Manuals+ — User Manuals Simplified.

Trusted CPU

<« AIB Interface

intel Creating Heterogeneous Memory Systems in FPGA SDK
for OpenCL Custom Platforms Instructions

Home » Intel » intel Creating Heterogeneous Memory Systems in FPGA SDK for OpenCL Custom Platforms
Instructions -

intel

Creating Heterogeneous Memory Systems in FPGA SDK for OpenCL Custom Platforms
Instructions

Contents
1 Creating Heterogeneous Memory Systems in Intel® FPGA SDK for OpenCL Custom
Platforms
2 Documents / Resources
2.1 References
3 Related Posts

Creating Heterogeneous Memory Systems in Intel® FPGA SDK for OpenCL Custom Platforms

The implementation of heterogeneous memory in a Custom Platform allows for more external memory interface
(EMIF) bandwidth as well as larger and faster memory accesses. The combination of heterogenous memory
access with an optimized

OpenCL ™(1)kernel can result in significant performance improvements for your OpenCL system.

This application note provides guidance on creating heterogeneous memory systems in a Custom Platform for
use with the Intel® FPGA SDK for OpenCL(2). Intel assumes that you are an experienced FPGA designer who is
developing Custom Platforms that contains heterogeneous memory systems.

Prior to creating the heterogeneous memory systems, familiarize yourself with the Intel FPGA SDK for OpenCL
documents specified below.

Related Information

« Intel FPGA SDK for OpenCL Programming Guide
« Intel FPGA SDK for OpenCL Best Practices Guide

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/creating-heterogeneous-memory-systems-in-fpga-sdk-for-opencl-custom-platforms-manual.pdf

« Intel FPGA SDK for OpenCL Arria 10 GX FPGA Development Kit Reference Platform Porting Guide

1.1. Verifying the Functionality of the FPGA Board and the EMIF Interfaces

Verify each memory interface independently and then instantiate your Custom Platform using global memory.

1. Verify each memory interface using hardware designs that can test the speed and stability of each interface.
2. Instantiate your Custom Platform using global memory.
1. For example, if you have three DDR interfaces, one of them must be mapped as heterogeneous memory.
In this case, verify the functionality of the OpenCL stack with each DDR interface independently.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos Group™

2. The Intel FPGA SDK for OpenCL is based on a published Khronos Specification, and has passed the
Khronos Conformance Testing Process. Current conformance status can be found at

www.khronos.org/conformance.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services. *Other names and brands may be claimed as the property of
others.

1ISO 9001:2015 Registered

Alternatively, if you have two DDR interfaces and one quad data rate (QDR) interface, verify the functionality of
the OpenCL stack of the two DDR interfacesand the QDR interface independently.

Intel recommends that you use PCl Express® — (PCle® -) or EMIF-exclusive designs to test your memory
interfaces. After you verify that each memory interface is functional and that your OpenCL design works with a
subset of the memory interfaces, proceed

to create a fully functional heterogeneous memory system.

1.2. Modifying the board_spec.xml File

Modify the board_spec.xml file to specify the types of heterogeneous memory systems that are available to the
OpenCL kernels.

During kernel compilation, the Intel FPGA SDK for OpenCL Offline Compiler assigns kernel arguments to a
memory based on the buffer location argument that you specify.

1. Browse to the board_spec.xml file in the hardware directory of your Custom Platform.

2. Open the board_spec.xml file in a text editor and modify the XML accordingly.

For example, if your hardware system has two DDR memories as default globalmemory and two QDR banks that
you model as heterogeneous memory, modify the memory sections of the board_spec.xml file to resemble the
following:

<!- DDR3-1600 —>

<global_mem name="DDR” max_bandwidth="25600" interleaved_bytes="1024" config_addr="0x018">

<interface name="board” port="kernel_mem0"” type="slave” width="512" maxburst="16" address="0x00000000"
size="0x100000000" latency="240"/>

<interface name="board” port="kernel_mem1"” type="slave” width="512" maxburst="16" address="0x100000000"
size="0x100000000" latency="240"/>

</global_mem>

<! QDRIl —

<global_mem name="QDR” max_bandwidth="17600" interleaved_bytes="8" config_addr="0x100">

<interface name="board” type="slave” width="64" maxburst="1" address="0x200000000" size="0x1000000"
latency="1 addpipe="1">

<port name="kernel_qdr0_r" direction="r"/>

<port name="kernel_qdr0_w” direction="w"/>

http://www.khronos.org/conformance.

</interface>

<interface name="board” type="slave” width="64" maxburst="1" address="0x201000000" size="0x1000000"
latency="150" addpipe="1">

<port name="kernel_qdr1_r” direction="r"/>

<port name="kernel_qdr1_w” direction="w"/>

</interface>

</global_mem>

1.3. Setting Up Multiple Memory Dividers in Qsys

Currently, the OpenCL Memory Bank Divider in the the Qsys design does not support non-power-of-2 number of
memory banks, which is not a limitation for typical configurations. However, there are scenarios where non-power-
of-2 number of memory interfaces are necessary. To accommodate non-power-of-2 number of memory interfaces,
use multiple OpenCL Memory Bank Dividers to create heterogeneous memory systems with non-power-of-2
number of memory banks. You must create multiple OpenCL Memory Bank Dividers when you have a true
heterogeneous memory system. Consider a system with one DDR memory interface and one QDR memory
interface. Because the two banks have different memory topologies, you cannot combine them under a single
global memory.

Figure 1. Block Diagram of a Three-Bank Heterogeneous Memory System

This heterogeneous memory system contains two DDR memory interfaces and one QDR memory interface.

Intel FPGA SDK for OpenCL-Generated Kernel Logic

Pipeline
Stages

DDR Interface

PCle HIP BAR 4 Address Span g
and Pipeline Stages » Extender Pipeline 5
Stages =

=

=

PCle HIP DMA A Single Burst Avalon-MM Pipeline =
and Pipeline Stages Pipeline Bridge Stages -
=

<

If you are using version 16.0, 16.0.1, or 16.0.2 of the Intel Quartus® Prime software and the Altera SDK for
OpenCL, the OpenCL Memory Bank Divider incorrectly handles memory bursts across address boundaries. To
work around this known issue, add a pipeline bridge with a burst size of 1 and connect its Avalon ®Memory-
Mapped (Avalon-MM) master to the OpenCL Memory Bank Divider’s slave port.

Note:

This known issue is fixed in the Intel Quartus Prime software and the Intel FPGA SDK for OpenCL version 16.1.
Figure 2. Block Diagram of a Three-Bank Heterogeneous Memory System with a Pipeline Bridge

Intel FPGA SDK for Open(L-Generated Kernel Logic

Pipeline
Stages

DDR Interface

PCle HIP BAR 4 Address Span

and Pipeline Stages Extender Pipeline
Stages

h 4

DDR Interface

Single Burst Pipeline Bridge

Single Burst Avalon-MM
Pipeline Bridge Pipeline
Stages

PCle HIP DMA
and Pipeline Stages

QDR Interface

-Burst size set to 1
-Address line wrap unset

1.4. Modifying the Boardtest Program and the Host Code for Your Heterogeneous Memory Solution

Use the boardtest.cl kernel that comes with the Intel FPGA SDK for OpenCL Custom Platform Toolkit to test the
functionality and performance of your Custom Platform.

The boardtest program is an OpenCL kernel that allows you to test host-to-device bandwidth, memory bandwidth,
and general functionality of your Custom Platform.

1. Browse to the <path to SDK installation>/board/ custom_platform_toolkit/tests/boardtest directory.

2. Open the boardtest.cl file in a text editor and assign a buffer location to each global memory argument.
For example:
__kernel void
mem_stream (__global__attribute__((buffer_location(“DDR"))) uint *src, __global
__attribute__ ((buffer_location(*QDR”))) uint *dst, uint arg, uint arg2)
Here, uint *src is assigned to DDR memory, and uint *dst is assigned to QDR memory. The board_spec.xml file
specifies the characteristics of both memory systems.

3. To leverage your heterogeneous memory solution in your OpenCL system, modify your host code by adding
the CL_MEM_HETEROGENEOUS_INTELFPGA flag to your clCreateBuffer call.
For example:
ddatain = clCreateBuffer(context, CL_MEM_READ_WRITE | memflags
CL_MEM_HETEROGENEOUS_INTELFPGA, sizeof(unsigned) * vectorSize, NULL, &status);
Intel strongly recommends that you set the buffer location as a kernel argument before writing the buffer. When
using a single global memory, you can write the buffers either before or after assigning them to a kernel
argument. In heterogeneous memory systems, the host sets the buffer location before writting the buffer. In
other words, the host will call the clSetKernelArgument function before calling the clEnqueueWriteBuffer
function.
In your host code, invoke the clCreateBuffer, clSetKernelArg, and clEnqueueWriteBuffer calls in the following
order:
ddatain = clCreateBuffer(context, CL_ MEM_READ_WRITE | memflags |
CL_MEM_HETEROGENEOUS_INTELFPGA, sizeof(unsigned) * vectorSize, NULL, &status);

... status = cISetKernelArg(kernellk], 0, sizeof(cl_mem), (void*)&ddatain);

*

. status = clEnqueueWriteBuffer(queue, ddatain, CL_FALSE, 0, sizeof(unsigned) * vectorSize,hdatain, 0,
NULL, NULL);
The ALTERAOCLSDKROOT/board/custom_platform_toolkit/tests/boardtest/host/memspeed.cpp file presents a
similar order of these function calls.

4. After you modify the boardtest.cl file and the host code, compile the host and kernel code and verify their
functionality.
When compiling your kernel code, you must disable burst-interleaving of all memory systems by including the —

no-interleaving <global_memory_type> option in the aoc command.

Related Information
Disabling Burst-Interleaving of Global Memory (—no-interleaving <global_memory_type>)

1.5. Verifying the Functionality of Your Heterogeneous Memory System

To ensure that the heterogeneous = memory system functions properly, unset the
CL_CONTEXT_COMPILER_MODE_INTELFPGA flag in your host code.

In OpenCL systems with homogeneous memory, you have to option to set the
CL_CONTEXT_COMPILER_MODE_INTELFPGA=3 flag in your host code to disable the reading of the .aocx file
and the reprogramming of the FPGA. Setting the CL_CONTEXT_COMPILER_MODE_INTELFPGA=3 flag is
useful when instantiating your board to verify the functionality of your Custom Platform without designing the
floorplan and specifying the LogicLock™ regions.

With heterogeneous memory systems, the runtime environment must read the buffer locations of each buffer,
described in the .aocx file, to verify the memory systems’ functionality. However, you might want to verify the
functionality of your Custom Platform without implementing the final features of the board design, such as
designing the floorplan and specifying the LogicLock regions.

1. Verify that the CL_CONTEXT_COMPILER_MODE_INTELFPGA flag is unset in your host code.
2. Browse to the board/<board name>/source/host/mmd directory of your Custom Platform.
3. Open the acl_pcie_device.cpp memory-mapped device (MMD) file in a text editor.
4. Modify the reprogram function in the acl_pcie_device.cpp file by adding a return 0; line, as shown below:
int ACL_PCIE_DEVICE::reprogram(void *data, size_t data_size)
{
return 0O;
// assume failure
int reprogram_failed = 1;
// assume no rbf or hash in fpga.bin
int rbf_or_hash_not_provided = 1;
// assume base and import revision hashes do not maich

int hash_mismatch = 1;

}

5. Recompile the acl_pcie_device.cpp file.

6. Verify that the CL_CONTEXT_COMPILER_MODE_INTELFPGA flag remains unset.
Attention: After you add return 0; to the reprogram function and recompile the MMD file, the runtime
environment will read the .aocx file and assign the buffer locations but will not reprogram the FPGA. You must
manually match the FPGA image with the .aocx file. To reverse this behavior, remove return 0; from the

reprogram function and recompile the MMD file.

1.6. Document Revision History

Date Version Changes
« Rebranded CL_MEM_HETEROGENEOUS_ALTERA to CL_MEM_HETERO
Dec-17 2017.12.01 GENEOUS_INTELFPGA.
Dec.16 016.12.13 « Rebranded CL_CONTEXT_COMPILER_MODE_ALTERA to CL_CONTEXT _
ec e COMPILER_MODE_INTELFPGA.

Documents / Resources

intel

Creating Heterogeneous Memory Systems in Intel® FPGA SDK for OpenCL

Custom Platforms

: Send Feedback
@ Online Version
; Send Feedback

ID: 683654
Version: 2016.12.13

intel

intel Creating Heterogeneous Memory Systems in FPGA SDK for OpenCL Custom Platfo
rms [pdf] Instructions

Creating Heterogeneous Memory Systems in FPGA SDK for OpenCL Custom Platforms, Creat
ing Heterogeneous Memory Systems, FPGA SDK for OpenCL Custom Platforms

References

« O_API Adopter Program - The Khronos Group Inc

» 1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best...

- "1, Creating Heterogeneous Memory Systems in Intel FPGA SDK for OpenCL...
« " 7.15. Disabling Burst-Interleaving of Global Memory...

« 1. Intel® FPGA SDK for OpenCL™ Overview

« < _Intel ISO 9001:2015 Registrations

Manuals+,

https://manuals.plus/m/469a0d4692e4f23b133bbbe7bcf0b13ce635e5af3e9f455661954b5f03dcf823
https://manuals.plus/m/469a0d4692e4f23b133bbbe7bcf0b13ce635e5af3e9f455661954b5f03dcf823_optim.pdf
http://www.khronos.org/conformance
https://www.intel.com/content/www/us/en/docs/programmable/683521/current/introduction-to-pro-edition-best-practices.html
https://www.intel.com/content/www/us/en/docs/programmable/683654/
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/disabling-burst-interleaving-of-global.html
https://www.intel.com/content/www/us/en/docs/programmable/683846/current/overview.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://manuals.plus/

	intel Creating Heterogeneous Memory Systems in FPGA SDK for OpenCL Custom Platforms Instructions
	Creating Heterogeneous Memory Systems in Intel® FPGA SDK for OpenCL Custom Platforms
	Documents / Resources
	References

