
Home » Intel » intel AN 889 8K DisplayPort Video Format Conversion Design Example User Guide

Contents
1 intel AN 889 8K DisplayPort Video Format Conversion Design Example
2 About the 8K DisplayPort Video Format Conversion Design Example
3 Features of the 8K DisplayPort Video Format Conversion Design Example
4 Getting Started with the 8K DisplayPort Video Format Conversion Design Example
5 Functional Description of the 8K DisplayPort Video Format Conversion Design
Example
6 Software Description
7 Revision History for AN 889: 8K DisplayPort Video Format Conversion Design
Example
8 Documents / Resources

8.1 References
9 Related Posts

intel AN 889 8K DisplayPort Video Format Conversion Design Example

intel AN 889 8K DisplayPort Video Format Conversion Design
Example User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/an-889-8k-displayport-video-format-conversion-design-example-manual.pdf

About the 8K DisplayPort Video Format Conversion Design Example

The 8K DisplayPort Video Format Conversion Design Example integrates the Intel DisplayPort 1.4 video
connectivity IP with a video processing pipeline. The design delivers high-quality scaling, color space conversion,
and frame rate conversion for video streams up to 8K at 30 frames per second, or 4K at 60 frames per second.
The design is highly software and hardware configurable, enabling rapid system configuration and redesign. The
design targets Intel® Arria® 10 devices and uses the latest 8K ready Intel FPGA IP from the Video and Image
Processing Suite in Intel Quartus® Prime v19.2.

About DisplayPort Intel FPGA IP
To create Intel Arria 10 FPGA designs with DisplayPort interfaces, instantiate the DisplayPort Intel FPGA IP.
However, this DisplayPort IP only implements the protocol encode or decode for DisplayPort. It does not include
the transceivers, PLLs, or transceiver reconfiguration functionality required to implement the high-speed serial
component of the interface. Intel provides separate transceiver, PLL, and reconfiguration IP components.
Selecting, parameterizing, and connecting these components to create a fully compliant DisplayPort receiver or
transmitter interface requires specialist knowledge.
Intel provides this design for those who are not transceiver experts. The parameter editor GUI for the DisplayPort
IP allows you to build the design.
You create an instance of the DisplayPort IP (which may be receiver only, transmitter only or combined receiver
and transmitter) in either Platform Designer or the IP Catalog. When you parameterize the DisplayPort IP
instance, you can select to generate an example design for that particular configuration. The combined receiver
and transmitter design is a simple passthrough, where the output from the receiver feeds directly in to the
transmitter. A fixed-passthrough design creates a fully functional receiver PHY, transmitter PHY, and
reconfiguration blocks that implement all the transceiver and PLL logic. You can either directly copy the relevant
sections of the design, or use the design as a reference. The design generates a DisplayPort Intel Arria 10 FPGA
IP Design Example and then adds many of the files generated directly into the compile list used by the Intel
Quartus Prime project. These include:

Files to create parameterized IP instances for transceivers, PLLs and reconfig blocks.

Verilog HDL files to connect these IPs into the higher level receiver PHY, transmitter PHY, and Transceiver

Reconfiguration Arbiter blocks

Synopsys design constraint (SDC) files to set the relevant timing constraints.

Features of the 8K DisplayPort Video Format Conversion Design Example

Input:

DisplayPort 1.4 connectivity supports resolutions from 720×480 up to 3840×2160 at any frame rate up to

60 fps, and resolutions up to 7680×4320 at 30 fps.

Hot-plug support.

Support for both RGB and YCbCr (4:4:4, 4:2:2 and 4:2:0) color formats at the

input.

Software automatically detects the input format and sets up the processing pipeline appropriately.

Output:

DisplayPort 1.4 connectivity selectable (via DIP switches) for either 1080p, 1080i or 2160p resolution at

60 fps, or 2160p at 30 fps.

Hot-plug support.

DIP switches to set the required output color format to RGB, YCbCr 4:4:4, YCbCr 4:2:2, or YCbCr 4:2:0.

Single 10-bit 8K RGB processing pipeline with software configurable scaling and frame rate conversion:

12-tap Lanczos down-scaler.

16-phase, 4-tap Lanczos up-scaler.

Triple buffering video frame buffer provides frame rate conversion.

Mixer with alpha-blending allows OSD icon overlay.

Getting Started with the 8K DisplayPort Video Format Conversion Design Example

Hardware and Software Requirements

The 8K DisplayPort Video Format Conversion Design Example requires specific hardware and software.

Hardware:

Intel Arria 10 GX FPGA Development Kit, including the DDR4 Hilo Daughter Card

Bitec DisplayPort 1.4 FMC daughter card (revision 11)

DisplayPort 1.4 source that produces up to 3840x2160p60 or 7680x4320p30 video

DisplayPort 1.4 sink that displays up to 3840x2160p60 video

VESA certified DisplayPort 1.4 cables.

Software:

Windows or Linux OS

The Intel Quartus Prime Design Suite v19.2, which includes:

Intel Quartus Prime Pro Edition

Platform Designer

Nios® II EDS

Intel FPGA IP Library (including the Video and Image Processing Suite)

The design only works with this version of Intel Quartus Prime.

Downloading and Installing the Intel 8K DisplayPort Video Format Conversion Design Example

The design is available on the Intel Design Store.

1. Download the archived project file udx10_dp.par.

2. Extract the Intel Quartus Prime project from the archive:

a. Open Intel Quartus Prime Pro Edition.

b. Click File ➤ Open Project.

The Open Project window opens.

c. Navigate to and select the udx10_dp.par file.

d. Click Open.

e. In the Open Design Template window, set the Destination folder to the desired location for the

extracted project. The entries for the design template file and project name should be correct and you

need not change them.

f. Click OK.

Design Files for the Intel 8K DisplayPort Video Format Conversion Design Example

Table 1. Design Files

File or Folder Na
me Description

ip

Contains the IP instance files for all the Intel FPGA IP instances in the design:

• A DisplayPort IP (transmitter and receiver)

• A PLL that generates clocks at the top level of the design

• All the IP that make up the Platform Designer system for the processing pipeline.

master_image Contains pre_compiled.sof, which is a precompiled board programming file for the design.

non_acds_ip Contains source code for additional IP in this design that Intel Quartus Prime does not incl
ude.

sdc
Contains an SDC file that describes the additional timing constraints that this design requir
es. The SDC files included automatically with the IP instances do not handle these constrai
nts.

software Contains source code, libraries, and build scripts for the software that runs on the
embedded Nios II processor to control the high-level functionality of the design.

udx10_dp

A folder into which Intel Quartus Prime generates output files for the Platform Designer sys
tem. The udx10_dp.sopcinfo output file allows you to generate the memory initialization file
for the Nios II processor software memory. You need not first generate the full Platform De
signer system.

non_acds_ip.ipx
This IPX file declares all of the IP in the non_acds_ip folder to Platform Designer so it appe
ars in the IP Library.

README.txt Brief instructions to build and run the design.

top.qpf The Intel Quartus Prime project file for the design.

top.qsf
The Intel Quartus Prime project settings file for the design. This file lists all the files require
d to build the design, along with the pin assignments and a number of other project setting
s.

top.v The top-level Verilog HDL file for the design.

udx10_dp.qsys The Platform Designer system that contains the video processing pipeline, the Nios II proc
essor, and its peripherals.

Compiling the 8K DisplayPort Video Format Conversion Design Example
Intel provides a precompiled board programming file for the design in the master_image directory
(pre_compiled.sof) to allow you to run the design without running a full compilation.
STEPS:

1. In the Intel Quartus Prime software, open the top.qpf project file. The downloaded archive creates this file when

you unzip the project.

2. Click File ➤ Open and select ip/dp_rx_tx/dp_rx_tx.ip. The parameter editor GUI for the DisplayPort IP opens,

showing the parameters for the DisplayPort instance in the design.

3. Click Generate Example Design (not Generate).

4. When the generation completes, close the parameter editor.

5. In File Explorer, navigate to the software directory and unzip the vip_control_src.zip archive to generate the

vip_control_src directory.

6. In a BASH terminal, navigate to software/script and run the shell script build_sw.sh.

The script builds the Nios II software for the design. It creates both an .elf file that you can download to the

board at run time, and a .hex file to compile into the board programming .sof file.

7. In the Intel Quartus Prime software, click Processing ➤ Start Compilation.

Intel Quartus Prime generates the udx10_dp.qsys Platform Designer system.

Intel Quartus Prime sets the project to top.qpf.

The compilation creates top.sof in the output_files directory when it completes.

Viewing and Regenerating the Platform Designer System

1. Click Tools ➤ Platform Designer.

2. Select system name.qsys for the Platform Designer system option.

3. Click Open.

Platform Designer opens the system.

4. Review the system.

5. Regenerate the system:

a. Click Generate HDL….

b. In the Generation Window, turn on Clear output directories for selected generation targets.

c. Click Generate

Compiling the 8K DisplayPort Video Format Conversion Design Example with the Nios II Software Build
Tools for Eclipse
You set up an interactive Nios II Eclipse workspace for the design to produce a workspace that uses the same
folders that the build script uses. If you previously run the build script, you should delete the software/vip_control
and software/vip_control_bsp folders before creating the Eclipse workspace. If you re-run the build script at any
point it overwrites the Eclipse workspace.
STEPS:

1. Navigate to the software directory and unzip the vip_control_src.zip archive to generate the vip_control_src

directory.

2. In the installed project directory, create a new folder and name it workspace.

3. In the Intel Quartus Prime software, click Tools ➤ Nios II Software Build Tools for Eclipse.

a. In the Workspace Launcher window, select the workspace folder you created.

b. Click OK.

4. In the Nios II – Eclipse window, click File ➤ New ➤ Nios II Application and BSP from Template.

The Nios II Application and BSP from Template dialog box appears.

a. In the SOPC Information File box, select the udx10_dp/ udx10_dp.sopcinfo file. The Nios II SBT for

Eclipse fills in the CPU name with the processor name from the .sopcinfo file.

b. In the Project name box, type vip_control.

c. Select Blank Project from the Templates list.

d. Click Next.

e. Select Create a new BSP project based on the application project template with the project name

vip_control_bsp.

f. Turn on Use default location.

g. Click Finish to create the application and the BSP based on the .sopcinfo file.

After the BSP generates, the vip_control and vip_control_bsp projects appear in the Project Explorer tab.

5. In Windows Explorer, copy the contents of the software/vip_control_src directory to the newly created

software/vip_control directory.

6. In the Project Explorer tab of the Nios II – Eclipse window, right click on the vip_control_bsp folder and select

Nios II > BSP Editior.

a. Select None from the drop-down menu for sys_clk_timer.

b. Select cpu_timer from the drop-down menu for timestamp_timer.

c. Turn on enable_small_c_library.

d. Click Generate.

e. When generation completes, click Exit.

7. In the Project Explorer tab, right-click the vip_control directory and click Properties.

1. a. In the Properties for vip_control window, expand Nios II Application properties and click Nios II

Application Paths.

2. b. Click Add… next to Library Projects.

3. c. In the Library Projects window, navigate to the udx10.dp\spftware \vip_control_src directory and select

the bkc_dprx.syslib directory.

4. d. Click OK. A message appears Convert to a relative path. Click Yes.

5. e. Repeat steps 7.b on page 8 and 7.c on page 8 for the bkc_dptx.syslib and bkc_dptxll_syslib directories

6. f. Click OK.

8. Select Project ➤ Build All to generate the file vip_control.elf in the software/vip_control directory.

9. Build the mem_init file for the Intel Quartus Prime compilation:

1. a. Right click vip_control in the Project Explorer window.

2. b. Select Make Targets ➤ Build….

3. c. Select mem_init_generate.

d. Click Build.

The Intel Quartus Prime software generates the

udx10_dp_onchip_memory2_0_onchip_memory2_0.hex file in the software/vip_control/mem_init

directory.

10. With the design running on a connected board, run the vip_control.elf programming file created by the Eclipse

build.

a. Right click vip_control folder in the Project Explorer tab of the Nios II -Eclipse window.

b. Selecting Run As ➤ Nios II Hardware. If you have a Nios II terminal window open, close it before

downloading the new software.

Setting up the Intel Arria 10 GX FPGA Development Kit
Describes how to set up the kit to run the 8K DisplayPort Video Format Conversion Design Example.

Figure 1. Intel Arria 10 GX Development Kit with HiLo Daughter Card
The figure shows the board with the blue heat sink removed to show the positioning of the DDR4 Hilo card. Intel
recommends that you do not run the design without the heat sink in position.

STEPS:

1. Fit the Bitec DisplayPort 1.4 FMC card to the development board using FMC Port A.

2. Ensure the power switch (SW1) is turned off, then connect the power connector.

3. Connect a USB cable to your computer and to the MicroUSB Connector (J3) on the development board.

4. Attach a DisplayPort 1.4 cable between the DisplayPort source and the Receiver port of the Bitec DisplayPort

1.4 FMC card and ensure the source is active.

5. Attach a DisplayPort 1.4 cable between the DisplayPort display and the Transmitter port of the Bitec

DisplayPort 1.4 FMC card and ensure the display is active.

6. Turn on the board using SW1.

Board Status LEDs, Push Buttons and DIP Switches
The Intel Arria 10 GX FPGA Development Kit has eight status LEDs (with both green and red emitters), three user
push buttons and eight user DIP switches. The 8K DisplayPort Video Format Conversion Design Example
illuminates the LEDs to indicate the state of the DisplayPort receiver link. The push buttons and DIP switches
allow you to alter design settings.

Status LEDs

Table 2. Status LEDs

LE
D Description

Red LEDs

0 DDR4 EMIF calibration in progress.

1 DDR4 EMIF calibration failed.

7:2 Unused.

Green LEDs

0 Illuminates when DisplayPort receiver link training completes successfully, and the design receives stable
video.

5:1

DisplayPort receiver lane count: 00001 = 1 lane

00010 = 2 lanes

00100 = 4 lanes

7:6

DisplayPort receiver lane speed: 00 = 1.62 Gbps

01 = 2.7 Gbps

10 = 5.4 Gbps

11 = 8.1 Gbps

The table lists the status that each LED indicates. Each LED position has both red and green indicators that can
illuminate independently. Any LED glowing orange means that both the red and green indicators are on.

User Push Buttons
User push button 0 controls the display of the Intel logo in the top right-hand corner of the output display. At
startup, the design enables the display of the logo. Pressing push button 0 toggles the enable for the logo display.
User push button 1 controls the scaling mode of the design. When a source or sink is hot-plugged the design
defaults to either:

Passthrough mode, if the input resolution is less than or equal to the output resolution

Downscale mode, if the input resolution is greater than the output resolution

Each time you press user push button 1 the design swaps to the next scaling mode (passthrough > upscale,
upscale > downscale, downscale > passthrough). User push button 2 is unused.

User DIP Switches
The DIP switches control the optional Nios II terminal printing and the settings for the output video format driven
through the DisplayPort transmitter.

Table 3. DIP Switches
The table lists the function of each DIP switch. The DIP switches, numbered 1 to 8 (not 0 to 7), match the
numbers printed on the switch component. To set each switch to ON, move the white switch towards the LCD and
away from the LEDs on the board.

Switch Function

1 Enables Nios II terminal printing when set to ON.

2

Set output bits per color:

OFF = 8 bit

ON = 10 bit

4:3
Set output color space and sampling: SW4 OFF, SW3 OFF = RGB 4:4:4 SW4 OFF, SW3 ON =
YCbCr 4:4:4 SW4 ON, SW3 OFF = YCbCr 4:2:2 SW4 ON, SW3 ON = YCbCr 4:2:0

6:5
Set output resolution and frame rate: SW4 OFF, SW3 OFF = 4K60

SW4 OFF, SW3 ON = 4K30 SW4 ON, SW3 OFF = 1080p60 SW4 ON, SW3 ON = 1080i60

8:7 Unused

Running the 8K DisplayPort Video Format Conversion Design Example
You must download the compiled .sof file for the design to the Intel Arria 10 GX FPGA Development Kit to run the
design.
STEPS:

1. In the Intel Quartus Prime software, click Tools ➤ Programmer.

2. In the Programmer window, click Auto Detect to scan the JTAG chain and discover the connected devices.

If a pop-up window appears asking you to update the Programmer’s device list, click Yes.

3. In the device list, select the row labeled 10AX115S2F45.

4. Click Change File…

To use the precompiled version of the programming file that Intel includes as part of the design

download, select master_image/pre_compiled.sof.

To use your programming file created by the local compile, select output_files/top.sof.

5. Turn on Program/Configure in the 10AX115S2F45 row of the device list.

6. Click Start.

When the programmer completes, the design runs automatically.

7. Open a Nios II terminal to receive the output text messages from the design, otherwise the design locks up

after a number of switch changes (only if you set user DIP switch 1 to ON).

a. Open a terminal window and type nios2-terminal

b. Press Enter.

connected at the input. With no source, the output is a black screen with the Intel logo in the top right-hand corner
of the screen.

Functional Description of the 8K DisplayPort Video Format Conversion Design Example

The Platform Designer system, udx10_dp.qsys, contains the DisplayPort receiver and transmitter protocol IP, the
video pipeline IP, and the Nios II processor components. The design connects the Platform Designer system to
the DisplayPort receiver and transmitter PHY logic (which contains the interface transceivers) and the transceiver
reconfiguration logic at the top level in a Verilog HDL RTL design file (top.v). The design comprises a single video
processing path between the DisplayPort input and the DisplayPort output.

Figure 2. Block Diagram
The diagram shows the blocks in the 8K DisplayPort Video Format Conversion Design Example. The diagram
does not show some of the generic peripherals connected to the Nios II, the Avalon-MM between the Nios II
processor, and the other components of the system. The design accepts video from a DisplayPort source on the
left, processes the video through the video pipeline from left to right before passing the video out to the
DisplayPort sink on the right.

DisplayPort Receiver PHY and DisplayPort Receiver IP
The Bitec DisplayPort FMC card provides a buffer for the DisplayPort 1.4 signal from the DisplayPort source. The
combination of DisplayPort Receiver PHY and DisplayPort Receiver IP decodes the incoming signal to create a
video stream. The DisplayPort receiver PHY contains the transceivers to deserialize the incoming data and the
DisplayPort receiver IP decodes the DisplayPort protocol. The combined DisplayPort Receiver IP processes the
incoming DisplayPort signal without any software. The resulting video signal from the DisplayPort receiver IP is a
native packetized streaming format. The design configures the DisplayPort receiver for 10-bit output.

DisplayPort to Clocked Video IP
The packetized streaming data format output by the DisplayPort receiver is not directly compatible with the
clocked video data format that the Clocked Video Input IP expects. The DisplayPort to Clocked Video IP is a
custom IP for this design. It converts the DisplayPort output into a compatible clocked video format that you can
connect directly to the Clocked Video Input. The DisplayPort to Clocked Video IP can modify the wire signaling
standard and can alter the ordering of the color planes within each pixel. The DisplayPort standard specifies color
ordering that is different than the Intel video pipeline IP ordering. The Nios II processor controls the color swap. It
reads the current color space for transmission from the DisplayPort receiver IP with its Avalon- MM slave
interface. It directs the DisplayPort to Clocked Video IP to apply the appropriate correction with its Avalon-MM
slave interface.

Clocked Video Input
The clocked video input processes the clocked video interface signal from the DisplayPort to Clocked Video IP
and converts it to Avalon-ST Video signal format. This signal format strips all horizontal and vertical blanking
information from the video leaving only active picture data. The IP packetizes it as one packet per video frame. It
also adds additional metadata packets (referred to as control packets) that describe the resolution of each video
frame. The Avalon-ST Video stream through the processing pipe is four pixels in parallel, with three symbols per
pixel. The clocked video input provides clock crossing for the conversion from the variable rate clocked video
signal from the DisplayPort receiver IP to the fixed clock rate (300 MHz) for the video IP pipeline.

Stream Cleaner
The stream cleaner ensures that the Avalon-ST Video signal passing to the processing pipeline is error free. Hot
plugging of the DisplayPort source can cause the design to present incomplete frames of data to the clocked
video input IP and to generate errors in the resulting Avalon-ST Video stream. The size of the packets containing
the video data for each frame then do not match the size reported by the associated control packets. The stream
cleaner detects these conditions and adds additional data (grey pixels) to the end of the offending video packets
to complete the frame and match the specification in the control packet.

Chroma Resampler (Input)
The video data that the design receives at the input from DisplayPort may be 4:4:4, 4:2:2, or 4:2:0 chroma
sampled. The input chroma resampler takes the incoming video in any format and converts it to 4:4:4 in all cases.
To provide higher visual quality, the chroma resampler uses the most computationally expensive filtered algorithm.
The Nios II processor reads the current chroma sampling format from the DisplayPort receiver IP via its Avalon-
MM slave interface. It communicates the format to the chroma resampler via its Avalon-MM slave interface.

Color Space Converter (Input)
The input video data from DisplayPort may use either the RGB or YCbCr color space. The input color space
converter takes the incoming video in whatever format it arrives and converts it to RGB in all cases. The Nios II
processor reads the current color space from the DisplayPort receiver IP with its Avalon-MM slave interface; it
loads the correct conversion coefficients to the chroma resampler through its Avalon-MM slave interface.

Clipper
The clipper selects an active area from the incoming video stream and discards the remainder. The software
control running on the Nios II processor defines the region to select. The region depends on the resolution of the
data received at the DisplayPort source and the output resolution and scaling mode. The processor
communicates the region to the Clipper through its Avalon-MM slave interface.

Scaler
The design applies scaling to the incoming video data according to the input resolution received, and the output
resolution you require. You may also select between three scaling modes (upscale, downscale and passthrough).
Two Scalar IPs provide the scaling functionality: one implements any required downscaling; the other implements
upscaling. The design requires two scalers.

When the scaler implements a downscale, it does not produce valid data on every clock cycle at its output. For

example, if implementing a 2x downscale ratio, the valid signal at the output is high every other clock cycle

while the design receives each even numbered input line, and then low for the entirety of the odd numbered

input lines. This bursting behavior is fundamental to the process of reducing the data rate at the output, but is

incompatible with the downstream Mixer IP, which generally expects a more consistent data rate to avoid

underflow at the output. The design requires the Frame Buffer between any downscale and mixer. The Frame

Buffer allows the Mixer to read the data at the rate it requires.

When the scaler implements an upscale, it produces valid data on every clock cycle, so the following mixer has

no issues. However, it may not accept new input data on every clock cycle. Taking a 2x upscale as an example,

on the even numbered output lines it accepts a new beat of data every other clock cycle, then accepts no new

input data on the odd numbered output lines. However, the upstream Clipper may produce data at an entirely

different rate if it is applying a significant clip (e.g. during a zoom-in). Therefore, a Clipper and upscale must

generally be separated by a Frame Buffer, requiring the Scaler to sit after the Frame Buffer in the pipeline. The

Scaler must sit before the Frame Buffer for downscales, so the design implements two separate scalers either

side of the Frame Buffer: one for upscale; the other for downscale.

Two Scalers also reduce the maximum DDR4 bandwidth required by the Frame Buffer. You must always apply
downscales before the Frame Buffer, minimizing the data rate on the write side. Always apply upscales after the

Frame Buffer, which minimizes the data rate on the read side. Each Scaler gets the required input resolution from
the control packets in the incoming video stream, while the Nios II processor with the Avalon-MM slave interface
sets the output resolution for each Scaler.

Frame Buffer
The frame buffer uses the DDR4 memory to perform triple buffering that allows the video and image processing
pipeline to perform frame rate conversion between the incoming and outgoing frame rates. The design can accept
any input frame rate, but the total pixel rate must not exceed 1 giga pixels per second. The Nios II software sets
the output frame rate to either 30 or 60 fps, according to the output mode you select. The output frame rate is a
function of the Clocked Video Output settings and the output video pixel clock. The backpressure that the Clocked
Video Output applies to the pipeline determines the rate at which the read side of the Frame Buffer pulls video
frames from the DDR4.

Mixer
The mixer generates a fixed size black background image that the Nios II processor programs to match the size of
the current output image. The mixer has two inputs. The first input connects to the upscaler to allow the design to
show the output from the current video pipeline. The second input connects to the icon generator block. The
design only enables the mixer’s first input when it detects active, stable video at the clocked video input.
Therefore, the design maintains a stable output image at the output while hot-plugging at the input. The design
alpha blends the second input to the mixer, connected to the icon generator, over both the background and video
pipeline images with 50% transparency..

Color Space Converter (Output)
The output color space converter transforms the input RGB video data to either RGB or YCbCr color space based
on the runtime setting from software.

Chroma Resampler (Output)
The output chroma resampler converts the format from 4:4:4 to one of 4:4:4, 4:2:2, or 4:2:0 formats. The software
sets the format. The output chroma resampler also uses filtered algorithm to achieve high-quality video.

Clocked Video Output
The clocked video output converts the Avalon-ST Video stream to the clocked video format. The clocked video
output adds horizontal and vertical blanking and synchronization timing information to the video. The Nios II
processor programs the relevant settings in the clocked video output depending on the output resolution and
frame rate that you request. The clocked video output converts the clock, crossing from the fixed 300 MHz
pipeline clock to the variable rate of the clocked video.

Clocked Video to DisplayPort
The DisplayPort transmitter component accepts data formatted as clocked video. Differences in the wire signaling
and declaration of the conduit interfaces in Platform Designer prevent you connecting the Clocked Video Output
directly to the DisplayPort transmitter IP. The Clocked Video to DisplayPort component is design-specific custom
IP to provide the simple conversion required between the Clocked Video Output and the DisplayPort transmitter
IP. It also swaps the ordering of the color planes in each pixel to account for the different color formatting
standards used by Avalon-ST Video and DisplayPort.

DisplayPort Transmitter IP and DisplayPort Transmitter PHY
The DisplayPort transmitter IP and DisplayPort transmitter PHY together work to convert the video stream from
clocked video to a compliant DisplayPort stream. The DisplayPort transmitter IP handles the DisplayPort protocol
and encodes the valid DisplayPort data, while the DisplayPort transmitter PHY contains the transceivers and
creates the high-speed serial output.

Nios II Processor and Peripherals
The Platform Designer system contains a Nios II processor, which manages the DisplayPort receiver and
transmitter IPs and the runtime settings for the processing pipeline. The Nios II processor connects to these basic
peripherals:

An on-chip memory to store the program and its data.

A JTAG UART to display software printf output (via a Nios II terminal).

A system timer to generate millisecond level delays at various points in the software, as required by the

DisplayPort specification of minimum event durations.

LEDs to display system status.

Push-button switches to allow switching between scaling modes and to enable and disable display of the Intel

logo.

DIP switches to allow switching of the output format and to enable and disable the printing of messages to a

Nios II terminal.

Hot-plug events on both the DisplayPort source and sink fire interrupts that trigger the Nios II Processor to
configure the DisplayPort transmitter and pipeline correctly. The main loop in the software code also monitors that
values on the push-buttons and DIP switches and alters the pipeline setup accordingly.

I²C Controllers
The design contains two I²C controllers (Si5338 and PS8460) to edit the settings of three of the other components
on the Intel Arria 10 10 GX FPGA Development Kit. Two Si5338 clock generators on the Intel Arria 10 GX FPGA
Development Kit connect to the same I²C bus. The first generates the reference clock for the DDR4 EMIF. By
default, this clock is set to 100 MHz for use with 1066 MHz DDR4, but this design runs the DDR4 at 1200 MHz,
which requires a reference clock of 150 MHz. At startup the Nios II processor, via the I²C controller peripheral,
changes the settings in the register map of the first Si5338 to increase the speed of the DDR4 reference clock to
150MHz. The second Si5338 clock generator generates the vid_clk for the clocked video interface between the
pipeline and the DisplayPort transmitter IP. You must adjust the speed of this clock for each different output
resolution and frame rate supported by the design. You can adjust the speed at run time when the Nios II
processor requires. The Bitec DisplayPort 1.4 FMC daughter card makes use of the Parade PS8460 jitter cleaning
repeater and retimer. At startup the Nios II processor edits the default settings of this component to meet the
requirements of the design.

Software Description

The 8K DisplayPort Video Format Conversion Design Example includes IP from the Intel Video and Image
Processing Suite and the DisplayPort interface IP All these IPs can process frames of data without any further
intervention when setup correctly. You must implement external high-level control to setup the IPs to begin with
and when the system changes, e.g. DisplayPort receiver or transmitter hot-plug events or user push button
activity. In this design, a Nios II processor, running bespoke control software, provides the high-level control. At
startup the software:

Sets the DDR4 ref clock to 150 MHz to allow for 1200 MHz DDR speed, then resets external memory interface

IP to recalibrate on the new reference clock.

Sets up the PS8460 DisplayPort repeater and retimer.

Initializes the DisplayPort receiver and transmitter interfaces.

Initializes the processing pipeline IPs.

When initialization is complete the software enters a continuous while loop, checking for, and reacting to, a
number of events.

Changes to the Scaling Mode
The design supports three basic scaling modes; passthrough, upscale, and downscale. In passthrough mode the
design does no scaling of the input video, in upscale mode the design upscales input video, and in downscale
mode the design downscales input video.
The four blocks in the processing pipeline; the Clipper, the downscaler, the upscaler and the Mixer determine the

presentation of the final output in each mode. The software controls the settings of each block depending on the
current input resolution, output resolution, and the scaling mode that you select. In most cases, the Clipper passes
the input through unaltered, and the Mixer background size is the same size as the final, scaled version of the
input video. However, if the input video resolution is greater than the output size, it is not possible to apply an
upscale to the input video without first clipping it. If the input resolution is less than the output the software cannot
apply a downscale without applying a Mixer background layer that is larger than the input video layer, which adds
black bars around the output video.

Table 4. Processing Block Pipelines
This table lists the action of the four processing pipeline blocks in each of the nine combinations of scaling mode,
input resolution and output resolution.

Mode in > out in = out in < out

Passthrough Clip to output size No down
scale

No clip

No downscale

No clip

No downscale

continued…

Mode in > out in = out in < out

No upscale

No black border

No upscale

No black border

No upscale

Black border pads to output size

Upscale

Clip to 2/3 output size No d
ownscale

Upscale to output size No
black border

Clip to 2/3 output size No d
ownscale

Upscale to output size No b
lack border

No clip

No downscale

Upscale to output size No black bor
der

Downscale

No clip

Downscale to output size N
o upscale

No black border

No clip

Downscale to output size N
o upscale

No black border

No clip

Downscale to 2/3 input size No ups
cale

Black border pads to output size

Change between modes by pressing user push button 1. The software monitors the values on the push buttons on
each run through the loop (it does a software debounce) and configures the IPs in the processing pipeline
appropriately.

Changes at the DisplayPort Input
On each run through the loop the software polls the status of the Clocked Video Input, looking for changes in the
stability of the input video stream. The software considers the video is stable if:

The Clocked Video Input reports that the clocked video is successfully locked.

The input resolution and color space has no changes since the previous run through the loop.

If the input was stable but it has lost lock or the properties of the video stream have changed, the software stops
the Clocked Video Input sending video through the pipeline. It also sets the Mixer to stop displaying the input
video layer. The output remains active (showing a black screen and the Intel logo) during any receiver hotplug
events or resolution changes.
If the input was not stable but is now stable, the software configures the pipeline to display the new input
resolution and color space, it restarts the output from the CVI, and it sets the Mixer to display the input video layer
again. The re-enabling of the mixer layer is not immediate as the Frame Buffer may still be repeating old frames
from a previous input and the design must clear these frames. Then you can re-enable the display to avoid
glitching. The frame buffer keeps a count of the number of frames read from the DDR4, which the Nios II
processor can read. The software samples this count when the input becomes stable and re-enables the Mixer
layer when the count has increased by four frames, which ensures the design flushes out any old frames from the
buffer.

DisplayPort transmitter Hot-plug Events
Hot-plug events at the DisplayPort transmitter fire an interrupt within the software that sets a flag to alert the main
software loop of a change in the output. When the design detects a transmitter hot plug, the software reads the
EDID for the new display to determine which resolutions and color spaces its supports. If you set the DIP switches
to a mode that the new display cannot support, the software falls back to a less demanding display mode. It then
configures the pipeline, DisplayPort transmitter IP, and the Si5338 part that is generating the transmitter vid_clk
for the new output mode. When the input sees changes, the Mixer layer for the input video does not display as the
software edits settings for the pipeline. The software does not re-enable
the display until after four frames when the new settings pass through the frame
buffer.

Changes to User DIP Switch Settings
The positions of user DIP switches 2 to 6 control the output format (resolution, frame rate, color space and bits per
color) driven through the DisplayPort transmitter. When the software detects changes on these DIP switches, it
runs through a sequence that is virtually identical to a transmitter hot plug. You need not query the transmitter
EDID as it does not change.

Revision History for AN 889: 8K DisplayPort Video Format Conversion Design Example

Table 5. Revision History for AN 889: 8K DisplayPort Video Format Conversion Design Example

Document Ver
sion Changes

2019.05.30 Initial release.

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

Documents / Resources

intel AN 889 8K DisplayPort Video Format Conversion Design Example [pdf] User Guide
AN 889 8K DisplayPort Video Format Conversion Design Example, AN 889, 8K DisplayPort Vid
eo Format Conversion Design Example, Format Conversion Design Example, Conversion Desi
gn Example

References

 About the 8K DisplayPort Video Format Conversion Design Example

 Intel ISO 9001:2015 Registrations

Manuals+,

https://manuals.plus/m/3f958dd4b517eaf00275c7b718006a1ec5a65d448dede2827a83816bc546b2f3
https://manuals.plus/m/3f958dd4b517eaf00275c7b718006a1ec5a65d448dede2827a83816bc546b2f3_optim.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683547/current/
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://manuals.plus/

	intel AN 889 8K DisplayPort Video Format Conversion Design Example User Guide
	intel AN 889 8K DisplayPort Video Format Conversion Design Example
	About the 8K DisplayPort Video Format Conversion Design Example
	Features of the 8K DisplayPort Video Format Conversion Design Example
	Getting Started with the 8K DisplayPort Video Format Conversion Design Example
	Functional Description of the 8K DisplayPort Video Format Conversion Design Example
	Software Description
	Revision History for AN 889: 8K DisplayPort Video Format Conversion Design Example
	Documents / Resources
	References

