

6. Identify serialization, using the Function Profile and Message Profile views.

a. Open the charts at the same time:

In the Function Profile chart, open the Load Balancetab.

Go to the Charts menu to open a Message Profile.

b. In the Load Balance tab, expand MPI_Sendrecv and MPI_Allreduce. The Load Balancing indicates

that the time spent in MPI_Sendrecv increases with the process number, while the time for

MPI_Allreduce decreases.

c. Examine the Message Profile Chart down to the lower right corner.

The color coding of the blocks indicates that messages traveling from a higher rank to a lower rank need

proportionally more time while the messages traveling from a lower rank to a higher rank reveal a weak

even-odd kind of pattern:

The results of the comparative analysis shows that there are no complex exchange patterns in the application, the
exchange is carried out only with neighboring processes. The information will be essential for Improve Your
Application Performance by Changing Communications step to optimize the communication model of the
application.

Identify Disbalanced Communications

Watch your application under the ideal circumstances and compare the original trace file with the idealized one to
isolate problematic interactions.

1. Create an idealized file:

a. Select Advanced > Idealization or click the (Idealization) toolbar button.

b. Check the idealization parameters in the Idealization dialog box (ideal trace file name and time range

for conversion).

c. Click Start to idealize your trace.

2. Compare the original trace with the idealized trace:

a. Select Advanced > Imbalance Diagram or click the (Imbalance Diagram) toolbar button.

b. In the Imbalance Diagram dialog box, click the Open Another File button, navigate to the idealized

trace, and select it.

c. In the Imbalance Diagram window, click the Total Mode button and select Breakdown Mode.

You can see that MPI_Sendrecv is the most time-consuming function. The imbalance weight is displayed in
light color and comprises about 10% for the MPI_Sendrecv function. This is the time the processes spend waiting
for each other.

Improve Your Application Performance by Changing Communications

1. Improve the performance of the MPI application by changing blocking to non-blocking communications.

In your code replace the serial MPI_Sendrcv with non-blocking communication: MPI_Isend and MPI_Irecv. For

example: Original code snippet:

// boundary exchange

void exchange(para* p, grid* gr){

int i,j;

MPI_Status status_100, status_200, status_300, status_400;

// send down first row

MPI_Send(gr->x_new[1], gr->lcol+2, MPI_DOUBLE, gr->down, 100, MPI_COMM_WORLD); MPI_Recv(gr-

>x_new[gr->lrow+1], gr->lcol+2, MPI_DOUBLE, gr->up, 100, MPI_COMM_WORLD,

&status_100);

// send up last row

MPI_Send(gr->x_new[gr->lrow], gr->lcol+2, MPI_DOUBLE, gr->up, 200, MPI_COMM_WORLD);

MPI_Recv(gr->x_new[0], gr->lcol+2, MPI_DOUBLE, gr->down, 200, MPI_COMM_WORLD, &status_200);

Use the Intel Trace Analyzer Comparison view to compare the serialized application with the revised

// copy left column to tmp arrays

if(gr->left != MPI_PROC_NULL){

gr->x_new[i][gr->lcol+1] = right_col[i]; right_col[i] = gr->x_new[i][gr->lcol];

// send right

MPI_Send(right_col, gr->lrow+2, MPI_DOUBLE, gr->right, 400, MPI_COMM_WORLD); }

if(gr->left != MPI_PROC_NULL)

{

MPI_Recv(left_col, gr->lrow+2, MPI_DOUBLE, gr->left, 400, MPI_COMM_WORLD,&status_400); for(i=0; i< gr-

>lrow+2; i++

{

gr->x_new[i][0] = left_col[i];

}

}

Updated code snippet

MPI_Request req[7];

// send down first row

MPI_Isend(gr->x_new[1], gr->lcol+2, MPI_DOUBLE, gr->down, 100, MPI_COMM_WORLD, &req[0]);

MPI_Irecv(gr->x_new[gr->lrow+1], gr->lcol+2, MPI_DOUBLE, gr->up, 100, MPI_COMM_WORLD, &req[1]);

…..

MPI_Waitall(7, req, MPI_STATUSES_IGNORE);

Once corrected, the single iteration of the revised application will look like the following example:

2. Use the Intel Trace Analyzer Comparison view to compare the serialized application with the revised one.

Compare two traces with the help of the Comparison View, going to View > Compare. The Comparison View

looks similar to:

In the Comparison View, you can see that using non-blocking communication helps to remove serialization and

decrease the time of communication of processes.

NOTE For more information about node-level performance of your application, see documentation for the

respective tools: Intel® VTune™ Profiler MPI Code Analysis and Analyzing Intel® MPI applications using Intel®

Advisor.

Learn More

Explore the following resources for more information about Intel Trace Analyzer and Collector.

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

The products described may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

Documents / Resources

intel Get Started with Intel Trace Analyzer and Collector [pdf] User Guide
Get Started with Intel Trace Analyzer and Collector, Get Started with Intel, Trace Analyzer and
Collector, Collector

References

 cdrdv2.intel.com/v1/dl/getContent/679017

 Analyze MPI Applications

 Intel® Trace Analyzer and Collector Release Notes

 Intel® oneAPI standalone component installation files

 Intel® Trace Analyzer and Collector User and Reference Guide

https://manuals.plus/m/b2c840511d21da44f809a00a563bd36e0c60c501ee3350998bc257badaba0b40
https://manuals.plus/m/b2c840511d21da44f809a00a563bd36e0c60c501ee3350998bc257badaba0b40_optim.pdf
https://cdrdv2.intel.com/v1/dl/getContent/679017
https://software.intel.com/content/www/us/en/develop/articles/analyzing-intel-mpi-applications-using-intel-advisor.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trace-analyzer-and-collector-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#trace
https://software.intel.com/content/www/us/en/develop/documentation/ita-user-and-reference-guide/top.html

 Detecting and Resolving Errors with MPI Correctness Checker

 Tutorial: Analyzing an OpenMP* and MPI Application

 Intel® Trace Analyzer and Collector User and Reference Guide

 Tutorial: Reducing Trace File Size

 MPI Code Analysis

 software.intel.com/content/www/us/en/develop/download/itac-gsg-sample.html

 Intel® Trace Analyzer and Collector

 Intel® Trace Analyzer and Collector

Manuals+,

https://software.intel.com/content/www/us/en/develop/documentation/itac-correctness-checking-tutorial/top.html
https://software.intel.com/content/www/us/en/develop/documentation/itac-vtune-mpi-openmp-tutorial-lin/top.html
https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/reducing-tracefile-size-with-itac/top.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/mpi-code-analysis.html
https://software.intel.com/content/www/us/en/develop/download/itac-gsg-sample.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html
https://manuals.plus/

	Get Started with Intel Trace Analyzer and Collector User Guide
	Get Started with Intel Trace Analyzer and Collector
	Get Started with Intel® Trace Analyzer and Collector
	Trace Your MPI Application
	Analyze the Most Active MPI Functions
	Identify Disbalanced Communications
	Improve Your Application Performance by Changing Communications
	Learn More
	Notices and Disclaimers
	Documents / Resources
	References

