

Infinigrid Pro Maps Realtime User Guide

Home » Infinigrid » Infinigrid Pro Maps Realtime User Guide 🖔

Contents

- 1 Pro Maps Realtime
- 2 Our power grid Perfect harmony Immensely complex
- 3 Manual grid operation is being challenged
- 4 Promaps Realtime "the solution"
- 5 Power system complexity
- **6 Promaps Realtime Dashboard installed in the control room**
- 7 Promaps realtime- The software
- 8 Analysis & calculation result
- 9 Documents / Resources
 - 9.1 References
- **10 Related Posts**

Pro Maps Realtime

Seeing through the grid complexity

Removing the blindfold, for a faster and safer energy transition, & billions in savings Robert Nyiredy [robert@infinigrid.ai]

Our power grid – Perfect harmony – Immensely complex

This is the foundation of our society

This foundation is now being threatened

Need to utilize the power grid closer to its limits

Freeing the needed capacity in a safe way

Manual grid operation is being challenged

OPPORTUNITY

15° A55A	Need to use some of the spare grid capacity
	By tapping into the existing security constraint in a safe way
	Give grid operators more road to handle the increasing traffic

This can only be achieved by analyzing the security of supply in near real-time, understanding the risk and mitigate when needed

Proprietary mathemathical breakthrough, building on team's 20+ years of power grid risk experience Introducing the solution: Promaps Realtime – probabilistic risk analysis in near Realtime

Promaps Realtime "the solution"

Increase flexibility by knowing what to do and when

The solution

Deterministic & Probabilistic Reliability Criteria

By use of probabilistic quantification of the security of supply – a lot of new tools for gaining flexibility are available

	Deterministic N-1 criterion	Probabilistic criterion
Contingency list	Single outages	-All contingencies up to N-k system states -All contingencies up to a certain cumulative probability of occurrence
Probabilities	Not considered	Failure probability for each component
Consequences	Not considered	Interruptions are valued at Value of loss of load

Power system complexity

Promaps Realtime Dashboard installed in the control room

Promaps realtime- The software

Analysis & calculation result

1. Reliability results:

- Probability of failure per component
- Probability of failure per network segment
- Probability of system failure

2. Power system risk

- Expected energy not delivered EENS
- Contingency list (risk adjusted)

- · Black out list
- Cascade list
- Risk indicator in near real time
- Dynamic risk colour indication
- Risk graph

Use case 01 for increase capacity: TSO/DSO - Large prosumer of power

Use case 02 for increase internal capacity: Industry park

Documents / Resources

References

• User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.