
Home » Intel » Intel FPGA Programmable Acceleration Card D5005 User Guide  

Contents
1  Intel FPGA Programmable Acceleration Card D5005
2  About this Document
3  DMA AFU Description
4  Register Map and Address Spaces
5  DMA AFU Register Map
6  Register Map and Address Spaces
7  Software Programming Model
8  Running DMA AFU Example
9  Compiling the DMA AFU Example
10  Simulating the AFU Example
11  Optimization for Improved DMA Performance
12  DMA Accelerator Functional Unit User Guide Archives
13  Document Revision History for the DMA Accelerator Functional Unit User
Guide
14  Documents / Resources

14.1  References
15  Related Posts

Intel FPGA Programmable Acceleration Card D5005

Intel FPGA Programmable Acceleration Card D5005 User
Guide

Manuals+ —  User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/fpga-programmable-acceleration-card-d5005-manual.pdf


About this Document

This document describes the direct memory access (DMA) Accelerator Functional Unit (AFU) implementation and
how to build the design to run on hardware or in simulation.

Intended Audience

The intended audience comprises hardware or software developers that require an Accelerator Function (AF) to
buffer data locally in memory connected to the Intel FPGA device.

Conventions

Document Conventions

Convention Description

# Precedes a command that indicates the command is t
o be entered as root.

$ Indicates a command is to be entered as a user.

This font

Filenames, commands, and keywords are printed in th
is font. Long command lines are printed in this font. Alt
hough long command lines may wrap to the next line, t
he return is not part of the command; do not press ent
er.

<variable_name>
Indicates the placeholder text that appears between th
e angle brackets must be replaced with an appropriate
value. Do not enter the angle brackets.

Acronyms

Acronyms



Acronyms Expansion Description

AF Accelerator Function Compiled Hardware Accelerator image implemented in FPG
A logic that accelerates an application.

AFU Accelerator Functional
Unit

Hardware Accelerator implemented in FPGA logic which offl
oads a computational operation for an application from the C
PU to improve performance.

API Application Programmi
ng Interface

A set of subroutine definitions, protocols, and tools for buildin
g software applications.

CCI-P Core Cache Interface CCI-P is the standard interface AFUs use to communicate wi
th the host.

DFH Device Feature Heade
r

Creates a linked list of feature headers to provide an extensi
ble way of adding features.

continued…

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

Acronyms Expansion Description

FIM FPGA Interface
Manager

The FPGA hardware containing the FPGA Interface Unit (FI
U) and external interfaces for memory, networking, etc.

The Accelerator Function (AF) interfaces with the FIM at run 
time.

FIU FPGA Interface Unit
FIU is a platform interface layer that acts as a bridge betwee
n platform interfaces like PCIe*, UPI and AFU-side interfaces
such as CCI-P.

MPF Memory Properties Fa
ctory

The MPF is a Basic Building Block (BBB) that AFUs can use 
to provide CCI-P traffic shaping operations for transactions w
ith the FIU.

Acceleration Glossary

Acceleration Stack for Intel® Xeon® CPU with FPGAs Glossary



Term Abbreviation Description

Intel® Acceleration Stack for Intel X
eon® CPU with FPGAs Acceleration Stack

A collection of software, firmware, 
and tools that provides performanc
e- optimized connectivity between 
an Intel FPGA and an Intel Xeon p
rocessor.

Intel FPGA Programmable Acceler
ation Card Intel FPGA PAC

PCIe FPGA accelerator card.

Contains an FPGA Interface Mana
ger (FIM) that pairs with an Intel Xe
on processor over the PCIe bus.

DMA Accelerator Functional Unit User Guide: Intel FPGA Programmable Acceleration Card D5005

DMA AFU Description

Introduction

The Direct Memory Access (DMA) AFU example shows how to manage memory transfers between the host
processor and the FPGA. You can integrate the DMA AFU into  your design to move data between the host
memory and the FPGA local memory.The DMA AFU comprises the following submodules:

Memory Properties Factory (MPF) Basic Building Block (BBB)

Core Cache Interface (CCI-P) to the Avalon® Memory-Mapped (Avalon-MM) Adapter

DMA Test System which contains the DMA BBB

These submodules are described in more detail in the DMA AFU Hardware Components topic below.

Related Information

The DMA AFU Hardware Components on page 6

Avalon Interface Specifications

For more information about the Avalon-MM protocol, including timing diagrams for read and write transactions.

The DMA AFU Software Package

The Intel Acceleration Stack for Intel Xeon CPU with FPGAs package file (*.tar.gz), includes the DMA AFU
example. This example provides a user space driver. The host application uses this driver such that the DMA
moves data between host and FPGA memory. The hardware binaries, sources, and the user space driver are
available in the following directory: $OPAE_PLATFORM_ROOT/hw/samples/dma_afu . Before experimenting with
the DMA AFU, you must install the Open Programmable Acceleration Engine (OPAE) software package. Refer to
Installing the OPAE Software Package in the Intel Acceleration Stack Quick Start Guide for Intel FPGA
Programmable Acceleration Card D5005 for installation instructions. This Quick Start Guide also includes basic
information about the Open Programmable Acceleration Engine (OPAE) and configuring an AFU. After installing
the Open Programmable Acceleration Engine (OPAE) software package, a sample host application and the DMA
AFU user space driver are available in the following directory:
$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/sw. To run the sample host application, fpga_dma_test on your
Intel FPGA PAC D5005 hardware, refer to the steps in section Running the DMA AFU Example. Intel Corporation.



All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

Related Information

Intel Acceleration Stack Quick Start Guide for Intel FPGA Programmable Acceleration Card D5005

Installing the OPAE Software Package

The DMA AFU Hardware Components

The DMA AFU interfaces with the FPGA Interface Unit (FIU) and FPGA memory. Refer to the FPGA Interface
Manager Data Sheet for Intel FPGA Programmable Acceleration Card D5005 for detailed specifications of the
FPGA memory. The currently available hardware dictates this memory configuration. Future hardware may
support different memory configurations. You can use the DMA AFU to copy data between the following source
and destination locations:

The host to device FPGA memory

Device FPGA memory to the host

A Platform Designer system, $OPAE_PLATFORM_ROOT/hw/samples/
dma_afu/hw/rtl/TEST_dma/<device>/dma_test_system.qsys implements most of the DMA

AFU. Part of the DMA AFU implemented in the Platform Designer system can be found in the following

location:$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/hw/rtl/TEST_dma/<device> You can find the DMA
BBB in the following location:

$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/hw/rtl/dma_bbb

DMA Accelerator Functional Unit User Guide: Intel FPGA Programmable Acceleration Card D5005

DMA AFU Hardware Block Diagram



The DMA AFU includes the following internal modules to interface with the FPGA Interface Unit (FIU):

Memory-Mapped IO (MMIO) Decoder Logic: detects MMIO read and write transactions and separates them

from the CCI-P RX channel 0 that they arrive from. This ensures that MMIO traffic never reaches the MPF BBB

and is serviced by an independent MMIO command channel.

Memory Properties Factory (MPF): This module ensures that read responses from the DMA return in the order

that they were issued. The Avalon-MM protocol requires read responses to return in the correct order.

CCI-P to Avalon-MM Adapter: This module translates between CCI-P and Avalon-MM transactions, as follows:

CCI-P to Avalon-MMIO Adapter: This path translates CCI-P MMIO transactions into Avalon-MM transactions.

Avalon to CCI-P Host Adapter: These paths create separate read-only and write-only paths for the DMA to

access host memory.

DMA Test System: This module serves as a wrapper around the DMA BBB to expose the DMA masters to the

rest of the logic in the AFU. It provides the interface between the DMA BBB and the CCI-P to Avalon Adapter. It

also provides the interface between the DMA BBB and the local FPGA SDRAM banks.

Related Information
FPGA Interface Manager Data Sheet for Intel FPGA Programmable Acceleration Card D5005



DMA Test System

The DMA test system connects the DMA BBB to the rest of the FPGA design including CCI-P adaptation and the
local FPGA memory.

DMA Test System Block Diagram
This block diagram shows the internals of the DMA test system. The DMA test system is shown as a monolithic
block in Figure 1 on page 7.

The DMA test system includes the following internal modules:

Far Reach Bridge/Pipeline Bridge: A pipeline bridge with adjustable latency included to control topology and

improve the design Fmax.

DMA AFU Device Feature Header (DFH): This is a DFH for the DMA AFU. This DFH points to the next DFH

located at offset 0x100 (DMA BBB DFH).

Null DFH: This component terminates the DFH linked-list. If you add more DMA BBBs to the design, ensure

that the null DFH base address is located at the end of the DFH linked-list.

MA Basic Building Block (BBB): This block moves data between the host and the local FPGA memory. It also

accesses host memory to access descriptor chains.

DMA BBB

The DMA BBB subsystem transfers data from source to destination addresses using Avalon-MM transactions.



The DMA driver controls the DMA BBB by accessing the control and status register of the various components
inside the system. The DMA driver also controls the DMA BBB by using shared memory to communicate transfer
descriptors. The DMA BBB accesses data in FPGA memory at offset 0x0. The DMA BBB accesses data and
descriptors in host memory at offset 0x1_0000_0000_0000.

DMA BBB Platform Designer Block Diagram
This block diagram excludes some internal Pipeline Bridge IP cores.

DMA Accelerator Functional Unit User Guide: Intel FPGA Programmable Acceleration Card D5005

DMA AFU Description

The components in the DMA BBB Platform Designer implement the following functions:

Far Reach Bridge/Pipeline Bridge: A pipeline bridge with adjustable latency included to control topology and

improve the design Fmax.

MA BBB DFH: This is a device feature header for the DMA BBB. This DFH points to the next DFH located at

offset 0x100 (Null DFH).



Descriptor Frontend: Responsible for fetching descriptors and transferring them to the Dispatcher. When a

DMA transfer completes the frontend receives status  formation from the Dispatcher and overwrites the

descriptor in host memory.

Dispatcher: This block schedules DMA transfers requests to the Read and Write Master.

Read Master: This block is responsible for reading data from host or local FPGA memory and sending it as

streaming data to Write Master.

Write Master: This block is responsible for receiving streaming data from the Read Master and writing the

contents to host or local FPGA memory.

Register Map and Address Spaces

The DMA AFU supports two memory views: The DMA view and the host view. The DMA view supports a 49-bit
address space. The lower half of the DMA view maps to the local FPGA memory. The upper half of the DMA view
maps to host memory. The host view includes all the registers accessible through MMIO accesses such as the
DFH tables, and the control/status registers of the various IP cores used inside the DMA AFU. The MMIO
registers in the DMA BBB and AFU support 32- and 64- bit access. The DMA AFU does not support 512-bit MMIO
accesses. Accesses to the Dispatcher registers inside the DMA BBB must be 32 bits (Descriptor frontend
implements 64-bit registers).

DMA AFU Register Map

The DMA AFU register map provides the absolute addresses of all the locations within the unit. These registers
are in the host view because it’s only the host that can access them.

DMA AFU Memory Map

Byte Address
Offsets Name Span in Bytes Description

0x0 DMA AFU DF
H 0x40

Device feature header for the DMA AFU. The ID_L is set to
0x9081f88b8f655caa and ID_H is set to 0x331db30c98854
1ea. The DMA AFU DFH has been parameterized to point t
o offset 0x100 to find the next DFH (DMA BBB DFH). You 
must not modify the base address of the DMA AFU DFH si
nce it must be located at address 0x0 as defined by the CC
IP specification.

0x100 DMA BBB 0x100

Specifies DMA BBB control and status register interface. Y
ou can refer to the DMA BBB register map for more informa
tion. Within the DMA BBB at offset 0 the DMA BBB include
s it’s own DFH. This DFH has been set to find the next DF
H at offset 0x100 (NULL DFH). If you add more DMA BBBs
, space them 0x100 apart and ensure the NULL DFH follow
s the last DMA by 0x100.

0x200 NULL DFH 0x40

Terminates the DFH linked-list. The ID_L is set to 0x90fe6a
ab12a0132f and ID_H is set to 0xda1182b1b3444e23. The
NULL DFH has been parameterized to be the last DFH in h
ardware. For this reason the NULL DFH is located at addre
ss 0x200. If you add additional DMA BBBs to the system, y
ou need to increase the NULL DFH base address accordin
gly so that it remains at the highest address. The DMA driv
er and test application do not use this hardware.



Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

Register Map and Address Spaces

DMA BBB Memory Map
The following byte addresses are relative offsets from the DMA BBB base address in the DMA AFU system
(0x100).

Byte Address
Offsets Name Span in Bytes Description

0x0 DMA BBB DF
H 0x40

Device feature header for the DMA AFU. The ID_L is set to
0xa9149a35bace01ea and ID_H is set to
0xef82def7f6ec40fc . The DMA BBB DFH has been param
eterized to point to 0x100 for the next DFH offset. This next
offset can be another DMA BBB, another DFH (not include
d in this design), or the NULL DFH.

0x40 Dispatcher 0x40 Control port for the dispatcher. The DMA driver uses this lo
cation to control the DMA or query its status.

0x80 Descriptor Fro
ntend 0x40

The descriptor frontend is a custom component that reads 
descriptors from host memory and overwrites the descripto
r when the DMA transfer completes. The driver instructs th
e frontend where the first descriptor lives in host memory a
nd then the frontend hardware communicates with the driv
er primarily though descriptors stored in host memory.

DMA AFU Address Space

The host can access registers listed in the Table 4 on page 12 and the Table 5 on page 13. The DMA BBB
subsystem has access to the full 49-bit address space. The lower half of this address space includes the local
FPGA memories. The upper half of this address space includes the 48-bit host address memory. The following
figure shows the host and DMA views of memory.

The DMA AFU and Host Views of Memory



Device Feature Header Linked-List

The DMA AFU design example contains three device feature headers (DFH) that form a linked list. This linked list
allows the sample application to identify the DMA AFU as well as the driver to identify the DMA BBB. The DFH list
includes a NULL DFH at the end. The inclusion of the null DFH at the end of the linked list allows you to add more
DMA BBBs to your design. You simply need to move the NULL DFH to an address after the other BBBs. Each
DMA BBB expects the next DFH to be located 0x100 bytes from the base address of the BBB. The following figure
depicts the linked-list for the DMA AFU design example.

Register Map and Address Spaces

DMA AFU Device Feature Header (DFH) Chaining



Software Programming Model

The DMA AFU includes a software driver that you can use in your own host application. The fpga_dma.cpp and
fpga_dma.h files located at the following location implement the software
driver:$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/sw This driver supports the following functions:



API Description

fpgaCountDMAChannels Scans the device feature chain for DMA BBBs and cou
nt all available channels.

fpgaDMAOpen Opens a handle to the DMA channel.

fpgaDMAClose Closes a handle to the DMA channel.

fpgaDMATransferInit Initializes an object that represents the DMA transfer.

fpgaDMATransferReset Resets the DMA transfer attribute object to default val
ues.

fpgaDMATransferDestroy Destroys the DMA transfer attribute object.

fpgaDMATransferSetSrc Sets the source address of the transfer. This address 
must be 64 byte aligned.

fpgaDMATransferSetDst Sets the destination address of the transfer. This addr
ess must be 64 byte aligned.

fpgaDMATransferSetLen

Sets the transfer lengths in bytes. For non-packet tran
sfers, you must set the transfer length to a multiple of 
64 bytes. For packet transfers, this is not a requiremen
t.

fpgaDMATransferSetTransferType

Sets the transfer type. Legal values are:

•    HOST_MM_TO_FPGA_MM = TX (Host to AFU)

•    FPGA_MM_TO_HOST_MM = RX (AFU to host)

fpgaDMATransferSetTransferCallback

Registers callback for notification on asynchronous tra
nsfer completion. If you specify a callback, fpgaDMATr
ansfer returns immediately (asynchronous transfer).

If you do not specify a callback, fpgaDMATransfer retur
ns after the transfer is complete (synchronous/blocking
transfer).

fpgaDMATransferSetLast

Indicates the last transfer so the DMA can start proces
sing the prefetched transfers. The default value is 64 tr
ansfers in the pipeline before the DMA starts to work o
n the transfers.

fpgaDMATransfer Performs a DMA transfer.

For more information about the API, input, and output arguments, refer to the header file located
$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/sw/fpga_dma.hIntel Corporation. All rights reserved. Intel, the
Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Intel warrants performance
of its FPGA and semiconductor products to current specifications in accordance with Intel’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Intel assumes no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or
services. Other names and brands may be claimed as the property of others.

Software Programming Model



To know more about software driver use model, refer to the README file located at
$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/README.md

Running DMA AFU Example

Before you begin:

You should be familiar with the examples in the Intel Acceleration Stack Quick Start Guide for Intel FPGA

Programmable Acceleration Card D5005.

You must define an environment variable. The environment variable is dependent on the Intel Acceleration

Stack version you are using:

For current version, set the environment variable to $OPAE_PLATFORM_ROOT

You must install the Intel Threading Building Blocks (TBB) library since the DMA driver relies on it.

You must also set up two 1 GB hugepages to run the sample application. $ sudo sh -c “echo 2 >

/sys/kernel/mm/hugepages/hugepages-1048576kB/ nr_hugepages”

Perform the following steps to download the DMA Accelerator Function (AF) bitstream, to build the application and
driver, and to run the design example:

1. Change to the DMA application and driver directory: cd $OPAE_PLATFORM_ROOT/hw/samples/dma_afu/sw

2. Build the driver and application: make

3. Download the DMA AFU bitstream: sudo fpgasupdate ../bin/dma_afu_unsigned.gbs

4. Execute the host application to write 100 MB in 1 MB portions from host memory to FPGA device memory and

read it back: ./ fpga_dma_test -s 104857600 -p 1048576 -r mtom

Related Information
Intel Acceleration Stack Quick Start Guide for Intel FPGA Programmable Acceleration Card D5005 Intel
Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or
its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

Compiling the DMA AFU Example

To generate a synthesis build environment to compile an AF, use the afu_synth_setup command as following:

1. Change to the DMA AFU sample directory: $OPAE_PLATFORM_ROOT/hw/samples/dma_afu

2. Generate the design build directory: afu_synth_setup –source hw/rtl/filelist.txt build_synth

3. From the synthesis build directory generated by afu_synth_setup, enter the following commands from a

terminal window to generate an AF for the target hardware platform: cd build_synth run.sh The run.sh AF

generation script creates the AF image with the same base filename as the AFU’s platform configuration file

(.json) with a .gbs suffix at the location:$OPAE_PLATFORM_ROOT/hw/samples/build_synth/dma_afu_s10.gbs

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current



specifications in accordance with Intel’s standard warranty, but reserves the right to make changes to any

products and services at any time without notice. Intel assumes no responsibility or liability arising out of the

application or use of any information, product, or service described herein except as expressly agreed to in

writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying

on any published information and before placing orders for products or services. *Other names and brands

may be claimed as the property of others.

Simulating the AFU Example

Intel recommends you refer to the Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) Quick
Start Guide for your Intel FPGA PAC to be familiar with simulating similar examples and to setup your
environment. Before you proceed through the following steps, verify that the OPAE_PLATFORM_ROOT
environment variable is set to the OPAE SDK installation directory. Complete the following steps to setup the
hardware simulator for the DMA AFU:

1. Change to the DMA AFU sample directory: cd $OPAE_PLATFORM_ROOT/hw/samples/dma_afu

2. Create an ASE environment in a new directory and configure it for simulating an AFU: afu_sim_setup –source

hw/rtl/filelist.txt build_ase_dir

3. Change to the ASE build directory: cd build_ase_dir

4. Build the driver and application: make

5. Make simulation: make sim

Sample output from the hardware simulator:

[SIM] ** ATTENTION : BEFORE running the software application ** [SIM] Set env(ASE_WORKDIR) in terminal
where application will run (copy-and-paste) =>  [SIM] $SHELL | Run:[SIM] ———+
————————————————— [SIM] bash/zsh | export
ASE_WORKDIR=$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/ase_mkdir/work [SIM] tcsh/csh | setenv
ASE_WORKDIR $OPAE_PLATFORM_ROOT/hw/samples/dma_afu/ase_mkdir/work [SIM] For any other $SHELL,
consult your Linux administrator [SIM] [SIM] Ready for simulation… [SIM] Press CTRL-C to close simulator…

Complete the following steps to compile and execute the DMA AFU software in the simulation environment:

1. Open a new terminal window.

2. Change directory to: cd $OPAE_PLATFORM_ROOT/hw/samples/dma_afu/sw

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

Simulating the AFU Example

1. Copy the environment setup string (choose string appropriate for your shell) from the steps above in the

hardware simulation to the terminal window. See the following lines in the sample output from the hardware



simulator. [SIM] bash/zsh | export

ASE_WORKDIR=$OPAE_PLATFORM_ROOT/hw/samples/dma_afu/build_ase_dir/work [SIM] tcsh/csh |

setenv ASE_WORKDIR $OPAE_PLATFORM_ROOT/hw/samples/dma_afu/build_ase_dir/work

2. Compile the software: $ make USE_ASE=1

3. Execute the host application to write 4 KB in 1 KB portions from the host memory back to FPGA device

memory in the loopback mode: ./ fpga_dma_test -s 4096 -p 1024 -r mtom

Related Information
Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) Quick Start User Guide

Optimization for Improved DMA Performance

Implementation of NUMA (non-uniform memory access) optimization in fpga_dma_test.cpp allows the processor
to access its own local memory faster than accessing non-local memory (memory local to another processor). A
typical NUMA configuration is shown in the diagram below. The local access represents access from a core to
memory local to the same core. The remote access illustrates the path taken when a core on Node 0 accesses
memory that resides in memory local to Node 1.

Typical NUMA Configuration

Use the following code to implement NUMA optimization in your test application:

// Set up proper affinity if requested   if (cpu_affinity || memory_affinity) {unsigned dom = 0, bus = 0, dev = 0, func
= 0; fpga_properties props;int retval; #if(FPGA_DMA_DEBUG)char str[4096]; #endifres =
fpgaGetProperties(afc_token, &props); ON_ERR_GOTO(res, out_destroy_tok, “fpgaGetProperties”); res =
fpgaPropertiesGetBus(props, (uint8_t *) & bus);ON_ERR_GOTO(res, out_destroy_tok, “fpgaPropertiesGetBus”);
res = fpgaPropertiesGetDevice(props, (uint8_t *) & dev);ON_ERR_GOTO(res, out_destroy_tok,
“fpgaPropertiesGetDevice”)  res = fpgaPropertiesGetFunction(props, (uint8_t *) & func);ON_ERR_GOTO(res,
out_destroy_tok, “fpgaPropertiesGetFunction”); // Find the device from the topology hwloc_topology_t topology;
hwloc_topology_init(&topology); hwloc_topology_set_flags(topology,
HWLOC_TOPOLOGY_FLAG_IO_DEVICES);Intel Corporation. All rights reserved. Intel, the Intel logo, and other
Intel marks are trademarks of Intel Corporation or its subsidiaries. Intel warrants performance of its FPGA and
semiconductor products to current specifications in accordance with Intel’s standard warranty, but reserves the
right to make changes to anyproducts and services at any time without notice. Intel assumes no responsibility or



liability arising out of the application or use of any information, product, or service described herein except as
expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

Optimization for Improved DMA Performance

hwloc_topology_load(topology); hwloc_obj_t obj = hwloc_get_pcidev_by_busid(topology, dom, bus, dev, func);
hwloc_obj_t obj2 = hwloc_get_non_io_ancestor_obj(topology, obj); #if (FPGA_DMA_DEBUG)
hwloc_obj_type_snprintf(str, 4096, obj2, 1); printf(“%s\n”, str);hwloc_obj_attr_snprintf(str, 4096, obj2, ” :: “,
1);printf(“%s\n”, str); hwloc_bitmap_taskset_snprintf(str, 4096, obj2->cpuset); printf(“CPUSET is %s\n”, str);
hwloc_bitmap_taskset_snprintf(str, 4096, obj2->nodeset); printf(“NODESET is %s\n”, str);#endif if
(memory_affinity) { #if HWLOC_API_VERSION > 0x00020000 retval = hwloc_set_membind(topology, obj2-
>nodeset,HWLOC_MEMBIND_THREAD, HWLOC_MEMBIND_MIGRATE |HWLOC_MEMBIND_BYNODESET);
#else retval =hwloc_set_membind_nodeset(topology, obj2->nodeset,
HWLOC_MEMBIND_THREAD,HWLOC_MEMBIND_MIGRATE); #endifON_ERR_GOTO(retval, out_destroy_tok,
“hwloc_set_membind”); } if (cpu_affinity) { retval = hwloc_set_cpubind(topology, obj2->cpuset,
HWLOC_CPUBIND_STRICT); ON_ERR_GOTO(retval, out_destroy_tok, “hwloc_set_cpubind”); } }

DMA Accelerator Functional Unit User Guide Archives

Intel Acceleration Sta
ck Version User Guide (PDF)

2.0 DMA Accelerator Functional Unit (AFU) User Guide

Document Revision History for the DMA Accelerator Functional Unit User Guide

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-afu-dma-d5005-2-0.pdf


 

Document Version

Intel Accelerat
ion Stack Vers
ion

 

Changes

 

 

2020.08.03

2.0.1 (supporte
d with Intel

Quartus® Prim
e Pro Edition E
dition 19.2)

 

Corrected the AF image file name in section Compiling the DMA AF
U Example.

 

 

2020.04.17

2.0.1 (supporte
d with Intel

Quartus Prime 
Pro Edition Edit
ion 19.2)

 

 

Corrected a statement in Intended Audience section.

 

 

2020.02.20

2.0.1 (supporte
d with Intel

Quartus Prime 
Pro Edition Edit
ion 19.2)

 

 

Fixed typo.

 

 

 

 

2019.11.04

 

 

2.0.1 (supporte
d with Intel

Quartus Prime 
Pro Edition Edit
ion 19.2)

•    Replaced the fpgaconf with fpgasupdate when configuring the F
PGA with the prebuild AFU in section Running the DMA AFU
Example.

•    Added subtitle Intel FPGA Programmable Acceleration Card D50
05 to the document title.

•    Added environment variable $OPAE_PLATFORM_ROOT.

•    Modified section Software Programming Model for minor edits.

•    Added new section Compiling the DMA AFU Example.

•    Modified section Optimization for Improved DMA Performance fo
r minor edits.

 

 

2019.08.05

2.0 (supported 
with Intel

Quartus Prime 
Pro Edition 18.
1.2)

 

 

Initial release.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying    on any published information and
before placing orders for products or services.



Other names and brands may be claimed as the property of others.

 

Documents / Resources

Intel FPGA Programmable Acceleration Card D5005  [pdf] User Guide
FPGA Programmable Acceleration Card, D5005, FPGA Programmable Acceleration Card D50
05, DMA Accelerator Functional Unit

References

 run.sh - a really cool domain parked on Park.io

 1. About this Document

 1. About this Document

 1. About this Document

 1. About this Document

 1. Introduction to the Avalon® Interface Specifications

 1. Overview

 1. Overview

 Intel ISO 9001:2015 Registrations

Manuals+,

https://manuals.plus/m/9c2077dd4c77cfca46908b5461e2b24960072e0cca9071272c9a39073ec781a7
https://manuals.plus/m/9c2077dd4c77cfca46908b5461e2b24960072e0cca9071272c9a39073ec781a7_optim.pdf
http://run.sh
https://www.intel.com/content/www/us/en/docs/programmable/683270/2-0-1/
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#bnz1542220900970
https://www.intel.com/content/www/us/en/programmable/documentation/edj1542148561811.html#cxu1542149035471
https://www.intel.com/content/www/us/en/programmable/documentation/jan1522185564595.html#byd1523222039585.
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351
https://www.intel.com/content/www/us/en/programmable/documentation/tkl1551971155027.html
https://www.intel.com/content/www/us/en/programmable/documentation/tkl1551971155027.html#kox1551971307092
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://manuals.plus/

	Intel FPGA Programmable Acceleration Card D5005 User Guide
	Intel FPGA Programmable Acceleration Card D5005
	About this Document
	DMA AFU Description
	Register Map and Address Spaces
	DMA AFU Register Map
	Register Map and Address Spaces
	Software Programming Model
	Running DMA AFU Example
	Compiling the DMA AFU Example
	Simulating the AFU Example
	Optimization for Improved DMA Performance
	DMA Accelerator Functional Unit User Guide Archives
	Document Revision History for the DMA Accelerator Functional Unit User Guide
	Documents / Resources
	References



