Manuals+ — User Manuals Simplified.

intel Agilex F-Series FPGA Development Board User Guide

Home » Intel » intel Agilex F-Series FPGA Development Board User Guide -

intel

AN 987: Static Update Partial
Reconfiguration Tutorial

Contents
1 Static Update Partial Reconfiguration Tutorial for Intel® ™ Agilex F-Series FPGA Development
Board
2 Troubleshooting PR Programming Errors
3 Documents / Resources
3.1 References

Static Update Partial Reconfiguration Tutorial for Intel® ™ Agilex F-Series FPGA Development
Board

This application note demonstrates static update partial reconfiguration (SUPR) on the Intel ® F-Series FPGA
Development Board. Partial reconfiguration (PR) allows you to reconfigure a portion of an Intel FPGA dynamically,
while the remaining FPGA continues to operate. PR implements multiple personas in a particular region in your
design, without impacting operation in areas outside this region. This methodology provides the following
advantages in systems in which multiple functions time-share the same FPGA resources:

« Allows run-time reconfiguration

Increases design scalability

Reduces system down-time

Supports dynamic time-multiplexing functions in the design

« Lowers cost and power consumption by efficient use of board space

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/agilex-f-series-fpga-development-board-manual.pdf

What is Static Update Partial Reconfiguration?

In traditional PR, any change to the static region requires recompilation of every persona. However, with
SUPR you can define a specialized region that allows change, without requiring the recompilation of
personas. This technique is useful for a portion of a design that you may possibly want to change for risk
mitigation, but that never requires runtime reconfiguration.

1.1. Tutorial Requirements
This tutorial requires the following:

Basic familiarity with the Intel Quartus® Prime Pro Edition FPGA implementation flow and project files.
Installation of Intel Quartus Prime Pro Edition version 22.3, with Intel Agilex device support.
For FPGA implementation, a JTAG connection with the Intel Agilex F-Series FPGA development board on the

bench.
« Download Reference Design Files. Related Information
« Partial Reconfiguration User Guide
« Partial Reconfiguration Tutorials

« Partial Reconfiguration Online Training

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in

accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any

information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers

are advised to obtain the latest version of device specifications before relying on any published information and

before placing orders for products or services. *Other names and brands may be claimed as the property of

others.

ISO 9001:2015 Registered

1.2. Reference Design Overview

This reference design consists of one, 32-bit counter. At the board level, the design connects the clock to a 50MHz
source, and then connects the output to four LEDs on the board. Selecting the output from the counter bits, in a

specific sequence, causes the LEDs to blink at a specific frequency. The top_counter module is the SUPR region.

Figure 1. Flat Reference Design

u_blinking_led 1 led e
tlock led_three_pn
count_d[31..0] led_two_on .
: K Q— Dled ¢
PR Region 4 e
count_d[31..0]
clockD D

u_top_counter >0k 0 't e D

(K Q—led_zero_on
clock count_d[31.0] ’ T
led_one_on
SUPR Regi :
eqlon

g S Q— led_one_on

1.3. Static Update Region Overview

The following figure shows the block diagram for a PR design that includes a SUPR region. Block A is the Top
static region. Block B is the SUPR region. Block C is the PR partition.

Figure 2. PR Design with SUPR Region

A: Top (Static)

//-::n::- p Regl
0K 0 //<ﬂ>
//<n> D Reg2
B: SUPR _ax o<zl C PRPartition

> Reg<n>

<>
0K Q

« A Top Static Region—contains design logic that does not change. Changing this region requires recompilation
of all associated personas. The static region includes the portion of the design that does not change for any
persona. This region can include periphery and core device resources. You must register all communication

between the SUPR and PR partitions in the static region. This requirement helps to ensure timing closure for

any personas, with respect to the static region.

« B SUPR Region—contains core-only logic that may possibly change for risk mitigation, but never requires

runtime reconfiguration. The SUPR region has the same requirements and restrictions as the PR partition. The

SUPR partition can contain only core resources. Therefore, the SUPR partition must be a child partition of the

top-level root partition that contains the design periphery and clocks. Changing the SUPR region produces a

SRAM Obiject File (.sof) that is compatible with all existing compiled Raw Binary File (.rbf) files for PR partition

C.

« C PR Partition—contains arbitrary logic that you can reprogram at runtime with any design logic that fits and

achieves timing closure during compilation.

1.4. Download Reference Design Files

The partial reconfiguration tutorial is available in the following location: hitps:/github.com/intel/fpga-partial-

reconfig
To download the tutorial:

1. Click Clone or download.

2. Click Download ZIP. Unzip the fpga-partial-reconfig-master.zip file.

3. Navigate to the tutorials/agilex_pcie_devkit_blinking_led_supr subfolder to access the reference design.

The flat folder consists of the following files:

Table 1. Reference Design Files

File Name Description
Top-level file containing the flat implementation of the design. This mo
top. sv dule instantiates the blinking_led sub-partition and the top_counter mo

dule.

t op_counter . sv

Top-level 32-bit counter that controls LED [1] directly. The registered o
utput of the counter controls LED [0], and also powers LED [2] and LE
D [3] via the blinking_led module.

blinking_led. sdc

Defines the timing constraints for the project.

blinking_led. sv

In this tutorial, you convert this module into a parent PR partition. The
module receives the registered output of top_counter module, which ¢
ontrols LED [2] and LED [3].

blinking_led.qpf

Intel Quartus Prime project file containing the list of all the revisions in t
he project.

blinking_led . gs f

Intel Quartus Prime settings file containing the assignments and settin
gs for the project.

Note: The supr folder contains the complete set of files you create using this application note. Reference these

files at any point during the walkthrough.
1.5. Reference Design Walkthrough

The following steps describe implementation of SUPR with a flat design:

« Step 1: Getting Started
« Step 2: Create Design Partitions

« Step 3: Allocate Placement and Routing Regions

https://github.com/intel/fpga-partial-reconfig

« Step 4: Define Personas

« Step 5: Create Revisions

« Step 6: Compile the Base Revision

« Step 7: Setup PR Implementation Revisions
« Step 8: Change the SUPR Logic

Step 9: Program the Board

Figure 3. SUPR Compilation Flow

Final Static Exports Snapshot SUPR Exports
PR | Static | SUPR SUPR -New
QDB | QDB |-Initial QDB QDB

Base Compilation PR Compilation SUPR Compilation

e ﬁ New PR || Static New SUPR | Static | SUPR
SHCTEUCE Persona | QDB Logic QDB | QDB
IP Generation

Synthesis

IP Generation

Synthesis

Static
LR QDB
LR B SUPR _
Initial QDB

Assembler

Synthesis

Assembler Assembler

SOF and RBF

SOF and RBF

1.5.1. Step 1: Getting Started
To copy the reference design files to your working environment and compile the blinking_led flat design:

1. Before you begin, Download Reference Design Files on page 5.

2. Create the agilex_pcie_devkit_blinking_led_supr directory in your working environment.

3. Copy the downloaded tutorials/agilex_pcie_devkit_blinking_led/flat sub-folder to the
agilex_pcie_devkit_blinking_led_supr directory.

4. In the Intel Quartus Prime Pro Edition software, click File » Open Project and open /flat/blinking_led.qpf.

5. To compile the base design, click Processing » Start Compilation. The Timing Analyzer reports open
automatically when compilation is complete. You can close the Timing Analyzer for now.

1.5.2. Step 2: Create Design Partitions

Create design partitions for each region that you want to partially reconfigure. You can create any number of
independent partitions or PR regions in your project. Follow these steps to create design partitions for the
u_blinking_led instance as the PR partition, and the u_top_counter instance as the SUPR region:

1. Right-click the u_blinking_led instance in the Project Navigator and click Design Partition
» Reconfigurable. A design partition icon appears next to each instance that is set as a partition.

Figure 4. Creating Design Partitions

Project Navigator Q@ ®
Instance Entity
& Agilex: AGFBO14R24B2E2V

» & auto fab 0 “a alt sld fab 0
"F u_blinking led blinking_led
» & u_res . Settings...
e

U_tOF = set as Top-Level Entity
Locate Node '

Logic Lock Region -

Design Partition -

o (TP
None
Default
e Reconfigurable
E* | Reserved Core

2. Repeat step 1 to create a partition for the u_top_counter instance.
3. Click Assignments » Design Partitions Window. The window displays all design partitions in the project.

Figure 5. Design Partitions Window

]'Design Partitions Window ®®

| Assignments View = Compilation View Click to Add Columns

E Partition Name Hierarchy Path Type Preservation Level Empty Partition Database File
| <<new>>
root_partition |

|
[blinking_led u_blinking_led Recon.. NotSet No
|
!
|

top_counter u_top_counter Recon._. NotSet No

4. Double-click the blinking_led Partition Name cell to rename it to pr_partition. Similarly, rename the top_counter
partition to supr_partition.
Alternatively, adding the following lines to blinking_led.gsf creates these partitions:
set_instance_assignment -name PARTITION pr_partition \ -to u_blinking_led -entity top
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON \ -to u_blinking_led -entity
top
set_instance_assignment -name PARTITION supr_partition \ -to u_top_counter -entity top
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON \ -to u_top_counter -entity
top

1.5.3. Step 3: Allocate Placement and Routing Regions

For every base revision that you create, the Compiler uses the PR partition region allocation to place the
corresponding persona core in the reserved region. Follow these steps to locate and assign a PR region in the
device floorplan for your base revision:

1. In the Project Navigator Hierarchy tab, right-click the u_blinking_led instance, and then click Logic Lock Region
» Create New Logic Lock Region. The region appears in the Logic Lock Regions window.

2. Specify a region Width of 5 and Height of 5.

3. Specify the placement region coordinates for u_blinking_led in the Origin column. The origin corresponds to
the lower-left corner of the region. Specify the Origin as X166_Y199. The Compiler calculates (X170 Y203) as
the top-right coordinate.

4. Enable the Reserved and Core-Only options for the region.

5. Double-click the Routing Region option. The Logic Lock Routing Region Settings dialog box appears.

6. For the Routing Type, select Fixed with expansion. This option automatically assigns an Expansion length of
one.

7. Repeat the previous steps to allocate the following resources for the u_top_counter partition:

* Height—5

» Width—5

* Origin—X173_Y199

* Routing Region— Fixed with expansion with Expansion length of one.

* Reserved—On

* Core-Only—On

Figure 6. Logic Lock Regions Window

Logic Lock Regions Window He®

Assignment Regions = Compilation Regions

Region Name Members Width Height Origin Reserved Core-Only Size/State Routing Region
Logic Lock Regions
= u_blinking_led u_blinking led 5 5 X166 Y199 = On On Fixed/Locked, Fixed with expansion 1
= u_top_counter u_top_counter 5 5 «X173_.Y199 = On On Fixed/Locked, Fixed with expansion 1

m <<pnew>>

Note: The routing region must be larger than the placement region, to provide extra flexibility for the Compiler’s
routing stage, when the Compiler routes different personas.

8. Your placement region must enclose the blinking_led logic. To select the placement region by locating the node
in Chip Planner, right-click the u_blinking_led region name in the Logic Lock Regions window, and then click
Locate Node » Locate in Chip Planner.

9. Under Partition Reports, double-click Report Design Partitions. The Chip Planner highlights and color codes

the region.

Figure 7. Chip Planner Node Location for blinking_led

Report PE® | current mode h Coordinate: {160, 202)
* B Design Partitions
root_partition
Design Elements (97) r_— — —_—— = —
auto_tab_0 T T T J———
. Design Elements (1)
v pr_partition ition

v Design Elements (37)
v . Partition Ports (35)
Supr_partition
. Design Elements [107)
. Partition Ports (33)

Tasks ¢ L

Alternatively, adding the following lines to blinking_led.qgsf creates these regions:

set_instance_assignment -name PARTITION pr_partition -to \ u_blinking_led -entity top
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON\ -to u_blinking_led -entity top
set_instance_assignment -name PARTITION supr_partition -to u_top_counter \ -entity top
set_instance_assignment -name PARTIAL_RECONFIGURATION_PARTITION ON -to \ u_top_counter -entity top
set_instance_assignment -name PLACE_REGION “X166 Y199 X170 Y203” -to \ u_blinking_led
set_instance_assignment -name RESERVE_PLACE_REGION ON -to u_blinking_led

set_instance_assignment -name CORE_ONLY_PLACE_REGION ON -to u_blinking_led
set_instance_assignment -name REGION_NAME pr_partition -to u_blinking_led

set_instance_assignment -name ROUTE_REGION “X165 Y198 X171 Y204” -to \ u_blinking_led
set_instance_assignment -name RESERVE_ROUTE_REGION OFF -to u_blinking_led
set_instance_assignment -name PLACE_REGION “X173 Y199 X177 Y203 -to \ u_top_counter
set_instance_assignment -name RESERVE_PLACE_REGION ON -to u_top_counter

set_instance_assignment -name CORE_ONLY_PLACE_REGION ON -to u_top_counter
set_instance_assignment -name REGION_NAME supr_partition -to u_top_counter

set_instance_assignment -name ROUTE_REGION “X172 Y198 X178 Y204” -to \ u_top_counter
set_instance_assignment -name RESERVE_ROUTE_REGION OFF -to u_top_counter

1.5.4. Step 4: Define Personas

This reference design defines three separate personas for the single PR partition, and one SUPR persona for the
SUPR region. Follow these steps to define and include these personas in your project. If using the Intel Quartus
Prime Text Editor, disable Add file

to current project when saving the files.

1. Create new blinking_led_slow.sv, blinking_led_empty.sv, and top_counter_fast.sv SystemVerilog files in your
working directory. Confirm that blinking_led.sv is already present in the working directory.

2. Enter the following contents for the SystemVerilog files:
Table 2. Reference Design Personas SystemVerilog

File Name Description Code

timescale 1 ps/ 1 ps ‘default_nettype none

module blinking_led_slow // clock

input wire clock, input wire reset, input wire [31:01 counter,
// Control signals for the LEDs output wire led_two_on,
LEDs blink slowe | output wire led_three_on localparam COUNTER_TAP = 27;
blinking_led_slow. sv
r reg led_two_on_r; leg led_three_on_r; assign led_two_on = |
ed_two_on_r; assign led_three_on = led_three_on_r;
always_ff @(posedge clock) begin led_two_on_r <= counter|
COUNTER_TAP]; led_three_on_r <= counter[COUNTER_T

AP]; end endmodule

timescale 1 ps /1 ps ‘default_nettype none module blinking_|
o ed_empty(// clock input wire clock, input wire reset, input wir
blinking_led_empty. sv LEDs stay ON _ .
e [31:01 counter, // Control signals for the LEC- output wire |

ed_two_on, output wire led_three_on

continued...

File Name Description Code
/I LED is active low assign led_two_on = I'IDO; assign led_th
ree_on = 11b0; endmodule

top_counter_fast.sv Second SUPR ‘timescale 1 ps/ 1 ps

persona Thdefault_nettype none module top_counter_fast

// Control signals for the LEDs output wire led_one_on, outp

ut wire [31:0] count, // clock input wire clock

) ; localparam COUNTER TAP = 23; reg [31:0] count_d; assi
gn count = count_d; assign led_one_on = ount_d[COUNTE
R_TAP]; always_ff @(posedge clock) begin count_d <=

count_d + 2; end

.:module

3. Click File » Save As and save the .sv files in the current project directory.

1.5.5. Step 5: Create Revisions

The PR design flow uses the project revisions feature in the Intel Quartus Prime software. Your initial design is the
base revision, where you define the static region boundaries and reconfigurable regions on the FPGA. From the
base revision, you create additional revisions. These revisions contain the different implementations for the PR
regions. However, all PR implementation revisions use the same top-level placement and routing results from the
base revision. To compile a PR design, you create a PR implementation revision for each persona. In addition,
you must assign either the Partial Reconfiguration — Base or Partial Reconfiguration — Persona Implementation

revision type for each of the revisions. The following table lists the revision name and the revision type for each of
the revisions. The impl_blinking_led_supr_new.gsf revision is the SUPR persona implementation.
Table 3. Revision Names and Types

Revision Name Revision Type

blinking_led Partial Reconfiguration — Base
blinking_led_default Partial Reconfiguration — Persona Implementation
blinking_led_slow Partial Reconfiguration — Persona Implementation
blinking_led_empty Partial Reconfiguration — Persona Implementation
impl_blinking_led_supr_new Partial Reconfiguration — Persona Implementation

1.5.5.1. Setting the Base Revision
Follow these steps to set blinking_led as the base revision:

1. Click Project » Revisions.

2. For Revision Type, select Partial Reconfiguration — Base.

L Revisions il B

Specify the current revision for the project, create a new revision, delete an existing
revision, or edit the description of a revision.

Revisions:

Revision Name Revision Type Top-level Entity

~ blinking_led

<<newrevision>>

OK Cancel Help

This step adds the following to the blinking_led.gsf:

##blinking_led.qgsf set_global_assignment -name REVISION_TYPE PR_BASE
1.5.5.2. Creating Implementation Revisions

Follow these steps to create the implementation revisions:

In the Revisions dialog box, double-click <<new revision>>.

In Revision name, specify blinking_led_default and select blinking_led for Based on revision.
For the Revision type, select Partial Reconfiguration — Persona Implementation.

Disable the Set as current revision option.

o > 0 Dp o~

Repeat steps 2 through 5 to set the Revision type for the other implementation revisions:

Revision Name Revision Type Based on Revision
blinking_led_slow Partial Res:onﬂguranon — Persona Im blinking_led
plementation
blinking_led_empty Partial Regonﬁguraﬂon — Persona Im blinking_led
plementation
impl_blinking_led_supr_new Partial Reconfiguration — Personalm |\ o i g
plementation
Figure 8. Creating Implementation Revisions
gi' () Create Revision) — ~® x
Specify aname and description for the new revision. You can base the
revision on an existing revision, and specify the revision as the current
revision.
Revision name: blinking_led_default
Based on revision: blinking_led -
This project uses a Partition Database (.qdb) file for the root partition
Revision type: Partial Reconfiguration - Persona Implementation v

Description:

Created on:Monday, April 26, 2021
Based on:blinking_led

Set as current revision

OK Cancel Help

Each .gsf file now contains the following assignment:

set_global_assignment -name REVISION_TYPE PR_IMPL

set_instance_assignment -name ENTITY_REBINDING place_holder -to u_top_counter

set_instance_assignment -name ENTITY_REBINDING place_holder -to u_blinking_led

1.5.6. Step 6: Compile the Base Revision

Follow these steps to compile the base revision and export the static and SUPR regions for later use in
implementation revisions for new PR personas:

1. Set blinking_led as the Current Revision if not already set.

2. In the Design Partitions Window, click the (...) adjacent to the farthest right column and enable the Post Final
Export File column. You can also disable or change the order of columns.

3. To automatically export the final snapshot of PR implementation design partitions after each compilation,
specify the following for the Post Final Export File options for the root and SUPR partitions. The .qdb files
export to the project directory by default.

* root_partition—Dblinking_led_static.qdb
» supr_partition—Dblinking_led_supr_partition_final.qdb
Figure 9. Auto Export in Design Partitions Window

Design Partitions Window & &

Assignments View Compilation View

Partition Name Hierarchy Path Type Post Final Export File Post Synthesis Export File
root_partition | blinking_led_static qdb
pr_partition u_blinking_led Reconfigurable

supr_partition u_top counter Reconfigurable :blinking led supr partition_final qdb

Alternatively, the following .gsf assignments export the partitions automatically after each compilation:
set_instance_assignment -name EXPORT_PARTITION_SNAPSHOT_FINAL \ blinking_led_static.qdb -to | -
entity top
set_instance_assignment -name EXPORT_PARTITION_SNAPSHOT_FINAL \
blinking_led_supr_partition_final.qdb -to u_top_counter \ -entity top

4. To compile the blinking_led base revision, click Processing » Start
Compilation. Alternatively, you can use the following command to compile this revision:
quartus_sh —flow compile blinking_led -c blinking_led After successful compilation, the following files appear in
the project directory:
* blinking_led.sof
* blinking_led.pr_patrtition.rbf
* blinking_led.supr_partition.rbf
* blinking_led_static.qdb
* blinking_led_supr_patrtition_final.qdb

1.5.7. Step 7: Set Up PR Implementation Revisions

You must prepare the PR implementation revisions before you can generate the PR bitstream for device
programming. This setup includes adding the static region .qdb file as the source file for each implementation
revision. In addition, you must specify

the corresponding entity of the PR region. Follow these steps to setup the PR implementation revisions:

1. To set the current revision, click Project » Revisions, select blinking_led_default as the Revision name, and
then click Set Current. Alternatively, you can select the current revision on the main Intel Quartus Prime
toolbar.

2. To verify the correct source for this implementation revision, click Project » Add/Remove Files in Project.
Confirm that the blinking_led.sv file appears in the file list.

(Fites |
Select the design files you want to include in the project. Click Add All to add all design files

File name:
Q <<Filter>>
File Name Type Library Entity
7 top.sv SystemVerilog HDL File

"7 blinking_led.sv SystemVerilog HDL File
"7 top_counter.sv SystemVerilog HDL File
™% blinking_led.sdc Synopsys Design Constraints File

3. To verify the correct source file for the implementation revisions, click Project » Add/Remove files in Project,
and add the following source files for the implementation revisions. If present, remove blinking_led.sv from the
list of project files.

Implementation Revision Name Source
blinking_led_empty blinking
blinking_led_slow blinking

4. Set blinking_led_default as the Current Revision.
5. To specify the .qdb file as the source for root_partition, click Assignments » Design Partitions Window. Double-
click the Partition Database File cell and specify the blinking_led_static.qdb file.

6. Similarly, specify blinking_led_supr_partition_final.qdb as the Partition Database File for supr_partition.

Figure 10.

Design Partitions Window B®
Assignments View | Compilation View

Partition Name Hierarchy Path Type Post Final Export File Partition Database File Entity Re-binding | ..
<<new>>
root_partition | blinking_led_static.qdb

pr_partitior u_blinking_led Reconfigurable blinking_led

supr_partition u_top_counter Reconfigurable _

Alternatively, use the following .gsf assignments to specify the .qdb:

set_instance_assignment -name QDB_FILE_PARTITION \ blinking_led_static.qdb -to |
set_instance_assignment -name QDB_FILE_PARTITION \ blinking_led supr_partition_final.qdb -to
u_top_counter

7. In the Design Partitions Window, click the (...) adjacent to the farthest right column and enable the Entity Re-

binding column.

8. In the Entity Re-binding cell, specify the new entity name for the PR partition you are changing in the current
implementation revision. For the blinking_led_default implementation revision, the entity name is blinking_led.
In this case, you are overwriting the u_blinking_led instance from the base revision compile with the new entity
blinking_led. For other implementation revisions, refer to the following table:

Revision Entity Re-bin

blinking_led_slow blinking_led_

blinking_led_empty blinking_led_

Figure 11. Entity Rebinding

Design Partitions Window B
Assignments View = Compilation View

Partition Name Hierarchy Path Type Post Final Export File Partition Database File: Entity Re-binding |:...
<<new>>
root_partition | blinking_led_static.qdb:

ng_led Reconfigurable blinking_led

supr_partition u_top_counter Reconfigurable _

Alternatively, you can use the following lines in each revision’s .gsf to set the assignments:
#i#blinking_led_default.gsf

set_instance_assignment -name ENTITY_REBINDING blinking_led \ -to u_blinking_led
##blinking_led_slow.qgsf

set_instance_assignment -name ENTITY_REBINDING blinking_led_slow \ -to u_blinking_led
##blinking_led_empty.qgsf

set_instance_assignment -name ENTITY_REBINDING blinking_led_empty \ -to u_blinking_led

9. Delete the place_holder text from the Entity Re-binding cell for supr_partition.
10. To compile the design, click Processing » Start Compilation. Alternatively, use the following command to
compile this project: quartus_sh —flow compile blinking_led —c blinking_led_default
11. Repeat steps 4 through 11 to prepare and compile the blinking_led slow and blinking_led_empty

implementation revisions.

1.5.8. Step 8: Change the SUPR Logic

To change the functionality of the logic within the SUPR partition, you must change the SUPR partition source.
Complete the following steps to replace the u_top_counter instance in the SUPR partition with the
top_counter_fast entity.

1. To set the SUPR implementation revision as current, click Project » Revisions and set
impl_blinking_led_supr_new as the current revision, or select the
revision on the Intel Quartus Prime main toolbar.

2. To verify the correct source file for the implementation revision, click Project »
Add/Remove files in Project, and verify that top_counter fast.sv is the source for the
impl_blinking_led_supr_new implementation revision. If present, remove top_counter.sv from the list of project

files.

Select the design files you want to include in the project. Click Add All to add all design files in the project directory to the

project.
File name:
Q Add All
File Name Type Library Design Entry/Synthesis Tool HDLVersior | pamove
top_counter_fastsv SystemVerilog HDL File <None>
blinking_led_empty.sv SystemVerilog HDL File <None> Up
jtag.sdc Synopsys Design Constraints File <None>
blinking_led.sdc Synopsys Design Constraints File <None>

3. To specify the .qdb file associated with the root partition, click Assignments » Design Partitions Window, and
then double-click the Partition Database File cell to specify blinking_led_static.qdb.
Alternatively, use the following command to assign this file: set_instance_assignment -name
QDB_FILE_PARTITION \ blinking_led_static.qdb -to |

4. In the Entity Re-binding cell for pr_partition, specify the appropriate entity name. For this example, specify the
blinking_led_empty entity. In this case, you are overwriting the u_blinking_led instance from the base revision
compile with the new entity linking_led_empty. The following line now exists in the .gsf:
##impl_blinking_led_supr_new.qgsf set_instance_assignment -name ENTITY_REBINDING blinking_led_empty
\ -to u_blinking_led

5. In the Entity Re-binding cell for supr_patrtition, specify the top_counter_fast entity. top_counter_fast is the name
of the static entity that replaces u_top_counter when you complete the SUPR.

Design Partitions Window @ 62
Assignments View = Compilation View

Partition Name Hierarchy Path Type Partition Database File Entity Re-binding
<c<new>>

root_partition | blinking_led_static. qdb

pr_partition

##impl_blinking_led_supr_new.gsf set_instance_assignment -name ENTITY_REBINDING top_counter_fast \ -
to u_top_counter
6. To compile the design, click Processing » Start Compilation. Alternatively, use following command to compile

this project revision: quartus_sh —flow compile blinking_led —c \ impl_blinking_led_supr_new

1.5.9. Step 9: Program the Board
Follow these steps to connect and program the Intel Agilex F-Series FPGA development board.

1. Connect the power supply to the Intel Agilex F-Series FPGA development board.

2. Connect a USB cable between your PC USB port and the USB programming hardware on the development
board.

3. Open the Intel Quartus Prime software, and then click Tools » Programmer. Refer to Programming a
Development Board.

4. In the Programmer, click Hardware Setup, and then select USB-Blaster.
5. Click Auto Detect, and then select the AGFB014R24B device.

12.
13.

14,

15.

Click OK. The Intel Quartus Prime software detects and updates the Programmer with the three FPGA
devices on the board.
Select the AGFB014R24B device, click Change File, and load the blinking_led_default.sof file.

. Enable Program/Configure for the blinking_led_default.sof file.
. Click Start and wait for the progress bar to reach 100%.

10.
11.

Observe the LEDs on the board blinking.

To program only the PR region, right-click the blinking_led_default.sof file in the Programmer and click Add PR
Programming File. Select the blinking_led_slow.pr_partition.rbf file.
Disable Program/Configure for the blinking_led_default.sof file.

Enable Program/Configure for the blinking_led_slow.pr_partition.rbf file, and then click Start. On the board,
observe LED[0] and LED[1] continuing to blink. When the progress bar reaches 100%, LED[2] and LEDI[3] blink
slower.

To re-program the PR region, right-click the .rbf file in the Programmer, and then click Change PR Programing
File.

Select the .rbf files for the other two personas to observe the behavior on the board. Loading the
blinking_led_default.pr_partition.rbf file causes the LEDs to blink at the original frequency, and loading the
blinking_led_empty.pr_partition.rbf file causes the LEDs to stay ON. 17. To change the SUPR logic, repeat step
7 above to select the impl_blinking_led_supr_new.sof. After changing this file, led [0:1] now blinks at a faster
rate than before. The other PR .rbf files are also compatible with the new .sof.

Note: The Assembler generates an .rbf file for the SUPR region. However, you should not use this file to
reprogram the FPGA at runtime because the SUPR partition does not instantiate the freeze bridge, PR region
controller, and other logic in the overall system. When you make changes to the SUPR partition logic, you must

reprogram the full .sof file from the SUPR implementation revision compilation.

Figure 12. Programming a Development Board

Enables Program or Configuration

&, Hardware Setup... | [USB-Blasterll [3-13.1] | Mode: [1TAG 2 Progress I 100% (Successtul) I

Enable real-ime |SP to allow background programming when available

File Device Checksum Usercode Program/ Verify Blank- Examine 5ec1_a|r5-
Starts Download of — : _ gl Creck B
H] Delete Del =
Configuration Data nones| 2% T —
g none= s A 00000000 <MIOne >] O
Add File.
Auto Detect
w oo Change File
X Delete
M Add File p— _m = B

Adds SOF File

| | V]
Adds RBF to Program v AR 77 " ﬁ —1 ﬁ W

PR region -
TO Adtach Flash Device
—
1'% Down
0 Add Device.
&)l o I Chan ° o f
e evien | Use Regular Expressions Eind.. Find Next
i : s 8= 88 7o ex
12
e Down @)
5 ' -
o ; Hardware Setup 3
(i W P
8
-3 Define CF1 Flach Device - =
83— .
é | System (7) | Processing Properties

Add Partial Reconfiguration Programming Fie

1.5.9.1. Troubleshooting PR Programming Errors

Ensuring proper setup of the Intel Quartus Prime Programmer and connected hardware helps to avoid any errors
during PR programming.

If you face any PR programming errors, refer to “Troubleshooting PR Programming Errors” in the Intel Quartus
Prime Pro Edition User Guide: Partial Reconfiguration for step-by-step troubleshooting tips.

Related Information

Troubleshooting PR Programming Errors

1.5.10. Modifying the SUPR Partition

You can modify an existing SUPR partition. After modifying the SUPR partition, you must compile it, generate the
.sof file, and program the board, without compiling the other personas. For example, follow these steps to change
the top_counter_fast.sv module to count faster:

1. Set impl_blinking_led_supr_new as the current revision.

2. Inthe top_counter_fast.sv file, replace the count_d + 2 statement with count_d + 4.

3. Run the following commands to re-synthesize the SUPR block and generate the new .sof file: quartus_sh —
flow compile blinking_led \ -c impl_blinking_led_supr_new
The resulting .sof now contains the new SUPR region, and uses blinking_led for the default (power-on)

persona.

1.6. Document Revision History of AN 987: Static Update Partial Reconfiguration Tutorial Revision History

Document Version Intel Q_uartus Prim Changes
e Version

2022.10.24 22. Initial release of the document.

Updated for Intel® Quartus®Prime Design Suite: 22.3

Answers to Top FAQs:

Send Feedback

Q What is static update partial reconfiguration

A Static Update Partial Reconfiguration on page 3

Q What do | need for this tutorial?

A Tutorial Requirements on page 3

Q Where can | get the reference design?

A Download Reference Design Files on page 5

Q How do | create an SUPR design?

A Reference Design Walkthrough on page 6

Q What is a PR persona?

Define Personas on page 10

Q How do | change SUPR logic? A Change the SUPR Logic on page 16

A Change the SUPR Logic on page 16

Q How do | program the board?

A Program the Board on page 18

Q What are the PR known issues and limitations?

A Intel FPGA Support Forums: PR

Do you have training on PR?

@ Online Version
C] Send Feedback

ID: 749443
AN-987
Version: 2022.10.24

Documents / Resources

intel Agilex F-Series FPGA Development Board [pdf] User Guide
Agilex F-Series, Agilex F-Series FPGA Development Board, FPGA Development Board,

Development Board, Board

References

« © Search - Intel Communities

« " PSG Documentation

« ©)_design-flows/partial_reconfig at master - alterasoftware/design-flows - GitHub

« O _GitHub - intel/fpga-partial-reconfig: Tutorials, scripts and reference designs for the Intel FPGA partial
reconfiguration (PR) design flow

« ™ 1, Answers to Top FAQs

« s FPGA Software Download Center

« ™ Intel FPGA Technical Training Catalog | Intel

« ™ 1, Answers to Top FAQs

« e Intel® Agilex™ 7 FPGA F-Series Development Kit

« ™ Intel FPGA Technical Training Catalog | Intel

« e Jntel ISO 9001:2015 Registrations

Manuals+,

https://manuals.plus/m/d9a5f59872ac095a5ed24e61b4c927d6a944135f34175f97f7aef31140b6a9db
https://manuals.plus/m/d9a5f59872ac095a5ed24e61b4c927d6a944135f34175f97f7aef31140b6a9db_optim.pdf
https://community.intel.com/t5/forums/searchpage/tab/message?q=Partial%20Reconfiguration&noSynonym=false&collapse_discussion=true
https://documentation.altera.com/#/link/tnc1513987819990/jka1466533251124
https://github.com/alterasoftware/design-flows/tree/master/partial_reconfig
https://github.com/intel/fpga-partial-reconfig
https://www.altera.com/documentation/tnc1513987819990.html#mvh1520372663103
https://www.altera.com/downloads/download-center.html
https://www.altera.com/support/training/course.html?courseCode=OPR100
https://www.intel.com/content/www/us/en/docs/programmable/749443/
https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/f-series/dev-agf014.html
https://www.intel.com/content/www/us/en/programmable/support/training/catalog.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://manuals.plus/

	intel Agilex F-Series FPGA Development Board User Guide
	Static Update Partial Reconfiguration Tutorial for Intel® ™ Agilex F-Series FPGA Development Board
	Troubleshooting PR Programming Errors
	Documents / Resources
	References

