
Home » Intel » intel 1.5.1. Nios II Booting General Flow User Guide

Contents
1 intel 1.5.1. Nios II Booting General
Flow
2 Overview
3 Nios II Booting Elements
4 Documents / Resources
5 Related Posts

intel 1.5.1. Nios II Booting General Flow

intel 1.5.1. Nios II Booting General Flow User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/intel
https://manuals.plus/intel/1-5-1-nios-ii-booting-general-flow-manual.pdf

Overview

Altera® Nios® II processor is a soft processor that supports all Altera System on Chip (SoC) and Field
Programmable Gate Array (FPGA) families. Developing Nios II embedded programs can be based on Altera
hardware abstraction layer (HAL). The creation and management of software projects based on the HAL is
integrated tightly with the Nios II Software Build Tools (SBT). The boot memory could be the Compact Flash
Interface (CFI) flash, User Flash Memory (UFM) flash, Altera Serial Flash (EPCS)/Altera Quad Serial Flash
(EPCQ) configuration device or on-chip RAM (OCRAM). Regardless of the nature of the boot memory, HAL-based
systems are constructed so that the reset vector and all program and data sections are initially stored in the boot
memory. The HAL provides a small boot loader program (also known as boot copier) that copies these sections to
their run time location at boot time. You can specify the run time locations for program and data memory by
manipulating the Nios II BSP settings.

This document describes:

The Nios II processor boot copier that boots your Nios II system according to the boot memory selection

Nios II processor booting options and general flow

Nios II programming solutions for selected boot memory

Prerequisites
You are required to have knowledge in instantiating and developing a system with a Nios II processor. Altera
recommends that you go through the following online tutorials and training materials before using this application
note:

Nios II Classic Software Developer’s Handbook

Nios II Flash Programmer User Guide

AN736: Nios II Processor Booting from Altera Serial Flash (EPCQ)

AN730: Nios II Processor Booting Methods in MAX 10 Devices

AN370: Using the Serial Flash Loader with the Quartus Prime Software

Parallel Flash Loader IP Core User Guide

AN458: Alternative Nios II Boot Methods

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and
Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with
Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain
the latest version of device specifications before relying on any published information and before placing orders
for products or services. Other names and brands may be claimed as the property of others.

AN736: Nios II Processor Booting from Altera Serial Flash (EPCQ)

AN730: Nios II Processor Booting Methods in MAX 10 Devices

Nios II Flash Programmer User Guide

AN370: Using the Serial Flash Loader with the Quartus Prime Software

Parallel Flash Loader IP Core User Guide Formerly, AN386: Using the Parallel Flash Loader with the Quartus

Prime Software

AN458: Alternative Nios II Boot Methods

Acronym

Acronym Definition

Avalon MM Avalon Memory Map

CFI Compact Flash Interface

EPCQ Altera Quad Serial Flash

EPCS Altera Serial Flash

FPGA Field Programmable Gate Array

GUI Graphical User Interface

HAL Hardware Abstraction Layer

OCRAM On-chip RAM

RAM Read Access Memory

SBT Software Build Tools

SoC System on Chip

UFM User Flash Memory

XiP Execute-in-place

Nios II Processor Boot Copier
The Nios II processor boot copier has the following features:

Locates the software application in memory software application in memory

Unpacks and copies software application image to Read Access Memory (RAM)

Automatically switches to application code in RAM after copy completes

The boot copier is placed at the reset address if the runtime location of the .text section is outside of the boot
memory. However, if the runtime location of the .text section is in the boot memory, the system does not need a
separate loader. Instead the _reset entry point in the HAL executable program is called directly. The function
_reset initializes the instruction cache and then calls _start. This initialization sequence lets you develop
applications that boot and execute directly from flash memory. You may enable the alt_load() function in the HAL
code. This function operates as a mini boot copier that copies only the writable memory sections to RAM based
on the BSP settings. It optionally copies sections from the boot memory to RAM. It can copy data sections
(.rodata, .rwdata, .exceptions) to RAM but not the code sections (.text). The code section (.text) section is a read-
only section and remains in the booting flash memory region. This partitioning helps to minimize the RAM usage
but may limit the code execution performance because accesses to flash memory are slower than accesses to the
on-chip RAM. The alt_load() function can be enabled in the BSP Settings.

BSP Settings Functions(1)

hal.linker.enable_alt_load Enable alt_load() function.

hal.linker.enable_alt_load_copy_ rodata alt_load() copies .rodata section to RAM.

hal.linker.enable_alt_load_copy_ rwdata alt_load() copies .rwdata section to RAM.

hal.linker.enable_alt_load_copy_ exception
s alt_load() copies .exceptions section to RAM.

For more information about the Nios II default sections and the alt_load() function, please refer to the “Nios II
Software Build Tools” chapter in the Nios II Classic Software Developer’s Handbook. Besides the alt_load()
function, there are two types of Nios II boot copiers to support Nios II system booting:

Memcpy-based boot copier

EPCS Controller- based boot copier

Memcpy-Based Boot Copier
Memcpy-based boot copier supports MAX® 10 UFM, EPCQ and CFI flash memory. The boot copier is stored
within the flash memory as the flash controller supported Execute-in-Place (XiP). Subsequent boot image is
located just right after the boot copier. You need to ensure the Nios II reset vector offset points to the start of the
boot copier. The following figure shows the flash memory map for EPCQ and CFI flash when using a boot copier.
This memory map assumes a FPGA image is stored at the start.

Figure 1: Memory Map for EPCQ and CFI Flash with Memcpy-based Bootcopier

Note: At the start of the memory map is the FPGA image, followed by the customer data which consists of boot
copier and application code. The size of the FPGA image is unknown and the exact size can only be known after
the Quartus Prime project compilation. The Nios II reset vector offset must be set in Qsys and must point to the
start of the boot copier which is located after the FPGA image. You will have to determine an upper bound for the
size of the FPGA image. For instance, if the size of the FPGA image is estimated to be less than 0x01E00000,
you can set the Nios II Reset Vector offset to 0x01E00000 in Qsys, which is also the start of the boot copier. The
following diagram shows the memory map of a system using UFM flash and the memcpy-based controller. Since
the FPGA image (*.sof) is stored in MAX10 CFM section, the boot copier is located at the base address of UFM,
followed by the application code. Hence, the Nios II reset vector offset can be set to address 0x00000000 in Qsys.

Figure 2: Memory Map of a System Using UFM with memcpy-based Boot Copier

The memcpy-based boot copier is automatically incorporated as part of the:

HEX file during memory initialization file generation (“mem_init_generate” target) in the Quartus Prime

Programming Flow method.

SREC image (*.flash) file during elf2flash utility execution in the Nios II Flash Programming Flow method.

EPCS Controller-Based Boot Copier
EPCS controller-based boot copier supports EPCS memory only. Boot copier is stored in the ROM within the
EPCS flash controller. The boot copier is included during Qsys and Quartus Prime project compilation time. The
next stage boot image is located in the EPCS memory flash. The EPCS controller-based boot copier is
automatically appended into the SREC image (*.flash) file during the elf2flash utility execution in the Nios II Flash
Programming flow method.

Figure 3: Memory Map for EPCS Flash with EPCS Controller-based Bootcopier

Note: Quartus Prime and Nios II Flash programming flow is briefly described in the Nios II Booting. General Flow
diagram. Related Information
Nios II Booting General Flow on page 8.

Nios II Processor Booting Methods
There are a few methods to boot up Nios II processor in Altera devices. The methods to boot up Nios II processor
varies according to the flash memory selection. The following is the supported flash memories with respective
boot options:

Supported Flash Memories Nios II Booting Options Boot Copier

CFI Flash

Nios II processor application
execute-in-place from CFI flas
h

Enable alt_load ()

Nios II processor application c
opied from CFI flash to RAM u
sing boot copier

Memcpy-based

Supported Flash Memories Nios II Booting Options Boot Copier

EPCS Flash
Nios II processor application c
opied from EPCS flash to RA
M using boot copier

EPCS controller-based

UFM (MAX 10 only)

Nios II processor application
executes in-place from Altera
On-chip Flash (UFM)

Enable alt_load ()

Nios II processor application c
opied from UFM to RAM using
boot copier

Memcpy-based

EPCQ Flash

Nios II processor application
execute-in-place from EPCQ f
lash

Enable alt_load ()

Nios II processor application c
opied from EPCQ flash to RA
M using boot copier

Memcpy-based

Altera On-chip Memory (OCR
AM)

Nios II processor application
executes in-place from Altera
OCRAM

No boot copier required

For more information about Nios II Processor booting from UFM and execute-in-place from Altera OCRAM, refer
to AN730: Nios II Processor Booting Methods in MAX 10 Devices. For more information about Nios II Processor
booting from Altera EPCQ flash, refer to AN736: Nios II Processor Booting from Altera Serial Flash (EPCQ).

Related Information

AN736: Nios II Processor Booting from Altera Serial Flash (EPCQ)

AN730: Nios II Processor Booting Methods in MAX 10 Devices.

Nios II Booting General Flow

Summary of Nios II Processor Vector Configurations and BSP Settings

Table 1: Summary of Nios II Processor Vector Configurations

Boot Option Reset Vector Configuration Exception Vector Configuration

Nios II processor applica‐ tion
execute-in-place from CFI flas
h

CFI flash Choose between:

Boot Option Reset Vector Configuration Exception Vector Configuration

• OCRAM/ External RAM

• CFI Flash

Nios II processor applica‐ tion
copied from CFI flash to RAM
using boot copier

CFI flash OCRAM/ External RAM

Nios II processor applica‐ tion
copied from EPCS flash to RA
M using boot copier

EPCS controller OCRAM/ External RAM

Nios II processor applica‐ tion
executes in-place from Altera
On-chip Flash (UFM)

UFM

Choose between:

• OCRAM/ External RAM(2)

• UFM

Nios II processor applica‐ tion
copied from UFM to RAM usin
g boot copier

UFM OCRAM/ External RAM

Nios II processor applica‐ tion
execute-in-place from Altera
On-chip Memory (OCRAM)

OCRAM OCRAM

Table 2: Summary of Nios II Processor BSP Settings

Boot Option BSP Settings: Settings.Adv
anced.hal.linker BSP Editor Setting: Linker Script

Nios II processor applica‐ tion
execute-in-place from CFI flas
h

If the exception vector memor
y is set to OCRAM/ External
RAM, enable the following set
tings in
Settings.Advanced.hal.linke
r:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_
rodata

• enable_alt_load_copy_
rwdata

• enable_alt_load_copy_
exceptions

If the exception vector memor
y is set to CFI Flash,

• Set .text Linker Section to Altera On- ch
ip Flash

• Set other Linker Sections

(.heap, .rwdata, .rodata, .bss, .stack) to OC
RAM/ External RAM

Setting exception vector memory to OCRAM/ External RAM is recommended to make the interrupt processing
faster.

Boot Option BSP Settings: Settings.Adv
anced.hal.linker BSP Editor Setting: Linker Script

enable the following settings i
n

Settings.Advanced.hal.linke
r:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_
rodata

• enable_alt_load_copy_
rwdata

Nios II processor applica‐ tion
copied from CFI flash to RAM
using boot copier

All settings in
Settings.Advanced.hal.linke
r are left unchecked.

All Linker Sections are set to OCRAM/ Extern
al RAM

Nios II processor applica‐ tion
copied from EPCS flash to RA
M using boot copier

All settings in
Settings.Advanced.hal.linke
r are left unchecked.

All Linker Sections are set to OCRAM/ Extern
al RAM

Nios II processor applica‐ tion
executes in-place from Altera
On-chip Flash (UFM)

If the exception vector memor
y is set to OCRAM/ External
RAM, enable the following set
tings in
Settings.Advanced.hal.linke
r:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_
rodata

• enable_alt_load_copy_
rwdata

• enable_alt_load_copy_
exceptions

If the exception vector memor
y is set to UFM, enable the foll
owing settings in Settings.Ad
vanced.hal.linker:

• allow_code_at_reset

• enable_alt_load

• enable_alt_load_copy_
rodata

• enable_alt_load_copy_
rwdata

• Set .text Linker Section to Altera On- ch
ip Flash

• Set other Linker Sections

(.heap, .rwdata, .rodata, .bss, .stack) to OC
RAM/ External RAM

Nios II processor applica‐ tion
copied from UFM to RAM usin
g boot copier

All settings in
Settings.Advanced.hal.linke
r are left unchecked.

All Linker Sections are set to OCRAM/ Extern
al RAM

Boot Option BSP Settings: Settings.Adv
anced.hal.linker BSP Editor Setting: Linker Script

Nios II processor applica‐ tion
execute-in-place from

Enable allow_code_at_reset

in All Linker Sections are set to OCRAM

Altera On-chip Memory Settings.Advanced.hal.linke
r

(OCRAM) and leave the other settings u
nchecked.

Nios II Processor Application Execute-In-Place from CFI Flash

Altera Avalon CFI Flash maps Avalon Memory Map (Avalon MM) signals into CFI signals which the entire CFI
address space is mapped into Altera CFI Flash’s Avalon MM slave interface. Hence, CFI devices are immediately

accessible by Nios II processor upon system reset without CSR initialization. For these reasons, Nios II can
execute application stored on CFI devices directly without a boot copier. When a boot copier is not used, the Nios
II application .text linker sections are set to CFI memory region while .bss, .rodata, .rwdata, .stack and .heap
linker sections are set to RAM memory region. Enable the alt_load() function in the BSP Settings to copy the data
sections (.rodata, .rwdata, .exceptions) to the RAM upon system reset. The code section (.text) remains in the CFI
memory region. For more information, refer to the “Summary of Nios II Processor Vector Configurations” chapter
and the “BSP Settings” table for detailed BSP Settings.
Related Information
Summary of Nios II Processor Vector Configurations and BSP Settings on page 8.

Nios II Processor Application Copied from CFI Flash to RAM Using Boot Copier
Using the boot copier to copy a Nios II processor application from CFI flash to internal or external RAM for
execution helps to improve the execution performance.

The Nios II SBT tool automatically adds the Nios II processor memcpy-based boot copier to the system when the
executable file (.elf) is converted to one of the following:

SREC image (*.flash), if you are using Nios II flash programming method

Memory initialization file (.hex), if you are using the Quartus Prime programming method

The boot copier is located at the base address of the image or file, followed by the application.

For this boot option, the Nios II processor starts executing the boot copier software upon system reset. The

software copies the application from the CFI flash to the internal or external RAM. Once this is complete, the

Nios II processor transfers the program control over to the application.

Note: Quartus Prime and Nios II Flash programming flow is briefly described in Nios II Booting General Flow

diagram.

Related Information

Nios II Booting General Flow on page 8.

Nios II Processor Application Copied from EPCS Flash to RAM Using Boot Copier
The EPCS address space is not mapped into the Altera Avalon EPCS Flash Controller’s Avalon MM slave
interface. Instead, read or write accesses are done through CSRs. Upon system reset, the EPCS device needs to
be initialized before usage. For these reasons, the EPCS controller-based boot copier is required for initializing
the EPCS device and copying the Nios II application to RAM for execution. The EPCS controller instantiates a
block of boot ROM internally at its base address (offset 0x0, just before EPCS controller’s CSRs) for storing the
boot copier. Nios II reset vector offset must set to EPCS controller base address, such that upon system reset the
boot copier is executed first to initialize the EPCS controller and device.

Nios II Booting Elements

Nios II SBT Makefile “mem_init_generate” Target
The Nios II SBT application makefile “mem_init_generate” target is responsible for generating memory
initialization files using various file conversion tools. The files generated include a HEX file for the UFM data, a
HEX file for initialization of the on chip RAM in the SOF and a DAT file for initializing the on chip flash model for
simulation. When required, the Nios II SBT tool automatically adds the Nios II processor default boot copier to the
system when the executable file (.elf) is converted to memory initialization file (.hex). This operation takes place
whenever the .text section is located in a different memory that the reset vector points to, which indicates a code
copy is required. The file conversion happens during execution of “make mem_init_generate” command. The
“make mem_init_generate” command generates different HEX file content based on the specified boot options.
The mem_init_generate target also generates a Quartus Prime IP file (meminit.qip). Quartus Prime software
refers to the .qip file for the location of the initialization file. This .qip file has to be added into Quartus Prime
project if “Initialize flash content” is enabled in Altera On-chip Flash (UFM) or Altera Onchip Memory (OCRAM) IP.
This makefile target is an important element for Quartus Prime programming flow method.

Convert Programming Files Option

Convert Programming Files option in Quartus Prime software is used to convert programming files from one file
format to another. This tool is used for combining a *.sof and a *.hex file into a single *.pof or *.jic file for
programming into the configuration or booting device. This tool is important for Quartus Prime programming flow
method.

Related Information
Quartus Prime Handbook, Volume 3: Verification For more information about the convert programming files
option, refer to the “Quartus Prime Programmer” chapter in volume 3 of the Quartus Prime Handbook.

Elf2flash Utility
The elf2flash utility generates SREC image (*.flash extension) by extracting ELF loadable sections. The SREC
image can then be programmed into flash devices supported by Nios II Flash Programmer. For CFI flash devices,
both the optional CFI bootcopier and ELF loadable sections are stored in the device. When the CFI bootcopier is
not used, the SREC image only contains loadable section data. When the CFI bootcopier is used, the SREC
image contains a CFI bootcopier and the ELF payload, where the bootcopier is precompiled to assume the
payload is linked immediately after it. For EPCS/EPCQ flash devices, only the ELF payload is stored in the
device. EPCS bootcopier is always required, but is stored within the EPCS controller boot ROM initialized after
POF configuration, and thus the SREC image only contains the ELF payload. When either CFI and EPCS
bootcopier is used, elf2flash extracts ELF loadable sections as the bootcopier’s payload in the form of payload
header (4 bytes load address + 4 bytes section size) and payload data (nbytes section data) for each loadable
sections .Elf2flash also generates a last, extra section for storing the .text section load address to allow bootcopier
to transfer control to the program. This elf2flash utility is an important element for Nios II Flash Programming flow
method.

Nios II Programming Solutions
The following table lists the available Nios II processor booting methods with the respective programming solution:

Booting Memory Fla
sh

Programming Solutio
n 1

Programming Solutio
n 2 References

CFI Nios II Flash Program
mer

Quartus Prime Progra
mmer

Nios II Flash Programmer User Gui
de

Parallel Flash Loader IP Core User
Guide

EPCS Nios II Flash Program
mer

Quartus Prime Progra
mmer

Nios II Flash Programmer User Gui
de

AN370: Using the Serial Flash Load
er with the Quartus II Software

MAX10 UFM Quartus Prime Progra
mmer AN730: Nios II Processor Booting

Methods in MAX 10 Devices

EPCQ Quartus Prime Progra
mmer AN736: Nios II Processor Booting fr

om Altera Serial Flash (EPCQ)

OCRAM Quartus Prime Progra
mmer AN730: Nios II Processor Booting

Methods in MAX 10 Devices

Related Information

AN736: Nios II Processor Booting from Altera Serial Flash (EPCQ)

AN730: Nios II Processor Booting Methods in MAX 10 Devices

Nios II Flash Programmer User Guide

AN370: Using the Serial Flash Loader with the Quartus Prime Software

Parallel Flash Loader IP Core User Guide

Formerly, AN386: Using the Parallel Flash Loader with the Quartus Prime Software

Recommended Programming Solution
Altera is moving forward with the Quartus Prime programming solution for all Nios II system programming
because there is no enhancement made on Nios II Flash Programmer to support new Altera devices. Based on
the table in the “Nios II Programming Solutions” chapter, the Quartus Prime programmer is able to support all
range of booting flash memories. It is recommended to use the Quartus Prime programming solution for all Nios II
system programming.

Related Information
Nios II Programming Solutions on page 13

Document Revision History for Generic Nios II Booting Methods

Date

May 2016

Version

2016.05.24

Changes

• Renamed Quartus II to Quartus Prime.

• Updated the “Summary of Nios II Processor Vector Configurations
and BSP Settings” section so that it will be in alignment with AN730.

September 2015 2015.09.11 Removed the Nios II processor boot methods list.

June 2015 2015.06.29 Initial Draft

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and
Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with
Intel’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain
the latest version of device specifications before relying on any published information and before placing orders
for products or services. Other names and brands may be claimed as the property of others.

Documents / Resources

intel 1.5.1. Nios II Booting General Flow [pdf] User Guide
1.5.1. Nios II Booting General Flow, 1.5.1., Nios II Booting General Flow, Booting General Flow,
General Flow, Flow

Manuals+,

https://manuals.plus/m/d9ae6c86570e9f04ec26fab5a1d764a762ca535f40fecc84da68113714f00370
https://manuals.plus/m/d9ae6c86570e9f04ec26fab5a1d764a762ca535f40fecc84da68113714f00370_optim.pdf
https://manuals.plus/

	intel 1.5.1. Nios II Booting General Flow User Guide
	intel 1.5.1. Nios II Booting General Flow
	Overview
	Nios II Booting Elements
	Documents / Resources

