
Home » Intel » intel BCH IP Core User Guide  

Contents
1  intel BCH IP Core
2  About the BCH IP Core

2.1  DSP IP Core Device Family
Support

3  BCH IP Core Getting Started
3.1  Related Information

4  BCH IP Core Functional Description
4.1  CH IP Core Parameters

5  Document Revision History
5.1  A. BCH IP Core Document Archive

6  Documents / Resources
6.1  References

7  Related Posts

intel BCH IP Core

intel BCH IP Core User Guide

Manuals+ —  User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/bch-ip-core-manual.pdf


About the BCH IP Core

Related Information

BCH IP Core Document Archive on page 24

Provides a list of user guides for previous versions of the BCH IP Core.

Introduction to Intel FPGA IP Cores

Provides general information about all Intel FPGA IP cores, including parameterizing, generating,

upgrading, and simulating IP cores.

Creating Version-Independent IP and Qsys Simulation Scripts

Create simulation scripts that do not require manual updates for software or IP version upgrades.

Project Management Best Practices

Guidelines for efficient management and portability of your project and IP files.

 Intel® DSP IP Core Features

Avalon® Streaming (Avalon-ST) interfaces

DSP Builder for Intel® FPGAs ready

Testbenches to verify the IP core

IP functional simulation models for use in Intel-supported VHDL and Verilog HDL simulators

BCH IP Core Features



High-performance fully parameterizable encoder or decoder for error detection and correction:

Number of symbols per codeword

Number of check symbols per codeword

Number of parallel input bits

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants the performance of its FPGA and semiconductor products to current
specifications in accordance with Intel’s standard warranty but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in writing
by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any
published information and before placing orders for products or services.

Other names and brands may be claimed as the property of others.

DSP IP Core Device Family Support

Intel offers the following device support levels for Intel FPGA IP cores:

Advance support—the IP core is available for simulation and compilation for this device family. FPGA

programming file (.pof) support is not available for Quartus Prime Pro Stratix 10 Edition Beta software and as

such IP timing closure cannot be guaranteed. Timing models include initial engineering estimates of delays

based on early post-layout information. The timing models are subject to change as silicon testing improves the

correlation between the actual silicon and the timing models. You can use this IP core for system architecture

and resource utilization studies, simulation, pinout, system latency assessments, basic timing assessments

(pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O standards tradeoffs).

Preliminary support—Intel verifies the IP core with preliminary timing models for this device family. The IP

core meets all functional requirements, but might still be undergoing timing analysis for the device family. You

can use it in production designs with caution.

Final support—Intel verifies the IP core with final timing models for this device family. The IP core meets all

functional and timing requirements for the device family. You can use it in production designs.

Table 1. DSP IP Core Device Family Support



Device Family Support

Arria® II GX Final

Arria II GZ Final

Arria V Final

Intel Arria 10 Final

Cyclone® IV Final

Cyclone V Final

Intel Cyclone 10 Final

Intel MAX® 10 FPGA Final

Stratix® IV GT Final

Stratix IV GX/E Final

Stratix V Final

Intel Stratix 10 Advance

Other device families No support

 BCH IP Core Release Information

Use the release information when licensing the IP core.

Table 2.Release Information

Item Description

Version 17.1

Release Date Novermber 2017

Ordering Code IP-BCH (IPR-BCH)

Intel verifies that the current version of the Quartus Prime software compiles the previous version of each IP core.
Intel does not verify that the Quartus Prime software compiles IP core versions older than the previous version.
The Intel FPGA IP Release Notes lists any exceptions.
Related Information

Intel FPGA IP Release Notes

Errata for BCH IP core in the Knowledge Base

DSP IP Core Verification

Before releasing a version of an IP core, Intel runs comprehensive regression tests to verify its quality and

correctness. Intel generates custom variations of the IP core to exercise the various parameter options and

thoroughly simulates the resulting simulation models with the results verified against master simulation models.



BCH IP Core Performance and Resource Utilization

Typically expected performance for a BCH IP Core using the Quartus Prime software with the Arria V

(5AGXFB3H4F35C5), Cyclone V (5CGXFC7C7F23C8), and Stratix V (5SGXEA7H3F35C3) devices. Where m

is the number of bits per symbol; n is the codeword length; d is the parallel data input width; t is the error

correction capability.

Table 3. Decoder Performance and Resource Utilization

Device

Parameters Memory

ALM

Registers
max (MH
z)m n d t M10K M20

K
Primar
y

Second
ary y

Arria V 8 255 10 42 7 — 18,37
6 40,557 3,441 196

Cyclone V 8 255 10 42 7 — 18,26
4 40,709 3,266 150

Stratix V 8 255 10 42 — 7 19,02
7 44,134 4,315 308

Arria V 8 255 12 42 9 — 22,29
3 49,602 4,053 186

Cyclone V 8 255 12 42 9 — 22,24
3 49,243 4,511 149

Stratix V 8 255 12 42 — 8 23,18
7 53,800 5,207 310

Arria V 8 255 2 42 4 — 5,539 13,238 788 207

Cyclone V 8 255 2 42 4 — 5,527 13,174 857 174

Stratix V 8 255 2 42 — 4 6,088 14,399 850 369

Arria V 8 255 5 42 5 — 10,23
1 23,321 1,554 206

Cyclone V 8 255 5 42 5 — 10,23
4 23,391 1,551 164

continued…

Device

Parameters Memory

ALM

Registers
max (MH
z)m n d t M10K

M20
K

Primar
y

Second
ary y

Stratix V 8 255 5 42 — 5 10,82
0 24,868 2,612 335

Stratix V 14 8784 10 20 — 18 7,358 15,082 761 346



Stratix V 14 8784 10 40 — 18 14,33
1 28,743 1,630 316

Stratix V 14 8784 10 80 — 18 28,38
3 56,292 3,165 281

Stratix V 14 8784 20 20 — 18 10,10
3 19,833 933 323

Stratix V 14 8784 20 40 — 18 20,01
2 37,413 1,747 304

Stratix V 14 8784 20 80 — 18 39,22
5 72,151 3,673 282

Stratix V 14 8784 30 20 — 17 11,78
4 23,924 844 329

Stratix V 14 8784 30 40 — 19 23,06
1 44,313 1,836 289

Stratix V 14 8784 30 80 — 19
43,94
9 85,476 3,398 263

Stratix V 14 8784 40 20 — 19 13,80
1 28,032 743 307

Stratix V 14 8784 40 40 — 19 26,10
7 51,680 1,472 291

Stratix V 14 8784 40 80 — 21 50,30
3 98,545 3,351 248

Stratix V 14 8784 50 20 — 20 16,40
7 33,020 967 307

Stratix V 14 8784 50 40 — 20 31,09
5 60,503 1,991 288

Stratix V 14 8784 50 80 — 22 58,69
0 116,232 3,222 249

Stratix V 14 8784 60 20 — 20 18,29
0 37,106 914 297

Stratix V 14 8784 60 40 — 20 35,04
1 67,183 2,324 292

Stratix V 14 8784 60 80 — 37 80,96
1 160,458 7,358 233

Stratix V 14 8784 70 20 — 20 20,49
4 41,471 545 286

Stratix V 14 8784 70 40 — 20 38,29
4 74,727 1,778 280

Stratix V 14 8784 70 80 — 38 88,04
0 173,311 7,769 232

Stratix V 14 8784 80 20 — 22 22,43
7 45,334 691 276



Stratix V 14 8784 80 40 — 22 42,25
6 82,173 1,363 285

Stratix V 14 8784 80 80 — 40 95,91
3 186,869 7,317 229

Table 4. Encoder Performance and Resource Utilization

Device

Parameters Memory

ALM

Registers
max (MH
z)m n d t M10K M20

K
Primar
y

Second
ary y

Arria V 8 255 10 42 2 — 337 592 0 243

Cyclone V 8 255 10 42 2 — 339 592 0 166

Stratix V 8 255 10 42 — 1 353 601 3 400

Arria V 8 255 12 42 2 — 386 602 0 257

Cyclone V 8 255 12 42 2 — 395 602 0 174

continued…

Device

Parameters Memory

ALM

Registers
max (MH
z)m n d t M10K M20

K
Primar
y

Second
ary y

Stratix V 8 255 12 42 — 1 391 614 0 400

Arria V 8 255 2 42 2 — 219 547 12 275

Cyclone V 8 255 2 42 2 — 219 556 3 197

Stratix V 8 255 2 42 — 2 220 542 17 464

Arria V 8 255 5 42 2 — 237 563 3 276

Cyclone V 8 255 5 42 2 — 237 565 1 193

Stratix V 8 255 5 42 — 1 260 573 0 400

Stratix V 14 8784 10 20 — 3 400 785 4 387

Stratix V 14 8784 10 40 — 3 613 1,348 1 380

Stratix V 14 8784 10 80 — 3 1,009 2,451 4 309

Stratix V 14 8784 20 20 — 3 775 849 1 373

Stratix V 14 8784 20 40 — 3 1,340 1,410 0 312

Stratix V 14 8784 20 80 — 3 2,222 2,515 1 242

Stratix V 14 8784 30 20 — 3 1,161 919 1 324.

Stratix V 14 8784 30 40 — 3 2,074 1,480 0 253



Stratix V 14 8784 30 80 — 3 3,583 2,580 2 224

Stratix V 14 8784 40 20 — 3 1,522 977 4 307

Stratix V 14 8784 40 40 — 3 2,789 1,541 0 249

Stratix V 14 8784 40 80 — 3 4,909 2,647 0 191

Stratix V 14 8784 50 20 — 4 1,926 1,042 9 295

Stratix V 14 8784 50 40 — 4 3,467 1,610 1 234

Stratix V 14 8784 50 80 — 4 6,297 2,714 3 182

Stratix V 14 8784 60 20 — 4 2,356 1,121 0 266

Stratix V 14 8784 60 40 — 4 3,824 1,680 1 229

Stratix V 14 8784 60 80 — 4 7,548 2,783 0 167

Stratix V 14 8784 70 20 — 4 2,595 1,184 2 273

Stratix V 14 8784 70 40 — 4 4,372 1,746 0 221

Stratix V 14 8784 70 80 — 4 8,321 2,850 2 169

Stratix V 14 8784 80 20 — 5 2,885 1,251 1 293

Stratix V 14 8784 80 40 — 5 5,163 1,812 0 220

Stratix V 14 8784 80 80 — 5 8,867 2,918 0 169

BCH IP Core Getting Started

Installing and Licensing Intel FPGA IP Cores

The Intel Quartus® Prime software installation includes the Intel FPGA IP library. This library provides many
useful IP cores for your production use without the need for an additional license. Some Intel FPGA IP cores
require the purchase of a separate license for production use. The Intel FPGA IP Evaluation Mode allows you to
evaluate these licensed Intel FPGA IP cores in simulation and hardware, before deciding to purchase a full
production IP core license. You only need to purchase a full production license for licensed Intel IP cores after you
complete hardware testing and are ready to use the IP in production. The Intel Quartus Prime software installs IP
cores in the following locations by default:
Figure 1. IP Core Installation Path

Table 5. IP Core Installation Locations



Location Software Platform

<drive>:\intelFPGA_pro\quartus\ip\altera Intel Quartus Prime Pro Editi
on Windows*

<drive>:\intelFPGA\quartus\ip\altera Intel Quartus Prime Standard
Edition Windows

<home directory>:/intelFPGA_pro/Quartus/IP/Altera Intel Quartus Prime Pro Editi
on Linux*

<home directory>:/inter FPGA/Quartus/IP/Altera Intel Quartus Prime Standard
Edition Linux

Intel FPGA IP Evaluation Mode

The free Intel FPGA IP Evaluation Mode allows you to evaluate licensed Intel FPGA IP cores in simulation and
hardware before purchase. Intel FPGA IP Evaluation Mode supports the following evaluations without an
additional license:

Simulate the behavior of a licensed Intel FPGA IP core in your system.

Verify the functionality, size, and speed of the IP core quickly and easily.

Generate time-limited device programming files for designs that include IP cores.

Program a device with your IP core and verify your design in hardware.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

Other names and brands may be claimed as the property of others.

Intel FPGA IP Evaluation Mode supports the following operation modes:

Tethered—Allows running the design containing the licensed Intel FPGA IP indefinitely with a connection

between your board and the host computer. Tethered mode requires a serial joint test action group (JTAG)

cable connected between the JTAG port on your board and the host computer, which is running the Intel

Quartus Prime Programmer for the duration of the hardware evaluation period. The Programmer only requires

a minimum installation of the Intel Quartus Prime software, and requires no Intel Quartus Prime license. The

host computer controls the evaluation time by sending a periodic signal to the device via the JTAG port. If all

licensed IP cores in the design support tethered mode, the evaluation time runs until any IP core evaluation

expires. If all of the IP cores support unlimited evaluation time, the device does not time-out.

Untethered—Allows running the design containing the licensed IP for a limited time. The IP core reverts to

untethered mode if the device disconnects from the host computer running the Intel Quartus Prime software.

The IP core also reverts to untethered mode if any other licensed IP core in the design does not support

tethered mode.



When the evaluation time expires for any licensed Intel FPGA IP in the design, the design stops functioning. All IP
cores that use the Intel FPGA IP Evaluation Mode time out simultaneously when any IP core in the design times
out. When the evaluation time expires, you must reprogram the FPGA device before continuing hardware
verification. To extend use of the IP core for production, purchase a full production license for the IP core.
You must purchase the license and generate a full production license key before you can generate an unrestricted
device programming file. During Intel FPGA IP Evaluation Mode, the Compiler only generates a time-limited
device programming file (<project name>_time_limited.sof) that expires at the time limit.

Figure 2. Intel FPGA IP Evaluation Mode Flow

Note:

Refer to each IP core’s user guide for parameterization steps and implementation details.
Intel licenses IP cores on a per-seat, perpetual basis. The license fee includes first-year maintenance and
support. You must renew the maintenance contract to receive updates, bug fixes, and technical support beyond
the first year. You must purchase a full production license for Intel FPGA IP cores that require a production



license, before generating programming files that you may use for an unlimited time. During Intel FPGA IP
Evaluation Mode, the Compiler only generates a time-limited device programming file (<project
name>_time_limited.sof) that expires at the time limit. To obtain your production license keys, visit the Self-
Service Licensing Center or contact your local Intel FPGA representative.
The Intel FPGA Software License Agreements govern the installation and use of licensed IP cores, the Intel
Quartus Prime design software, and all unlicensed IP cores.

Related Information

Intel Quartus Prime Licensing Site

Intel FPGA Software Installation and Licensing

BCH IP Core Intel FPGA IP Evaluation Mode Timeout Behavior

All IP cores in a device time out simultaneously when the most restrictive evaluation time is reached. If a design
has more than one IP core, the time-out behavior of the other IP cores may mask the time-out behavior of a
specific IP core. For IP cores, the untethered time-out is 1 hour; the tethered time-out value is indefinite. Your
design stops working after the hardware evaluation time expires. The Quartus Prime software uses Intel FPGA IP
Evaluation Mode Files (.ocp) in your project directory to identify your use of the Intel FPGA IP Evaluation Mode
evaluation program. After you activate the feature, do not delete these files.When the evaluation time expires, the
data output port data_out goes low
Related Information
AN 320: OpenCore Plus Evaluation of Megafunctions

Catalog and Parameter Editor

The IP Catalog displays the IP cores available for your project. Use the following features of the IP Catalog to
locate and customize an IP core:

Filter IP Catalog to Show IP for active device family or Show IP for all device families. If you have no project

open, select the Device Family in IP Catalog.

Type in the Search field to locate any full or partial IP core name in IP Catalog.

Right-click an IP core name in IP Catalog to display details about supported devices, to open the IP core’s

installation folder, and for links to IP documentation.

Click Search for Partner IP to access partner IP information on the web.

The parameter editor prompts you to specify an IP variation name, optional ports, and output file generation

options. The parameter editor generates a top-level Intel Quartus Prime IP file (.ip) for an IP variation in Intel

Quartus Prime Pro Edition projects.

The parameter editor generates a top-level Quartus IP file (.qip) for an IP variation in Intel Quartus Prime

Standard Edition projects. These files represent the IP variation in the project and store parameterization

information.

Figure 3. IP Parameter Editor (Intel Quartus Prime Pro Edition)



Figure 4. IP Parameter Editor (Intel Quartus Prime Standard Edition)



Generating IP Cores (Intel Quartus Prime Pro Edition)

Quickly configure Intel FPGA IP cores in the Intel Quartus Prime parameter editor. Double-click any component in
the IP Catalog to launch the parameter editor. The parameter editor allows you to define a custom variation of the
IP core. The parameter editor generates the IP variation synthesis and optional simulation files and

adds
the .ip file representing the variation to your project automatically.
Figure 5. IP Parameter Editor (Intel Quartus Prime Pro Edition)



Follow these steps to locate, instantiate, and customize an IP core in the parameter editor:

1. Create or open an Intel Quartus Prime project (.qpf) to contain the instantiated IP variation.

2. In the IP Catalog (Tools ➤ IP Catalog), locate and double-click the name of the IP core to customize. To locate

a specific component, type some or all of the component’s name in the IP Catalog search box. The New IP

Variation window appears.

3. Specify a top-level name for your custom IP variation. Do not include spaces in IP variation names or paths.

The parameter editor saves the IP variation settings in a file named <your_ip>.ip. Click OK. The parameter

editor appears.

4. Set the parameter values in the parameter editor and view the block diagram for the component. The

Parameterization Messages tab at the bottom displays any errors in IP parameters:

Optionally, select preset parameter values if provided for your IP core. Presets specify initial parameter values

for specific applications.

Specify parameters defining the IP core functionality, port configurations, and device-specific features.

Specify options for processing the IP core files in other EDA tools.

Note: Refer to your IP core user guide for information about specific IP core parameters.

1. Click Generate HDL. The Generation dialog box appears.

2. Specify output file generation options, and then click Generate. The synthesis and simulation files generate

according to your specifications.



3. To generate a simulation testbench, click Generate ➤ Generate Testbench System. Specify testbench

generation options, and then click Generate.

4. To generate an HDL instantiation template that you can copy and paste into your text editor, click Generate ➤
Show Instantiation Template.

5. Click Finish. Click Yes if prompted to add files representing the IP variation to your project.

6. After generating and instantiating your IP variation, make appropriate pin assignments to connect ports.

Note: Some IP cores generate different HDL implementations according to the IP core parameters. The
underlying RTL of these IP cores contains a unique hash code that prevents module name collisions between
different variations of the IP core. This unique code remains consistent, given the same IP settings and software
version during IP generation. This unique code can change if you edit the IP core’s parameters or upgrade the IP
core version. To avoid dependency on these unique codes in your simulation environment, refer to Generating a
Combined Simulator Setup Script.

IP Core Generation Output (Intel Quartus Prime Pro Edition)

The Intel Quartus Prime software generates the following output file structure for individual IP cores that are not
part of a Platform Designer system.

Figure 6. Individual IP Core Generation Output (Intel Quartus Prime Pro Edition)



If supported and enabled for your IP core variation.

Table 6. Output Files of Intel FPGA IP Generation

File Name Description

<your_ip>.ip
Top-level IP variation file that contains the parameterization of an IP cor
e in your project. If the IP variation is part of a Platform Designer system
, the parameter editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains l
ocal generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Platform Designer generation log file. Displays a summary of the 
messages during IP generation.

continued…



File Name Description

<your_ip>.qgsimc (Platform
Designer systems only)

Simulation caching file that compares the .qsys and .ip files with the curr
ent parameterization of the Platform Designer system and IP core. This 
comparison determines if Platform Designer can skip the regeneration o
f the HDL.

<your_ip>.qgsynth (Platform
Designer systems only)

Synthesis caching file that compares the .qsys and .ip files with the curr
ent parameterization of the Platform Designer system and IP core. This 
comparison determines if Platform Designer can skip the regeneration o
f the HDL.

<your_ip>.qip Contains all information to integrate and compile the IP component.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbolic representation of the IP variation for use in Block Diagram Fi
les (.bdf).

<your_ip>.spd
Input file that ip-make-simscript requires to generate simulation scripts. 
The .spd file contains a list of files you generate for simulation, along wit
h information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP 
components you create for use with the Pin Planner.

<your_ip>_bb.v Use the Verilog BlackBox (_bb. v) file as an empty module declaration fo
r use as a black box.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of thi
s file into your HDL file to instantiate the IP variation.

<your_ip>.regmap

If the IP contains register information, the Intel Quartus Prime software 
generates the .regmap file. The .regmap file describes the register map i
nformation of master and slave interfaces. This file complements

the .sopcinfo file by providing more detailed register information about th
e system. This file enables register display views and user-customizable
statistics in System Console.

<your_ip>.svd

Allows HPS System Debug tools to view the register maps of peripheral
s that connect to HPS within a Platform Designer system.

During synthesis, the Intel Quartus Prime software stores the .svd files f
or the slave interface visible to the System Console masters in the .sof f
ile in the debug session. The system Console reads this section, which 
Platform Designer queries for register map information. For system slav
es, the Platform Designer accesses the registers by name.

<your_ip>.v <your_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis 
or simulation.

mentor/ Contains a msim_setup.TCL script to set up and run a ModelSim simula
tion.

aldec/ Contains a Riviera*-PRO script rivierapro_setup. TCL to setup and run 
a simulation.



/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation
.

Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to s
et up and run a VCS MX* simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up an
d run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ Platform Designer generates /synth and /sim sub-directories for each IP
submodule directory that Platform Designer generates.

Simulating Intel FPGA IP Cores

The Intel Quartus Prime software supports IP core RTL simulation in specific EDA simulators. IP generation
creates simulation files, including the functional simulation model, any testbench (or example design), and vendor-
specific simulator setup scripts for each IP core. Use the functional simulation model and any testbench or
example design for simulation. IP generation output may also include scripts to compile and run any testbench.
The scripts list all models or libraries you require to simulate your IP core.
The Intel Quartus Prime software provides integration with many simulators and supports multiple simulation
flows, including your own scripted and custom simulation flows. Whichever flow you choose, IP core
simulation involves the following steps:

1. Generate simulation model, testbench (or example design), and simulator setup script files.

2. Set up your simulator environment and any simulation scripts.

3. Compile simulation model libraries.

4. Run your simulator.

DSP Builder for Intel FPGAs Design Flow

DSP Builder for Intel FPGAs shortens digital signal processing (DSP) design cycles by helping you create the
hardware representation of a DSP design in an algorithm-friendly development environment.
This IP core supports DSP Builder for Intel FPGAs. Use the DSP Builder for Intel FPGAs flow if you want to create
a DSP Builder for Intel FPGAs model that includes an IP core variation; use IP Catalog if you want to create an IP
core variation that you can instantiate manually in your design.
Related Information
Using MegaCore Functions chapter in the DSP Builder for Intel FPGAs Handbook.

BCH IP Core Functional Description

This topic describes the IP core’s architecture, interfaces, and signals.
You can parameterize the BCH IP core as an encoder or a decoder. The encoder receives data packets and
generates the check symbols; the decoder detects and corrects errors.

BCH IP Core Encoder

The BCH encoder has a parallel architecture with input and output of d data bits. When the encoder receives data
symbols, it generates check symbols for a given codeword and sends the input codeword with the check symbols
to the output interface. The encoder uses backpressure on the upstream component when it generates the check
symbols.
Figure 7. Encoder Timing



The ready signal indicates that the encoder can accept incoming stream. On the clk rising edge, if the encoder
ready signal is high, send input data stream via data_in port and assert load high to indicate valid input data.
Assume the full message word needs X clock signals. When this input process reaches X-1 clock cycles, the
encoder ready signal goes low. At the next clk rising edge, the encoder accepts the input from data_in port, and
the encoder receives the full message word. Before the ready signal returns to high again, the encoder does not
accept new input data. When valid_outt signal is asserted high, output encoded codeword is valid at the data_out
port. At the first clock cycle where the output data is valid, sop_out is asserted high for only one cycle, indicating
the start of packet. The IP core has forward and back pressure, which you can control with the ready and
sink_ready signal. Assert the sop_in and eop_in signals correctly at the clock cycle, i.e. the first and last clock
cycle of the input codeword.

Shortened Codewords
The BCH IP core supports shortened codewords. A shortened codeword contains fewer symbols than the
maximum value of N, which is 2M –1, where N is the total number of symbols per codeword and M is the number
of bits per symbol. A shortened codeword is mathematically equivalent to a maximum-length code with the extra
data symbols at the start of the codeword set to 0. For example, (220,136) is a shortened codeword of (255,171).
Both of these codewords use the same number of check symbols, 11. To use shortened codewords with the
decoder, use the parameter editor to set the codeword length to the correct value.

BCH IP Core Decoder

When the decoder receives the encoded codeword, it uses the check symbols to detect errors and correct them.
The received encoded codeword may differ from the original codeword because of noise in the channel. The
decoder detects errors using several polynomials to locate the error location and the error value. When the
decoder obtains the error location and value, the decoder corrects the errors in a codeword and sends the
codeword to the output. If e<=t, the IP core can correct errors; if e > t, you see unpredictable results.
Figure 8. Decoder Timing

The codeword starts when you assert the load signal and the sop_in signal.The decoder accepts the data at
data_in as valid data. The codeword ends when you assert the eop_in signal. For a 1-channel codeword, assert
the sop_in and eop_in signals for one clock cycle. When the decoder deasserts the ready signal, the decoder
cannot process any more data until it asserts the ready signal again. At the output, the operation is identical.
When the decoder asserts the valid_out signal and the sop_out signal, the decoder provides valid data on



data_out. The decoder asserts the sop_out signal and the eop_out signal to indicate the start and end of a
codeword. The decoder automatically detects and corrects errors in a codeword and asserts the
number_of_errors signal when it encounters a non-correctable codeword. The decoder outputs the full codeword
including the check symbols, which you should remove. The ready signal indicates that the decoder can accept an
incoming stream. On clk rising edge, if the encoder ready signal is high, send input data stream via data_in and
assert load high to indicate valid input data. When valid_out is asserted high, the output decoded word is valid at
the data_out port. The number_of_errors shows the number of errors the IP core detects. At the first clock cycle
where the output data is valid, sop_out is asserted high for only one cycle, indicating the start of output packet.
The IP core has forward and back pressure, which you controll with the ready signal and sink_ready signal. Assert
the sop_in and eop_in signals correctly at the clock cycle, i.e. the first and last clock cycle of the input codeword.

CH IP Core Parameters

Table 7. Parameters

Parameter Legal Values Default Value Description

BCH module Encoder or Decoder Encoder Specify an encoder or a decoder.

Number of bits per
symbol (m)

3 to 14 (encoder or 6 to 1
4 (decoder) 14 Specify the number of bits per sym

bol.

Codeword length (n) parity_bits+1 : 2m-1 8,784

Specify the codeword length. The 
decoder accepts a new symbol ev
ery clock cycle if 6.5R < N. If N>=6
.5R

+1, the decoder shows continuous
behavior.

Error correction capacity (
t)

Range derived from m. Fo
r the decoder, the wizard c
aps the range between 8 
and 127.

40 Specify the number of bits to be co
rrected.

Parity bits – 560
Shows the number of parity bits in 
the codeword. The wizard derives t
his parameter from t.

Message length (k) – 8,224
Shows the number of message bit
s in the codeword. The wizard deri
ves this parameter from t and n.

Primitive polynomial – 17,475 Shows the primitive polynomial. de
rived from the choice of m.

Parallel input data width

Encoder: 1 to min(parity_
bits, k-1). Decoder:

•    d < floor(n*3/14)

•    d < floor(n/ floor[2*log
(2*t)])

20 The number of bits to input every c
lock cycle.

BCH IP Core Interfaces and Signals

Table 8. Clock and Reset Signals

2



Name Avalon-ST Type Direction Description

CLK CLK Input The main system clock. The whole IP core operates on
the rising edge of CLK.

reset reset_n Input

An active low signal that resets the entire system
when asserted. You can assert this signal
asynchronously.

However, you must deassert it synchronously to the cl
k_clk signal. When the IP core recovers from reset, en
sure that the data it receives is a complete packet.

Table 9. Avalon-ST Input and Output Interface Signals

Name Avalon-ST Type Direction Description

ready ready Output

Data transfer ready signal to indicate that the sink is re
ady to accept data. The sink interface drives the ready
signal to control the flow of data across the interface. T
he sink interface captures the data interface signals on
the current clk rising edge.

data_in[] data Input Data input for each codeword, symbol by symbol. Valid
only when you assert the in_valid signal.

data_out data Output
Contains decoded output when the IP core asserts the
out_valid signal. The corrected symbols are in the sam
e order that they are entered.

eop_in eop Input End of packet (codeword) signal.

eop_out eop Output

End of packet (codeword) signal. This signal indicates 
the packet boundaries on the data_in[] bus. When the I
P core drives this signal high, it indicates that the end 
of packet is present on the data_in[] bus. The IP core a
sserts this signal on the last transfer of every packet.

in_error error Input
Error signal. Specifies if the input data symbol is an err
or and whether the decoder can consider it as an eras
ure. Erasures-supporting decoders only.

load valid Input

Data valid signal to indicate the validity of the data
signals. When you assert the in_valid signal, the Avalo
n-ST data interface signals are valid. When you deass
ert the in_valid signal, the Avalon-ST data interface sig
nals are invalid and must be disregarded. You can ass
ert the in_valid signal whenever data is available. How
ever, the sink only captures the data from the source w
hen the IP core asserts the in_ready signal.

number_of_err 
ors error Output Indicates the number of errors (decoder only). Valid w

hen the IP core asserts eop_out .

sop_in sop Input Start of packet (codeword) signal.



sop_out sop Output

Start of packet (codeword) signal. This signal indicates
the codeword boundaries on the data_in[] bus. When t
he IP core drives this signal high, it indicates that the s
tart of packet is present on the data_in[] bus. The IP
core asserts this signal on the first transfer of every co
deword.

sink_ready ready Input

Data transfer ready signal to indicate that the
downstream module is ready to accept data. The sour
ce provides new data (if available) when you assert th
e sink_ready signal and stops providing new data whe
n you deassert the sink_ready signal. If the source is u
nable to provide new data, it deasserts valid_out for on
e or more clock cycles until it is prepared to drive valid 
data interface signals.

valid_out valid Output

Data valid signal. The IP core asserts the valid_out sig
nal high, whenever a valid output is on data_out ; the I
P core deasserts the signal when there is no valid outp
ut on data_out .

For IP cores generated within Qsys, all signals are in an Avalon-ST interface. For encoders:

Input: in[0 to data width of data_in]

Output: out[0 to data width of data_out].

For decoders:

Input: in[0 to data width of data_in]

Output: out [0 to data width+number_errors | data_out]

Avalon-ST Interfaces in DSP IP Cores

Avalon-ST interfaces define a standard, flexible, and modular protocol for data transfers from a source interface to
a sink interface.
The input interface is an Avalon-ST sink and the output interface is an Avalon-ST source. The Avalon-ST interface
supports packet transfers with packets interleaved across multiple channels.
Avalon-ST interface signals can describe traditional streaming interfaces supporting a single stream of data
without knowledge of channels or packet boundaries. Such interfaces typically contain data, ready, and valid
signals. Avalon-ST interfaces can also support more complex protocols for burst and packet transfers with packets
interleaved across multiple channels. The Avalon-ST interface inherently synchronizes multichannel designs,
which allows you to achieve efficient, time-multiplexed implementations without having to implement complex
control logic.
Avalon-ST interfaces support backpressure, which is a flow control mechanism where a sink can signal to a
source to stop sending data. The sink typically uses backpressure to stop the flow of data when its FIFO buffers
are full or when it has congestion on its output.
Related Information
Avalon Interface Specifications

Document Revision History

BCH IP Core User Guide revision history.



Date Version Changes

2017.11.06 17.1
•    Added support for Intel Cyclone 10 devices

•    Corrected signal names in encoder and decoder descriptions.

2017.02.14 16.1
•    Removed product ID and vendor ID.

•    Corrected Error correction capability (t) max value to 127

2015.10.01 15.1 Added product ID and ordering code.

2015.05.01 15.0 Initial release

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

Other names and brands may be claimed as the property of others.

A. BCH IP Core Document Archive

If the table does not list an IP core version, the user guide for the previous IP core version applies.

IP Core Version User Guide

16.1 BCH IP Core User Guide

15.1 BCH IP Core User Guide

Documents / Resources

intel BCH IP Core  [pdf] User Guide
BCH IP Core, BCH IP, Core

References

 End User License Agreements

 Intel® FPGAs and Programmable Devices-Intel® FPGA

 FPGA Knowledge Base Articles Search

 PSG Documentation

 Intel Shapes the Future of Technology

https://manuals.plus/m/7677c0ecca96ed02df7c121b3c9d13a4d6d17b65a3bc6d698aad3741ca0e67f4
https://manuals.plus/m/7677c0ecca96ed02df7c121b3c9d13a4d6d17b65a3bc6d698aad3741ca0e67f4_optim.pdf
http://dl.altera.com/eula/
http://www.altera.com/licensing
http://www.altera.com/support/kdb/kdb-browse.jsp?keyword=bch
https://documentation.altera.com/#/link/hco1421698042087/hco1421697689300
https://www.altera.com/about/contact/contact.html


 1. About the BCH IP Core

 1. Answers to Top FAQs

 Intel® Quartus® Prime Software User Guides

 1. Introduction to Intel® FPGA IP Cores

 1. Introduction to Intel® FPGA IP Cores

 Intel ISO 9001:2015 Registrations

Manuals+,

https://www.intel.com/content/www/us/en/docs/programmable/683320/17-1/
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1426013042774
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#esc1444754592005
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960636914.html#mwh1409958250601
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960636914.html#mwh1409958301774
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://manuals.plus/

	intel BCH IP Core User Guide
	intel BCH IP Core
	About the BCH IP Core
	DSP IP Core Device Family Support

	BCH IP Core Getting Started
	Related Information

	BCH IP Core Functional Description
	CH IP Core Parameters

	Document Revision History
	A. BCH IP Core Document Archive

	Documents / Resources
	References



